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Abstract
In this paper we study the problem of finding (ϵ, ϕ)-expander decompositions of a graph in the
streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is
to partition the vertex set so that every component induces a ϕ-expander, while the number of
inter-cluster edges is only an ϵ fraction of the total volume. It was recently shown that there exists a
simple algorithm to construct a (O(ϕ logn), ϕ)-expander decomposition of an n-vertex graph using
Õ(n/ϕ2) bits of space [Filtser, Kapralov, Makarov, ITCS’23]. This result calls for understanding the
extent to which a dependence in space on the sparsity parameter ϕ is inherent. We move towards
answering this question on two fronts.

We prove that a (O(ϕ logn), ϕ)-expander decomposition can be found using Õ(n) space, for
every ϕ. At the core of our result is the first streaming algorithm for computing boundary-linked
expander decompositions, a recently introduced strengthening of the classical notion [Goranci et
al., SODA’21]. The key advantage is that a classical sparsifier [Fung et al., STOC’11], with size
independent of ϕ, preserves the cuts inside the clusters of a boundary-linked expander decomposition
within a multiplicative error.

Notable algorithmic applications use sequences of expander decompositions, in particular one
often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g.,
the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal
of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS’22], among
others). We prove that any streaming algorithm that computes a sequence of (O(ϕ logn), ϕ)-expander
decompositions requires Ω̃(n/ϕ) bits of space, even in insertion only streams.
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1 Introduction

Expander graphs are known to represent a class of easier instances for many problems.
Therefore, breaking down the input into disjoint expanders can allow to conveniently solve
the task on each of them separately, before combining the partial results into a global
solution. This approach is enabled by (ϵ, ϕ)-expander decompositions (for short, (ϵ, ϕ)-
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46:2 On the Streaming Complexity of Expander Decomposition

ED). For an undirected graph G = (V,E), this is a partition U of the vertex set V , such
that there are at most ϵ|E| inter-cluster edges, while every cluster U ∈ U induces a ϕ-
expander. The list of successful applications of this framework is long, including Laplacian
system solvers [31], deterministic algorithms for minimum cut [28], graph and hyper-graph
sparsification [2, 14, 23, 32], dynamic algorithms for cut and connectivity problems [18, 19],
fast max flow algorithms [11], distributed triangle enumeration [9], polynomial time algorithms
for semirandom planted CSPs [20], and many more.

We refer to ϵ and ϕ as the sparsity parameters: the former controls how sparsely connected
the clusters need to be, and the latter determines how expanding (i.e. non-sparse) the cuts
within clusters are. The reason for using the same term for both is that they are in fact very
closely related. One can show that any n-vertex graph has an (ϵ, ϕ)-ED with ϵ = O(ϕ logn).
To see this, consider the following constructive argument: if the graph has no ϕ-sparse cut
then {V } is a valid ED of G, otherwise recurse on the two sides (S, V \ S) of a ϕ-sparse cut
and union the results to get an ED for G. Every cluster in this decomposition is then an
expander, and a charging argument allows to bound the number of inter-cluster edges by
O(ϕ|E| logn) [30]. One can also observe that no better asymptotic trade-off between ϵ and ϕ
is possible in general [6]. Therefore, this sets the benchmark for algorithmic constructions of
EDs.

At a high level, many ED algorithms follow the approach suggested by the existential
argument. As a naive implementation would take exponential time, the crux often lies
in efficient algorithms that either certify that a large portion of the input is an expander,
or find a balanced sparse cut. This would result in a small depth recursion, thanks to
balancedness, where each level requires little computational resources. There are several
successful examples of this approach. In the sequential setting, a recent algorithm constructs
a (O(ϕ log3 n), ϕ)-ED in Õ(|E|) time [29], based on the previous best algorithm which runs in
Õ(|E|/ϕ) time [30]. There is also a deterministic counterpart, which outputs a (ϕ · no(1), ϕ)-
ED in almost linear time [15]. For the CONGEST model of distributed computing, it is
possible to obtain, for instance, a (ϕ1/

√
log n · no(1), ϕ)-ED in no(1)/ϕ rounds [9]. It is also

possible to maintain a (ϕ · no(1), ϕ)-ED for a graph undergoing edge updates in no(1)/ϕ2

amortized update time [19, 21].

1.1 Previous Work
In the streaming setting, the problem of finding EDs was open until the recent work of [16].
They obtain a dynamic stream algorithm which outputs a (O(ϕ logn), ϕ)-ED and takes
Õ(n/ϕ2) space. While being optimal in the quality of the decomposition, decoding the sketch
to actually output an ED takes exponential time. The authors also give a polynomial time
version: one can produce a (ϕ · no(1), ϕ)-ED using space Õ(n/ϕ2) + n1+o(1)/ϕ1−o(1), with
a post-processing that takes poly(n) time (where the o(1)’s can be tuned, allowing for a
quality-space trade-off).

These streaming algorithms also adopt the recursive approach based on finding balanced
ϕ-sparse cuts, but the streaming model poses a challenge that we now illustrate. Sparsification
for graph streams has been extensively studied [3, 4, 5, 24, 25], so a natural attempt would
consist of maintaining a cut sparsifier as the stream comes and later run the recursive
partitioning on it. However, it must be noted that these cuts are to be found in the subgraphs
induced by the two sides of a previously made cut. This is not a problem in a classical
computational setting, but it actually constitutes the main obstacle for the streaming model:
at sketching time, the algorithm does not know which subgraphs it will need to access.
Unfortunately, it is impossible to preserve cut sizes in arbitrary subgraphs with multiplicative
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precision. The natural work-around is to introduce an additive error term: in [16], the
authors introduce the concept of power-cut sparsifiers. For any given partition U of V , these
sparsifiers preserve the cuts |E(S,U \ S)| of each cluster U ∈ U in the partition up to an
error of δ · |E(S,U \ S)|+ ψ · vol(S). They further show that maintaining Õ(n/δψ) random
linear measurements of the incidence matrix of the input graph is enough to obtain such
sparsifiers. One can see that setting δ ≪ 1 and ψ ≈ ϕ preserves the sparsity of cuts to within
an additive error of roughly ϕ, using Õ(n/ϕ) linear measurements. This is enough to find
a balanced ϕ-sparse cut in every subgraph induced by a given partition of the vertex set.
There is another caveat, though: power-cut sparsifiers give a high probability guarantee for
any fixed partition, but we cannot expect them to work for all partitions simultaneously.
Therefore, in order not to use the sparsifiers adaptively, we need one power-cut sparsifier
for every recursion level. The authors show that the depth of the procedure cannot exceed
Õ(1/ϵ) = Õ(1/ϕ), thus obtaining the space complexity stated before. A few more details are
involved in the polynomial time algorithm, but the underlying framework is the same.

1.2 Our Contribution
The work of [16] initiated the study of expander decompositions in the streaming setting,
and consequently raised the question of whether a dependence in space on the sparsity
parameter ϕ is inherent. In this paper, we move towards settling the streaming complexity
of expander decompositions by attacking the problem on two fronts: (1) we give a nearly
optimal algorithm for “one-level” expander decomposition that avoids the sparsity dependence,
and (2) we show that computing a “repeated” expander decomposition, commonly used in
applications, cannot avoid such dependence.

Upper Bound

We give an Õ(n) space algorithm for computing a (O(ϕ logn), ϕ)-ED in dynamic streams.
Specifically, we show that a “universal” sketch consisting of Õ(n) random linear measurements
of the incidence matrix can be decoded into a (O(ϕ logn), ϕ)-ED for any ϕ: the sketch is
independent of the sparsity ϕ.

▶ Theorem 1 (ED algorithm – exponential time decoding). Let G = (V,E) be a graph given in
a dynamic stream. Then, there is an algorithm that maintains a linear sketch of G in Õ(n)
space. For any ϕ ∈ (0, 1), the algorithm decodes the sketch to compute a (O(ϕ logn), ϕ)-ED
of G with high probability, in Õ(n) space and 2O(n) time.

We note that at least Ω(n logn) space is needed for any small enough ϕ: for example, if
the input graph is a matching of size n/10, say, its ED gives a 1−O(ϕ logn) fraction of the
matching edges.

The decoding time of our sketch can be made polynomial, at the expense of some loss
in the quality of the expander decomposition (similarly to [16]), but keeping the space
independent of the sparsity ϕ.

▶ Theorem 2 (ED algorithm – polynomial time decoding). Let G = (V,E) be a graph given in
a dynamic stream. Then, there is an algorithm that maintains a linear sketch of G in n1+o(1)

space. For any ϕ ∈ (0, 1), the algorithm decodes the sketch to compute a (ϕ · no(1), ϕ)-ED
of G with high probability, in n1+o(1) space and poly(n) time.

In this case we are off by subpolynomial factors in both quality and space complexity as
compared to the optimal ones. The actual theorem that we prove allows one to trade-off the
loss in quality and increase in space.

ICALP 2024



46:4 On the Streaming Complexity of Expander Decomposition

Lower Bound

Most algorithmic applications of EDs, including the ones mentioned above, do not use just one
ED of the input graph. Rather, they use an ED sequence obtained by repeatedly computing
an ED of the inter-cluster edges from the previous level. This can be done in two natural
ways: by contracting the clusters of an ED (we call this variant CED, for “contraction”), or
by removing the intra-cluster edges without changing the vertex set (we call this variant RED,
for “removal”, see Section 1.3). These approaches lead to different results and are used for
different applications (e.g., [19, 28] contract the clusters, and [32, 11] recurse on inter-cluster
edges). In the sequential setting, both CEDs and REDs can be obtained straightforwardly
given an ED algorithm. However, this is not so obvious in the streaming model.

One the one hand, one should be able get a sparsity-independent algorithm for computing
CEDs in dynamic streams via Theorem 1 or Theorem 2: observe that contracting the vertices
of a sparsifier of the input graph G gives a sparsifier of the graph obtained by contracting
vertices in G, so the idea would be to maintain an independent copy of our algorithm for each
of the O(logn) levels and contracting vertices in the sparsifier based on the decomposition of
the previous level. On the other hand, we show a space lower bound for computing REDs,
even in insertion only streams, showing that a dependence on 1/ϕ is necessary.

▶ Theorem 3 (RED lower bound). Let ϵ, ϕ ∈ (0, 1) such that 1/n ≪ ϕ ≪ 1/ polylogn and
ϵ = Õ(ϕ). Any streaming algorithm that with constant probability computes at least two levels
of an (ϵ, ϕ)-RED requires Ω̃(n/ϕ) bits of space.

The result seems to challenge the intuition that EDs become weaker as ϕ and ϵ decrease
(note that when ϕ is, say, 1/n2, an ED can simply consist of connected components). The
questions of (1) whether this bound can be improved, (2) how it scales with the number of
levels of RED we compute, and (3) whether there are algorithms matching such bounds,
remain open.

1.3 Preliminaries

Graph Streaming

In this paper, we will be mostly working in the dynamic graph streaming model, where we
know the vertex set V = [n], and we receive a stream of insertions and deletions for undirected
edges over V . In insertion-only graph streams, the only difference is that previously inserted
edges cannot be deleted. At the end of the stream, the graph G = (V,E) consists of the
edges that have been inserted and not deleted, and we say that G is given in a (dynamic)
stream. When we consider a graph given in a (dynamic) stream, we are implicitly assuming
it to have n vertices, without introducing the parameter n explicitly. Also, when we refer to
G and n without reintroducing them we are implicitly considering the graph resulting from
the input stream and its number of vertices.

A powerful tool for dynamic graph streams is linear sketching, introduced in the seminal
work of Ahn, Guha, and McGregor [4]. The idea is to left-multiply the

(
n
2
)
× n incidence

matrix of the graph by a random k ×
(

n
2
)

matrix for k ≪
(

n
2
)
. Since the sketch consists of

linear measurements, it automatically handles the case of dynamic streams. We will not be
using sketching techniques directly, but rather employ existing algorithms that do. In this
paper we restrain ourselves to unweighted edge streams. One may study the same problem
in general turnstile graph streams [13], but we do not do this here.
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Cuts, Volumes, and Expanders

Given an unweighted graph G = (V,E), possibly with multiple self-loops on the vertices, we
will operate with weighted graphs that approximate G in an appropriate sense. We write
G′ = (V ′, E′, w) to denote a weighted graph, possibly with multiple weighted self-loops on
the vertices. We describe next some notation for such weighted graph G′. The same notation
carries over to the unweighted graph G by implicitly setting w to assign a weight of 1 to all
edges and self-loops.

For any A,B ⊆ V ′ we denote by E′(A,B) the edges in E′ with one endpoint in A and
one in B, and by w(A,B) the total weight of edges in E′(A,B). The volume of a cut S ⊆ V ′

is the sum of the (weighted) degrees, including self-loops, of its vertices. We denote it by
volG′(S). The sparsity of a cut ∅ ≠ S ⊊ V ′ is defined as

ΦG′(S) = w(S, V ′ \ S)
min{volG′(S), volG′(V ′ \ S)} .

For ψ ∈ (0, 1), we make a distinction between cuts having sparsity less than ψ, which we call
ψ-sparse, and cuts having sparsity at least ψ, which we call ψ-expanding. The sparsity of G′

is then defined as

ΦG′ = min
∅̸=S⊊V ′

ΦG′(S) ,

and we call G′ a ψ-expander if all its cuts are ψ-expanding, i.e. ΦG′ ≥ ψ.

Expander Decomposition

As we will treat expander decompositions for the input graph G only, we conveniently use
the following additional notation. For a cluster U ⊆ V , i.e. a subset of the vertices, and a
cut S ⊆ U , which is also a subset of the vertices, we denote the number of edges crossing S
in U by ∂US, i.e. ∂US = |E(S,U \ S)|. This is the local cut of S in U . If U = V , we use a
shorthand notation ∂S = ∂V S. We call such a cut the global cut of S, since for S ⊆ U we
will be interested in both ∂US and ∂S. Moreover, we drop the subscript from the volume
and simply write vol(·) instead of volG(·). Then, EDs can be defined as follow.

▶ Definition 4 (Expander decomposition). Let G = (V,E) and let ϵ, ϕ ∈ (0, 1). A partition U
of V is an (ϵ, ϕ)-expander decomposition (for short, (ϵ, ϕ)-ED) of G if
1. 1

2
∑

U∈U ∂U ≤ ϵ|E|, and
2. for every U ∈ U , one has that G[U ] is a ϕ-expander.

Boundary-Linked Expander Decomposition

A boundary-linked ED [19] is the same as a classical ED except that Property 2 of Definition 4
is strengthened. For a cut S in a cluster U , the boundary bndU (S) of S with respect to U
is the number of edges that go from S to the outside of U , i.e. bndU (S) = |E(S, V \ U)|.
For U ⊆ V and τ ≥ 0, the τ -boundary linked subgraph of G on U , denoted by G[U ]τ , is
the subgraph of G induced by U with additional τ · bndU ({u}) self-loops attached to every
u ∈ U . Then a boundary-linked ED can be defined as follows.

▶ Definition 5 (Boundary-linked expander decomposition [19]). Let G = (V,E), let b, ϵ, ϕ ∈
(0, 1) be parameters such that b ≥ ϕ, and let γ ≥ 1 be an error parameter. A partition U of V
is a (b, ϵ, ϕ, γ)-boundary-linked expander decomposition (for short, (b, ϵ, ϕ, γ)-BLD) of G if
1. 1

2
∑

U∈U ∂U ≤ ϵ|E|, and
2. for every U ∈ U , G[U ]b/ϕ is a ϕ/γ-expander.

ICALP 2024



46:6 On the Streaming Complexity of Expander Decomposition

Algorithm 1 Decompose: recursive procedure for computing a (O(ϕ logn), ϕ)-ED of G.

// G = (V,E) is the input graph
// ϕ ∈ (0, 1) is the sparsity parameter

1 procedure Decompose(G):
2 if G is a ϕ-expander then
3 return {V }
4 else
5 S ← a ϕ-sparse cut of G
6 return Decompose(G[S]) ∪Decompose(G[V \ S])
7 end

Expander Decomposition Sequence

For a partition U of V (think of U as an ED of G), we denote by E \U the set of inter-cluster
(or crossing) edges with respect to U , i.e.

E \ U = E \
⋃

U∈U

(
U

2

)
.

Analogously, we let G \ U = (V,E \ U) be the subgraph of G obtained by removing the
intra-cluster edges in U . For a sequence of partitions U1, . . . ,Uℓ of V and i ∈ [ℓ], we define
GR

1 = G and denote by GR
i+1 = GR

i \ Ui the subgraph of G obtained by removing the
intra-cluster edges of the first i partitions.

▶ Definition 6 (Removal-based ED sequence). Let G = (V,E), let ϵ, ϕ ∈ (0, 1), let ℓ ≥ 1,
and let U1, . . . ,Uℓ be a sequence of partitions of V . The sequence U1, . . . ,Uℓ is an ℓ-level
removal-based (ϵ, ϕ)-ED sequence (for short, ℓ-level (ϵ, ϕ)-RED or (ϵ, ϕ, ℓ)-RED) of G if, for
all i ∈ [ℓ], Ui is an (ϵ, ϕ)-ED of the graph GR

i .

2 Sparsity-Independent One-Level Expander Decomposition

Given a graph G = (V,E) in a dynamic stream, and a parameter ϕ ∈ (0, 1), we consider the
problem of computing an (ϵ, ϕ)-ED of G for ϵ = O(ϕ logn). We show that one can do this in
Õ(n) bits of space, without any dependence on ϕ. In this section, we sketch our approach.

Let us begin by recalling the standard recursive framework for constructing expander
decompositions [22, 32, 33], concisely summarized in Algorithm 1. For any parameter
ϕ ≤ 10−1/ logn, this algorithm produces a (O(ϕ logn), ϕ)-ED by recursively partitioning G
along ϕ-sparse cuts until no more such cuts are found.

Many algorithmic constructions of EDs are essentially efficient implementations of Al-
gorithm 1. Adapting Algorithm 1 to dynamic streams comes with its own set of challenges.
When the input is given in a dynamic stream, one can only afford to store a limited amount
of information about the input graph. Since Algorithm 1 only needs to measure the sparsity
of cuts, it seems enough to have access to cut sizes and volumes. Both these quantities are
preserved by cut sparsifiers. According to the classical definition [7], a δ-cut sparsifier is a
weighted subgraph H = (V,E′, w) of the input G = (V,E), where for every cut S ⊆ V one
has

(1− δ) · ∂S ≤ ∂wS ≤ (1 + δ) · ∂S .
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It is known that such a sparsifier can be constructed in dynamic streams using Õ(n/δ2) bits
of space [5]. With the same space requirement we can also measure the sparsity of cuts up
to a (1± δ) multiplicative error. Having this in mind, it is natural to consider the following
algorithm: first, read the stream and construct a cut sparsifier, then run Algorithm 1 on it
and output the resulting clustering as the expander decomposition. However, this approach
does not work as is. As it turns out, more information is needed about the graph than what
is captured by the regular notion of a cut sparsifier.

The problem with this approach becomes immediately apparent when one considers
the second recursion level. As the process recurses on the two sides of a sparse cut S, it
will repeat the procedure on the subgraphs G[S] and G[V \ S]. Unfortunately, the cut
preservation property of the sparsifier does not carry over to those subgraphs, making it
inadequate for estimating the sparsity of the cuts in those graphs. In fact, the notion of
expander decomposition itself already operates on the subgraphs, as it is required that each
cut in each cluster of the decomposition is expanding.

2.1 Testing Expansion of Subgraphs
The reasoning from above gives rise to the following sketching problem: produce a sparsifier
that can be used to check that any subgraph is a ϕ-expander. To solve it, the authors of [16]
introduced the concept of a (δ, ψ)-power-cut sparsifier. Its property is that, for any cluster
U ⊆ V , with high probability all cuts S ⊆ U are preserved within an additive-multiplicative
error. Recall that ∂US is equal to the size of the cut S inside the induced subgraph G[U ].
When talking about sparsifiers in this section, we will slightly abuse notation by assuming
that there is some instance H = (V,E′, w) of it and denote by ∂w

US the size of the cut S in
the subgraph H[U ] of this sparsifier H. Then we can write the guarantee of a (δ, ψ)-power-cut
sparsifier as follows1:

∀S ⊆ U, (1− δ) · ∂US − ψ · vol(S) ≤ ∂w
US ≤ (1 + δ) · ∂US + ψ · vol(S) .

The authors also give a dynamic stream construction, which uses Õ(n/δψ) bits of space by
sampling edges proportionally to the degrees of their endpoints.

To check the ϕ-expansion of subgraphs up to a small constant multiplicative error, it
is enough to set δ to be a small constant. However, the multiplicative error parameter ψ
must be ≲ ϕ. This is a significant downside of this construction, as it was shown in [16] that
a (δ, ϕ)-power-cut sparsifier must have at least Ω(n/ϕ) edges. In fact, their lower bound is
more general, and holds for general subgraphs2. In other words, Ω(n/ϕ) space is necessary
in order to test ϕ-expansion of general subgraphs. Consequently, new tools must be used to
have any hope of getting an algorithm independent of 1/ϕ.

Our Contribution: Sparsification of Boundary-Linked Subgraphs

As it turns out, solving the expansion testing problem, as it was stated, is not necessary.
Recently, in the breakthrough work of [19], it was shown that one could demand additional
properties from the expander decomposition, and it will still exist at the price of increasing
the number of inter-cluster edges by a small multiplicative factor.

1 A similar sparsifier construction was proposed by [1]. Their construction has an additive error of ψ|S|,
so the dependence is on the number of vertices instead of the volume.

2 The lower bound instance is a 1/ϕ-regular graph. There, each edge by itself forms a ϕ-expander, while
any pair of vertices without an edge between them is not. Being able to test the ϕ-expansion of the
majority of those small subgraphs would imply being able to recover the majority of edges in the graph.

ICALP 2024



46:8 On the Streaming Complexity of Expander Decomposition

More formally, let U ⊆ V and τ > 0. Note that if the τ -boundary-linked subgraph G[U ]τ
(see Section 1.3 for the definition) is a ϕ-expander, then so necessarily is G[U ], but not the
other way around. Then it is possible, for a given ϕ, and ϵ = Õ(ϕ), τ ≈ 1/ϕ, to construct an
(ϵ, ϕ)-expander decomposition U where for each cluster U ∈ U , G[U ]τ is a Ω̃(ϕ)-expander [19].
Such a decomposition is called a boundary-linked expander decomposition.

A key observation is that if in our algorithm we were aiming to construct a boundary-
linked expander decomposition, the testing problem would only involve checking that any
given boundary-linked subgraph is ϕ-expanding. Indeed, this problem is much easier than
the original one and can be solved in space Õ(n). We will show how to do it in two steps:
first, we will discuss how to strengthen the power-cut sparsifier, and then prove that this
strengthening is enough to resolve the problem.

Achieving Additive Error in the Global Cut

As was noted in [16], the idea behind constructing a power-cut sparsifier was to reanalyse
the guarantee given by the construction of [32] for sparsifying expanders. In other words,
a power-cut sparsifier results from a more rigorous analysis of an existing sparsifier. The
problem with this approach is that the sparsifier of [32] is relatively weak to begin with: it only
preserves cuts in expanders, while other constructions can preserve them in all graphs [7, 17].
To strengthen the guarantee, one can give the same treatment to the construction of [17] (see
the full version of this paper). For the sake of simplicity and to gain an intuition for why
this kind of sparsification is at all possible, we discuss here how to do that with the classical
construction of [27] by closely following the original proof.

We show that, given a graph G = (V,E) with a minimum cut of size k, it is possible to
construct a sparsifier H of G such that every cut inside any given subgraph G[U ] of G is
preserved with high probability with the following guarantee:

∀S ⊆ U, ∂US − δ · ∂S ≤ ∂w
US ≤ ∂US + δ · ∂S . (1)

In this paper, a sparsifier with the property of Equation (1) is called a cluster sparsifier. To
achieve the guarantee of Equation (1), consider using the same process as in [27]: sample
each edge with the same probability p ≈ δ−2/k.

To see why this works, fix a subgraph U ⊆ V , and consider any cut S in U . We wish to
show that the size of the cut S inside U concentrates well after sampling. In the original
proof, this is done by simply applying a Chernoff bound. In our case, this bound would look
like this:

Pr[|∂w
US − ∂US| ≥ δ · ∂US] ≤ exp

(
−1

3δ
2p · ∂US

)
.

However, this is insufficient, as the probability depends on the cut size inside G[U ]. As we
have no lower bound on its size, unlike with the sizes of global cuts, the second part of the
argument of [27] cannot be applied. Instead, we apply an additive-multiplicative version
of the Chernoff bound (see for example [16]), that allows us to compare the approximation
error with a bigger value than its expectation. This gives us

Pr[|∂w
US − ∂US| ≥ δ · ∂S] ≤ 2 exp

(
− 1

100δ
2p · ∂S

)
.

Expressing the probability in terms of the global cut allows us to use the cut counting
lemma [26], which bounds the number of global cuts of size at most αk by n2α, for α ≥ 1.
The proof is concluded by associating each global cut with a local cut in G[U ] and taking
the union bound over them.
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In order to get the guarantee of Equation (1) for all graphs, not only those with a minimum
cut of size k, one can sample edges proportionally to the inverse of their edge connectivity
(as in the work of [17]) as opposed to uniformly. Moreover, one can implement such sampling
scheme in dynamic streams, using the approach of Ahn, Guha, and McGregor [5]. We
defer the details of these reanalyses to the full version of this paper, where we show how to
construct cluster sparsifiers with the property of Equation (1) in dynamic streams.

Benefits of Boundary-Linked Subgraphs

To see why the cluster sparsifier is enough to solve the boundary-linked ϕ-expansion testing
problem, consider the following reasoning. Set the self-loop parameter τ equal to b/ϕ, for
some b≫ ϕ and b≪ 1. Fix a cluster U , for which G[U ]b/ϕ is an Ω̃(ϕ)-expander. The crucial
fact is that the size of any cut inside G[U ]b/ϕ is lower bounded by its size in the global graph
up to a small polylogarithmic factor in the following way:

∂US ≥ Ω̃(b) · ∂S . (2)

We will now explain the derivation of the above equation in detail. For a cut ∅ ̸= S ⊊ U ,
recall that bndU (S) is the number of edges going from S to V \U . Note that by the definition
of G[U ]b/ϕ, the volume of any cut S inside of it is equal to

volG[U ]b/ϕ(S) = vol(S) +
(
b

ϕ
− 1
)

bndU (S) .

First, because we assume that G[U ]b/ϕ is an Ω̃(ϕ)-expander, we have

∂US ≥ Ω̃(ϕ) · volG[U ]b/ϕ(S) .

Then, applying the aforementioned formula for volG[U ]b/ϕ(S), we have

∂US ≥ Ω̃(ϕ) vol(S) + Ω̃(ϕ)
(
b

ϕ
− 1
)

bndU (S) .

Since b≫ ϕ and dropping the first summand, the above simplifies to

∂US ≥ Ω̃(b) bndU (S) .

Finally, applying ∂US + bndU (S) = ∂S and b≪ 1, we arrive back at Equation (2).
A consequence of Equation (2) is that setting δ ≈ 1/b in the cluster sparsifier produces

the following guarantee for Ω̃(ϕ)-expander subgraphs G[U ]b/ϕ:

∀S ⊆ U, ∂US −O(1) · ∂US ≤ ∂w
US ≤ ∂US +O(1) · ∂US ,

where the O(1) can be made arbitrarily small. In other words, we achieve a multiplicative
approximation guarantee on subgraphs of interest, which is enough to solve the testing
problem. Since b can be set to be 1/ polylogn, the final sparsifier size does not depend
on 1/ϕ. In this sense, such sparsifier can be thought of as a “universal” sketch of the graph
that allows to solve the testing problem for all ϕ simultaneously.

Even though we now know how to solve the testing problem, an implementation of
Algorithm 1 would need to actually find a sparse cut when the test fails (and in particular, it
needs to find a balanced sparse cut, see the next section). In the full version of this paper,
we show that cluster sparsifiers enable to solve this harder task too: consider an offline
algorithm that either correctly determines a graph to be a boundary-linked expander or finds
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46:10 On the Streaming Complexity of Expander Decomposition

a (balanced) sparse cut; one can prove that we can run such algorithm on a subgraph of the
sparsifier as a black box and obtain essentially the same result as if the algorithm was run
on the corresponding subgraph of the original graph. In this sense, cluster sparsifiers serve
as small error proxies to the original graph for expander-vs-sparse-cut type of queries on
vertex-induced subgraphs.

2.2 Low Depth Recursion

Another problem that arises when using the recursive approach is that the subgraph sparsi-
fication guarantee of both power-cut sparsifiers and cluster sparsifiers is only probabilistic,
and it can be shown that it cannot be made deterministic [16]. This means that after finding
a sparse cut S in a subgraph G[U ]b/ϕ of a sparsifier, we cannot claim that the same sparsifier
would preserve the cuts inside the new graph G[S]b/ϕ with high probability, as it is dependent
on another cut that we have already found inside the sparsifier. This means we cannot use
the same sparsifier for two different calls to Algorithm 1 inside the same execution path.
However, we can share a sparsifier among all the calls at the same recursion level since these
will operate on independent portions of G. Therefore, we want to have a separate sparsifier
for every recursion level. This means that in order to minimize space requirements, it is
crucial to have a small recursion depth.

To have small recursion depth, the algorithmic approach of [8, 9, 16] enforces the sparse
cut S from line 5 of Algorithm 1 to be balanced, i.e. none of S and V \S is much larger than
the other. In particular, they only recurse on the two sides of a cut if vol(S) ≳ ϵ vol(V \ S).
When there is no balanced sparse cut and yet the input is not an expander, a lemma of
Spielman and Teng [32] suggests there should be an Ω(ϕ)-expander G[S′] that accounts for
a (1 − O(ϵ))-fraction of the total volume. An algorithmic version of this structural result
allows us to iteratively trim off a small piece of the graph until such S′ is found. At this
point, the algorithm of [16] can simply return {S′} ∪ (∪u∈V \S′{u}) as an ED, with at most
O(ϵ|E|) inter-cluster edges between singletons. As the volume of the cluster multiplicatively
decreases by 1−O(ϵ) after each call, this gives recursion depth at most Õ(1/ϵ) ≈ Õ(1/ϕ).

Our Contribution: Adaptation of Trimming

We show that a simple refinement of this approach allows us to adapt the framework of [30],
which leads to an algorithm with recursion depth independent of ϕ. We run the same
algorithm, but instead of separating each vertex in V \ S′ into its own singleton cluster, we
recurse with Algorithm 1 on the whole set V \S′. Conceptually, this implements an analogue
of the trimming step of [30].

This means that at the end, fewer edges in V \ S become inter-cluster edges. Because
of that, we can strengthen the balancedness requirement: we recurse on the two sides of a
sparse cut only if vol(S) ≳ 1

C vol(V \ S) for a large constant C. This allows us to trim more
vertices each time, resulting in Õ(1) depth of the trimming step. On the other hand, because
in each call to Algorithm 1 the volume of clusters passed to recursive calls is decreased by at
least a constant factor, the total recursion depth becomes at most Õ(1).

Other than the refinement discussed above, our space efficient implementation of Al-
gorithm 1, as well as the iterative procedure to find the large expander S′, are almost the
same as the ones of [16] (which in turn are inspired by the one of [9]). The details of the
algorithms are given in the full version of this paper.



Y. Chen, M. Kapralov, M. Makarov, and D. Mazzali 46:11

2.3 Putting It All Together
Combining the ideas illustrated in the two sections above, neither the sparsifier’s size nor
the recursion depth depend on ϕ, thus giving a sparsity-independent space algorithm for
boundary-linked expander decomposition (BLD for short). This result is stated in terms
of parameters b, ϵ, ϕ ∈ (0, 1), γ ≥ 1: a (b, ϵ, ϕ, γ)-BLD is a partition U with at most an ϵ

fraction of crossing edges and every U ∈ U induces a ϕ/γ-expander G[U ]b/ϕ (see Section 1.3).
Using this terminology, we obtain the following result.

▶ Theorem 7 (Exponential time decoding BLD). Let G = (V,E) be a graph given in a dynamic
stream, and let b ∈ (0, 1) be a parameter such that b ≤ 1/ log2 n. Then, there is an algorithm
that maintains a linear sketch of G in Õ(n/b3) space. For any ϵ ∈ [n−2, b logn], the algorithm
decodes the sketch to compute, with high probability and in Õ(n/b3) space and 2O(n) time, a
(b, ϵ, ϕ, γ)-BLD of G for

ϕ = Ω
(

ϵ

logn

)
and γ = O(1) .

From this, one can easily conclude our main result.

▶ Theorem 8 (See Theorem 1). Let G = (V,E) be a graph given in a dynamic stream. Then,
there is an algorithm that maintains a linear sketch of G in Õ(n) space. For any ϕ ∈ (0, 1)
such that ϕ ≤ c/ log2 n for a small enough constant c > 0, the algorithm decodes the sketch
to compute a (O(ϕ logn), ϕ)-ED of G with high probability, in Õ(n) space and 2O(n) time.

We remark that for ϕ ≥ Ω(1/ log2 n), one can use the algorithm of [16] to still have an
Õ(n) space construction of a (O(ϕ logn), ϕ)-ED.

Proof. First note that without loss of generality we can assume ϕ ≥ 1/n2, otherwise an ED
can simply consist of the connected components of G (which can be computed in dynamic
streams in Õ(n) space [4]). Then, we note that since c is small enough and ϕ ≤ c/ log2 n,
one can always define ϵ = C · ϕ · logn for an appropriate constant C > 0 while ensuring
1/n2 ≤ ϵ ≤ 1/ logn. We can thus prove the theorem by equivalently showing that there is an
algorithm that maintains a linear sketch of G in Õ(n) space, and that for all ϵ ∈ [1/n2, 1/logn]
decodes the sketch to compute, with high probability, an (ϵ,Ω(ϵ/ logn)))-ED of G in Õ(n)
space and 2O(n) time.

Let then ϵ ∈ [1/n2, 1/logn]. We use the algorithm from Theorem 7 with parameter ϵ and
a parameter b of our choice. We need to meet two preconditions: b ≤ 1/ log2 n and ϵ ≤ b logn.
Since we assume ϵ ≤ 1/ logn, we can set b = 1/ log2 n, and all the prerequisites are fulfilled.
Then the algorithm from Theorem 7 runs in 2O(n) time and takes Õ(n/b3) = Õ(n) bits of
space. The output U is a (b, ϵ, ϕ, γ)-BLD of G with high probability, where ϕ = Ω(ϵ/ logn)
and γ = O(1). Since a (b, ϵ, ϕ, γ)-BLD of G is an (ϵ, ϕ/γ)-ED of G, we have obtained an
(ϵ,Ω(ϵ/ logn))-ED of G with high probability. ◀

The exponential time in the decoding is due to the subtask of finding a balanced sparse
cut. As we show, one can make the decoding time polynomial by resorting to known offline
approximation algorithms [29, 30]. However, we only have logΩ(1) n-approximations for
finding a balanced sparse cut, and in particular, we do not expect (under NP-hardness
and the Unique Games Conjecture) there to be a polynomial time O(1)-approximation [10].
Such super-constant factor error incurs some loss in the quality of decomposition and space
requirement, which, nevertheless, remains independent of the sparsity.
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46:12 On the Streaming Complexity of Expander Decomposition

▶ Theorem 9 (Polynomial time decoding BLD). Let G = (V,E) be a graph given in a
dynamic stream, and let b ∈ (0, 1) be a parameter such that b ≤ 1/ log5 n. Then, there is
an algorithm that maintains a linear sketch of G in n/b3 · logO(log n/ log 1

b ) n space. For any
ϵ ∈ [n−2, b logn], the algorithm decodes the sketch to compute, with high probability and in
n/b3 · logO(log n/ log 1

b ) n space and poly(n) time, a (b, ϵ, ϕ, γ)-BLD of G for

ϕ = Ω
(

ϵ

log4 n

)
and γ = logO

(
log n

log 1/b

)
n .

A polynomial time version of Theorem 8 then follows from Theorem 9.

▶ Theorem 10 (See Theorem 2). Let G = (V,E) be a graph given in a dynamic stream,
and let b ∈ (0, 1) be a parameter such that b ≤ 1/ log5 n. Then, there is an algorithm that
maintains a linear sketch of G in n/b3 · logO(log n/ log 1

b ) n space. For any ϕ ∈ (0, 1) such that
ϕ ≤ b/ logC·log n/ log 1

b n for a large enough constant C > 0, the algorithm decodes the sketch to
compute a (ϕ · logO(log n/ log 1

b ) n, ϕ)-ED of G with high probability, in n/b3 · logO(log n/ log 1
b ) n

space and poly(n) time.

We remark that setting, say, b = 2−
√

log n in the above result gives a n1+o(1) space
algorithm for computing a (ϕ · no(1), ϕ)-ED for any ϕ ≤ 2−2C log log n

√
log n. For larger values

of ϕ, one can use the polynomial time algorithm of [16] to still get a n1+o(1) space construction
for a (ϕ · no(1), ϕ)-ED.

Proof. As in the proof of Theorem 8, we can assume ϕ ≥ 1/n2. Also, by virtue of C
being a large enough constant and ϕ ≤ b/ logC·log n/ log 1

b n, one can always define ϵ to be
ϵ = ϕ · logC·log n/ log 1

b n while ensuring n−2 ≤ ϵ ≤ b logn. Then, we equivalently prove that
for any b ∈ (0, 1) with b ≤ 1/ log5 n there is an algorithm that maintains a linear sketch
of G in n/b3 · logO(log n/ log 1

b ) n space, and that for any ϵ ∈ (0, 1) such that n−2 ≤ ϵ ≤ b logn
decodes the sketch to compute, with high probability, an (ϵ, ϵ/ logO(log n/ log 1

b ) n)-ED of G in
n/b3 · logO(log n/ log 1

b ) n space and poly(n) time.
Let then b, ϵ ∈ (0, 1) with b ≤ 1/ log5 n and n−2 ≤ ϵ ≤ b logn. We use the algorithm from

Theorem 9 with the same parameters b and ϵ, since every admissible pair of parameters b
and ϵ fulfils the conditions of Theorem 9. The space complexity is also the same, and the
running time is poly(n). Again, observe that a (b, ϵ, ϕ, γ)-BLD of G is an (ϵ, ϕ/γ)-ED of G.
Hence the claim, since Theorem 9 gives

ϕ

γ
= Ω

(
ϵ

log4 n

)
· 1

logO
(

log n
log 1/b

)
n

= ϵ

logO
(

log n
log 1/b

)
n
. ◀

The proofs of Theorem 7 and Theorem 9 can be found in the full version of this paper.

3 Two-Level Expander Decomposition Incurs a Sparsity Dependence

Given a graph G = (V,E) in a stream and parameters ϵ, ϕ ∈ (0, 1), we consider the problem
of computing a two-level (ϵ, ϕ)-RED of G (see Section 1.3). In other words, we study the
problem of computing an (ϵ, ϕ)-ED U of G and an (ϵ, ϕ)-ED U ′ of the graph G′ = (V,E \ U),
where E \ U denotes the set of inter-cluster edges of U , i.e. the edges of E that are not
entirely contained in a cluster U ∈ U . We remark that we wish to do so in a single pass over
the stream.
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S1

Sn/m

T is an expander

s1,K

sn/m,K

Si

si,K

degree from vertices in T to the LHS is ddegree from si,K to the RHS is dm/2

. . .
. . .

Figure 1 Illustration of the graph we use for proving the lower bound. Thick bullets represent
important vertices, thick lines represent important edges, dotted lines represent edges connecting
the important vertices to T .

A Natural Algorithmic Approach and Why It Fails

A naive attempt to solve this problem would be that of sketching the graph twice, for example
by using our algorithm from Theorem 1. One can use the first sketch to construct the first
level ED U . After, the hope is that one can send updates to the second sketch so as to
remove the intra-cluster edges and then decode this sketch into an ED of G′ = (V,E \ U)
using again Theorem 1. However, this hope is readily dashed. Indeed, sketching algorithms
break down if we send a removal update for an edge that was not there in the first place,
and we do not have knowledge of which of the pairs

(
U
2
)

are in E and which are not.

Our Contribution: Space Lower Bound

We show that, in sharp contrast to our algorithm for constructing a one-level expander
decomposition, this problem requires Ω̃(n/ϕ) space, i.e. a dependence on 1/ϕ is unavoidable.
Formally, we obtain the following result.

▶ Theorem 11 (See Theorem 3). Let ℓ ≥ 2 and let ϵ, ϕ ∈ (0, 1) such that ϵ = 1−Ω(1), ϕ ≤ ϵ,
and ϕ ≥ C ·max{ϵ2, 1/n} for a large enough constant C > 0. Any streaming algorithm that
with probability at least 9/10 computes an ℓ-level (ϵ, ϕ)-RED requires Ω(n/ϵ) bits of space.

The above theorem gives an Ω̃(n/ϕ) space lower bound for algorithms that compute
a RED with near-optimal parameters, i.e. algorithms that achieve ϵ = Õ(ϕ) for any
1/n≪ ϕ≪ 1/ logn.

Setup and Hard Instances

Throughout this section, the symbols ≪ and ≫ mean smaller or larger by a large constant
factor. Let us fix the RED parameters ϵ, ϕ ∈ (0, 1), and let us restrain ourselves to the
regime ϕ ≫ ϵ2 (and of course ϕ ≪ ϵ). We prove the lower bound by giving a distribution
over hard instances G = (V,E). This distribution is parametrised by integers d and m such
that 1≪ d≪ m≪ n, m≫ 1/ϕ, m≪ 1/ϵ2, and d≪ 1

ϵ . With these parameters fixed, our
hard distribution G is defined below in Definition 12. An illustration is given in Figure 1.
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First level ED Second level ED

U
∗

.
.
.

.
.
.

.
.
.

.
.
.

Figure 2 Illustration of the ideal expander decomposition of the graph. Thick bullets represent
important vertices, smaller bullets represent ordinary vertices, thick lines represent important edges,
dotted lines represent the rest of the edges. Grey areas represent the clusters in the decomposition.

▶ Definition 12 (Distributions G and G′ – Informal). We partition V arbitrarily into two sets
S and T with n/2 vertices each, and further partition S into n/m sets S1, . . . , Sn/m with
m/2 vertices each. The edge set of the graph G = (V,E) ∼ G is defined as follows.
1. For each i ∈ [n/m], the induced subgraph G[Si] is an Erdős-Rényi random graph with

m/2 vertices and degree ≈ d. We denote by G′ the distribution of the subgraph G[S].
2. The induced subgraph G[T ] is a fixed d-regular Ω(1)-expander.
3. We fix for convenience an arbitrary labelling si,1, . . . , si,m/2 of the vertices in each Si, and

we sample an index K uniformly from [m/2]. Then, for every i ∈ [n/m], we add dm/2
edges from si,K to T so that each t ∈ T has d incident edges connecting to S.

Roughly speaking, our hard instances should be composed of n/m regular expanders
that are densely connected to T , which is also an expander, through a selection of “special”
vertices. We will show that the hardness arises from recovering information about certain
important vertices and edges, defined below and also illustrated in Figure 1.

▶ Definition 13 (Important vertices and edges – Informal). Let G = (V,E) ∼ G. We define
the set of important vertices V ∗ = {si,K : i ∈ [n/m]} to be the set of vertices of S that are
connected to T , and define the set of important edges E∗ = {{si,K , v} : i ∈ [n/m], v ∈ S} to
be the set of edges in the induced subgraph G[S] that are incident on V ∗.

The lower bound proof has two steps: we first prove that a two-level RED leaks a
non-trivial amount of information about the graph G ∼ G; then we prove that, in order to
obtain such amount of information, the algorithm must use a lot of space.

3.1 Two-Level Expander Decomposition of the Hard Instance
In this section, we show that any valid two-level RED reveals a lot of informations about the
important edges. The following lemma shows that a non-trivial amount of important edges
are inter-cluster edges in the first level decomposition. An ideal decomposition is illustrated
in Figure 2.

▶ Lemma 14 (Informal). Let G = (V,E) ∈ supp(G). Then, any (ϵ, ϕ)-ED U of G satisfies

|E∗ \ U| ≥ 4
5 · |E

∗| .
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Proof sketch. By definition of the graph, there are Θ(dn) edges in the graph. Since there
is at most an ϵ fraction of crossing edges, there are only O(ϵdn) crossing edges. Note that
there are Θ(dn) edges in G[T ], so only an O(ϵ) fraction of the edges in G[T ] are crossing
edges. Furthermore, G[T ] is a regular expander: this implies that there is a large cluster
U∗ ∈ U comprising a 1−O(ϵ) fraction of T , together with a 1−O(ϵ) fraction of important
vertices. The latter is true since the edges between S and T make up a constant fraction of
the total volume and only a small fraction of the edges can be crossing. We refer the reader
to the full version of this paper for more details.

The edges in the subgraph G[S] also account for a constant fraction of the total volume.
Together with the fact that each Si induces a regular expander, for many of the Si’s we will
have a cluster in U that contains most of Si. Now consider a set Si such that the important
vertex of Si is in U∗ and most of the vertices in Si are all in the same cluster. If most
of the vertices in Si are also inside U∗, then consider the cut from (U∗ ∩ Si) \ {si,K} to
(U∗ \Si)∪{si,K}. The cut size is at most the number of important edges in Si, which is O(d).
On the other hand, the volume of the cut is Θ(dm) since most of the vertices of Si are in the
cluster. Recalling that m≫ 1

ϕ , one concludes that the cut is sparse. Therefore, we ruled out
the possibility of having many vertices of Si in U∗. See the full version of this paper for a
detailed discussion.

In summary, as illustrated in Figure 2, in any valid expander decomposition, most of the
vertices in T and most of the important vertices are inside a giant cluster U∗, and for most
of the Si’s, there is a cluster other than U∗ that contains most of the vertices in Si. For any
such Si, most of the important edges inside it are then crossing edges. ◀

The second level expander decomposition, i.e. an expander decomposition of the inter-
cluster edges from the first level, is also quite structured, as illustrated in the ideal RED of
Figure 2.

▶ Lemma 15 (Informal). Let G = (V,E) ∈ supp(G), and let U1,U2 be any 2-level (ϵ, ϕ)-RED
of G. Then, there are at most n/10 vertices in S that are non-isolated vertices3 in U2.
Moreover, at least a 2/3 fraction of important edges are not in E \ U2, i.e. a 2/3 fraction of
important edges are inside clusters of U2.

Proof sketch. The number of crossing edges in the first level decomposition is O(ϵdn), which
is much less than n since d≪ 1

ϵ . This means that most of the vertices are isolated vertices
in the second level. Moreover, by Lemma 14, most of the important edges are crossing edges
in the first level decomposition. Among these Θ(dn/m) edges, at most O(ϵ2dn) edges can be
crossing edges in the second level decomposition. Recalling that m≪ 1

ϵ2 , we see that most
of the important edges are not crossing edges in the second level decomposition. ◀

3.2 Lower Bound via Communication Complexity
Our streaming lower bound will be proven in the two-player one-way communication model.
In this setting, Alice gets the edges in G[S] and G[T ], and Bob gets the edges between S

and T . We prove that in order to give a two-level RED, Alice needs to send Ω(dn) bits of
information to Bob.

The high level idea is the following. Note that the identity of the important vertices can
be only revealed by edges given to Bob. Thus, given Alice’s input, every vertex in S has the
same probability to be an important vertex, which means that every edge in S has the same

3 We call a vertex v non-isolated in a decomposition U if U puts v in a cluster with other vertices, i.e. v
does not constitute a singleton cluster in U .
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probability to be an important edge. Therefore, in order to make sure that Bob recovers
most of the important edges (which is morally equivalent to computing a two-level RED, as
suggested by Figure 2), Alice needs to send most of the edges in S to Bob, which is Ω(dn).

To make the above idea concrete, we consider a communication problem where Alice is
given a graph, and Bob is asked to output a not too large set of pairs that contains a good
fraction of the edges of Alice’s input. We first reduce this new problem to the two-level RED
problem. Then, we will prove a communication complexity lower bound for this problem.

▶ Definition 16 (Informal). In the communication problem recover, Alice’s input is a graph
G′ = (S,E′) where |S| = n/2, and Bob’s output is a set of pairs of vertices F ⊆

(
S
2
)

that
must satisfy |F | ≤ nm/10 and |F ∩ E′| ≥ Ω(|E′|), i.e. at least a constant fraction of the
edges in G′ are in F .

Now, the idea is to plant Alice’s input for recover into our instance from Definition 12.
The input distribution for recover is sampled from the distribution G′. In other words, the
distribution of Alice’s input is the same as the left-hand side part of G ∼ G (i.e. the subgraph
G[S]). Then, in the reduction, Alice gets the edges of G[S] and G[T ] while Bob gets the
edges between S and T . By virtue of the discussion in the previous section, we expect a RED
of G to allow Bob to recover many important edges in G[S]. Hence, Bob could simulate the
RED algorithm for all the m/2 possible choices of the random index K ∼ [m/2] that defines
the important edges (see Definition 12): in this way, the k-th RED should reveal information
about Alice’s edges that are incident on the vertices {si,k}i. Therefore, by varying k over
[m/2], Bob should obtain information about all the edges in Alice’s graph. More precisely,
the reduction is the following.

▶ Reduction (Informal). Let A be a deterministic streaming algorithm for computing a 2-level
(ϵ, ϕ)-RED. Alice, given her input graph G′ = (S,E′) generated by G′, feeds her edges E′ to
A, together with the fixed edges of G[T ]. Then, she sends the memory state of A to Bob.
Upon receiving the message, Bob makes m/2 copies of A and initialises them to the memory
state he received from Alice. Call these copies A1, . . . ,Am/2. Next, for each k ∈ [m/2],
call Gk = (V,Ek) the graph we obtain from G when K = k and the left-hand side Gk[S]
is exactly Alice’s input G′ (so that the vertices {si,k}i are the important vertices in Gk,
see Definition 12 and Definition 13). Then, Bob feeds the edges Ek(S, T ) to Ak. Let then
Uk

1 ,Uk
2 be the RED output by Ak. Bob finally constructs his output set F as follows: for

each k ∈ [m/2], add the pair {s, si,k} to F for every i ∈ [n/m] and every vertex s ∈ Si that
is not isolated in Uk

2 . ⌟

By Lemma 15, the number of non-isolated vertices in the second-level decomposition is at
most n/10. Hence, the total number of pairs added to F is at most nm/10, thus satisfying
the first requirement of Definition 16. Moreover, by Lemma 15, at least a 2/3 fraction of the
important edges are not crossing edges in the second level. This means that for each k, at
least a 2/3 fraction of the edges that are incident on si,k is added to F . In turn, this implies
that F contains at least a constant fraction of the edges in E′, thus satisfying the second
requirement of Definition 16. More precisely, one can prove the following.

▶ Lemma 17 (Informal). If there is a deterministic L-bit space streaming algorithm A that
computes a 2-level (ϵ, ϕ)-RED with constant probability over inputs G ∼ G, then there is a
deterministic protocol R that solves recover with constant probability over inputs G′ ∼ G′.
The communication complexity of R is at most L.

The final component of the proof is the communication complexity lower bound for recover.
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▶ Lemma 18 (Informal). The one-way communication complexity of solving recover with
constant probability over inputs sampled from G′ is Ω(dn).

Proof sketch. Roughly speaking, we show that the posterior distribution of the input
conditioned on the output is shifted away from its prior distribution.

Recall that when the input G′ = (S,E′) is sampled from G′, the graph is a disjoint union
of n/m random graphs with m/2 vertices each and degree ≈ d. There are roughly((

m/2
d

)m/2
)n/m

≈
(m

2d

)dn/2

possible inputs in total and the information complexity is Ω(dn). Conditioning on the
the output F of a correct protocol for recover, the number of possible inputs is greatly
decreased. In particular, to determine the input E′, we need to select a constant fraction,
say 2/3 for example, of the pairs from F , and select the rest of the edges (a 1/3 fraction, in
our example) arbitrarily. Since |F | is at most nm/10, |E′| = Θ(dn), and

(
S
2
)
≈ nm/2, the

total number of possible inputs is then roughly(
nm/10
2/3 · dn

)
·
(
nm/2

1/3 · dn

)
≈
(

3m
20d

)1/3·dn

·
(

3m
2d

)1/6·dn

<
(m

3d

)dn/2
.

This means the information complexity of the input is decreased by a constant factor, which
means that the protocol needs to communicate Ω(dn) bits of information. ◀

Finally, one can conclude the main result Theorem 11 combining Lemma 17 and Lemma 18.
The formal proofs and definitions are deferred to the full version of this paper.
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