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Abstract
In the 0-Extension problem, we are given an edge-weighted graph G = (V, E, c), a set T ⊆ V of its
vertices called terminals, and a semi-metric D over T , and the goal is to find an assignment f of each
non-terminal vertex to a terminal, minimizing the sum, over all edges (u, v) ∈ E, the product of the
edge weight c(u, v) and the distance D(f(u), f(v)) between the terminals that u, v are mapped to.
Current best approximation algorithms on 0-Extension are based on rounding a linear programming
relaxation called the semi-metric LP relaxation. The integrality gap of this LP, is upper bounded by
O(log |T |/ log log |T |) and lower bounded by Ω((log |T |)2/3), has been shown to be closely related to
the quality of cut and flow vertex sparsifiers.

We study a variant of the 0-Extension problem where Steiner vertices are allowed. Specifically,
we focus on the integrality gap of the same semi-metric LP relaxation to this new problem. Following
from previous work, this new integrality gap turns out to be closely related to the quality achievable
by cut/flow vertex sparsifiers with Steiner nodes, a major open problem in graph compression. We
show that the new integrality gap stays superconstant Ω(log log |T |) even if we allow a super-linear
O(|T | log1−ε |T |) number of Steiner nodes.
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1 Introduction

In the 0-Extension problem (0-Ext), we are given an undirected edge-weighted graph G =
(V, E, c), a set T ⊆ V of its vertices called terminals, and a metric D on terminals, and
the goal is to find a mapping f : V → T that maps each vertex to a terminal in T ,
such that each terminal is mapped to itself (i.e., f(t) = t for all t ∈ T ), and the sum∑

(u,v)∈E c(u, v) · D(f(u), f(v)) is minimized.
The 0-Ext problem was first introduced by Karzanov [22]. It is a generalization of the

multi-way cut problem (by setting D(t, t′) = 1 for all pairs t, t′ ∈ T ) [15, 7, 17, 5, 2, 6, 4],
and a special case of the metric labeling problem [23, 10, 3, 20, 14]. Călinescu, Karloff and
Rabani [8] gave the first approximation algorithm for 0-Ext, achieving a ratio of O(log |T |),
by rounding the solution of a semi-metric LP relaxation (LP-Metric), which is presented
below.
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47:2 Lower Bounds on 0-Extension with Steiner Nodes

(LP-Metric) minimize
∑

(u,v)∈E c(u, v) · δ(u, v)
s.t. (V, δ) is a semi-metric space

δ(t, t′) = D(t, t′), ∀t, t′ ∈ T

Fakcharoenphol, Harrelson, Rao and Talwar [16] later gave a modified rounding algorithm
on the same LP, improving the ratio to O(log |T |/ log log |T |), which is the current best-
known approximation. On the other hand, this LP was shown to have integrality gap
Ω(

√
log |T |) [8], and this was recently improved to Ω((log |T |)2/3) by Schwartz and Tur [31].

Another LP relaxation called earthmover distance relaxation (LP-EMD) was considered by
Chekuri, Khanna, Naor and Zosin [10] and utilized to obtain an O(log |T |)-approximation of
the metric labeling problem (and therefore also the 0-Ext problem). It has been shown [21] by
Karloff, Khot, Mehta and Rabani that this LP relaxation has an integrality gap Ω(

√
log |T |).

Manokaran, Naor, Raghavendra and Schwartz [28] showed that the integrality gap of this
LP relaxation leads to a hardness of approximation result, assuming the Unique Game
Conjecture.

In addition to being an important problem on its own, the 0-Ext problem and its two LP
relaxations are also closely related to the construction of cut/flow vertex sparsifiers, a central
problem in the paradigm of graph compression. Given a graph G and a set T ⊆ V (G) of
terminals, a cut sparsifier of G with respect to T is a graph H with V (H) = T , such that
for every partition (T1, T2) of T , the size of the minimum cut separating T1 from T2 in G

and the size of the minimum cut separating T1 from T2 in H, are within some small factor q,
which is also called the quality of the sparsifier1. Moitra [29] first showed that every graph
with k terminals admits a cut sparsifier with quality bounded by the integrality gap of its
LP-Metric (hence O(log k/ log log k)). Later on, Leighton and Moitra [26], and Makarychev
and Makarychev [27] concurrently obtained the same results for flow sparsifiers, and then
Charikar, Leighton, Li and Moitra [9] showed that the best flow sparsifiers can be computed
by solving an LP similar to LP-EMD. On the lower bound side, it was shown after a line
of work [26, 9, 27] that there exist graphs with k terminals whose best flow sparsifier has
quality Ω̃(

√
log k).

A major open question on vertex sparsifiers is:

Q1. Can better quality sparsifiers be achieved by allowing a small number of Steiner vertices?

In other words, what if we no longer require that the sparsifier H only contain terminals,
but just require that H contain all terminals and its size be bounded by some function f on
the number of terminals (for example, f(k) = 2k, k2 or even 2k)? Chuzhoy [13] constructed
O(1)-quality cut/flow sparsifiers with size dependent on the number of terminal-incident
edges in G. Andoni, Gupta and Krauthgamer [1] showed the construction for (1 + ε)-quality
flow sparsifiers for quasi-bipartite graphs. For general graphs, they constructed a sketch of
size f(k, ε) that stores all feasible multicommodity flows up to a factor of (1 + ε), raising
the hope for a special type of (1 + ε)-quality flow sparsifier, called contraction-based flow
sparsifiers, of size f(k, ε) for general graphs, which was recently invalidated by Chen and
Tan [12], who showed that contraction-based flow sparsifiers whose size are bounded by any
function f(k) must have quality 1 + Ω(1). But it is still possible for such flow sparsifiers with
constant quality and finite size to exist. Prior to this work, Krauthgamer and Mosenzon [24]
showed that there exist 6-terminal graphs G whose quality-1 flow sparsifiers must have an
arbitrarily large size.

1 flow sparsifiers has a slightly more technical definition, which can be found in [19, 26, 13, 1].
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Given the concrete connection between the 0-Ext problem and cut/flow sparsifiers, it is
natural to ask a similar question for 0-Ext:

Q2. Can better approximation of 0-Ext be achieved by allowing a small number of
Steiner vertices?

In this paper, we formulate and study the following variant of the 0-Ext problem, which
we call the 0-Extension with Steiner Nodes problem (0EwSN). (We note that a similar
variant was mentioned in [1], and we provide a comparison between them in more detail
in Appendix A.) We are also given a function f : Z → Z with f(k) ≥ k for all k ∈ Z, this
should be the total number of Steiner vertices.

0-Extension with Steiner Nodes

In an instance of 0EwSN(f), the input consists of an edge-weighted graph G = (V, E, c), a
subset T ⊆ V of k vertices, that we call terminals, and a metric D on terminals in T , which
is exactly the same as 0-Ext. A solution to the instance (G, T, D) consists of

a partition F of V with |F| ≤ f(k), such that distinct terminals of T belong to different
sets in F ; we call sets in F clusters, and for each vertex u ∈ V , we denote by F (u) the
cluster in F that contains it;

a semi-metric δ on the clusters in F , such that for each pair t, t′ ∈ T , δ(F (t), F (t′)) =
D(t, t′).

We define the cost of a solution (F , δ) as cost(F , δ) =
∑

(u,v)∈E c(u, v) · δ(F (u), F (v)), and
its size as |F|. The goal is to compute a solution (F , δ) with size at most f(k) and minimum
cost.

The difference between 0EwSN(f) and 0-Ext is that, instead of enforcing every vertex
to be mapped to a terminal, in 0EwSN(f) we allow vertices to be mapped to (f(k) − k)
non-terminals (or Steiner nodes), which are the clusters in F that do not contain terminals.
We are also allowed to manipulate the distances between these non-terminals, conditioned on
not destroying the induced metric D on terminals. Clearly, when f(k) = k, the 0EwSN(f)
problem degenerates to the 0-Ext problem.

It is easy to see that (LP-Metric) is still an LP relaxation for 0EwSN(f), as each solution
(F , δ) to 0EwSN naturally corresponds to a semi-metric δ′ on V (where we can set δ′(u, u′) =
δ(F (u), F (u′)) for all pairs u, u′ ∈ V ). Denote by IGf (k) the worst integrality gap for
(LP-Metric) to any 0EwSN(f) instance with at most k terminals. In fact, similar to the
connection between the integrality gap of (LP-Metric) and the quality achievable by flow
sparsifiers [29, 26], it was recently shown by Chen and Tan [12] that the value of IGf (k) is also
closely related to the quality achievable by flow sparsifiers with Steiner nodes. Specifically,
for any function f , every graph G with k terminals has a quality-

(
(1 + ε) · IGf (k)

)
flow

sparsifier with size bounded by (f(k))(log k/ε)k2

. This means that any positive answer to
question Q2 (by proving that IGf (k) = o(log k/ log log k) for some f) also gives a positive
answer to question Q1.

This makes it tempting to study the 0EwSN problem. Specifically, can we prove any
better-than-O(log k/ log log k) upper bound for IGf (k), for any function f? To the best of
our knowledge, no such bound is known for any f , leaving the problem wide open. In fact,
no non-trivial lower bound on IGf (k) is known for even very small function like f(k) = O(k).

ICALP 2024



47:4 Lower Bounds on 0-Extension with Steiner Nodes

1.1 Our Results
In this paper, we make a first step in investigating the value of IGf (k), by giving a supercon-
stant lower bound on IGf (k) for near-linear functions f . Our main result is summarized in
the following theorem.

▶ Theorem 1. For any 0 < ε < 1 and any size function f : Z+ → Z+ with f(k) =
O(k log1−ε k), the integrality gap of the LP-relaxation (LP-Metric) is IGf (k) = Ω(ε log log k).

We remark that our lower bound for the integrality gap of 0EwSN(f) does not imply a
size lower bound for O(log log k)-quality flow sparsifiers. However, if the same lower bound
can be proved for a slightly generalized version of 0EwSN(f), that was proposed in [1] and
analyzed in [12], then it will imply an Ω(k log1−ε k) size lower bound for O(log log k)-quality
flow sparsifiers. We provide a detailed discussion in Appendix A.

1.2 Technical Overview
We now discuss some high-level ideas in the proof of Theorem 1. Given any k, we will
construct an unweighted graph G on n vertices (where n ≈ k log k) and k terminals, and
show that any solution of the 0EwSN problem with size O(k log1−ε k) has cost lower bounded
by Ω(log log k) times the number of edges in G.

Our hard instance is a constant degree expander (with an arbitrary set of its k vertices
as terminals). There are two main reasons to choose such a graph. First, in previous
work [8] for proving the Ω(

√
log k) integrality gap lower bound for the 0-Extension problem,

a graph called “expander with tails” was used. Though the tails in their construction appear
useless for our purpose, as we allow a super-linear number of Steiner vertices which easily
accomodate a single-edge tail for each terminal, the expander graph turns out to still be
the core structure that is hard to compress. Second, it has been shown [3] that 0-Extension
problem on minor-free graphs has integrality gap O(1), so our hard example has to contain
large cliques as minor, which makes expanders, a favorable choice. For technical reasons, we
need some additional properties like Hamiltonicity and high girth. See Section 3.1 for more
details.

Next we want to lower bound the cost of an 0EwSN solution of size O(k log1−ε k). We
first consider a special type of solutions where each cluster is mapped to a vertex on the
graph. Recall that a solution consists of a partition F of V (G) into clusters and a metric δ

on clusters in F . Specifically, in this special type of solutions, we require that each cluster
F ∈ F corresponds to a distinct vertex vF (called its center) in G, and for all pairs F, F ′

the metric δ(F, F ′) coincides with the shortest-path distance between vF , vF ′ in G. We show
that all special solutions have cost Ω(n · ε log log k). Intuitively, as the graph is a constant
degree expander, every center vF is within distance (ε/100) · log log k to at most (log k)ε/10

other centers, but its cluster F contains (log k)ε vertices on average and so it has Ω((log k)ε)
inter-cluster edges. As we measure the distance between clusters using their centers, only a
small fraction of the inter-cluster edges will cost less than (ε/100) · log log k, making the total
new edge length Ω(n · ε log log k) (as the number of inter-cluster edges in a balanced expander
partition is Ω(n)). Careful calculations are needed to turn these informal arguments into a
rigorous proof. See Section 3.2 for more details.

Afterwards, we show that general solutions can actually be reduced to the special type
of solutions considered in the first step, losing only an O(1) factor in its cost. In fact, it
has been recently shown [12] that, to analyze the cost of any 0EwSN instance, it suffices
to consider 0EwSN solutions whose metric δ is embeddable into a geodesic structure of the
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terminal-induced shortest path distance metric called tight span. Our main contribution here,
on a conceptual level, is showing that for a graph with high girth, its tight span structure
locally coincides with the graph structure itself. In this sense, we can compare any solution to
some special solution considered in Step 1. On a global level, in such a comparison it turns
out that we will lose a factor which is approximately the diameter-girth ratio, which we can
manage to get to O(1) with an additional short-cycle-removing step in the construction of
the expander. We believe this diameter-girth ratio quantifies how “local” a graph structure is,
and should be of independent interest to other graph problems on shortest-path distances. To
carry out the technical steps, we employ a notion called continuiazation of a graph recently
studied in [11]. See Section 3.3 for more details.

2 Preliminaries

By default, all logarithms are to the base of 2.
Let G = (V, E, ℓ) be an edge-weighted graph, where each edge e ∈ E has weight (or

length) ℓe. For a vertex v ∈ V , we denote by degG(v) the degree of v in G. For each pair
S, T ⊆ V of disjoint subsets, we denote by EG(S, T ) the set of edges in G with one endpoint
in S the other endpoint in T . For a pair v, v′ of vertices in G, we denote by distG(v, v′) (or
distℓ(v, v′)) the shortest-path distance between v and v′ in G. We define the diameter of G

as diam(G) = maxv,v′∈V {distG(v, v′)}, and we define the girth of G, denoted by girth(G), as
the minimum weight of any cycle in G. We may omit the subscript G in the above notations
when the graph is clear from the context.

Given a graph G, its conductance is defined as

Φ(G) = min
S⊆V,S ̸=∅,S ̸=V

{
|EG(S, V \ S)|

min
{∑

v∈S degG(v),
∑

v /∈S degG(v)
}}

.

We say that G is a ϕ-expander iff Φ(G) ≥ ϕ.

3 Proof of Theorem 1

In this section we prove the main result Theorem 1, which shows that, when we only have
O(k log1−ε k) Steiner nodes, the best ratio we can get is Ω(ε log log k). We begin by describing
the hard instance in Section 3.1, which is essentially a high-girth expander with a subset of
vertices designated as terminals. Then in Section 3.2 we show that a special type of solutions
may not have small cost. Finally, in Section 3.3 we generalize the arguments in Section 3.2
to analyze an arbitrary solution, completing the proof of Theorem 1. Some technical details
in Section 3.3 are deferred to Section 3.4.

3.1 The Hard Instance
Let k be a sufficiently large integer. Let n > k be an integer such that k =

⌈
n log log n

log n

⌉
. Let

V be a set of n vertices. Let Σ be the set of all permutations on V . For a permutation σ ∈ Σ,
we define its corresponding edge set Eσ = {(v, σ(v)) | v ∈ V }.

We now define the hard instance (G, T, D). Graph G is constructed in two steps. In the
first step, we construct an auxiliary graph G′. Its vertex set is V . Its edge set is obtained as
follows. We sample three permutations σ1, σ2, σ3 uniformly at random from Σ, and then let
E(G′) = Eσ1 ∪ Eσ2 ∪ Eσ3 . In the second step, we remove all short cycles in G′ to obtain G.
Specifically, we first compute a breath-first-search tree τ starting from an arbitrary vertex

ICALP 2024



47:6 Lower Bounds on 0-Extension with Steiner Nodes

of G′. We then iteratively modify G′ as follows. While G′ contains a cycle C of length at
most (log n)/100, we find an edge of C \ τ (note that such an edge must exist, as τ is a tree),
and remove it from G′. We continue until G′ no longer contains cycles of length at most
(log n)/100. We denote by G the resulting graph. The terminal set T is an arbitrary subset
of V with size k. For each edge e ∈ E(G), its weight c(e) is defined to be 1, and its length ℓe

is also defined to be 1. The metric D on the set T of terminals is simply defined to be the
shortest-path distance (in G) metric on T induced by edge length {ℓe}e∈E(G).

We next show some basic properties of the graphs G′ and G. We start with the following
observations and propositions.

▶ Observation 2. G′ is a 6-regular graph, so |E(G)| ≤ |E(G′)| ≤ 3n.

▶ Observation 3. girth(G) ≥ (log n)/100.

▶ Proposition 4. The probability that |E(G′) \ E(G)| ≥ n0.3 is at most O(n−0.2).

Proof. Let v1, . . . , vL be a sequence of L ≤ (log n)/100 distinct vertices of V . We now show
that the probability that the cycle (v1, . . . , vL, v1) exists in E(G′) is at most

(
6/(n − L)

)L.
Indeed, to realize the cycle edge (vi, vi+1), for some ℓ ∈ {1, 2, 3}, σℓ(vi) = vi+1 or σℓ(vi+1 = vi,
where for convenience we say vL+1 = v1. There are 6 possible events. In order to form
the cycle, we need to form L edges, and each edge has 6 possible events, which means
there are at most 6L ways to form the cycle in total. Consider any possible way, we have
ℓ1 . . . , ℓL ∈ {1, 2, 3} and j1, . . . , jL ∈ {0, 1} such that for any index 1 ≤ i ≤ L, we have
σℓi

(vi+ji
) = vi+1−ji

. Let Ei denote this event, we have Pr[Ei|E1, . . . , Ei−1] ≤ 1/(n − i). Thus
the probability that all events Ei happen is at most 1/(n − L)L. Applying union bound
on all the ways to form the cycle, the probability that the cycle exists in E(G′) is at most(
6/(n − L)

)L.
Therefore, the expected number of cycles in G′ with length at most (log n)/100 is at most

∑
3≤L≤(log n)/100

n(n − 1) · · · (n − L + 1)
2L ·

(
n−L

6
)L

≤
∑

3≤L≤(log n)/100

6L

2L
·
(

1 + L

n − L

)L

≤
∑

3≤L≤(log n)/100

6L ≤ n0.1.

Therefore, from Markov Bound, with probability n−0.2, the number of cycles in G′ with length
at most (log n)/100 is at most n0.3. Note that we delete at most one edge per each cycle, so
|E(G′) \ E(G)| is less than the number of cycles in G′ with length at most (log n)/100, the
proposition follows. ◀

We use the following previous results on the conductance and the Hamiltonicity of G′.

▶ Lemma 5 ([30]). With probability 1 − o(1), Φ(G′) = Ω(1).

▶ Corollary 6. With probability 1 − o(1), the diameter of G is at most O(log n).

Proof. From the construction of G, G contains a BFS tree of G′, so the diameter of G is at
most twice the diameter of G′. Therefore, it suffices to show that, if Φ(G′) ≥ Ω(1), then the
diameter of graph G′ is at most O(log n), which we do next.

Let v be an arbitrary vertex of G′. For each integer t, we define the set Bt =
{v′ | dist(v, v′) ≤ t}, and αt =

∑
v′:distG′ (v,v′)≤t deg(v′), namely the sum of degrees of all

vertices in Bt.
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Denote t∗ = max {t | αt ≤ |E(G′)|}. Note that, for each 1 ≤ t ≤ t∗, as Φ(G′) ≥ Ω(1),
|E(Bt, V \ Bt)| ≥ Ω(αt). Therefore,

αt+1 ≥ αt +
∑

v′∈Bt+1\Bt

deg(v) ≥ αt + |E(Bt, V \ Bt)| ≥ αt · (1 + Ω(1)).

It follows that t∗ ≤ O(log n). Therefore, for any pair v, v′ ∈ V , the set of vertices that are at
distance at most t∗ + 1 from v must intersect the set of vertices that are at distance at most
t∗ + 1 from v′, as otherwise the sum of degrees in all vertices in these two sets is greater than
2|E(G′)|, a contradiction. Consequently, the diameter of G′ is at most 2t∗ +2 ≤ O(log n). ◀

▶ Lemma 7 ([18]). With probability 1−o(1), the subgraph of G′ induced by edges of Eσ1 ∪Eσ2

is Hamiltonian.

Now if we consider the semi-metric LP relaxation (LP-Metric) of this instance (G, T, D),
then clearly the graph itself gives a solution δ to (LP-Metric). Specifically, δ(u, u′) =
distℓ(u, u′), where distℓ(·, ·) the shortest-path (in G) distance metric on V induced by the
lengths {ℓe}e∈E(G). Such a solution has cost |E(G)| = O(n) (as all edges have weight
c(e) = 1). Therefore, in order to prove Theorem 1, it suffices to show that any solution (F , δ)
with size O(k log1−ε k) has cost at least Ω(εn log log n) = Ω(εn log log k).

Observe that, the graph G constructed above is essentially a bounded-degree high-girth
expander, which is similar to the hard instance used in [26] for proving the Ω(log log k)
quality lower bound for flow vertex sparsifier (without Steiner nodes). However, our proof in
the following subsections takes a completely different approach from the approach in [26].

3.2 Proof of Theorem 1 for Canonical Solutions
In this subsection, we prove the cost lower bound for a special type of solutions to the
0EwSN(f) instance (G, T, D) which we call canonical. Specifically, a solution is canonical
(F , δ) if

each cluster F ∈ F corresponds to a distinct vertex of V , we call this vertex the center
of F , denote as v(F ) (note however that v(F ) does not necessarily lie in F ). For each
terminal t ∈ T , the unique cluster F ∈ F that contains t, v(F ) = t; and
for each pair F, F ′ of clusters in F , δ(F, F ′) = distG(v(F ), v(F ′)).

In this subsection, we show that, with high probability, any canonical solution of size
o(n/ logε n) has cost Ω(εn log log n).

Consider now a canonical solution (F , δ) to the instance. We say that F ∈ F is large
iff |F | ≥ n0.1, otherwise we say it is small. We distinguish between the following cases,
depending on the total size of large clusters.

Recall that cost(F , δ) =
∑

(u,u′)∈E(G) δ(F (u), F (u′)), where F (u) (F (u′), resp.) is the
unique cluster in F that contains u (u′, resp.). We call δ(F (u), F (u′)) the contribution of
edge (u, u′) to the cost cost(F , δ).

Case 1: The total size of large clusters is at most 0.1n

As the solution (F , δ) is canonical,

δ(F (u), F (u′)) = distG(v(F (u)), v(F (u′)) ≥ distG′(v(F (u)), v(F (u′)),

as G is obtained from G′ by only deleting edges. We say that a pair F, F ′ of clusters are
friends (denoted as F ∼ F ′), iff distG′(v(F ), v(F ′)) ≤ ε log log n/30. We say that an edge

ICALP 2024



47:8 Lower Bounds on 0-Extension with Steiner Nodes

(u, u′) is unfriendly, iff the pair of clusters that contain u and u′ are not friends. Therefore, in
order to show cost(F , δ) = Ω(εn log log n), it suffices to show that there are Ω(n) unfriendly
edges in G′. In particular, since graph G is obtained from G′ by deleting at most n0.3 edges,
there are Ω(n) edges contributing at least ε log log n each to cost(F , δ). Note that, as G is a
6-regular graph, each cluster is a friend to at most 6ε log log n/30 < logε/10 n clusters in F .

The following lemma shows that there with high probability, const fraction of the edges
in G′ are unfriendly edges whose lengths are Ω(ε log log n). This lemma completes the proof
in this case.

▶ Lemma 8. With probability 1−o(1), the random graph G′ satisfies that, for any partition F
of V into |F| ≤ O(n/ logε n) clusters such that

∑
|F |≥n0.1 |F | ≤ 0.1n, and for any friendship

relation on F in which each cluster F is a friend to at most log0.1ε n other clusters, G′

contains at least n/10 unfriendly edges, i.e.,
∑

F ̸∼F ′ |EG′(F, F ′)| ≥ n/10.

Proof. Recall that G′ is obtained by sampling three random permutations σ1, σ2, σ3 from
Σ and taking the union of their corresponding edge sets Eσ1 , Eσ2 , Eσ3 . We alternatively
view G′ as constructed in two steps. In the first step, we obtain a graph Ĝ by sampling two
random permutations σ1, σ2 from Σ and letting Ĝ = (V, Eσ1 ∪ Eσ2). In the second step, we
sample a third permutation σ3 from Σ and let G′ = (V, E(Ĝ) ∪ Eσ3). From Lemma 7, with
high probability, Ĝ contains a Hamiltonian cycle on V .

For convenience, we denote by (F , ∼) a pair of clustering F and the friendship relation on
clusters of F . We say that the pair (F , ∼) is valid, iff |F| ≤ O(n/ logε n),

∑
|F |≥n0.1 |F | ≤ 0.1n,

and each cluster F is a friend to at most logε/10 n other clusters.

▷ Claim 9. For any Hamiltonian cycle C on V , there are at most nn/4 valid pairs (F , ∼)
satisfying that

∑
F ̸∼F ′ |EC(F, F ′)| < n/10.

Proof. Denote by L = c∗n/ logε n the number of clusters of F , and let F = {F1, . . . , FL}.
First, the number of possible friendship relations on F such that each cluster of F is a

friend to at most log0.1ε n other clusters is at most(
L

log0.1ε n

)L

≤
( c∗n

logε n

log0.1ε n

) c∗n
logε n

≤
(

c∗n

logε n

) c∗n
logε n ·log0.1ε n

< nc∗n log−0.05ε n.

Assume now that we have a fixed friendship relation ∼ on the clusters in F . We now count
the number of clusterings F with

∑
F ̸∼F ′ |EC(F, F ′)| < n/10. Denote C = (v1, v2, . . . , vn, v1).

First, the number of possible unfriendly edge set (which is a subset of E(C) of size at most
0.1n) is at most

n/10∑
i=0

(
n

i

)
≤ n ·

(
n

n/10

)
< n ·

(
en

n/10

)n/10
< nn log−0.5 n.

We now count the number of clusterings F that, together with the fixed friendship relation
∼, realizes a specific unfriendly edge set. We will sequentially pick, for each i from 1 to n, a
set among {F1, . . . , FL} to add the vertex vi to. The first vertex v1 has L choices. Consider
now some index 1 ≤ i ≤ n − 1 and assume that we have picked sets for v1, . . . , vi. If (vi, vi+1)
is an unfriendly edge, then vertex vi+1 has L choices; if (vi, vi+1) is not an unfriendly edge,
this means that vi+1 must go to some cluster that is a friend of the cluster we have picked
for vi (or vi+1 can go to the same cluster as vi), so vi+1 has at most log0.1ε n + 1 choices. As
there are no more than 0.1n unfriendly edges, the number of possible clusterings F is at most

n · (log0.1ε n)n ·
(

n

logε n

)0.1n

< nn/5.
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Altogether, the number of valid pairs (F , ∼) satisfying that
∑

F ̸∼F ′ |EC(F, F ′)| ≥ n/10 is at
most

nc∗n log−0.05ε n · nn log−0.5 n · nn/5 < nn/4. ◁

▷ Claim 10. For every valid pair (F , ∼), the probability that the edge set Eσ3 of a random
permutation σ3 contains at most n/10 unfriendly edges is at most n−n/3.

Proof. We say that a cluster F ∈ F is bad if it does not have a friend cluster of size at least
n0.4, otherwise we say it is good. We first prove the following observation that most vertices
lie in a bad cluster.

▶ Observation 11.
∑

F :bad |F | ≥ 0.8n.

Proof. As the pair (F , ∼) is valid,
∑

|F |≥n0.1 |F | ≤ 0.1n, so F contains at most 0.1 · n0.6

clusters with size at least n0.4. As each cluster is a friend to at most log0.1ε n other clusters,
F contains at most

(
0.1 · n0.6 · log0.1ε n

)
good sets. Therefore, the total size of all good

clusters is at most 0.1n + n0.1 · 0.1 · n0.6 · log0.1ε n < 0.2n. The observation now follows. ◀

We alternatively construct the random permutation σ3 as follows. We arrange the vertices
in V into a sequence (v1, . . . , vn), such that each of the first half v1, . . . , vn/2 lies in some bad
set. Now sequentially for each 1, 2, . . . , n, we sample a vertex ui (without replacement) from
V and designate it as σ3(vi). It is easy to observe that the permutation σ3 constructed in
this way is a random permutation from Σ.

The following observation completes the proof of Claim 10.

▶ Observation 12. The probability that the number of unfriendly edges in
{(vi, σ3(vi)) | 1 ≤ i ≤ 9n/10} is less than 0.1n is at most n−n/3.

Proof. For any v in a bad cluster, the number of vertices in its friend clusters is at most
n0.4 log0.1 n. For each 1 ≤ i ≤ 9n/10, when we pick σ3(vi), we have at least n/10 choices
from the remaining element in V , and as vi is in a bad set, at most n0.4 log0.1 n of them
will not create an unfriendly edge. Therefore, the probability that the edge we sample is
not a bad edge is at most 1√

n
. Let Xi be the indicator random variable such that Xi = 1 if

(vi, σ3(vi)) is not a bad edge. By Azuma’s Inequality (Chernoff Bounds on martingales, see
e.g., [25]),

Pr

2n/3∑
i=1

Xi > 4n/5

 <

(
5

4
√

n

)4n/5
< n−n/3.

Thus, with probability at least 1 − n−n/3, the set {(vi, σ3(vi))|1 ≤ i ≤ 9n/10} contains at
least 9n/10 − 4n/5 = n/10 bad edges. ◀

◁

Combining Claim 9 and Claim 10, we get that, over the randomness in the construction
of G′, the probability that there exists a pair (F , ∼) in which each cluster F is a friend to
at most log0.1ε n other clusters, such that G′ contains less than n/10 unfriendly edges, is at
most n−n/3 · nn/4 = n−n/12. This completes the proof of Lemma 8. ◀
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Case 2: The total size of large clusters is greater than 0.1n

We denote by V ′ the union of all large clusters in F . We start by proving the following claim.

▷ Claim 13. There exists a collection of k/4 edge-disjoint paths in G, such that each path
connects a distinct terminal to a distinct vertex of V ′.

Proof. We construct a graph Ĝ as follows. We start from graph G′, and add two vertices s, t

to it. We then connect s to each terminal in T by an edge, and connect each vertex in V ′

to t by an edge. All edges in Ĝ has unit capacity. We claim that there exists a collection
P of k/3 edge-disjoint paths in Ĝ, such that each path connects a distinct terminal to a
distinct vertex of V ′. Note that this implies Claim 13. This is because the number of edges
in E(G′) \ E(G) is at most n0.3 < k/12, and each such edge is contained in at most one path
in P (since the paths in P are edge-disjoint), so at least k/3 − k/12 ≥ k/4 paths in P are
entirely contained in G. We now prove the claim. From the max-flow min-cut theorem, it
suffices to show that the minimum s-t cut in Ĝ contains at least k/3 edges.

Consider any s-t cut (S ∪ {s} , (V \ S) ∪ {t}) in Ĝ and denote by E′ the set of edges in
this cut. We distinguish between the following cases.
Case 1: |S| ≤ |V |/2. Recall that G is a 6-regular graph, so

∑
v∈S deg(v) ≤

∑
v /∈S deg(v).

Then from Lemma 5, |E′| ≥
∑

v∈S deg(v)/2 ≥ |S| /2. If |S| ≥ 2k/3, then |E′| ≥ k/3. If
|S| < 2k/3, then at least k/3 terminals lie in V \ S. As there is an edge connecting s to
each terminal, |E′| ≥ k/3.

Case 2: |S| > |V |/2. Via similar arguments, we can show that |E′| ≥ |V ′|/3 ≥ 0.1n/3 >

k/3. ◁

We denote by P the collection of paths given by Claim 13. We now use these paths to
complete the proof. Consider such a path P = (u1, . . . , ur). Denote by Fi the cluster that
contains ui, then the contribution of P to the cost cost(F , δ) is∑

(ui,ui+1)∈E(P )

δ(Fi, Fi+1) =
∑

1≤i≤r−1
distG(v(Fi), v(Fi+1)) ≥ distG(v(F1), v(Fr))

≥ distG′(v(F1), v(Fr)).

(We have used the property that for every pair v, v′ ∈ V , distG(v, v′) ≥ distG′(v, v′), as G is
obtained from G′ by only deleting edges.)

Recall P connects a terminal to a vertex in V ′. Recall that each large cluster has
size at least n0.1, so there are at most n0.9 of them. Therefore, if we denote by V ′′ the
subset of vertices that large clusters corresponds to, then |V ′′| ≤ n0.9. For each path
P ∈ P, we denote by tP the terminal endpoint of P (that is, u1 = v(F1) = tP ), and
by v′′

P the vertex that the cluster containing ur corresponds to (that is, v′′
P = v(Fr)),

then
∑

(ui,ui+1)∈E(P ) δ(Fi, Fi+1) ≥ distℓ(tP , v′′
P ). As the paths in P are edge-disjoint, their

contribution to cost(F , δ) can be added up, i.e.,

cost(F , δ) ≥
∑
P ∈P

distℓ(tP , v′′
P ). (1)

On the one hand, as graph G′ is 6-regular, for each v′′ ∈ V ′′, the number of vertices
at distance at most log n/100 to v′′ is at most 6log n/100 ≤ n1/30. Therefore, there are at
most n1/30 · n0.9 = n14/15 terms on the RHS of Equation (1) that at most ≤ log n/100. On
the other hand, there are at least k/4 = Ω( n log log n

log n ) terms on the RHS of Equation (1), so
at least k/4 − n14/15 ≥ k/5 terms has value at least log n/100. Consequently, cost(F , δ) ≥
(k/5) · (log n/100) = Ω(k log n) = Ω(n log log n).
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3.3 Completing the Proof of Theorem 1
We have shown in Section 3.2 all canonical solutions with size O(k log1−ε n) have cost
Ω(εn log log n). In this subsection, we complete the proof of Theorem 1 by showing that,
intuitively, an arbitrary solution (F , δ) to the instance (G, T, D) can be “embedded” into a
canonical solution, without increasing its cost by too much.

We start by introducing the notion of continuization.

Continuization of a graph

Let G = (V, E, ℓ) be an edge-weighted graph. Its continuization is a metric space (V con, ℓcon),
that is defined as follows. Each edge (u, v) ∈ E is viewed as a continuous line segment
con(u, v) of length ℓ(u,v) connecting u, v, and the point set V con is the union of the points
on all lines {con(u, v)}(u,v)∈E . Specifically, for each edge (u, v) ∈ E, the line con(u, v) is
defined as

con(u, v) =
{

(u, α) | 0 ≤ α ≤ ℓ(u,v)
}

=
{

(v, β) | 0 ≤ β ≤ ℓ(u,v)
}

,

where (u, α) refers to the unique point on the line that is at distance α from u, and (v, β)
refers to the unique point on the line that is at distance β from v, so (u, α) = (v, ℓ(u,v) − α).

The metric ℓcon on V con is naturally induced by the shortest-path distance metric distℓ(·, ·)
on V as follows. For a pair p, p′ of points in V con,

if p, p′ lie on the same line (u, v), say p = (u, α) and p′ = (u, α′), then ℓcon(p, p′) = |α−α′|;
if p lies on the line (u, v) with p = (u, α) and p′ lies on the line (u′, v′) with p′ = (u′, α′),
then

ℓcon(p, p′) = min{distℓ(u, u′) + α + α′, distℓ(u, v′) + α + (ℓ(u′,v′) − α′),
distℓ(v, u′) + (ℓ(u,v) − α) + α′, distℓ(v, v′) + (ℓ(u,v) − α) + (ℓ(u′,v′) − α′)}.

Clearly, every vertex u ∈ V also belongs to V con, and for every pair u, u′ ∈ V , distℓ(u, u′) =
ℓcon(u, u′). For a path P in G connecting u to u′, it naturally corresponds to a set P con of
points in V con, which is the union of all lines corresponding to edges in E(P ). The set P con

naturally inherits the metric ℓcon restricted on P con. We will also call P con a path in the
continuization (V con, ℓcon).

We show that, for each graph G with a set T of terminals, then any other metric w

on a set of points containing T , such that w restricted on T is identical to distG restricted
on T , can be “embedded” into the continuation of G, with expected stretch bounded by
some structural measure that only depends on G. Specifically, we prove the following main
technical lemma.

▶ Lemma 14. Let (G, T, ℓ) be any instance of 0EwSN such that G is not a tree (so girth(G) <

+∞), and let (F , δ) be any solution to it. Let (V con, ℓcon) be the continuization of graph G.
Then there exists a random mapping ϕ : F → V con, such that

for each terminal t ∈ T , if F is the (unique) cluster in F that contains t, then ϕ(F ) = t;
and
for every pair F, F ′ ∈ F ,

E [ℓcon(ϕ(F ), ϕ(F ′))] ≤ O

(
diam(G)
girth(G)

)
· δ(F, F ′).

Before we prove Lemma 14 in Section 3.4, we provide the proof of Theorem 1 using it.
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Proof of Theorem 1. Consider any solution (F , δ) to the instance (G, T, ℓ) constructed in
Section 3.1 with size |F| ≤ o(k · log1−ε k). From Observation 3 and Corollary 6, diam(G)

girth(G) ≤
O(log n)

(log n)/100 = O(1). From Lemma 14, there exists a random mapping ϕ : F → V con, such that
for every pair F, F ′ ∈ F , E [ℓcon(ϕ(F ), ϕ(F ′))] ≤ O(1) · δ(F, F ′).

Fix such a mapping ϕ, we define a canonical solution (F , δ̂) based on (F , δ) as follows.
The collection of clusters is identical to the collection F . For each F ∈ F , recall that ϕ(F ) is
a point in V con. Assume the point ϕ(F ) lies on the line (u, v) and is closer to u than to v (i.e.,
ℓcon(ϕ(F ), u) ≤ ℓcon(ϕ(F ), v)), then we let u be the vertex in V that it corresponds to. For
each pair F, F ′ ∈ F , with F corresponding to uF and and F ′ corresponding to uF ′ , we define
δ̂(F, F ′) = distℓ(uF , uF ′). As graph G in the instance (G, T, δ) constructed in Section 3.1 is
an unweighted graph, it is easy to see that

δ̂(F, F ′) = distℓ(uF , uF ′) ≤ ℓcon(ϕ(F ), ϕ(F ′)) + 2.

As the mapping ϕ is random, δ̂ is also random, and so E
[
δ̂(F, F ′)

]
≤ O(1) · δ(F, F ′) + 2.

From the properties of mapping ϕ in Lemma 14, we are guaranteed that such a solution
(F , δ̂) is a canonical solution. Moreover, from linearity of expectation,

E
[
cost(F , δ̂)

]
= E

 ∑
(u,v)∈E

δ̂(F (u), F (v))

 =
∑

(u,v)∈E

O

(
δ(F (u), F (v))

)
+ 2

= O

(
cost(F , δ)

)
+ O(n).

Therefore, it follows that there exists a canonical solution (F , δ̂), such that cost(F , δ̂) ≤
O(cost(F , δ) + n). As we have shown in Section 3.2 that any canonical solution (F , δ̂) with
|F| ≤ o(k log1−ε k) satisfies that cost(F , δ̂) = Ω(εn log log n), it follows that cost(F , δ) =
Ω(εn log log n). This implies that the integrality gap of (LP-Metric) is at least Ω(ε log log n).

◀

3.4 Proof of Lemma 14
In this subsection, we provide the proof of Lemma 14. We first consider the special case
where G is a tree, and then prove Lemma 14 for the general case.

▶ Lemma 15. Let (G, T, ℓ) be an instance of 0EwSN where G is a tree. Let (F , δ) be an
solution to it. Let (V con, ℓcon) be the continuization of G. Then there exists a mapping
ϕ : F → V con, such that

for each terminal t ∈ T , if F is the (unique) cluster in F that contains t, then ϕ(F ) = t;
and
for every pair F, F ′ ∈ F , ℓcon(ϕ(F ), ϕ(F ′)) ≤ δ(F, F ′).

Proof. For each terminal t ∈ T , we denote by Ft the cluster in F that contains it, and set
ϕ(Ft) = t. For each cluster F ∈ F that does not contain any terminals, we define

ν(F ) = min
{

1
2 ·

(
δ(F, Ft) + δ(F, Ft′) − δ(Ft, Ft′)

)
| t, t′ ∈ T

}
.

Denote by t1, t2 the pair of terminals (t, t′) that minimizes (δ(F, Ft)+δ(F, Ft′)−δ(Ft, Ft′))/2.
As G is a tree, there is a unique shortest path connecting t1 to t2 in G, and therefore
there exists a unique point p in V con (that lies on the t1-t2 shortest path in V con) with
ℓcon(p, t1) = δ(F, Ft1) − ν(F ) and ℓcon(p, t2) = δ(F, Ft2) − ν(F ). We set ϕ(F ) = p.
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▷ Claim 16. For every cluster F ∈ F and every terminal t ∈ T , ℓcon(ϕ(F ), t) ≤ δ(F, Ft) −
ν(F ).

Proof. Note that the point ϕ(F ) lies on the (unique) shortest path between a pair t1, t2
of terminals. For t ∈ {t1, t2}, clearly the claim holds. Consider any other terminal t.
Clearly ϕ(F ) lies on either the path connecting t to t1 or the path connecting t to t2.
Assume without lose of generality that ϕ(F ) is on the path connecting t1 and t. Since
G is a tree, ℓcon(ϕ(F ), t1) + ℓcon(ϕ(F ), t) = ℓcon(t1, t) = distℓ(t1, t). On the other hand,
by definition of ν(F ) and ϕ(F ), δ(F, Ft1) + δ(F, Ft) ≥ δ(Ft1 , Ft) + 2 · ν(F ) holds, and
ℓcon(ϕ(F ), t1) = δ(F, Ft1) − ν(F ). Therefore, δ(F, Ft) ≥ ℓcon(ϕ(F ), t) + ν(F ). ◁

We now show that, for every pair F, F ′ ∈ F , ℓcon(ϕ(F ), ϕ(F ′)) ≤ δ(F, F ′). Denote by t1, t2
the pair of terminals whose shortest path contains ϕ(F ), and by t′

1, t′
2 the pair of terminals

whose shortest path contains ϕ(F ′). Assume without lose of generality that ϕ(F ) is on the
tree path between ϕ(F ′) and t1, so ℓcon(ϕ(F ′), ϕ(F )) + ℓcon(ϕ(F ), t1) = ℓcon(ϕ(F ′), t1). On
the other hand, from the definition of ϕ(F ) and Claim 16, ℓcon(ϕ(F ), t1) = δ(F, Ft1) − ν(F )
and ℓcon(ϕ(F ′), t1) ≤ δ(F ′, Ft1) − ν(F ′). Therefore,

ℓcon(ϕ(F ), ϕ(F ′)) ≤ δ(F ′, Ft1) − δ(F, Ft1) − ν(F ′) + ν(F ) ≤ δ(F, F ′) + ν(F ) − ν(F ′).

Similarly, ℓcon(ϕ(F ), ϕ(F ′)) ≤ δ(F, F ′) + ν(F ′) − ν(F ). Altogether, ℓcon(ϕ(F ), ϕ(F ′)) ≤
δ(F, F ′). ◀

In the remainder of this subsection, we complete the proof of Lemma 14. Denote
g = girth(G). Let r be a real number chosen uniformly at random from the interval
[g/60, g/30], so r ≤ g/30 always holds. For each terminal t ∈ T , we denote by Ft the cluster
in F that contains it, and set ϕ(Ft) = t, so the first condition in Lemma 14 is satisfied.

For each cluster F ∈ F , we define AF = min {δ(F, Ft) | t ∈ T}. We first determine the
image ϕ(F ) for all clusters F with AF ≤ r, in a similar way as Lemma 15 as follows.

Define

ν(F ) = min
{

1
2 ·

(
δ(F, Ft) + δ(F, Ft′) − δ(Ft, Ft′)

2

)
| t, t′ ∈ T

}
.

Denote by t1, t2 the pair (t, t′) that minimizes the above formula. We prove the following
claim.

▷ Claim 17. δ(F, Ft1) + δ(F, Ft2) ≤ 4 · AF ≤ 4r.

Proof. Let t be the terminal such that δ(F, Ft) = AF . By definition of ν(F ),

ν(F ) ≤
δ(F, Ft) + δ(F, Ft) − 1

2 · δ(Ft, Ft)
2 = AF .

On the other hand, from triangle inequality,

ν(F ) =
δ(F, Ft1) + δ(F, Ft2) − 1

2 · δ(Ft1 , Ft2)
2 ≥ δ(F, Ft1) + δ(F, Ft2)

4 .

Altogether, δ(F, Ft1) + δ(F, Ft2) ≤ 4 · AF . ◁

From Claim 17, δ(Ft1 , Ft2) ≤ δ(F, Ft1) + δ(F, Ft2) ≤ 4r < g/3. Therefore, there is a
unique shortest path connecting t1 to t2 in G, as otherwise G must contain a cycle of length
at most 2g/3, contradicting the fact that girth(G) = g.
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We then set ϕ(F ) to be the point in V con that lies in the t1-t2 shortest path, such that
ℓcon(ϕ(F ), t1) = 2 · (δ(F, Ft1) − ν(F )) and ℓcon(ϕ(F ), t2) = 2 · (δ(F, Ft2) − ν(F )). Note that,
by definition of t1, t2,

ℓcon(ϕ(F ), t1) + ℓcon(ϕ(F ), t2) = 2 · δ(F, Ft1) + 2 · δ(F, Ft2) − 4 · ν(F ) = δ(Ft1 , Ft2).

We prove the following claim, that is similar to Claim 16.

▷ Claim 18. For every terminal t with δ(F, Ft) ≤ 6r, ℓcon(ϕ(F ), t) ≤ 2 · (δ(F, Ft) − ν(F )).

Proof. From Claim 17,

δ(Ft, Ft1) + δ(Ft, Ft2) + δ(Ft1 , Ft2) ≤
(

2 · δ(F, Ft) + δ(F, Ft1) + δ(F, Ft2)
)

+ δ(Ft1 , Ft2)

≤ 12r + 4r + 4r + 4r < g.

Therefore, the point ϕ(F ) must lie on either the t-t1 shortest path or the t-t2 shortest path
in V con, as otherwise the union of t-t1 shortest path, t-t2 shortest path, and t1-t2 shortest
path contains a cycle of length less than g, a contradiction.

Assume without loss of generality that ϕ(F ) lies on the t-t1 shortest path, so

ℓcon(ϕ(F ), t) = δ(Ft, Ft1) − ℓcon(ϕ(F ), t1) = δ(Ft, Ft1) − 2(δ(F, Ft1) − ν(F )).

By definition of ν(F ), δ(Ft, Ft1) ≤ 2 · (δ(F, Ft) + δ(F, Ft1) − 2 · ν(F )). Therefore,

ℓcon(ϕ(F ), t) ≤ 2
(

δ(F, t) + δ(F, Ft1) − 2ν(F ) −
(
ν(F, Ft1) − ν(F )

))
= 2(δ(F, Ft) − ν(F )).

◁

We now show in the next claim that the second condition in Lemma 14 holds for pairs of
clusters that are close in δ.

▷ Claim 19. For every pair F, F ′ ∈ F with AF , AF ′ , δ(F, F ′) ≤ r, ℓcon(ϕ(F ), ϕ(F ′)) ≤
2 · δ(F, F ′).

Proof. Since δ(F, F ′) < r, from triangle inequality and Claim 17,

δ(F ′, Ft1) ≤ δ(F ′, F ) + δ(F, Ft1) ≤ r + 4r ≤ 5r.

Similarly, δ(F ′, Ft2) ≤ 5r. Then from Claim 18,

ℓcon(ϕ(F ′), t1) ≤ 2 · (δ(F ′, Ft1) − ν(F ′)) ≤ 2 · δ(F ′, Ft1) ≤ 10r,

and symmetrically, ℓcon(ϕ(F ′), t2) < 10r. Therefore,

ℓcon(ϕ(F ′), t1) + ℓcon(ϕ(F ′), t2) + ℓcon(t1, t2) < 20r + 4r < g.

Therefore, the point ϕ(F ) must lie either on the ϕ(F ′)-t1 shortest path or the ϕ(F ′)-t2
shortest path in V con, as otherwise the union of ϕ(F ′)-t1 shortest path, ϕ(F ′)-t2 shortest
path, and t1-t2 shortest path in V con contains a cycle of length less than g, a contradiction.

Assume without loss of generality that ϕ(F ) lies on the ϕ(F ′)-t1 shortest path. Then

ℓcon(ϕ(F ), ϕ(F ′)) = ℓcon(ϕ(F ′), t1(F )) − ℓcon(ϕ(F ), t1(F ))

≤ 2
(

δ(F ′, t1(F )) − ν(F ′)
)

− 2
(

δ(F, t1(F )) − ν(F )
)

≤ 2
(

δ(F, F ′) + ν(F ) − ν(F ′)
)

.

Similarly, ℓcon(ϕ(F ), ϕ(F ′)) ≤ 2
(
δ(F, F ′) + ν(F ′) − ν(F )

)
. Altogether, ℓcon(ϕ(F ), ϕ(F ′)) ≤

2δ(F, F ′). ◁
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We now complete the construction of the mapping ϕ, by specifying the images of all
clusters F ∈ F with AF > r. Let t∗ be an arbitrarily chosen terminal in T . For all clusters
F ∈ F with AF > r, we simply set ϕ(F ) = t∗.

It remains to show that the second condition in Lemma 14 holds for all pairs F, F ′ ∈ F .
Consider a pair F, F ′. Assume first that δ(F, F ′) > g/60. Then

ℓcon(ϕ(F ), ϕ(F ′)) ≤ diam(G) ≤ 60 · diam(G)
girth(G) · δ(F, F ′).

Assume now that δ(F, F ′) ≤ g/60, and without loss of generality that AF ≤ AF ′ . Note
that, from triangle inequality, for every terminal t ∈ T , δ(F ′, Ft) ≤ δ(F, Ft) − δ(F, F ′). This
implies that AF ′ − AF ≤ δ(F, F ′). Therefore, the probability that the random number
r takes value from the interval [AF , AF ′ ] is at most δ(F,F ′)

g/60 . Note that, if r ≤ AF , then
ϕ(F ) = ϕ(F ′) = t∗ and ℓcon(ϕ(F ), ϕ(F ′)) = 0. And if r ≥ AF ′ , then from Claim 19,
ℓcon(ϕ(F ), ϕ(F ′)) ≤ 2δ(F, F ′). Altogether,

E [ℓcon(ϕ(F ), ϕ(F ′))] ≤ 60 · diam(G)
girth(G) · δ(F, F ′) + 2δ(F, F ′) ≤ O

(
diam(G)
girth(G)

)
· δ(F, F ′).
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A Comparison between 0EwSN and the variant in [1]

The Steiner node variant of 0-Ext in [1]

In [1], the following problem (referred to as 0EwSNAGK) was proposed.
The input consists of
an edge-capacitated graph G = (V, E, c), with length {ℓe}e∈E on its edges;
a set T ⊆ V of k terminals; and
a demand D : T × T → R+ on terminals.

A solution consists of
a partition F of V with |F|, such that distinct terminals of T belong to different sets in
F ; for each vertex u ∈ V , we denote by F (u) the cluster in F that contains it;
a semi-metric δ on the clusters in F , such that:∑

t,t′ D(t, t′) · δ(F (t), F (t′)) ≥
∑

t,t′ D(t, t′) · distℓ(t, t′),
where distℓ(·, ·) is the shortest-path distance (in G) metric induced by edge length
{ℓe}e∈E(G).

The cost of a solution (F , δ) is cost(F , δ) =
∑

(u,v)∈E c(u, v) · δ(F (u), F (v)), and its size
is |F|.

From (LP1) and Proposition 4.2 in [1], it is proved that:

▶ Proposition 20. Given a graph G and a subset T of its terminals, and a function f , if for
every length {ℓe}e∈E(G) and every demand D, the instance (G, T, ℓ, D) of 0EwSNAGK has a
solution (F , δ) with size |F| ≤ f(k) and cost∑

(u,v)∈E

c(u, v) · δ(F (u), F (v)) ≤ q ·
∑

(u,v)∈E

c(u, v) · distℓ(u, v),

then there is a quality-(1 + ε)q flow sparsifier H for G w.r.t T with |V (H)| ≤ (f(k))(log k/ε)k2

.

The 0EwSN problem

In studying the integrality gap of (LP-Metric), we are essentially considering the following
problem.

The input consists of
an edge-capacitated graph G = (V, E, c), with length {ℓe}e∈E on its edges; and
a set T ⊆ V of k terminals.

A solution consists of
a partition F of V with |F|, such that distinct terminals of T belong to different sets in
F ; for each vertex u ∈ V , we denote by F (u) the cluster in F that contains it;
a semi-metric δ on the clusters in F , such that
for all pairs t, t′ ∈ T , δ(F (t), F (t′)) = distℓ(t, t′), where distℓ(·, ·) is the shortest-path
distance (in G) metric induced by edge length {ℓe}e∈E(G).

The cost and the size of a solution is defined in the same way as 0EwSNAGK.
The difference between two problems are underlined. Specifically, in 0EwSNAGK it is only

required that some “average terminal distance” does not decrease, while in our problem it is
required that all pairwise distances between terminals are preserved. Clearly, our requirement
for a solution is stronger, which implies that any valid solution to our instance is also a
valid solution to the same 0EwSNAGK instance (with arbitrary D). Therefore, we have the
following corollary.
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▶ Corollary 21. Given a graph G and a subset T of its terminals, and a function f , if
for every length {ℓe}e∈E(G), the instance (G, T, ℓ) of 0EwSN has a solution (F , δ) with size
|F| ≤ f(k) and cost∑

(u,v)∈E

c(u, v) · δ(F (u), F (v)) ≤ q ·
∑

(u,v)∈E

c(u, v) · distℓ(u, v),

then there is a quality-(1 + ε)q flow sparsifier H for G w.r.t T with |V (H)| ≤ (f(k))(log k/ε)k2

.

On the other hand, the main result of our paper is a lower bound for the 0EwSN problem.
As 0EwSN has stronger requirement (for solutions) than 0EwSNAGK, our lower bound does
not immediately imply a lower bound for 0EwSNAGK or for the flow sparsifier. However, if
we can show that, for some function f , there exists a graph G, a terminal set T with size k,
and a demand D on T , such that any solution (F , δ) with size |F| ≤ f(k) has cost at least∑

(u,v)∈E

c(u, v) · δ(F (u), F (v)) ≥ q ·
∑

(u,v)∈E

c(u, v) · distℓ(u, v),

then this, from the (LP1) and the discussion in [1], implies that any quality-o(q) contraction-
based flow sparsifier for G has size at least f(k).
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