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Abstract
Matchings with low crossing numbers were originally introduced in the late 1980s in the seminal
works of Welzl [35, 36] and Chazelle-Welzl [11]. They have since become fundamental structures in
combinatorics, computational geometry, and algorithms.

In this paper, we study matchings with low crossing numbers and their relation to random
samples. In particular, our main technical result states that, given a set system (X,S) with dual
VC-dimension d and a parameter α ∈ (0, 1], a random set of Θ̃

(
n1+α

)
edges of

(
X
2

)
contains a

linear-sized matching with crossing number O
(
n1−α/d

)
.

Furthermore, we show that this bound is optimal up to a logarithmic factor.
By incorporating the above sampling step to existing algorithms, we obtain improved running

times, by a factor of Θ̃(n), for computing matchings with low crossing numbers. This immediately
implies new bounds for a number of well-studied problems, such as combinatorial discrepancy,
ε-approximations and their applications.

To the best of our knowledge, these are the first near-linear time algorithms for general, non-
geometric set systems, for a) matchings with sub-linear crossing numbers, and b) discrepancy beating
the standard deviation bound. As an immediate consequence we get fast algorithms for computing
o(1/ε2)-sized ε-approximations.
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1 Introduction

A perfect matching of a set X is a partition of X into |X|/2 disjoint pairs1. Given a set
system (X,S), we say that a set S ∈ S crosses a pair {x, y} ⊆ X iff |S ∩ {x, y}| = 1. Then
for a perfect matching M of X, the crossing number of M with respect to S is defined to be
the maximum number of edges of M crossed by any S ∈ S.

Matchings with low crossing numbers were originally introduced by Welzl [35, 36] for
the special case where X is a set of points in Rd and S is induced on X by half-spaces. His
result was then improved and generalized by Chazelle and Welzl [11] to a broader class of
set systems using the notion of the dual shatter function π∗

S of (X,S), which is defined as
follows:

1 If |X| is odd, then we partition X into ⌊|X|/2⌋ disjoint pairs plus a singleton set.
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49:2 An Optimal Sparsification Lemma for Low-Crossing Matchings and Applications

For any k ≤ |S|, π∗
S(k) denotes the maximum number of equivalence classes on X

defined by a k-element subfamily R ⊆ S, where x, y ∈ X are equivalent w.r.t. R iff
x belongs to the same sets of R as y. The number of such equivalence classes, for
a given R ⊆ S, is essentially the number of non-empty cells, w.r.t. X, in the Venn
diagram of the sets of R.

The family of set systems with polynomially bounded dual-shatter function includes set
systems with bounded dual VC-dimension and most of the commonly-studied geometric cases
– e.g., the primal and dual set systems induced by half-spaces, balls, intersections/unions of
bounded complexity geometric objects and more generally, algebraic varieties [26].

The following theorem on the existence of matchings with low crossing number is a
celebrated and fundamental result in computational geometry.

▶ Theorem A ([11, 20]). Let (X,S) be a set system with n = |X|, and dual shatter
function π∗

S(k) = O(kd). Then there exists a perfect matching on X with crossing number
O
(
n1−1/d + ln |S|

)
.

Theorem A has had numerous applications, including range searching, extremal results for
hypergraphs with bounded VC dimension, low-discrepancy colorings in geometric hypergraphs,
near-optimal sized epsilon-approximations, to name a few. We refer the reader to these
books [10, 25, 29] for more information.

The power of Theorem A, as well as the difficulty in efficiently computing such matchings,
come from the same source: a vanishingly small proportion of matchings are low-crossing
matchings. Indeed, it is not difficult to see that a random matching will have crossing number
Ω (n). For example, any set containing n/2 elements of X will cross, in expectation, a linear
number of edges of such a matching.

This contrasts sharply with the case for the related structures of ε-nets and ε-approxima-
tions: a large-enough random sample is an ε-net/ε-approximation with high probability and
thus a constant fraction of all subsets of X are ε-nets and ε-approximations. The use of
randomness fails in our case since these ε-net/ε-approximation bounds rely on the fact that
each set in the set system has large measure – at least ε-th measure – and the behavior of the
random sample can be analyzed independently for each set, which are all known in advance.

Thus the ingenious proof of Theorem A takes a different route: it constructs a matching
in n/2 iterations, where each iteration considers all remaining edges and picks one minimizing
a certain function. This is computationally expensive, and consequently, all old and recent –
with one exception – algorithms for building matchings with crossing numbers o(n) in general
set systems have Ω

(
n2) running times, even when |S| = O (n) [11, 13, 18, 19].

The one exception is the algorithm proposed by Ducoffe et al. [16], designed specifically
to get below the quadratic (in |X| + |S|) running time barrier: they show that there is a
universal constant c > 2 such that for any set system (X,S) with VC-dimension D and dual
VC-dimension d, one can compute a spanning path with crossing number Õ

(
n1−1/(c·D·d)) in

time Õ
(
|S|+ n2−1/(c·D·d)).

2 Our Results

Motivated by the above considerations, we revisit the key question, of independent interest,
of the utility of random sampling for constructing matchings with low crossing numbers.
Our main technical result is that although a random perfect matching is very far from
a low-crossing matching, a slightly larger random sample of edges contains a linear-sized
matching that is close to a low-crossing matching. More precisely:
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▶ Lemma 1 (Main lemma; Proof in Section 4). Let (X,S), n = |X|, be a set system with
dual shatter function π∗(k) = O(kd), and let α ∈ (0, 1], δ ∈ (0, 1) be two given parameters.
Let E be a uniform random sample from

(
X
2
)
, where each edge is picked i.i.d. with probability

p = min
{

2 ln n

n1−α
+ 4 ln(2/δ)

n2−α
, 1
}

.

Then with probability at least 1− δ, E contains a matching of size n/4 of crossing number

O
(

n1−α/d + ln |S|
)

.

Moreover, we show that the above is near-optimal.

▶ Lemma 2 (Optimality; Proof in Section 5). For any d ≥ 2, c ≥ 2, α > 0, and n0 ∈ N, there
is a set system (X,S) with |X| = n ≥ n0, and dual shatter function π∗

S(k) = O(kd), such
that the following holds:

let E be a random edge-set obtained by selecting each edge in
(

X
2
)

i.i.d. with probability
p(n) = o

(
nα−1). Then with probability at least 1/2, every matching in E of size

n/c has crossing number ω
(
n1−α/d

)
with respect to S, where the constants in the

asymptotic notation depend on d and c.

▶ Remark. The same asymptotic results hold for low-crossing spanning paths and spanning
trees.

We find Lemma 1 surprising for the following reason: the classical proof of Theorem A
assigns exponentially-increasing weights to the sets of S, which then dictate the choice of the
edge picked at each iteration. Thus a different choice of the edge at iteration i could result in
a changing of the weight distribution, which then influences the sequence of edges picked for
all later iterations. At first glance, a random sample chosen once, and uniformly from

(
X
2
)

cannot simply assure that it will contain many edges from all possible exponentially many
paths possibly chosen by the algorithm.

In particular, if we fix an initial uniform sample of edges, and build the matching using
this sample (by always choosing a light edge from the sample, as in previous algorithms),
it introduces a bias (as the set of uncovered points depend on the initial sample of edges)
and we cannot assume anymore that among the uncovered points, every edge is picked i.i.d.
with a fixed probability. Indeed, with later iterations, the possible paths to be taken care
of increase exponentially and the initial random sample has low probability of containing a
good perfect matching.

Therefore, we take a different, more subtle, approach in the analysis, similar in spirit to
the technique of quasi-uniform sampling of Varadarajan [34] and Chan et al.[9]:
1. instead of a perfect matching, we aim for a linear-sized partial matching with crossing

number O
(
n1−α/d

)
. As we will prove, this requirement is weak-enough for a single sample

to work, but strong-enough so that to compute a perfect matching, O(log n) adaptive
uniform samples are sufficient.

2. instead of the classical algorithm, we propose a new randomized version where an edge
from our initial, fixed, random sample of edges is picked in each iteration with a carefully
chosen probability distribution that does depend on the changing weights in each iteration.

While Lemma 1 only guarantees the existence of a low-crossing partial matching, it can
be used to speed up the fastest existing algorithms, by computing a linear sized matching
and recursing on the uncovered points. This leads to the following result that improves the
running times of previous-best algorithm of Csikós and Mustafa [13] by nearly a factor of
Θ (n), at the cost of a higher, but still sub-linear crossing number.

ICALP 2024



49:4 An Optimal Sparsification Lemma for Low-Crossing Matchings and Applications

Table 1 (X,S) has dual-shatter function π∗(k) = O(kd), n = |X|, m = |S|.

Our Method Previous-best
Problem Guarantee Time Guarantee Time

matching with
low crossing number O

(
n1−α/d + ln m ln n

)
Õ
(

n(1+α)+ 2α
d + m · n 2α

d

)
O
(
n1−1/d + ln m ln n

) Õ
(

n2+ 2
d + m · n 2

d

)
[13]

O
(

n1−1/O(d·2d) + ln m ln n
) Õ

(
m + n2−1/O(d·2d)

)
[16]

combinatorial
discrepancy O

(√
n1−α/d ln m + ln2 m ln n

)
Õ
(

n(1+α)+ 2α
d + m · n 2α

d

)
O
(√

n1−1/d ln m
) Õ

(
n2+ 2

d + m · n 2
d

)
[13]

▶ Corollary 3 (Proof in Appendix A.1). Let (X,S) be a set system with dual shatter function
π∗

S(k) = O(kd), n = |X| and α ∈ (0, 1]. Then there is a randomized algorithm which returns
a perfect matching of expected crossing number O

(
n1−α/d + ln |S| ln n

)
in expected time

Õ
(

n1+α+ 2α
d + |S| · n 2α

d

)
.

▶ Remark. The algorithm of Corollary 3 can easily be modified to create a spanning path
with the same crossing number guarantee.

Figure 1 The matchings output by the algorithm of Corollary 3 on the set system induced by
half-spaces in R2 are shown below, for α = 0.25, 0.5 and 0.75.
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Algorithmic Consequences
Besides a new trade-off between quality and speed of computation, Corollary 3 has several
algorithmic applications.

1. A better sub-quadratic time (in |X| + |S|) algorithm. Setting a low value for the
parameter α ∈ (0, 1] allows us to get a running time that is close to linear, at the expense of the
crossing number. At the other end of the spectrum, we can get below the quadratic running
time barrier without sacrificing too much in the crossing number. This improves the result of
Ducoffe et al. [16] – who computed a spanning path with crossing number Õ

(
n1−1/(c·D·d))

in time Õ
(
m + n2−1/(c·D·d)), where D = VCdim(X,S) – by letting α = d/(d + 3). Besides

improving the crossing number, the new algorithm also does not depend on the primal VC
dimension.

▶ Corollary 4. Let (X,S) be a set system with dual shatter function π∗
S(k) = O(kd), n = |X|.

Then there is a randomized algorithm which returns a perfect matching of expected crossing
number O

(
n1−1/(d+3) + ln |S| ln n

)
in expected time Õ

(
n2− 1

d+3 + |S| · n
2

d+3

)
.
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▶ Remark. In the work of Ducoffe et al. [16], spanning paths were used as a key algorithmic
tool for computing the diameter of graphs. Their main result is a Õ

(
k n2−1/O(d·2d)

)
time

algorithm to decide whether the diameter of a graph G with distance VC-dimension d is
at most k. Using Corollary 4 in their algorithmic framework ([16, Lemma 6]), we get an
algorithm that decides whether G has diameter at most k, in time O

(
k n2−1/(d+3)).

2. Discrepancy. Using Corollary 3 in a standard iterative halving scheme [27] gives us faster
approximation algorithms for combinatorial discrepancy, again improving the previous-best
algorithms by nearly a factor of Θ̃(n), at the cost of a slightly higher discrepancy.

▶ Corollary 5 (Proof in Appendix A.2). Let (X,S), n = |X|, m = |S|, be a set system and d be a
constant such that π∗

S(k) = O
(
kd
)
. For any 0 < α ≤ 1, there is a randomized algorithm which

constructs a coloring χ of X with expected discrepancy O
(√

n1−α/d ln m + ln2 m log n
)

, in

expected time Õ
(

n1+α+ 2α
d + m · n 2α

d

)
.

This allows us to get the first near-linear time algorithm, for general non-geometric set
systems, that beats the standard deviation discrepancy bound:

▶ Corollary 6. Let (X,S), n = |X|, m = |S|, be a set system and d be a constant such that
π∗

S(k) = O
(
kd
)
. For any 0 < ε ≤ 1, there is a randomized algorithm which constructs a

coloring χ of X with expected discrepancy O

(√
n1− ε

d+2 ln m + ln2 m log n

)
, in expected time

Õ
(
n1+ε + m1+ε

)
.

3. ε-Approximations. The iterative application of Corollary 5 implies the following faster
algorithm for computing ε-approximations [10, 29, 32, 24, 14].

▶ Corollary 7. Let ε ∈ (0, 1), (X,S) be a set system and c, d, D be constants such that
π∗

S(k) ≤ ckd and VCdim(X,S) ≤ D. Then for any α ∈ (0, 1), there is a randomized
algorithm which returns an ε-approximation A ⊂ X of size

O

((
1
ε2 log 1

ε

) d
d+α

)

in expected time

Õ

((
D

ε2

)1+α+ 2α
d

+
(

D

ε2

)D+ 2α
d

)
.

3 Previous Results

Matchings with low crossing numbers

The study of perfect matchings (along with spanning paths and spanning trees) with low
crossing number was originally introduced for geometric range searching [35, 11]. Since then,
they have found applications in various fields, for instance, discrepancy theory [27], learning
theory [3], or algorithmic graph theory [16].

The proof of Theorem A is constructive, using the Multiplicative Weights Update (MWU)
technique. Moreover it works for any (abstract) set system (X,S) with polynomially bounded
dual-shatter function. It builds a low-crossing matching iteratively, guided by a weight

ICALP 2024
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Algorithm 1 MatchingMWU
(
(X,S)

)
.

ω1(S)← 1 for all S ∈ S
X1 ← X

for i = 1, . . . , n/2 do
ei ← the lightest edge in

(
Xi
2

)
w.r.t. ωi

Obtain ωi+1 from ωi by doubling the weights of each set crossing ei

Xi+1 ← Xi \ endpoints(ei)
return

{
e1, . . . , en/2

}

function ω on S, with initial weights set to 1. At each iteration, the algorithm adds the
“lightest” edge to the matching – that is, the edge that is crossed by sets of minimum
total weight. At the end of an iteration, it updates ω by doubling the weight of each set
crossing the picked edge. See Algorithm 1. The algorithmic bottleneck is in finding such
an edge: for an abstract set system without additional structure, this takes O(n2m) time
for each of the n/2 iterations, giving a total running time of O

(
n3m

)
, where n = |X| and

m = |S|. Using MWU together with ideas from linear programming duality have led to the
current-best running time for computing matchings with crossing number O

(
n1−1/d

)
in time

Õ
(
n2+2/d + mn2/d

)
[13].

A different approach was proposed by Har-Peled [19] (see also [17]). His result implies
that if (X,S) has a spanning tree with crossing number κ = Θ(nγ) for some γ ∈ [1/ log n, 1],
then a spanning tree of crossing number O(κ/γ) can be found by solving an LP on

(
n
2
)

variables and m + n constraints, see also [18]. Another result for general set systems having
spanning trees with crossing number κ, is based on rounding fractional solutions of minimax
integer programs with matroid constraints. This method gives a randomized algorithm that
constructs a spanning tree with expected crossing number at most κ + O(

√
κ log m) in time

Õ(mn4 + n8) [12].
For the geometric case, where X is a set of points in Rd and S is induced by half-spaces,

Chan [8] gave a O (n log n) time algorithm to compute a matching with crossing number
O
(
n1−1/d

)
using hierarchical cuttings. More generally, spatial partitioning by polynomials

has also been extensively studied in the last decade [1, 2].

Discrepancy

Spencer [31] showed that for any set system (X, S), there exists a coloring of X with
discrepancy O

(√
n ln(m/n)

)
, which is tight and improves the general bound for m = O (n).

A series of algorithms for its construction started with the breakthrough work of Bansal [5],
who gave the first polynomial-time randomized algorithm (using SDP rounding) to compute a
coloring with discrepancy O (

√
n ln(m/n)), which matches the bound of Spencer for m = O(n).

Later Lovett and Meka [23] gave a combinatorial randomized algorithm for constructing
colorings with discrepancy O

(√
n ln(m/n)

)
and improved the expected running time to

Õ
(
n3 + m3); see also [30] for a different proof. The algorithm of Bansal was de-randomized [7]

(but still used a non-constructive method to prove the feasability of an underlying SDP), and
later, Levy et al.[22] used the multiplicative weights update technique to give a deterministic
O
(
n4m

)
-time algorithm to compute a two-coloring with discrepancy O

(√
n ln(m/n)

)
for an

arbitrary set system. See also [6] for a random-walk algorithm for Banaszczyk’s discrepancy
bound, with running time O

(
n3.3728.. + nm2.3728..

)
. Most recently, Larsen proposed an
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O(n2m ln(2 + m/n) + n3) time algorithm with hereditary discrepancy guarantees [21]. The
discrepancy guarantees of [21] can also be achieved with an Õ(nnz(A) + n3) time algorithm
[15], where A is the membership matrix of (X,S). We note that many of these algorithms
can be applied in more general settings (e.g. for real-valued matrices), however none of
them provide a sub-quadratic time algorithm for the combinatorial discepancy problem in
structured set systems.

4 Proof of the Main Lemma

In this section, we prove Lemma 1. Given a weight function ω : S → R+, for e ∈
(

X
2
)
, set

weight(e, ω) :=
∑

S∈S :
e crosses S

ω(S).

Then for any integer k > 0, by “the k lightest edges of
(

X
2
)

w.r.t. ω”, we refer to the k edges
with the smallest values of weight(·, ω) (ties broken arbitrarily).

We show the required property of the random sample E via the analysis of the randomized
algorithm RelaxedMWU presented in Algorithm 2. In particular, Lemma 1 immediately
follows from these two properties.

▶ Lemma 8. Let (X,S) be a set system with dual shatter function π∗
S(k) = O

(
kd
)
, α ∈ (0, 1]

and E ⊆
(

X
2
)
. For any halting iteration T = t, the set of edges returned by Relaxed-

MWU
(
(X,S), α, E

)
have crossing number O

(
t1−α/d + ln |S|

)
.

▶ Lemma 9. If E ⊆
(

X
2
)

is an i.i.d. sample where each edge is picked with probability

p = min
{

2 ln n

n1−α
+ 4 ln(2/δ)

n2−α
, 1
}

,

then RelaxedMWU((X,S), α, E) returns at least n/4 edges with probability at least 1− δ.

▶ Remark. Lemma 8 does not use the fact that E is chosen randomly, or the randomness
used in the algorithm; these are only used by Lemma 9.

Algorithm 2 RelaxedMWU
(
(X,S), α, E

)
.

ω1(S)← 1 for all S ∈ S
X1 ← X

for iteration i = 1, . . . , n/2 do
Ei ← the |Xi|2−α lightest edges in

(
Xi

2
)

w.r.t. ωi

if E ∩ Ei = ∅ then
return {e1, . . . , ei−1} and set T = i− 1

else
Pick an edge ei from E ∩ Ei uniformly at random
Compute ωi+1 from ωi by doubling the weight of each set crossing ei

Xi+1 ← Xi \ endpoints(ei)

return
{

e1, . . . , en/2
}

and set T = n/2

▶ Remark. The precise definition of Ei (line 4 of Algorithm 2) should consider the ⌊|Xi|2−α⌋
lightest edges. For the simplicity of presentation, we replace ⌊|Xi|2−α⌋ with |Xi|2−α through-
out the proof.
We now prove the two key properties of RelaxedMWU separately.

ICALP 2024
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4.1 Proof of Lemma 8
For any function f : S → R, define f(S) :=

∑
S∈S

f(S).

We will use the following key lemma; its proof will be presented later.

▶ Lemma 10. Let (X,S) be a set system with dual shatter function π∗
S(k) ≤ c1 · kd. Then

given any Y ⊂ X, a weight function w : S → Z+, and an integer ℓ ∈
[
|Y |,

(|Y |
2
)]

, there are
at least ℓ distinct edges in

(
Y
2
)

such that the total weight of the sets of S crossing each edge
is at most

(10c1)1/d · w(S) · ℓ1/d

|Y |2/d
.

Let {e1, . . . , et} be the output of RelaxedMWU and for each i ∈ [1, t], set ηi =
weight(ei, ωi).

At the start of iteration i, we have |Xi| = n− 2i + 2 and we pick one of the |Ei| = |Xi|2−α

lightest edges of
(

Xi

2
)

w.r.t. ωi. Applying Lemma 10 with Y = Xi, ω = ωi and ℓ = |Ei|, gives
an upper bound on the weight of each edge in Ei w.r.t. ωi. In particular, as ei ∈ Ei, we have

ηi ≤ (10c1)1/d · ωi(S) · |Xi|(2−α)/d

|Xi|2/d
= (10c1)1/d · ωi(S)

|Xi|α/d
= (10c1)1/dωi(S)

(n− 2i + 2)α/d
. (1)

Let κt denote the maximum number of edges in {e1, . . . , et} that are crossed by a set in
S. By the weight-update rule of the algorithm, we have

ωt+1(S) ≥ max
S∈S

ωt+1(S) = 2κt ,

and for any j ∈ [1, t]

ωj+1(S) = ωj (S) + ηj = ωj (S)
(

1 + ηj

ωj (S)

)
.

Applying the above equality for j = t, . . . , 1 iteratively and using ω1(S) = |S|, we obtain

ωt+1(S) = ωt (S)
(

1 + ηt

ωt (S)

)
= · · · = |S| ·

t∏
j=1

(
1 + ηj

ωj(S)

)
≤ |S| · exp

(
t∑

j=1

ηj

ωj(S)

)
.

Combining the upper and lower bounds for ωt+1 (S), we get

2κt ≤ ωt+1(S) ≤ |S| · exp

 t∑
j=1

ηj

ωj(S)

 =⇒ κt ≤
1

ln 2

ln |S|+
t∑

j=1

ηj

ωj(S)

 . (2)

Using the upper-bound on ηj from Equation (1), we conclude that for any stopping time
t ∈ [1, n/2], the matching {e1, . . . , et} returned by RelaxedMWU has crossing number at
most

1
ln 2

(
ln |S|+

t∑
j=1

(10c1)1/d

(n− 2j+2)α/d

)
≤ 1

ln 2

(
ln |S|+

t∑
j=1

(10c1)1/d

(2t− 2j + 2)α/d

) (
since t ≤ n

2

)

≤ 1
ln 2

(
ln |S|+

t∑
j=1

(10c1)1/d

(t− j+1)α/d

)

= 1
ln 2

(
ln |S|+

t∑
j=1

(10c1)1/d

jα/d

)

= ln |S|
ln 2 + O

(
t1−α/d

)
= O

(
t1−α/d + ln |S|

)
.
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This concludes the proof of Lemma 8 assuming Lemma 10. We now return to the proof
of Lemma 10, for which we need the following two statements.

▶ Theorem 11 (Turán’s Theorem [33]). Let G = (V, E) be a graph with no clique of size
r + 1. Then

|E| ≤
(

1− 1
r

)
n2

2 .

▶ Lemma 12 (Packing Lemma [20, 28, 29]). Let (X,S) be a set system with shatter function
πS(k) ≤ c1 · kd and let δ ∈ (1, |X|) be a parameter. Furthermore, let P ⊂ S be a δ-separated
set; that is, |S1∆S2| ≥ δ for all S1, S2 ∈ P (where S1∆S2 denotes the symmetric difference
of S1 and S2). Then

|P| ≤ 2c1

(
|X|
δ

)d

.

Proof of Lemma 10. Let (Sw,RY ) denote the set system dual to (Y,S) with multiplicities
given by w(·). That is, the base set Sw consists of sets of S, where each S ∈ S has w(S)
copies in Sw. And RY consists of |Y | sets, one for each element of Y :

RY =
{

Ry : y ∈ Y
}

, where Ry =
{

S ∈ Sw : y ∈ S
}

.

Observe that
for any x, y ∈ Y , the set Rx∆Ry contains precisely the sets in Sw that cross the edge xy,
|Sw| = w(S), and
the shatter function of (Sw,RY ) is the dual shatter function of (Y,S).

Consider a graph G on Y , where there is an edge between two elements x, y ∈ Y if and only
if xy is crossed by more than δℓ sets in Sw, where we set

δℓ =
(

10c1 ·
w(S)dℓ

|Y |2

)1/d

.

Now the Packing Lemma implies that any δℓ-separated subset of sets in RY has cardinality
at most

Cℓ = 2c1

(
w(S)

δℓ

)d

= 2c1
w(S)d

10c1 · w(S)dℓ
|Y |2

= |Y |
2

5ℓ
.

This implies that G does not contain a clique on Cℓ + 1 vertices, and so by Turán’s
Theorem, the number of pairs that are not edges in G is at least(

|Y |
2

)
−
(

1− 1
Cℓ

)
|Y |2

2 = |Y |
2

2Cℓ
− |Y |2 = 5ℓ

2 −
|Y |
2 ≥ ℓ,

where we used that |Y | ≤ ℓ. Thus, we have shown that there are at least ℓ edges which cross
sets of total weight at most δℓ. This concludes the proof of Lemma 10 and thus the proof of
Lemma 8. ◀
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4.2 Proof of Lemma 9
Our goal is to prove that if E ⊆

(
X
2
)

is a random set of edges, where each edge from
(

X
2
)

is
picked i.i.d. with probability

p = min
{

2 ln n

n1−α
+ 4 ln(2/δ)

n2−α
, 1
}

,

then the random halting time T of RelaxedMWU
(
(X,S), α, E

)
satisfies

P [ T ≤ n/4 ] ≤ δ.

If p = 1, then the statement is trivially true, therefore assume that p < 1.
Note that we have two different sources of randomness: we run the algorithm on an

initial sample E of edges and at each iteration, if E ∩ Ei ̸= ∅, we sample an edge ei ∈ E ∩ Ei

uniformly at random. The notation P[A] denotes the probability of event A under both
randomness sources.

We will upper bound the probabilities P [ T = i ] for each i = 0, . . . , n/4. For the case
i = 0, since E is an i.i.d. uniform random sample of

(
X
2
)
, we have

P [ T = 0 ] = P [ E ∩ E1 = ∅ ] = (1− p)|E1| = (1− p)n2−α

.

Now consider the case i ≥ 1. Observe that the edge-set Ei depends on the edges chosen in
earlier iterations j < i. To signify this, for any sequence of i − 1 edges (e1, . . . , ei−1), let
Ei(e1, . . . , ei−1) denote the set of (n− 2(i− 1))2−α lightest edges assuming that e1, . . . , ei−1

were added to the matching and the weights of the sets of S were adjusted multiplicatively
accordingly.

We say that a sequence (e1, . . . , ei) is feasible if e1 ∈ E1, e2 ∈ E2(e1), . . . , ei ∈
Ei(e1, . . . , ei−1). We denote the set of all feasible sequences of length i by Ci.

For a c ∈ Ci, we use the notation c0 = ∅, and cj = (e1, . . . , ej) for all j ∈ [1, i]; note
that ci = c. Let ei = (e1, . . . , ei) denote the sequence of random variables representing
the edges actually chosen at each step by the algorithm up to iteration i, with e0 = ∅ and
ej = (e1, . . . , ej) for all j ∈ [1, i].

In the analysis, we will apply the law of total probability over the events that the algorithm
picks the edges given by a certain feasible sequence c ∈ Ci, that is, ei = ci.

We break the analysis into three steps.

1. Unfolding the probability P [ T = i ]

Given the above notation, we have

P [ T = i ] = P [ E ∩ E1 ̸= ∅, . . . , E ∩ Ei ̸= ∅, E ∩ Ei+1 = ∅ ]

=
∑
c∈Ci

P
[

E ∩ E1(c0) ̸= ∅, . . . , E ∩ Ei(ci−1) ̸= ∅, E ∩ Ei+1(ci) = ∅
∣∣ ei = ci

]
· P
[

ei = ci
]

≤
∑
c∈Ci

P
[

E ∩ Ei+1(ci) = ∅
∣∣ ei = ci

]
· P
[

ei = ci
]

.

Note that Ei+1(ci) is a fixed set once we are given ci = (e1, . . . , ei). Using Bayes’ theorem,
we can express the conditional probabilities on the R.H.S. of the above inequality as

P
[

E ∩ Ei+1(ci) = ∅
∣∣ ei = ci

]
=

P
[

ei = ci
∣∣ E ∩ Ei+1(ci) = ∅

]
· P
[

E ∩ Ei+1(ci) = ∅
]

P [ ei = ci ] .
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Thus, we get

P [ T = i ] ≤
∑
c∈Ci

P
[

ei = ci | E ∩ Ei+1(ci) = ∅
]
· P
[

E ∩ Ei+1(ci) = ∅
]

.

Fixing ei = ci completely determines the set of edges in Ei+1(ci), and so

=
∑
c∈Ci

P
[

ei = ci | E ∩ Ei+1(ci) = ∅
]
· (1− p)|Ei+1(ci)|.

We now proceed by bounding the probability P
[

ei = ci | E ∩ Ei+1(ci) = ∅
]
, iteration by

iteration:

P
[

ei = ci | E ∩ Ei+1(ci) = ∅
]

= P
[

ei = ei | E ∩ Ei+1(ci) = ∅, ei−1 = ci−1 ] · P [ ei−1 = ci−1 | E ∩ Ei+1(ci) = ∅
]

= . . . =
i∏

j=1
P
[

ej = ej | E ∩ Ei+1(ci) = ∅, ej−1 = cj−1 ] ,

recalling that e0 = c0 = ∅. We conclude that

P [ T = i ] ≤
∑
c∈Ci

(1− p)|Ei+1(ci)| ·
i∏

j=1
P
[

ej = ej | E ∩ Ei+1(ci) = ∅, ej−1 = cj−1 ] . (3)

2. Bounding the probabilities P[ ej =ej |E∩ Ei+1(ci) = ∅, ej−1 =cj−1 ], j ∈ [1, i]

Note that the condition ej−1 = cj−1 fixes the set Ej(cj−1). As ej was picked uniformly from
E ∩Ej(cj−1), we further condition on all possible choices of E ∩Ej(cj−1), with the constraint
that E ∩ Ei+1(ci) = ∅:

P
[

ej = ej | E ∩ Ei+1(ci) = ∅, ej−1 = cj−1 ]
=

∑
S′⊆Ej (cj−1)

(
P
[

ej = ej
∣∣ E ∩ Ei+1(ci) = ∅, ej−1 = cj−1, E ∩ Ej(cj−1) = S′ ] )
·
(
P
[

E ∩ Ej(cj−1) = S′ ∣∣ E ∩ Ei+1(ci) = ∅, ej−1 = cj−1 ] )
Note that if S′ is such that ej /∈ S′, then the first probability in the above product is 0.
Similarly, if S′ ∩ Ei+1(ci) ̸= ∅, then the second probability is equal to 0. Continuing,

=
∑

S′⊆Ej (cj−1)\Ei+1(ci) :
ej ∈S′

(
P
[

ej = ej
∣∣ E ∩ Ei+1(ci) = ∅, ej−1 = cj−1, E ∩ Ej(cj−1) = S′ ] )

·
(
P
[

E ∩ Ej(cj−1) = S′ ∣∣ E ∩ Ei+1(ci) = ∅, ej−1 = cj−1 ] )
=

∑
S′⊆Ej (cj−1)\Ei+1(ci) :

ej ∈S′

(
1
|S′|

)
·
(

p|S′| · (1− p)|Ej (cj−1)\Ei+1(ci)|−|S′|
)

.
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Rearranging the sum by the sizes of the S′’s containing ej :

=
|Ej (cj−1)\Ei+1(ci)|∑

ℓ=1

(
|Ej(cj−1) \ Ei+1(ci)| − 1

ℓ− 1

)
· 1

ℓ
· pℓ · (1− p)|Ej (cj−1)\Ei+1(ci)|−ℓ

=
|Ej (cj−1)\Ei+1(ci)|∑

ℓ=1

ℓ

|Ej(cj−1) \ Ei+1(ci)|

(
|Ej(cj−1) \ Ei+1(ci)|

ℓ

)
· 1

ℓ
· pℓ · (1− p)|Ej (cj−1)\Ei+1(ci)|−ℓ

= 1
|Ej(cj−1) \ Ei+1(ci)|

|Ej (cj−1)\Ei+1(ci)|∑
ℓ=1

(
|Ej(cj−1) \ Ei+1(ci)|

ℓ

)
· pℓ · (1− p)|Ej (cj−1)\Ei+1(ci)|−ℓ.

Using the Binomial theorem, and adjusting for the case ℓ = 0,

= 1
|Ej(cj−1) \ Ei+1(ci)|

(
(p + (1− p))|Ej (cj−1)\Ei+1(ci)| − (1− p)|Ej (cj−1)\Ei+1(ci)|

)
= 1
|Ej(cj−1) \ Ei+1(ci)|

(
1− (1− p)|Ej (cj−1)\Ei+1(ci)|

)
.

We can thus conclude that, setting a = |Ej(cj−1) \ Ei+1(ci)|,

P
[

ej = ej | E ∩ Ei+1(ci) = ∅, ej−1 = cj−1 ] = 1
a

(1− (1− p)a) ≤ p, (4)

where the last bound follows from Bernoulli’s inequality (1 + x)r ≥ 1 + rx for x ≥ −1 and
r ≥ 1, which holds in our case since x = −p ≥ −1 and r = |Ej(cj−1) \ Ei+1(ci)| ≥ 1.

3. Putting everything together

Let ki =
∣∣Ei(ci−1)

∣∣ = |Xi|2−α = (n− 2(i− 1))2−α.
Continuing Equation (3) together with the bound from Equation (4), we get

P [ T = i ] ≤ (1− p)ki+1 ·
∑
c∈Ci

i∏
j=1

p = (1− p)ki+1 · k1 · k2 · · · ki · pi.

Summing the above over all iterations,

P [ T ≤ i ] ≤ (1− p)k1 +
i∑

ℓ=1
(1− p)kℓ+1 · k1 · k2 · · · kℓ · pℓ

Using that k1 ≥ k2 ≥ · · · ≥ ki+1,

P [ T ≤ i ] ≤ (1− p)ki+1 +
i∑

ℓ=1
(1− p)ki+1 · kℓ

1 · pℓ = (1− p)ki+1 ·
i∑

ℓ=0
(k1 · p)ℓ

.

Thus, for i = n/4, using that pk1 = pn2−α ≥ 2n ln n ≥ 2, we obtain

P [ T ≤ n/4 ] ≤ (1− p)kn/4+1

n/4∑
ℓ=0

(pk1)ℓ

= (1− p)kn/4+1 (pk1)n/4+1 − 1
pk1 − 1 < (1− p)kn/4+1 (pk1)n/4+1

pk1 − 1

= (1− p)kn/4+1 · (pk1)
pk1 − 1 · (pk1)n/4 ≤ (1− p)kn/4+1 · 2 · (pk1)n/4

(
pk1 > 2

)
≤ exp(−pkn/4+1) · 2 · kn/4

1 .



M. Csikós and N. H. Mustafa 49:13

Substituting k1 = n2−α, kn/4+1 = (n/2)2−α ≥ n2−α/4 and p = 2 ln n
n1−α + 4 ln(2/δ)

n2−α , we conclude

P [ T ≤ n/4 ] ≤ 2 exp
(
−n ln n

2 − ln 2
δ

)
·
(
n2−α

)n/4 = 2 · 1
nn/2 ·

δ

2 · n
n/2−αn/4

= n−αn/4 · δ ≤ δ.

Therefore, with probability at least 1− δ, RelaxedMWU returns a matching of size at
least n/4, which concludes the proof of Lemma 9. ◀

▶ Remark. In the last equation, to get failure probability at most δ, we crucially need the
fact that at the final iteration i, we still have ki ≥ n2−α/4, which limits the range of i. This
is the technical reason why we can only guarantee that E contains a good partial matching,
but the analysis breaks for perfect matchings.

5 Proof of Optimality

In this section we present the proof of Lemma 2. Let X be the set of n =
⌈
n

1/d
0

⌉d

points

defined as
[

1,
⌈
n

1/d
0

⌉ ]
× · · · ×

[
1,
⌈
n

1/d
0

⌉ ]
⊂ Zd, and let S consist of the d ·

⌊
n

1/d
0

⌋
subsets

of X induced by half-spaces of the form

Hi,j =
{

x ∈ Rd : xi ≤ j + 1/2
}

, i = 1, . . . , d, j = 1, . . .
⌊
n

1/d
0

⌋
.

Observe that for any edge {x, y} ∈
(

X
2
)
, the number of sets in S that crosses {x, y} is precisely

the ℓ1-distance2 of x and y. Using this observation, it is easy to see that for any k ∈ N+ and
x ∈ X, the number of edges {x, y} that are crossed by at most k sets from S is O(kd). Thus,
there is an absolute constant c0 (depending on d) such that the total number of edges in

(
X
2
)

crossed by at most k sets from S is at most c0 · nkd. We refer to these edges as k-good and
denote their set with Gk.

Let p(n) = o(nα−1) and E be a uniform random sample of edges, where each edge of
(

X
2
)

is picked with probability p(n). Setting kp,c(n) =
(

1
4c·c0p(n)

)1/d

, the expected number of
kp,c(n)-good edges in E is

E
[
|E ∩ Gkp,c(n)|

]
≤ c0n (kp,c(n))d · p(n) = n

4c
.

Thus, by Markov’s inequality, we have |E ∩ Gkp,c(n)| ≤ n
2c with probability at least 1/2.

Assume that |E ∩ Gkp,c(n)| ≤ n
2c holds and let M ⊂ E be any subset of size n

c . Then M

contains at least n
2c edges which are not kp,c(n)-good. Therefore, the number of crossings

between the edges of M and the sets of S is at least

n

2c
·
(

1
4c · c0 · p(n)

)1/d

.

Recall that |S| = d ·
⌊
n

1/d
0

⌋
≤ dn1/d and so by the pigeonhole principle, we get that there is

a set in S that crosses at least

2 The ℓ1-distance of x and y is defined as ℓ1(x, y) =
∑d

i=1 |xi − yi|, where xi is the i-th coordinate of x.
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n
2c ·

(
1

4c·c0p(n)

)1/d

|S|
≥

n
2c ·

(
1

4c·c0p(n)

)1/d

dn1/d
= 1

2c · d · (4c · c0)1/d
· n1−1/d

(
1

p(n)

)1/d

︸ ︷︷ ︸
ω(n(1−α)/d)

= ωd,c ·
(

n1−α/d
)

edges of M . This concludes the proof of Lemma 2. ◀
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A Appendix

A.1 Proof of Corollary 3
The algorithm achieving the guarantees of Corollary 3 is presented in MatchingPresampled.
It is essentially the algorithm presented in [13] run on an initial random sample of edges
with a small modification: to incorporate the pre-sampling step in the analysis, we need to
recurse slightly more often (after n/16 steps instead of n/4).

We use the following key lemma for PartialMatching.

▶ Lemma 13 ([13]). Let Ẽ ⊂ E denote the set of edges that have non-zero weight when
PartialMatching

(
(X,S), E, κ

)
terminates. Then

E

 max
S∈S

n/16∑
i=1

I (ei, S)

 ≤ 2 · E

 min
e∈Ẽ

n/16∑
i=1

I (e, Si)

+ O (κ + ln |E|+ ln |S|) . (5)
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Algorithm 3 MatchingPresampled
(
(X,S), d, α

)
.

M ← ∅
while |X| > 16 do

n← |X|
E ← sample of O(n1+α ln n) edges from

(
X
2
){

e1, . . . , en/16
}
← PartialMatching

(
(X,S), E, (n/16)1−α/d )

M ←M ∪
{

e1, . . . , en/16
}

X ← X \ endpoints(M)
match the remaining elements of X randomly and add the edges to M

return M

Algorithm 4 PartialMatching
(
(X,S), E, κ)

)
.

ω1(e)← 1, π1(S)← 1 ∀e ∈ E, S ∈ S
p← min{106 · |X|/κ2 · ln(|E| · |X|/16), 1}
q← min{39 · |X|/κ2 · ln(|S| · |X|/16), 1}

for i = 1, . . . , |X|/16 do
ωi(E)←

∑
e∈E ωi(e)

πi(S)←
∑

S∈S πi(S)
choose ei ∼ ωi ; // P[ei = e] = ωi(e)

ωi(E) ∀e ∈ E

choose Si ∼ πi ; // P[Si = S] = πi(S)
πi(S) ∀S ∈ S

Ei ← sample from E with probability p ; // P[e ∈ Ei] = p ∀e ∈ E

Si ← sample from S with probability q ; // P[S ∈ Si] = q ∀S ∈ S
; // I (e, S) = 1 if e crosses S, I (e, S) = 0 otherwise
for e ∈ Ei do

ωi+1(e)← ωi(e)
(
1− 1

2 I (e, Si)
)

; // halve weight if Si crosses e

for S ∈ Si do
πi+1(S)← πi(S)

(
1 + I (ei, S)

)
; // double weight if S crosses ei

set the weight in ωi+1 of ei and of each edge adjacent to ei to zero
return {e1, . . . , e|X|/16}

In MatchingPresampled, the subroutine PartialMatching is called with the parameter
κ = (n/16)1−α/d, thus we get the following bound on the expected crossing number of{

e1, . . . , en/16
}

:

E

 max
S∈S

n/16∑
i=1

I (ei, S)

 ≤ 1
2 · E

 min
e∈Ẽ

n/16∑
i=1

I (e, Si)

+ O
(

n1−α/d
)

. (6)

The left-hand side of Equation (5) is precisely the expected crossing number of the edges
returned by PartialMatching. It remains to bound the expectation on the right-hand side
of Equation (6). By Lemma 1, with probability at least 1− 1

n , the initial sample E contains
a matching M0 of size ⌈n/4⌉ with crossing number

c0 ·
(

n1−α/d + ln |S|
)

for some fixed constant c0. Assume that it happens, then clearly M0 ∩ Ẽ also has crossing
number at most c0 ·

(
n1−α/d + ln |S|

)
with respect to S. Moreover, since we only zeroed the

weights of edges adjacent to 2 · n/16 distinct vertices of X, there are at least n/8 edges of
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M0 with positive weight when PartialMatching terminates. That is,
∣∣M0 ∩ Ẽ

∣∣ ≥ n/8 and
n/8 > 0 since n > 16 at each call of PartialMatching . By the pigeonhole principle, there
is an edge in M0 ∩ Ẽ which is crossed by at most

c0 ·
(
n1−α/d + ln |S|

)
· n/16

n/8 = O
(

n1−α/d + ln |S|
)

sets from S1, . . . , Sn/16. Therefore, we have

E

 max
S∈S

n/16∑
i=1

I (ei, S)

 ≤ 1
2 ·E

 min
e∈Ẽ

n/16∑
i=1

I (e, Si)

+O
(

n1−α/d
)

= O
(

n1−α/d + ln |S|
)

,

where the last bound holds with with probability at least 1− 1
n . Since the crossing number

of any matching of X is at most n/2, the expected crossing number of the matching returned
by the subroutine PartialMatching

(
(X,S), E, (n/16)1−α/d ) is O

(
n1−α/d + ln |S|

)
.

The bottleneck algorithmic step in PartialMatching is to update the weights of edges
and sets belonging to Ei and Si at each iteration i = 1, . . . , n/16.

For any i, we have E [ |Ei|+ |Si| ] = Õ
(
n1+αp + mq

)
, thus in expectation,

the total running time is O
(
n
(
n1+α ·min{n/κ2 ln n, 1}+ m ·min{n/κ2 ln m, 1}

))
=

Õ
(

n1+α+ 2α
d + mn

2α
d

)
.

The algorithm MatchingPresampled makes log n calls to PartialMatching with
exponentially decreasing input sizes. It can easily be deduced that MatchingPresampled
returns a matching with expected crossing number O

(
n1−α/d + ln |S| ln n

)
in expected time

Õ
(

n1+α+ 2α
d + mn

2α
d

)
. This concludes the proof of Corollary 3. ◀

A.2 Proof of Corollary 5
Now we deduce how Corollary 3 implies Corollary 5. The randomized algorithm that achieves
the guarantees of Corollary 5 is presented in Algorithm 5.

Algorithm 5 LowDiscColorPresampled
(
(X,S), d, α

)
.

n← |X|{
e1, . . . , e⌈n/2⌉

}
←MatchingPresampled

(
(X,S), d, α

)
for i = 1, . . . , ⌈n/2⌉ do
{xi, yi} ← endpoints (ei)

χ(xi) =
{

1 with probability 1/2
−1 with probability 1/2

χ(yi) = −χ(xi) ; // we skip this step if yi = xi

return χ

▶ Lemma 14. Let (X,S) be a set system, n = |X|, m = |S| ≥ 34, and let M be a perfect
matching of X with crossing number κ with respect to S and for each edge {x, y} ∈M define

χM (x) =
{

1 with probability 1/2
−1 with probability 1/2

and χM (y) = −χM (x). Then the expected discrepancy of χM is at most
√

3κ ln m.
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▶ Remark. A “high probability version” of Lemma 14 is well-known [27, Lemma 2.5] and
implies the above bound.
Corollary 3 and Lemma 14 immediately imply that the algorithm LowDiscColorPres-
ampled constructs a coloring with expected discrepancy O

(√
n1−α/d ln m + ln2 m log n

)
,

in time Õ
(
n1+α+2α/d + |S| · n2α/d

)
. This concludes the proof of Corollary 5. ◀

Proof of Lemma 14. Let S ∈ S be a fixed range. We express the sum χM (S) of colors over
elements of S as

χM (S) =
∑

{x,y}∈M ;x,y∈S

(χM (x) + χM (y)) +
∑

x∈cr(S,M)

χM (x) =
∑

x∈cr(S,M)

χM (x) ,

where cr(S, M) = {x ∈ S : {x, y} ∈ M, y /∈ S}. Since cr(S, M) ≤ κ for any S ∈ S,
disc(S, χM ) is a sum of at most κ independent random variables. We use the following
concentration bound from [4].

▷ Claim 15 (Theorem A.1.1 from [4]). Let X1, . . . , Xk be independent {−1, 1}-valued random
variables with P[Xi = −1] = P[Xi = 1] = 1/2. Then for any α ≥ 0

P

[ ∣∣∣∣∣
k∑

i=1
Xi

∣∣∣∣∣ > α

]
≤ 2e−α2/2k.

Applying Claim 15, we get that for any fixed S ∈ S and α > 0,

P [ |χM (S)| > α ] ≤ 2e−α2/2κ.

By the union bound, we get

P [ discS(χM ) > α ] = P
[

max
S∈S
|χM (S)| > α

]
≤ m · 2e−α2/2κ.

Finally, we bound the expected discrepancy by applying Fubini’s theorem

E [ discS(χM ) ] def=
∞∫

0

P [ discS(χM ) > α ] dα ≤
∞∫

0

min
{

2m · e−α2/2κ, 1
}

dα

=

√
2κ ln(2m)∫

0

1dα +
∞∫

√
2κ ln(2m)

2m · e−α2/2κdα =
√

2κ ln(2m) + 2m
√

2κ

∞∫
√

ln(2m)

e−t2
dt

=
√

2κ ln(2m) + 2m
√

2κ

∞∫
√

ln(2m)

t

t
· e−t2

dt ≤
√

2κ ln(2m) + 2m

√
2κ

ln(2m)

∞∫
√

ln(2m)

te−t2
dt

=
√

2κ ln(2m) + 2m

√
2κ

ln(2m)

[
−e−t2

2

]∞

√
ln(2m)

=
√

2κ ln(2m) +
√

κ

2 ln(2m) ≤
√

3κ ln m,

if m ≥ 34. This concludes the proof of Lemma 14. ◀
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