
An O(log log n)-Approximation for
Submodular Facility Location
Fateme Abbasi #

University of Wrocław, Poland
Marek Adamczyk #

University of Wrocław, Poland

Miguel Bosch-Calvo #

IDSIA, USI-SUPSI, Lugano, Switzerland
Jarosław Byrka #

University of Wrocław, Poland

Fabrizio Grandoni #

IDSIA, USI-SUPSI, Lugano, Switzerland
Krzysztof Sornat #

AGH University, Kraków, Poland

Antoine Tinguely #

IDSIA, USI-SUPSI, Lugano, Switzerland

Abstract
In the Submodular Facility Location problem (SFL) we are given a collection of n clients and m

facilities in a metric space. A feasible solution consists of an assignment of each client to some
facility. For each client, one has to pay the distance to the associated facility. Furthermore, for each
facility f to which we assign the subset of clients Sf , one has to pay the opening cost g(Sf), where
g(·) is a monotone submodular function with g(∅) = 0.

SFL is APX-hard since it includes the classical (metric uncapacitated) Facility Location problem
(with uniform facility costs) as a special case. Svitkina and Tardos [35, SODA’06] gave the current-
best O(log n) approximation algorithm for SFL. The same authors pose the open problem whether
SFL admits a constant approximation and provide such an approximation for a very restricted
special case of the problem.

We make some progress towards the solution of the above open problem by presenting an
O(log log n) approximation. Our approach is rather flexible and can be easily extended to gener-
alizations and variants of SFL. In more detail, we achieve the same approximation factor for the
natural generalizations of SFL where the opening cost of each facility f is of the form pf + g(Sf) or
wf · g(Sf), where pf , wf ≥ 0 are input values.

We also obtain an improved approximation algorithm for the related Universal Stochastic Facility
Location problem. In this problem one is given a classical (metric) facility location instance and
has to a priori assign each client to some facility. Then a subset of active clients is sampled from
some given distribution, and one has to pay (a posteriori) only the connection and opening costs
induced by the active clients. The expected opening cost of each facility f can be modelled with a
submodular function of the set of clients assigned to f .

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Facility location and clustering; Theory of computation → Rounding
techniques; Theory of computation → Online algorithms

Keywords and phrases approximation algorithms, facility location, submodular facility location,
universal stochastic facility location

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.5

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2211.05474 [1]

Funding Fateme Abbasi and Jarosław Byrka were supported by Polish National Science Centre
(NCN) Grant 2020/39/B/ST6/01641. Marek Adamczyk was supported by Polish National Science
Centre (NCN) Grant 2019/35/D/ST6/03060. Miguel Bosch-Calvo, Fabrizio Grandoni, Krzysztof
Sornat and Antoine Tinguely were supported by the SNSF Grant 200021_200731/1. Krzysztof
Sornat was partially supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 101002854).

EA
T

C
S

© Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka,
Fabrizio Grandoni, Krzysztof Sornat, and Antoine Tinguely;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 5; pp. 5:1–5:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fateme.abbasi@cs.uni.wroc.pl
https://orcid.org/0000-0001-6710-8735
mailto:marek.adamczyk@cs.uni.wroc.pl
https://orcid.org/0000-0003-4484-7732
mailto:miguel.boschcalvo@idsia.ch
https://orcid.org/0000-0002-8647-6928
mailto:jby@cs.uni.wroc.pl
https://orcid.org/0000-0002-3387-0913
mailto:fabrizio.grandoni@idsia.ch
https://orcid.org/0000-0002-9676-4931
mailto:sornat@agh.edu.pl
https://orcid.org/0000-0001-7450-4269
mailto:antoine.tinguely@idsia.ch
https://orcid.org/0009-0000-7321-5457
https://doi.org/10.4230/LIPIcs.ICALP.2024.5
https://arxiv.org/abs/2211.05474
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 An O(log log n)-Approximation for Submodular Facility Location

Acknowledgements We would like to thank the anonymous reviewers for their helpful comments, in
particular for pointing out to the simpler and stronger lower bound construction by Gupta [23]. We
would also like to thank Neil Olver for inspiring discussions about applications of their technique
in [5] to various covering problems over time.

1 Introduction

In the Submodular Facility Location problem (SFL), we are given a set C of n clients
and set F of m facilities, with metric distances d : (C ∪ F) × (C ∪ F) → R≥0. Furthermore,
we are given a monotone submodular1 (opening cost) function g : 2C → R≥0 with g(∅) = 0.
Notice that g(·) is non-negative. A feasible solution consists of an assignment φ : C → F of
each client to some facility (we also say that φ(c) serves c). The opening cost of f ∈ F in
this solution is g(φ−1(f)). The cost of the solution, that we wish to minimize, is the sum of
the distances from each client to the corresponding facility plus the total opening cost of the
facilities, in other words

cost(φ) =
∑
c∈C

d(c, φ(c)) +
∑
f∈F

g(φ−1(f)).

SFL captures practical scenarios where the cost of opening a facility is a (non-linear, still
“tractable”) function of the set of served clients. For example, each client might have different
types of needs, and satisfying such needs might have a submodular impact on the opening
cost (regardless of the facility location). As we will discuss, SFL is also closely related to
certain stochastic optimization problems which recently attracted a lot of attention (see,
e.g, [2, 17, 19, 22, 24] and references therein). In particular, there are scenarios where one has
to pay (a posteriori) the connection and opening costs related only to a random subset of
activated clients, and this naturally induces objective functions with submodular opening
costs.

SFL is APX-hard since it includes the classical Facility Location problem (with
uniform facility costs) as a special case [21]. Hence the best we can hope for, in terms of
approximation algorithms, is a constant approximation. Finding such an approximation
algorithm is explicitly posed as an open problem, e.g., by Svitkina and Tardos [35, 36].
The same authors present an O(log n) approximation, based on a greedy approach, for a
generalization of SFL where each facility f has a distinct monotone submodular function gf (·)
(and this result is tight for this generalization due to a reduction from Set Cover by Shmoys,
Swamy and Levi [33]). Chekuri and Ene [10] obtain an alternative O(log n) approximation
for the same generalization of SFL based on rounding a convex relaxation exploiting Lovász
extensions (see also the related work on submodular partitioning problems [9,13]). Svitkina
and Tardos also present a constant approximation for a rather restrictive (still practically
motivated) special case of SFL where g(·) is induced by certain subtrees of a node-weighted
tree over the clients.

1.1 Our Results and Techniques
We make some progress towards the resolution of the mentioned open problem by presenting
an improved approximation algorithm for SFL.

1 We recall that g(·) is submodular iff, for every S, T ⊆ C, g(S) + g(T) ≥ g(S ∩ T) + g(S ∪ T). The
function is also monotone if g(T) ≤ g(S) for every T ⊆ S ⊆ C. As usual in this framework, we assume
to have an oracle access to g(·): given S ⊆ C, we can obtain the value of g(S) in polynomial time.

F. Abbasi et al. 5:3

▶ Theorem 1.1. There is a polynomial-time O(log log n)-approximation algorithm for SFL.

Our approach is surprisingly simple (modulo exploiting some non-trivial results in the
literature). By standard reductions (see Section 1.4) we can assume that N = n + m is
polynomial in n, hence it is sufficient to provide an O(log log N) approximation. Our starting
point is a natural (configuration) LP relaxation for the problem:

min
∑
f∈F

∑
R⊆C

g(R) · xf
R +

∑
c∈C

∑
f∈F

∑
R∋c

d(c, f) · xf
R (Conf-LP)

s.t.
∑
f∈F

∑
R∋c

xf
R = 1 ∀c ∈ C;

∑
R⊆C

xf
R = 1 ∀f ∈ F ;

xf
R ≥ 0 ∀R ⊆ C, ∀f ∈ F.

In an integral solution, we interpret xf
R = 1 as assigning exactly the set of clients R to the

facility f . Notice that we impose
∑

R⊆C xf
R = 1. This is w.l.o.g. since g(∅) = 0 (intuitively,

xf
∅ = 1 means that no client is assigned to f). We can solve the above LP in polynomial

time (see Appendix A for a proof).

▶ Lemma 1.2. In poly(N) time one can find an optimal solution to (Conf-LP) with poly(N)
non-zero entries.

Given an optimal solution ẋ = (ẋf
R)f∈F,R⊆C to (Conf-LP) of cost cost(ẋ) as in Lemma 1.2,

we proceed with two main stages. In the first stage (discussed in Section 2) we simply sample
partial assignments of clients to facilities with the distribution induced by ẋ for ln ln N many
times. This cost at most ln ln N times the optimal LP cost in expectation, and leads to a
partial solution that covers a random subset C1 ⊆ C of clients.

In the second stage (discussed in Section 3) we take care of the remaining uncovered
clients C2 = C \ C1. Let us consider the restriction ẍ of ẋ to C2. The opening cost of ẍ

might be as large as the opening cost of ẋ. However, in expectation, the connection cost of ẍ

is only a 1/ ln N fraction of the connection cost of ẋ (as we will show).
At this point, using the probabilistic tree embedding algorithm in [14], we embed the

original metric d into a (rooted) tree metric dT over a hierarchically well-separated tree (HST)
T (see Section 1.4 for the details). The opening cost of ẍ w.r.t. to the new tree instance
does not change, while its connection cost grows by a factor at most O(log N) in expectation.
Altogether we obtain a feasible fractional solution ẍ over the tree instance whose expected
cost is at most O(cost(ẋ)). Hence it is sufficient to develop an O(log log N)-approximate
LP-rounding algorithm for the considered tree instance.

The next step is at the heart of our approach. Using the properties of HSTs and losing a
constant factor in the approximation, we can further reduce our SFL tree instance to the
following Descendant-Leaf Assignment problem (DLA): the facilities are leaves of T and
the clients are arbitrary nodes of T . Each client c must be served by a facility contained in
the subtree Tc rooted at c. The opening cost of each facility is given by g(·), and there are no
connection costs at all. Bosman and Olver [5] describe a reduction of Submodular Joint
Replenishment and Inventory Routing problems to the Nice Subadditive Cover
Over Time problem. We critically observed that DLA has some similarities with the latter
problem (though this connection might not be obvious at first sight, see the discussion in
Section 1.3). In particular, we were able to adapt their approach to achieve the desired
O(log log N) approximation for our DLA problem.

ICALP 2024

5:4 An O(log log n)-Approximation for Submodular Facility Location

We remark that we do not know how to get an O(1) approximation for SFL on trees
(even on HSTs). Though such approximation would not imply an O(1) approximation for
SFL with our approach (due to the first stage), finding it seems to be a natural intermediate
problem to address.

The first stage of our construction might be helpful in other related problems, in particular
to reduce the input problem to one on HSTs while introducing an additive O(log log n) term
in the approximation ratio.

1.2 Generalizations and Variants
Our basic approach is rather flexible, and it can be applied to generalizations and variants of
SFL. We next describe some other applications of our approach, and we expect to see a few
more ones in the future. For example, we can handle the case where the opening cost of the
facility f is gf (Sf) = wf · g(Sf), where wf ≥ 0 is some input value: we call this the SFL
with Multiplicative Opening Costs problem (multSFL).

▶ Theorem 1.3. There is a polynomial-time O(log log n)-approximation algorithm for
multSFL.

Similarly, we can address the SFL with Additive Opening Costs problem (addSFL),
where gf (Sf) = pf + g(Sf) for Sf ̸= ∅, gf (∅) = 0, and pf ≥ 0 is some input value.

▶ Theorem 1.4. There is a polynomial-time O(log log n)-approximation algorithm for
addSFL.

The above generalizations are discussed in Appendix B. We remark that we do not know how
to obtain an O(log log n)-approximation for the Affine SFL case, where the opening costs
are submodular functions of the form gf (Sf) = pf + wf · g(Sf). Notice that this generalizes
both addSFL and multSFL. This is left as an interesting open problem.

As mentioned earlier, SFL is closely related to stochastic variants of Facility Location.
In particular, our approach also extends to the following Universal Stochastic Facility
Location problem (univFL). Here we are given clients C and facilities F with metric
distances d like in SFL, plus an opening cost wf for each f ∈ F . Furthermore, we have
an oracle access to a probability distribution π : 2C → R≥0 specifying the probability π(A)
that a given subset of clients A ⊆ C is activated. A feasible solution is an (universal)
mapping φ : C → F . The cost of φ w.r.t. clients A ⊆ C is costA(φ) =

∑
c∈A d(c, φ(c)) +∑

f∈F :φ−1(f)∩A̸=∅ wf . In words, this is the cost of connecting clients in A to the corresponding
facilities, plus the cost of opening the facilities that serve at least one client in A. Our goal
is to minimize EA∼π[costA(φ)]. The main motivation for universal problems of this type
is to allow a very quick (possibly distributed) reaction to requests that arrive over time.
Let opt : C → F minimize EA∼π[costA(opt)], in other words opt is an optimal (universal)
mapping. We say that an algorithm for univFL is α-approximate2 if it returns a universal
mapping φ satisfying EA∼π[costA(φ)] ≤ α · EA∼π[costA(opt)].

Notice that the objective function of univFL can be rewritten as∑
c∈C

d(c, φ(c)) · PA∼π[{c} ∩ A ̸= ∅] +
∑
f∈F

wf · PA∼π[φ−1(f) ∩ A ̸= ∅].

2 In Section 1.3 we describe alternative ways to define the approximation ratio.

F. Abbasi et al. 5:5

Hence univFL is almost identical to SFL since g(R) = PA∼π[R ∩ A ̸= ∅] is a monotone
submodular function of R which is 0 for R = ∅. We can therefore adapt our techniques
to achieve the following result (see Section 4). Let πmin := minc∈C{PA∼π[c ∈ A]} be the
smallest probability of any client to be activated. W.l.o.g. we will assume πmin > 0.

▶ Theorem 1.5. There is a polynomial-time O(log log n
πmin

)-approximation algorithm for the
Universal Stochastic Facility Location problem.

For a comparison, Adamczyk, Grandoni, Leonardi and Włodarczyk [2] obtain an O(log n)
approximation which also holds for non-metric distances. In the case of metric distances,
they obtain an O(1) approximation but only in the independent activation case, i.e., when the
sampled set A of active clients is obtained by independently sampling each client c according
to some input probability π′(c) for k times.

1.3 Related Work
As mentioned earlier, Bosman and Olver [5] consider the Nice Subadditive Cover Over
Time problem: roughly speaking, here we are given a set V of items and a time interval
{1, . . . , L}. Each item v ∈ V is associated with a time window Fv = {s, . . . , t}, 1 ≤ s ≤ t ≤ L.
The time windows altogether have a special left-aligned structure whose definition we skip
here. A feasible solution consists of a subset St ⊆ V for each t ∈ {1, . . . , L}, such that, for
each v ∈ V , one has v ∈ Sr for some r ∈ Fv. The goal is to minimize

∑L
t=1 g(St), where

g(·) is a monotone submodular set function with g(∅) = 0. For this problem they give a
O(log log L) approximation, using a clever rounding algorithm for a convex optimization
problem involving the Lovász extension of g(·). Intuitively, in our DLA problem (defined in
Section 3.1) the time interval is replaced by the leaves (associated with some facility) of the
tree T̃ , and the time window of c ∈ C̃ by the set F̃c. Our time windows naturally induce a
laminar family, which is a special case of the left-aligned structure mentioned before. The
parameter log L in their construction is replaced by the depth D of T̃ in our case.

In the (Metric Uncapacitated) Facility Location problem (FL) we are given a set
of clients and a set of facilities in a metric space d, where each facility has an opening cost of .
One has to select a subset of facilities F ′ ⊆ F and assign each client c to the closest facility
F ′(c) in F ′ so as to minimize

∑
c∈C d(c, F ′(c)) +

∑
f∈F ′ of . FL is a special case of both

addSFL and multSFL (and of SFL in the case of uniform opening costs). FL is among the
best-studied problems in the literature from the point of view of approximation algorithms
(see, e.g., [8, 30, 34]). It is known to be APX-hard [21] and the current best-known 1.488-
approximation algorithm [28] is a randomized combination of the greedy JMS algorithm [26]
with an LP-rounding algorithm from [6]. Lagrangian-multiplier preserving algorithms for FL
are at the heart of several approximation algorithms for fundamental clustering problems,
including k-Median [3, 7, 11,12,18,26,27,29] and k-Means [3, 11,20].

Various variants of FL were studied in the literature and for most of them (at least with
metric connection costs) a constant approximation was eventually discovered. A notable
example is the Capacitated Facility Location problem in which the number of clients
that can be served from a facility is restricted by a location-specific bound. A local-search-
based constant approximation for the latter problem is given in [37] (see also [4] for a more
recent LP-based result). SFL is one of the most natural generalizations of (metric) FL where
a constant approximation is still not known.

Grandoni, Gupta, Leonardi, Miettinen, Sankowski, and Singh [19], among other universal
stochastic problems, studied univFL in the independent activation case. However, they
compare the cost of their solution with EA∼π[costA(opt(A))], where opt(A) is the optimal

ICALP 2024

5:6 An O(log log n)-Approximation for Submodular Facility Location

facility location solution restricted to clients A (while we compare with EA∼π[costA(opt)]).
For this setting they obtain a O(log n) approximation, which also holds for non-metric
connection costs.

Gupta, Pál, Ravi, and Sinha [22] consider a 2-stage stochastic version of FL. Here in a
first stage, one buys some facilities, then a subset of active clients is sampled from a given
distribution. Finally, one can buy some more facilities, however at an opening cost which
is increased by a multiplicative inflation factor σ. For this setting they present a constant
approximation.

Universal stochastic problems have a natural online stochastic counterpart. For example,
in the Online Stochastic Facility Location problem clients are sampled one by one,
and when client c is sampled one has to connect c to an already open facility or open a
new facility f and connect c to f . Garg, Gupta, Leonardi and Sankowski [17] consider
this problem in the independent activation case, i.e. when the next client to be served is
sampled from a probability distribution π : C → R≥0. For this setting, they present an
O(1) approximation. Meyerson [31] studied a variant of the problem where an adversary
chooses the set of input clients, and then a random permutation of them is presented in
input (random order model).

We believe that it is plausible that SFL admits a constant approximation. In particular,
one might consider greedy algorithms. Gupta [23] considered a natural set-cover type
greedy algorithm for SFL. The same algorithm gives a 1.861-approximation when applied
to the classical Facility Location problem [26]. Gupta [23, Section 2.3] showed that
this algorithm produces an Ω(log n) approximate solutions for SFL. Hence our algorithm is
provably better than that one.

1.4 Preliminaries and Notation
We use log for the logarithm with base 2 and ln for the natural logarithm. Define X = C ∪ F ,
and N = |X| = |C ∪ F |. Given a metric d over X, we let dmin be the smallest non-zero
distance and dmax be the largest distance (that we assume to be positive w.l.o.g). We use
g(c) as a shortcut for g({c}).

We sometimes express a feasible solution to SFL in the form S = (Sf)f∈F , where
Sf ⊆ C specifies the clients φ−1(f) assigned to f . Notice that for each c ∈ C there is
precisely one f ∈ F with c ∈ Sf . We define a partial assignment as S = (Sf)f∈F , where
Sf ⊆ C. We say that S covers the clients C ′ = ∪f∈F Sf ⊆ C. Notice that, for technical
reasons, in a partial assignment we allow Sf ∩ Sf ′ ≠ ∅ for two distinct f, f ′ ∈ F (i.e. we
allow to simultaneously assign a client to more than one facility). The cost of a (partial)
assignment S of the above type is defined as cost(S) := conn(S)+open(S), where conn(S) :=∑

f∈F

∑
c∈Sf d(c, f) is the connection cost of S and open(S) :=

∑
f∈F g(Sf) is the opening

cost of S. Given a (possibly infeasible) fractional solution x for (Conf-LP), we analogously
define cost(x) = conn(x) + open(x), where conn(x) =

∑
c∈C

∑
f∈F

∑
R∋c d(c, f) · xf

R, and
open(x) =

∑
f∈F

∑
R⊆C g(R) · xf

R.
It is convenient to define the merge S = S1 + S2 of two partial assignments S1 and S2

naturally as follows: (1) for each facility f ∈ F , we initially set Sf := Sf
1 ∪Sf

2 ; (2) while there
exist two distinct facilities f and f ′ with Sf ∩ Sf ′ ≠ ∅, replace Sf ′ with Sf ′ \ Sf (intuitively
this second step guarantees that each client is assigned to no more than one facility). We
observe that merging two partial assignments cannot increase the total cost.

▶ Lemma 1.6. For any two partial assignments S1 and S2, cost(S1 + S2) ≤ cost(S1) +
cost(S2).

F. Abbasi et al. 5:7

Proof. Let S = S1 + S2, and S′ be the intermediate value of S obtained by executing only
step (1) of the merge operation. One has conn(S′) = conn(S1) + conn(S2). Furthermore, by
the submodularity (hence subadditivity) of g(·), open(S′) ≤ open(S1) + open(S2). Clearly
conn(S) ≤ conn(S′), and the monotonicity of g(·) implies that open(S) ≤ open(S′). The
claim follows. ◀

We will exploit the following fairly standard reductions (proofs in Appendix A), thanks
to which in the following it will be sufficient to obtain an O(log log N) approximation for
SFL. In order to distinguish between distinct instances J of the problem, we use costJ (φ) to
denote the cost of φ w.r.t. J and define similarly openJ(φ) etc.

▶ Lemma 1.7. There is a 3-approximate reduction from SFL to the special case where m = n.

▶ Lemma 1.8. For any constant ε > 0, There is a (1 + 4ε)-approximate reduction from SFL
to the special case where the metric d satisfies dmin = 2 and dmax ≤ 2nN

ε .

One of the key tools that we use is the notion of probabilistic tree embedding, which we
use to map the input metric into a metric on a hierarchically well-separated tree (HST) while
stretching the distances by a small enough factor. We recall that an HST is an edge weighted
rooted tree where all the leaves are at the same distance from the root r. Furthermore, on
every path from a leaf to r the edge weights are 1, 2, 4, . . . In particular, edges at the same
level have the same weight. We will use the following construction3 by Fakcharoenphol, Rao
and Talwar [14].

▶ Theorem 1.9 (FRT metric tree embedding [14]). For any finite metric space (M, d) with
dmin > 1, there exists a randomized polynomial-time algorithm returning an HST T such
that:
1. Every a ∈ M is mapped to some leaf map(a) of T (with elements at distance zero being

mapped to the same leaf);
2. Let dT (a, b) := dT (map(a), map(b)) be the length of the path between the leaves map(a)

and map(b) of T . Then dT (a, b) ≥ d(a, b) and E
[
dT (a, b)

]
≤ 8 log |M | · d(a, b);

3. T has depth O(log dmax).

For a given set C, let h : 2C → R be a monotone submodular function with h(∅) = 0.
The Lovász extension ĥ : [0, 1]C → R of h(·) is defined as

ĥ(y) := min
{ ∑

R⊆C

h(R)µR :
∑

R⊆C

∑
R∋c

µR = yc ∀c ∈ C,
∑

R⊆C

µR = 1, µ ≥ 0
}

. (1)

The function ĥ(·) is convex. We remark that ĥ(y) can be alternatively defined as

ĥ(y) :=
n−1∑
k=1

h ({c1, . . . , ck}) (yck
− yck+1) + h(C)ycn

, (2)

where the components of y are sorted in decreasing order, i.e. yc1 ≥ yc2 ≥ · · · ≥ ycn [16,
Section 6.3]. By the monotonicity of h(·), ĥ(·) is also non-decreasing in the sense that
ĥ(y) ≥ ĥ(y′) if y ≥ y′.

3 We slightly and trivially extend their claim to consider nodes at distance 0.

ICALP 2024

5:8 An O(log log n)-Approximation for Submodular Facility Location

2 Reducing the Connection Cost

In this section, we show how to compute a random partial assignment S1 = (Sf
1)f∈F covering

a random subset of clients C1 := ∪f∈F Sf
1 ⊆ C with the following high-level properties: the

expected cost of S1 is “small enough” and (2) each client belongs to C1 with “large enough”
probability. In the next section, we will describe a different partial assignment S2 = (Sf

2)f∈F ,
again of small enough cost, covering the remaining clients C2 := C \ C1. By merging these
two partial assignments we obtain a feasible solution for the input problem of small enough
total cost.

Let ẋ be an optimal solution to (Conf-LP) with at most poly(N) non-zero entries that
can be computed via Lemma 1.2. The basic idea behind the next lemma is fairly standard:
we sample partial assignments according to the distribution induced by ẋ for ln ln N times,
and merge them together.

▶ Lemma 2.1. In polynomial time one can compute a random partial assignment S1 covering
a random subset of clients C1 such that: (1) E [cost(S1)] ≤ ln ln(N) · cost(ẋ) and (2) For
each c ∈ C, P[c ∈ C1] ≥ 1 − 1

ln N .

Proof. For i ∈ {1, 2, . . . , ln ln N} and for every R ⊆ C, we define a partial assignment S(i, R)
by setting Sf (i, R) = R independently with probability ẋf

R and Sf (i, R) = ∅ otherwise. Let
S1 =

∑ln ln N
i=1

∑
R⊆C S(i, R) be obtained by merging all these solutions, and let C1 = ∪f∈F Sf

1 .
Observe that

P[c /∈ C1] =
∏
f∈F

∏
R∋c

(1 − ẋf
R)ln ln N ≤ e

− ln ln N
∑

f∈F

∑
R∋c

ẋf
R ≤ e− ln ln N = 1

ln N
.

Furthermore, by Lemma 1.6, E[cost(S1)] is upper-bounded by
ln ln N∑

i=1

∑
R⊆C

E[cost(S(i, R))] = ln ln N ·
∑

f∈F,R⊆C

ẋf
R ·

(
g(R) +

∑
c∈R

d(c, f)
)

= ln ln N · cost(ẋ). ◀

Consider the partial assignment S1 covering the random subset of clients C1 as in the previous
lemma. Let C2 := C \ C2 be the remaining (uncovered) clients. Let also ẍ be ẋ restricted to
C2, i.e. ẍf

R =
∑

R′⊆C1
ẋf

R∪R′ for R ⊆ C2 and f ∈ F . The following lemma upper bounds the
expected opening and connection cost of ẍ.

▶ Lemma 2.2. One has open(ẍ) ≤ open(ẋ) and E[conn(ẍ)] ≤ 1
ln N conn(ẋ).

Proof. We have open(ẍ) ≤ open(ẋ) by the monotonicity of g(·). For the connection cost,
notice that the probability of a client c being in C2 is at most 1/ ln N , and only in that case
one has to pay the associated connection cost. Thus by linearity of expectation, the expected
connection cost of ẍ is at most conn(ẋ)/ ln N . The claim follows. ◀

Notice that ẍ is a feasible fractional solution for (Conf-LP) limited to C2. In the following
section, we show how to randomly round ẍ to a partial assignment S2 which covers C2 at
expected cost O(log log N) · cost(ẍ). It will then follow that S1 + S2 is a feasible O(log log N)-
approximate solution to the input SFL instance.

3 Approximating SFL on an HST

Given an SFL instance and a tree embedding of (C ∪ F, d) into an HST T as in Theorem 1.9,
we say that (C ∪ F, dT , g(·), map(·)) is the corresponding HST-type instance. We remark
that we allow multiple clients C(v) and facilities F (v) to be colocated at each leaf v of T .
In this section we will describe an O(log log N)-approximate LP-rounding algorithm for the
considered instances w.r.t. (Conf-LP).

F. Abbasi et al. 5:9

▶ Lemma 3.1. Given a feasible fractional solution x to (Conf-LP) for an HST-type SFL
instance, in polynomial time one can compute a feasible (integral) solution for the same
instance with cost at most O(log log N) · cost(x).

Theorem 1.1 directly follows.

Proof of Theorem 1.1. By Lemma 1.7 it is sufficient to describe an O(log log N)-approxima-
tion. Furthermore by Lemma 1.8, we can assume that dmin = 2 and dmax ≤ 2nN

ε .
By applying the construction of Section 2 we compute a random partial assignment S1 =

(Sf
1)f∈F covering the clients C1 = ∪f∈F Sf

1 with expected cost at most O(log log N) · cost(ẋ),
where ẋ is an optimal solution to (Conf-LP). Furthermore, by Lemma 2.2, we obtain a feasible
solution ẍ to (Conf-LP) restricted to clients C2 := C \ C1 which satisfies open(ẍ) ≤ open(ẋ)
and E[conn(ẍ)] ≤ 1

ln N conn(ẋ). By applying the probabilistic tree embedding from Theorem
1.9 to the metric (C2 ∪ F, d), we obtain an HST-type SFL instance (C2 ∪ F, dT , g(·), map(·))
where the tree has depth D = O(log dmax) = O(log N). Observe that ẍ is a feasible fractional
solution for (Conf-LP) restricted to C2 on the HST-type instance. Furthermore, let connT (ẍ)
denote the connection cost of ẍ w.r.t. the HST-type instance, and define similarly openT (ẍ)
and costT (ẍ). Then one has

E[costT (ẍ)] = open(ẍ) + E[connT (ẍ)] ≤ open(ẋ) + O(log N) · E[conn(ẍ)] ≤ O(cost(ẋ)).

By applying the LP-rounding algorithm from Lemma 3.1 to ẍ one obtains a partial assignment
(Sf

2)f∈F covering the clients C2 of cost at most O(log log N) cost(ẋ). The same solution
has no larger cost in the original problem (on a non-tree metric). Altogether S1 + S2 is a
feasible solution to the input SFL problem of expected cost at most O(log log N) · cost(ẋ) ≤
O(log log N) · cost(opt). ◀

In the rest of this section, we prove Lemma 3.1. To this aim, we will first present a
reduction to a different problem that we call the Descendent-Leaf Assignment problem
(DLA) (see Section 3.1). Then, we will present a good-enough approximation algorithm for
DLA (see Section 3.2).

3.1 A Reduction to DLA
In the Descendent-Leaf Assignment problem (DLA) we are given a rooted tree T̃ with
depth D, a set of facilities F̃ and a set of clients C̃. Each x ∈ F̃ ∪ C̃ is mapped to some node
v(x) of T̃ , with the restriction that facilities are mapped to leaves of T̃ . By F̃c we denote the
facilities which are mapped to nodes that are descendants of v(c) in T (v(c) included if it is a
leaf). A feasible solution consists of an assignment φ̃ : C̃ → F̃ of each c ∈ C̃ to some f ∈ F̃c.
The cost of this solution is

∑
f∈F̃ h(φ̃−1(f)), where h(·) is a monotone submodular function

over C̃ with h(∅) = 0. Similarly to SFL, we also express a feasible solution as S = (Sf)f∈F̃ ,
where Sf = φ̃−1(f), and let costDLA(S) =

∑
f∈F̃ h(Sf) be the associated cost. We define a

convex-programming (CP) relaxation for DLA as follows:

min
∑
f∈F̃

ĥ(zf) (DLA-CP)

s.t.
∑

f∈F̃c

zf
c = 1 ∀c ∈ C̃;

zf
c ≥ 0 ∀c ∈ C̃, ∀f ∈ F̃ .

ICALP 2024

5:10 An O(log log n)-Approximation for Submodular Facility Location

In a 0-1 integral solution we interpret zf
c = 1 as c being assigned to f . Recall that ĥ(·)

is convex, which makes (DLA-CP) a convex program. We also notice that each feasible
assignment S = (Sf)f∈F̃ corresponds to a feasible integral solution z = (zf)f∈F̃ to (DLA-CP)
with costDLA(S) = costDLA(z) :=

∑
f∈F̃ ĥ(zf) and vice versa. Hence indeed (DLA-CP) is a

CP-relaxation of DLA.
The next lemma provides the claimed reduction from SFL on HST-type instances to

DLA.

▶ Lemma 3.2. Given a polynomial-time O(log D)-approximate CP-rounding algorithm for
DLA w.r.t. (DLA-CP), where D is the depth of the tree, there is polynomial-time O(log log N)-
approximate LP-rounding algorithm for SFL on HST-type instances with tree-depth O(log N)
w.r.t. (Conf-LP).

Proof. Let (C ∪ F, dT , g(·), map(·)) be the considered HST-type instance of SFL over an
HST T , and x be an input feasible fractional solution to (Conf-LP) for this instance.

We build an instance (C̃∪F̃ , T̃ , h(·), v(·)) of DLA as follows. First, let yf
c :=

∑
R⊆C:c∈R xf

R:
intuitively this is the fractional amount by which c is assigned to f in x. We set h(·) = g(·)
and T̃ = T . Notice that D = O(log N). We set F̃ = F and v(f) = map(f) for each f ∈ F̃ .
We associate to each c ∈ C a new client c̃ ∈ C̃. Let Tv be the subtree rooted at v (containing
v and all its descendants) and Fv be the facilities located in the leaves of Tv according to
map(·). We map c̃ into the lowest ancestor v(c̃) of map(c) such that

∑
f∈Fv(c̃)

yf
c ≥ 1/2.

Notice that v(c̃) = map(c) is possible (in which case there is at least one facility f colocated
with c in T).

We next define a feasible fractional solution z for (DLA-CP) w.r.t this DLA instance as
follows. For each c̃ ∈ C̃ we set zf

c̃ = yf
c /(

∑
f ′∈Fv(c̃)

yf ′

c) if f ∈ Fv(c̃), and otherwise zf
c̃ = 0.

Let φ̃ be a solution to the DLA instance obtained with the CP-rounding algorithm in the
claim w.r.t. z. We obtain a feasible solution φ for the input instance by simply setting
φ(c) = φ̃(c̃).

It remains to analyze the cost of φ. Define z̄f
c̃ = yf

c /(
∑

f ′∈Fv(c̃)
yf ′

c) for all f ∈ F .
Notice that z̄ ≥ z. By the definition of ĥ(·) and its monotonicity, ĥ(zf) ≤ ĥ(z̄f) =
ĥ(yf /(

∑
f ′∈Fv(c̃)

yf ′

c)) ≤ 2ĥ(yf) = 2ĝ(yf). Notice that by plugging in xf
R for µR in the set in

(1) and by how y is defined w.r.t. x above, we get ĝ(yf) ≤
∑

R⊆C g(R) · xf
R and in particular∑

f∈F ĝ(yf) ≤ open(x). Thus, we have costDLA(z) ≤ 2 open(x) and

open(φ) = costDLA(φ̃) = O(log D) · costDLA(z) ≤ O(log log N) · 2 open(x). (3)

Consider next the connection cost of a given c ∈ C. If v(c̃) = map(c), i.e v(c̃) has no
child, then dT (c, φ(c)) = 0 ≤

∑
f∈F dT (c, f)yf

c . Otherwise, let w(c) be the child of v(c̃) along
the v(c̃)-map(c) path in T . Let ∆ be the weight of the edge between v(c̃) and w(c). Observe
that the distance between v(c̃) and the leaves in Tv(c̃) is exactly 2∆ − 1. Furthermore,
both c and φ(c) are located in the leaves of Tv(c̃) in the HST mapping map(·). Hence
dT (c, φ(c)) ≤ 2(2∆ − 1).

By the definition of v(c̃), it must be the case that
∑

f∈Fw(c)
yf

c < 1
2 , and consequently∑

f∈F \Fw(c)
yf

c ≥ 1
2 . For each f ∈ F \ Fw(c), the map(f)-map(c) path in T has length at

least 2(2∆ − 1). Thus

∑
f∈F

dT (c, f)yf
c ≥

∑
f∈F \Fw(c)

dT (c, f)yf
c ≥ 1

22(2∆ − 1).

F. Abbasi et al. 5:11

Therefore, the connection cost of c in φ is at most 2 times its connection cost in x. We
conclude that conn(φ) ≤ 2 conn(x). Altogether we have cost(φ) ≤ 2 conn(x) + O(log log N) ·
2 open(x) ≤ O(log log N) · cost(x). ◀

3.2 An Approximation Algorithm for DLA
In this section, we present a CP-rounding algorithm for DLA. Lemma 3.1 follows by chaining
Lemmas 3.2 and 3.3.

▶ Lemma 3.3. Given a feasible fractional solution z to (DLA-CP) on an instance of DLA
with tree-depth D, in polynomial time one can compute a feasible (integral) solution to the
same instance of cost at most O(log D) · costDLA(z).

The CP-rounding algorithm from Lemma 3.3 is essentially the algorithm by Bosman and
Olver [5] with minor modifications that we introduced to simplify our correctness analysis.
Also, the analysis of its approximation ratio is essentially identical to [5], but we reproduce it
for the sake of completeness. In particular, we will exploit the following definitions and lemma
from [5]. Let h : 2C̃ → R≥0 be a monotone submodular function with h(∅) = 0. For a given
f ∈ F̃ and a (possibly infeasible) solution z to (DLA-CP), let Lθ(zf) := {c ∈ C̃ : zf

c ≥ θ} be
the set of clients that are served fractionally by at least some value θ by f . Let also zf |θ

be obtained from zf by rounding down to θ the values larger than θ, i.e. z
f |θ
c := min{zf

c , θ}
for each c ∈ C̃. Given θ ∈ [0, 1] and zf ∈ [0, 1]C̃ , we say that the set Lθ(zf) is α-supported
(w.r.t. h) if ĥ(zf) − ĥ(zf |θ) ≥ αh(Lθ(zf)).

▶ Lemma 3.4 (Lemma 5.2 from [5]). Given zf ∈ [0, 1]C̃ and α ∈ (0, 1], at least one of the
following holds: (1) there exists θ ∈ [0, 1], which can be computed in polynomial time, such
that Lθ(zf) is α

32 -supported; (2) 21/αh(L1(zf)) ≤ ĥ(zf).

Our algorithm is Algorithm 1 in the figure. Recall that T̃v is the subtree rooted at node v,
where T̃v includes v and all its descendants. Furthermore, F̃v is the set of facilities mapped
to the leaves of T̃v. As usual the level of a node is its hop-distance from the root.

Algorithm 1 An algorithm used to prove Lemma 3.3.

Input: Feasible solution z to (DLA-CP)
1: Sf ← ∅ for all f ∈ F
2: for i = 0, . . . , D do
3: For every node v at level D − i, choose an arbitrary fv ∈ F̃v and set zfv ←

∑
f ′∈F̃v

zf ′
and

zf ′
← 0 for all f ′ ∈ F̃v \ {fv}

4: if there exists θ ∈ [0, 1] such that Lθ(zfv) is 1
32 log(D+1) -supported then

5: For an arbitrary such θ, set Sfv ← Sfv ∪ Lθ(zfv) and zfv
c ← 0 for all c ∈ Lθ(zfv)

6: else
7: Set Sfv ← Sfv ∪ L1(zfv) and zfv

c ← 0 for all c ∈ L1(zfv)
8: For every c ∈ C̃ choose f ∈ F̃c such that c ∈ Sf and set Sf ′

← Sf ′
\ {c} for all f ′ ∈ F̃ \ {f}

9: return (Sf)f∈F̃

Clearly Algorithm 1 runs in polynomial time. The next two lemmas analyze the correctness
and the approximation ratio of Algorithm 1, hence proving Lemma 3.3.

▶ Lemma 3.5. Algorithm 1 computes a feasible DLA solution.

Proof. Consider a given client c ∈ C̃ such that v(c) is at level D − i in T̃ . Let us show that
the following invariant holds at the beginning of each iteration j ≤ i: either

∑
f∈F̃c

zf
c = 1

or c ∈ Sf for some f ∈ F̃c. The invariant trivially holds for j = 0. Assume that it holds

ICALP 2024

5:12 An O(log log n)-Approximation for Submodular Facility Location

up to the beginning of iteration j < i, and consider what happens during that iteration.
Notice that for every node v at level D − j > D − i, we either have that every f ∈ F̃v is a
descendant of v(c) or every f ∈ F̃v is not in F̃c. Therefore, in Step (3) the value of

∑
f∈F̃c

zf
c

does not change. In more detail, it remains 1 by inductive hypothesis. The same value can
decrease in Steps (5) or (7), however, this can only happen if c is added to Sfv for some
fv ∈ F̃c. Thus the invariant holds at the end of the j-th iteration, hence at the beginning of
the next iteration j + 1.

Due to the invariant, during the iteration i, when one considers the node v = v(c), one
has that either c already belongs to some Sf with f ∈ F̃c, or

∑
f∈F̃c

zf
c = 1. In the latter

case, after Step (3), zfv
c = 1 where fv ∈ F̃c, so c belongs to every set Lθ(zfv) with θ ∈ [0, 1].

As a consequence, c is added to Sfv either in Step (5) or in Step (7).
It might happen that a client c is assigned also to a facility not in F̃c. Step (8) guarantees

that the final assignment of c is correct and unique. ◀

▶ Lemma 3.6. Algorithm 1 outputs a solution of cost at most O(log D) · costDLA(z).

Proof. Recall that costDLA(z) =
∑

f∈F̃ ĥ(zf). We start by observing that the value of
costDLA(z) can not increase over time when z changes during the execution of the algorithm.
Indeed, Steps (5) and (7) can only decrease the entries of z, hence costDLA(z) by the
monotonicity of ĥ(·). The only other changes of z happen in Step (3). Let us interpret
this step as iteratively decreasing to zero zf ′ for each f ′ ∈ F̃v \ {fv} and increasing zfv by
the same amount. The decrease of the cost at each step is ĥ(zfv) + ĥ(zf ′) − ĥ(zfv + zf ′).
By the alternative definition of ĥ(·) as in (2) and its convexity, one has ĥ(zfv + zf ′) =
2ĥ

(
zfv +zf′

2

)
≤ 2

(
1
2 ĥ(zfv) + 1

2 ĥ(zf ′)
)

= ĥ(zfv) + ĥ(zf ′). Hence the decrease of the cost is
non-negative as required.

For each facility f and level i, let ∆θ
i (f) be the clients added to Sf in Step (5) during

iteration i (possibly ∆θ
i (f) = ∅). We define similarly ∆1

i (f) w.r.t. Step (7). Notice that, by
the submodularity (hence subadditivity) of h(·), the increase of the cost of the solution due
to adding ∆ to Sf is at most h(∆). Therefore we can upper bound the cost of the final
solution S = (Sf)f∈F̃ by

costDLA(S) :=
∑
f∈F̃

h(Sf) ≤
D∑

i=0

∑
f∈F̃

(
h(∆θ

i (f)) + h(∆1
i (f))

)
.

Let us upper bound the right-hand side of the above inequality. Let z(i) denote the value of
z at the beginning of iteration i. From the previous observation, we have ĥ(z(i)) ≤ ĥ(z) for
every i. By Lemma 3.4 with α = 1

log(D+1) , for any ∆1
i (f) one has h(∆1

i (f)) ≤ 1
D+1 ĥ(zf (i)).

Thus

D∑
i=0

∑
f∈F̃

h
(
∆1

i (f)
)

≤
D∑

i=0

∑
f∈F̃

1
D + 1 ĥ

(
zf (i)

)
≤

D∑
i=0

1
D + 1 costDLA(z(i)) ≤ costDLA(z). (4)

Let z(D + 1) be the value of z at the end of the D-th iteration, hence in particular
costDLA(z(D + 1)) ≥ 0. Notice that z = z(0). We can lower bound costDLA(z) by

costDLA(z) ≥
D∑

i=0

(
costDLA(z(i)) − costDLA(z(i + 1))

)
.

F. Abbasi et al. 5:13

Let z1(i) be the value of z obtained from z(i) after applying Step (3) for all nodes of level
D − i. Let also z2(i) be the value obtained from z1(i) if, for all the facilities F ′

i where
Step (5) is applied during iteration i, instead of setting zf

c = 0 one sets zf
c = θ for the

corresponding value of θ. For the facilities not in F ′
i we simply let zf

2 (i) = zf
1 (i). Observe

that z(i + 1) ≤ z2(i) ≤ z1(i) ≤ z(i). One has

costDLA(z(i))− costDLA(z(i + 1)) ≥ costDLA(z1(i))− costDLA(z(i + 1))
≥ costDLA(z1(i))− costDLA(z2(i))

=
∑
f∈F̃

ĥ
(

zf
1 (i)

)
− ĥ

(
zf

2 (i)
)

=
∑
f∈F ′

i

ĥ
(

zf
1 (i)

)
− ĥ

(
zf

2 (i)
)

≥

∑
f∈F ′

i
h
(
∆θ

i (f)
)

32 log(D + 1) =
∑

f∈F̃
h
(
∆θ

i (f)
)

32 log(D + 1) .

In the first two inequalities above we used the monotonicity of ĥ(·), while in the last inequality
the definition of α-supported. Altogether

D∑
i=0

∑
f∈F̃

h
(

∆θ
i (f)

)
≤ 32 log(D + 1) ·

D∑
i=0

(
costDLA(z(i)) − costDLA(z(i + 1))

)
≤ O(log D) · costDLA(z). (5)

By the monotonicity of h(·), Step (8) cannot increase the cost of the solution, hence the
claim. ◀

4 Universal Stochastic Facility Location

In this section we sketch our approximation algorithm for univFL. We first present a weaker
approximation factor O(log log N + log log dmax

dmin
). Later we will show how to refine it.

Define g(R) := PA∼π[R ∩ A ≠ ∅]. We observe that this function is monotone submodular
and g(∅) = 0. Recall that g(c) = g({c}) for every c ∈ C. W.l.o.g. we can assume g(c) > 0
since otherwise we can discard c. We can define the objective function of univFL for a given
assignment φ : C → F as

cost(φ) = conn(φ) + open(φ) =
∑
c∈C

d(c, φ(c)) · g(c) +
∑
f∈F

wf · g(φ−1(f)).

Notice that only the connection cost changes w.r.t. multSFL. In more detail, the connection
cost of each client c is scaled by the factor g(c).

We can similarly define a configuration LP for univFL, and solve it by the same arguments
as in Lemma 1.2. We next use an analogous notation as for SFL. Let ẋ be an optimal
solution to this LP with poly(N) many non-zero variables. We can apply the first stage of
our algorithm for SFL (described in Section 2) with essentially no changes. This will lead
to a partial assignment S1 of expected cost E[cost(S1)] ≤ ln ln N · cost(ẋ) and serving the
clients C1, where P[c /∈ C1] ≤ 1

ln N . Mapping the metric over an HST T and considering the
restriction ẍ of ẋ to C2 := C \ C1, we obtain that E[costHST (ẍ)] = O(cost(ẋ)). A reduction
similar to the one in Lemma 3.2 works also in this case (since the scaling of the fractional
solution is done on a per-client base). However in this case D = O(log dmax

dmin
) (since we did

not reduce the ratio dmax
dmin

in a preprocessing step). Hence we can apply the result from
Lemma 3.3 to obtain an assignment covering C2 of expected cost O(log log dmax

dmin
) · cost(ẋ).

This concludes the sketch of the O(log log N + log log dmax
dmin

) approximation.

ICALP 2024

5:14 An O(log log n)-Approximation for Submodular Facility Location

We next improve this bound via a preprocessing step. Recall that 0 < πmin :=
minc∈C{g(c)}. We first scale the ratio dmax/dmin. Let us guess4 the largest distance
L = maxc∈C{d(c, opt(c))} in some optimal (universal) solution opt. Notice that cost(opt) ≥
πminL. We use essentially the same arguments as in Lemma 1.8, we can enforce that
dmax ≤ NL and dmin ≥ ε

n πminL. Hence we obtain dmax
dmin

≤ nN
επmin

.
Now let us reduce the number of facilities m to O(n + log 1

πmin
) (hence N as well). Here

we use essentially the same argument as in the proof of Lemma B.1 (with pf = 0). In more
detail, we can assume that m ≤ 2n. Indeed, otherwise we can reduce the input instance
to a Weighted Set Cover instance (that we can solve exactly in polynomial time) in
the same way as in the mentioned lemma, with the difference that now, for R ̸= ∅, we set
κR = minf∈F {wf · g(R) +

∑
c∈R d(c, f) · g(c)}. By the rest of the construction in the same

lemma, we can reduce (with a constant loss in the approximation factor) our instance to one
where there are O(log dmax

dmin
) = O(log n2n

επmin
) = O(n + log 1

πmin
) facilities per client. Altogether

we reduce N to N ′ = O(n(n + log 1
πmin

)). Now we can apply again the above scaling trick
over the distances (with N replaced by N ′) to obtain distances d′ which satisfy:

d′
max

d′
min

≤ nN ′

επmin
= O

(
n3 + n2 log 1

πmin

πmin

)
.

This leads to the approximation factor

O

(
log log d′

max
d′

min
+ log log N ′

)
= O

(
log log n

πmin

)
.

References
1 Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni,

Krzysztof Sornat, and Antoine Tinguely. An O(log log n)-approximation for submodular
facility location. CoRR, abs/2211.05474, 2022. doi:10.48550/arXiv.2211.05474.

2 Marek Adamczyk, Fabrizio Grandoni, Stefano Leonardi, and Michal Włodarczyk. When the
optimum is also blind: A new perspective on universal optimization. In 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, pages 35:1–35:15, 2017.
doi:10.4230/LIPIcs.ICALP.2017.35.

3 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for
k-means and Euclidean k-median by primal-dual algorithms. SIAM J. Comput., 49(4), 2020.
doi:10.1137/18M1171321.

4 Hyung-Chan An, Mohit Singh, and Ola Svensson. LP-based algorithms for capacitated facility
location. SIAM J. Comput., 46(1):272–306, 2017. doi:10.1137/151002320.

5 Thomas Bosman and Neil Olver. Improved approximation algorithms for inventory problems.
In Integer Programming and Combinatorial Optimization - 21st International Conference,
IPCO 2020, pages 91–103, 2020. doi:10.1007/978-3-030-45771-6_8.

6 Jarosław Byrka and Karen Aardal. An optimal bifactor approximation algorithm for the
metric uncapacitated facility location problem. SIAM J. Comput., 39(6):2212–2231, 2010.
doi:10.1137/070708901.

7 Jarosław Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh.
An improved approximation for k-median and positive correlation in budgeted optimization.
ACM Trans. Algorithms, 13(2):23:1–23:31, 2017. doi:10.1145/2981561.

8 Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility location
problems. SIAM J. Comput., 34(4):803–824, 2005. doi:10.1137/S0097539701398594.

4 Throughout this paper, by guessing we mean trying all the (polynomially many) possible options. Each
such options leads to a different solution, and we return the best one.

https://doi.org/10.48550/arXiv.2211.05474
https://doi.org/10.4230/LIPIcs.ICALP.2017.35
https://doi.org/10.1137/18M1171321
https://doi.org/10.1137/151002320
https://doi.org/10.1007/978-3-030-45771-6_8
https://doi.org/10.1137/070708901
https://doi.org/10.1145/2981561
https://doi.org/10.1137/S0097539701398594

F. Abbasi et al. 5:15

9 Chandra Chekuri and Alina Ene. Approximation algorithms for submodular multiway partition.
In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, pages
807–816, 2011. doi:10.1109/FOCS.2011.34.

10 Chandra Chekuri and Alina Ene. Submodular cost allocation problem and applications. In
Automata, Languages and Programming - 38th International Colloquium, ICALP 2011, pages
354–366, 2011. doi:10.1007/978-3-642-22006-7_30.

11 Vincent Cohen-Addad, Hossein Esfandiari, Vahab S. Mirrokni, and Shyam Narayanan. Im-
proved approximations for Euclidean k-means and k-median, via nested quasi-independent
sets. In 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pages
1621–1628, 2022. doi:10.1145/3519935.3520011.

12 Vincent Cohen-Addad, Fabrizio Grandoni, Euiwoong Lee, and Chris Schwiegelshohn. Breaching
the 2 LMP approximation barrier for facility location with applications to k-median. In
34th ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, pages 940–986, 2023.
doi:10.1137/1.9781611977554.ch37.

13 Alina Ene, Jan Vondrák, and Yi Wu. Local distribution and the symmetry gap: Approximability
of multiway partitioning problems. In 24th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, pages 306–325, 2013. doi:10.1137/1.9781611973105.23.

14 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004. doi:10.1016/J.
JCSS.2004.04.011.

15 Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger. Exact (exponential) algorithms
for the dominating set problem. In Graph-Theoretic Concepts in Computer Science, 30th
International Workshop, WG 2004, pages 245–256, 2004. doi:10.1007/978-3-540-30559-0_
21.

16 Satoru Fujishige. Submodular functions and optimization, volume 58 of Annals of Discrete
Mathematics. Elsevier, 2nd edition, 2005.

17 Naveen Garg, Anupam Gupta, Stefano Leonardi, and Piotr Sankowski. Stochastic analyses
for online combinatorial optimization problems. In 19th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2008, pages 942–951, 2008. URL: http://dl.acm.org/citation.
cfm?id=1347082.1347185.

18 Kishen N. Gowda, Thomas W. Pensyl, Aravind Srinivasan, and Khoa Trinh. Improved bi-point
rounding algorithms and a golden barrier for k-median. In 34th ACM-SIAM Symposium
on Discrete Algorithms, SODA 2023, pages 987–1011, 2023. doi:10.1137/1.9781611977554.
ch38.

19 Fabrizio Grandoni, Anupam Gupta, Stefano Leonardi, Pauli Miettinen, Piotr Sankowski, and
Mohit Singh. Set covering with our eyes closed. SIAM J. Comput., 42(3):808–830, 2013.
doi:10.1137/100802888.

20 Fabrizio Grandoni, Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Rakesh
Venkat. A refined approximation for Euclidean k-means. Inf. Process. Lett., 176:106251,
2022. doi:10.1016/j.ipl.2022.106251.

21 Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms.
J. Algorithms, 31(1):228–248, 1999. doi:10.1006/JAGM.1998.0993.

22 Anupam Gupta, Martin Pál, R. Ravi, and Amitabh Sinha. Sampling and cost-sharing:
Approximation algorithms for stochastic optimization problems. SIAM J. Comput., 40(5):1361–
1401, 2011. doi:10.1137/080732250.

23 Shalmoli Gupta. Approximation algorithms for clustering and facility location problems. PhD
thesis, University of Illinois Urbana-Champaign, USA, 2018. URL: https://hdl.handle.net/
2142/102419.

24 Nicole Immorlica, David R. Karger, Maria Minkoff, and Vahab S. Mirrokni. On the costs and
benefits of procrastination: Approximation algorithms for stochastic combinatorial optimization
problems. In 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pages
691–700, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.982898.

ICALP 2024

https://doi.org/10.1109/FOCS.2011.34
https://doi.org/10.1007/978-3-642-22006-7_30
https://doi.org/10.1145/3519935.3520011
https://doi.org/10.1137/1.9781611977554.ch37
https://doi.org/10.1137/1.9781611973105.23
https://doi.org/10.1016/J.JCSS.2004.04.011
https://doi.org/10.1016/J.JCSS.2004.04.011
https://doi.org/10.1007/978-3-540-30559-0_21
https://doi.org/10.1007/978-3-540-30559-0_21
http://dl.acm.org/citation.cfm?id=1347082.1347185
http://dl.acm.org/citation.cfm?id=1347082.1347185
https://doi.org/10.1137/1.9781611977554.ch38
https://doi.org/10.1137/1.9781611977554.ch38
https://doi.org/10.1137/100802888
https://doi.org/10.1016/j.ipl.2022.106251
https://doi.org/10.1006/JAGM.1998.0993
https://doi.org/10.1137/080732250
https://hdl.handle.net/2142/102419
https://hdl.handle.net/2142/102419
http://dl.acm.org/citation.cfm?id=982792.982898

5:16 An O(log log n)-Approximation for Submodular Facility Location

25 Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. Journal of the ACM (JACM), 48(4):761–777,
2001. doi:10.1145/502090.502096.

26 Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V. Vazirani.
Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. Journal
of the ACM (JACM), 50(6):795–824, 2003. doi:10.1145/950620.950621.

27 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. Journal of the
ACM (JACM), 48(2):274–296, 2001. doi:10.1145/375827.375845.

28 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Inf.
Comput., 222:45–58, 2013. doi:10.1016/J.IC.2012.01.007.

29 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM J.
Comput., 45(2):530–547, 2016. doi:10.1137/130938645.

30 Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Approximation algorithms for met-
ric facility location problems. SIAM J. Comput., 36(2):411–432, 2006. doi:10.1137/
S0097539703435716.

31 Adam Meyerson. Online facility location. In 42nd Annual Symposium on Foundations of
Computer Science, FOCS 2001, pages 426–431, 2001. doi:10.1109/SFCS.2001.959917.

32 Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1999.
33 David B. Shmoys, Chaitanya Swamy, and Retsef Levi. Facility location with service installation

costs. In 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pages
1088–1097, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.982953.

34 David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facility
location problems (extended abstract). In 29th Annual ACM Symposium on the Theory of
Computing, STOC 1997, pages 265–274, 1997. doi:10.1145/258533.258600.

35 Zoya Svitkina and Éva Tardos. Facility location with hierarchical facility costs. In Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, pages
153–161, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109576.

36 Zoya Svitkina and Éva Tardos. Facility location with hierarchical facility costs. ACM Trans.
Algorithms, 6(2):37:1–37:22, 2010. doi:10.1145/1721837.1721853.

37 Jiawei Zhang, Bo Chen, and Yinyu Ye. A multiexchange local search algorithm for the
capacitated facility location problem. Math. Oper. Res., 30(2):389–403, 2005. doi:10.1287/
MOOR.1040.0125.

A Some Omitted Proofs about SFL

Proof of Lemma 1.2. Considering the dual of (Conf-LP):

max
{ ∑

c∈C

αc +
∑
f∈F

βf :
∑
c∈R

αc + βf ≤ g(R) +
∑
c∈R

d(c, f), ∀R ⊆ C, ∀f ∈ F
}

.

(Conf-DLP)

Notice that for fixed α and β, the functions gf (R) := g(R) +
∑

c∈R d(c, f) −
∑

c∈R αc − βf

are submodular. Thus, a call of a separation oracle on (Conf-DLP) is equivalent to a
minimization of all functions gf (·), which can be done using polynomially many oracle calls
of g(·) [25]. Therefore, an optimal primal solution with poly(N) many non-zero variables for
(Conf-LP) can be found in polynomial time [32, Corollary 14.1g(v)]. ◀

Proof of Lemma 1.7. Let I = (C, F, d, g(·)) be the considered instance of SFL. Consider
the complete weighted graph on nodes C ∪ F , with weights induced by d. For each client
c, let f(c) be the facility closest to c. We create a dummy facility f ′(c) and add a dummy
edge {c, f ′(c)} of weight d(c, f(c)). Let F ′ be the set of newly created facilities. Observe

https://doi.org/10.1145/502090.502096
https://doi.org/10.1145/950620.950621
https://doi.org/10.1145/375827.375845
https://doi.org/10.1016/J.IC.2012.01.007
https://doi.org/10.1137/130938645
https://doi.org/10.1137/S0097539703435716
https://doi.org/10.1137/S0097539703435716
https://doi.org/10.1109/SFCS.2001.959917
http://dl.acm.org/citation.cfm?id=982792.982953
https://doi.org/10.1145/258533.258600
http://dl.acm.org/citation.cfm?id=1109557.1109576
https://doi.org/10.1145/1721837.1721853
https://doi.org/10.1287/MOOR.1040.0125
https://doi.org/10.1287/MOOR.1040.0125

F. Abbasi et al. 5:17

that |F ′| = n. Finally we remove F and consider the metric d′ over C ∪ F ′ induced by the
distances over the resulting graph. Let I ′ = (C, F ′, d′, g(·)) be the obtained instance of SFL.
Given a solution φ′ for I ′, we obtain a solution φ for I by simply assigning to f(c) each
client c′ assigned to f ′(c) in φ′.

Let us analyze the approximation factor introduced by this reduction. We first observe
that costI(φ) ≤ costI′(φ′). Indeed, openI(φ) = openI′(φ′). Furthermore, for each each
client c′ assigned to f ′(c) by φ′, the associated connection cost w.r.t. I is d(c′, f(c)) ≤
d(c′, c) + d(c, f(c)) = d′(c′, f ′(c)). Hence connI(φ) ≤ connI′(φ′).

Next consider an optimal solution opt for I. For each facility f with opt−1(f) ̸= ∅, let
c ∈ opt−1(f) be the client closest to f . We define a solution opt′ for I ′ by assigning all the
clients in opt−1(f) to f ′(c). Again, openI(φ) = openI′(φ′). For each client c′ assigned to f

in opt, its connection cost in I ′ is

d′(c′, f ′(c)) = d(c, c′) + d(c, f(c)) ≤ d(c′, f) + d(c, f) + d(c, f(c)) ≤ d(c′, f) + 2d(c, f) ≤ 3d(c′, f).

Hence connI′(opt′) ≤ 3 connI(opt). The claim follows. ◀

Proof of Lemma 1.8. Let us guess the value L = maxc∈C d(c, opt(c)) for some optimal
solution opt. W.l.o.g. assume L > 0, otherwise the problem is trivial. Consider the complete
weighted graph on nodes C ∪ F with weights induced by d. Remove the edges of weight
larger than L. We next compute a feasible solution in each connected component of the
resulting graph separately. Notice that this part of the reduction is approximation preserving
since no client can be assigned to a facility in a different connected component in opt.

Let C ′ and F ′ be the clients and facilities, resp., in one such connected component
G′, X ′ = C ′ ∪ F ′, and d′ be the metric induced by the distances in G′. Consider the
corresponding SFL instance I ′ = (C ′, F ′, d′, g(·)). Notice that in each such instance I ′ one
has d′

max ≤ NL. We next change the location of elements of X ′ as follows. We consider
the ball B(x) := {y ∈ X ′ : d′(x, y) ≤ ε

2n L} of radius ε
2n L around each x ∈ X ′. Let I

be a maximal (independent) set of such balls so that, if B(x), B(y) ∈ I for x ̸= y, then
B(x) ∩ B(y) = ∅. For each y with B(y) /∈ I, we consider any B(x) ∈ I with B(x) ∩ B(y) ̸= ∅
(which must exist since I is maximal) and colocate y with x. Let I ′′ = (C ′, F ′, d′′, g(·)) be
the resulting instance of SFL. Observe that d′′

max ≤ NL and d′′
min ≥ ε

n L.
Let Ĩ be the union of all the instances I ′′, and d̃ be the associated distances (where

inter-component distances can be considered to be +∞). Given a solution φ for Ĩ (obtained
by the union of all the solutions obtained for each instance I ′′), we return exactly the same
solution φ for I.

Let us analyze the approximation factor. Notice that openI(φ) = openĨ(φ). Furthermore,
for each client c, d(c, φ(c)) ≤ d̃(c, φ(c)) + 2ε

n L, where in the latter term we consider the fact
that each client and facility is moved at most at distance ε

n L from the original location.
Hence connI(φ) ≤ connĨ(φ) + 2εL. Given an optimum solution opt for I, by a symmetric
argument one has costĨ(opt) ≤ costI(opt) + 2εL ≤ (1 + 2ε) costI(opt), where we used the
fact that costI(opt) ≥ L. Altogether an α ≥ 1 approximation algorithm for each instance I ′′

implies an α(1 + 2ε) + 2ε ≤ α(1 + 4ε) approximation for I.
Finally, we scale the distance d′′ and g(·) by the same factor 2n

εL so that d′′
min = 2 and

d′′
max ≤ 2nN

ε . Clearly this final scaling is approximation preserving. ◀

ICALP 2024

5:18 An O(log log n)-Approximation for Submodular Facility Location

B Generalizations of SFL

In this section we discuss some generalizations of SFL.

B.1 Reduction of the Number of Facilities
In this section we consider the generalization of SFL, next called Affine SFL, where the
opening cost of each facility f with assigned clients R ̸= ∅ is gf (R) := pf + wf · g(R),
where pf , wf ≥ 0 are input values. Notice that this generalizes SFL with Additive
(resp., Multiplicative) Opening Costs. We also observe that each gf (·) is non-negative
monotone submodular.

We show how to reduce to the case where m = poly(n) (hence N = poly(n)) while loosing
a constant factor in the approximation. We will use this reduction in the following sections
to convert an O(log log N) approximation into an O(log log n) one.

▶ Lemma B.1. For any constant ε > 0, there is a (3 + 37ε)-approximate reduction from
Affine SFL to the special case where the number of facilities is Oε(n3).

Proof. First of all, consider the case m ≥ 2n. In this case we can solve the problem optimally
in polynomial time via the following reduction to the Weighted Set Cover problem.
For an instance I = (C, F, d, g(·)) of Affine SFL, consider the instance J = (U , R, κ) of
Weighted Set Cover with universe U = C, set collection R = 2C and weight function κ

given as κR = 0 if R = ∅ and κR = minf∈F (pf + wf · g(R) +
∑

c∈R d(c, f)) for R ∈ 2C \ {∅}
(which can be computed in poly(N) time). Notice that 2|U| = 2n which is polynomially
bounded in the input size of I. The optimal solution to J induces a solution of exactly the
same cost to I and vice versa. There is a simple dynamic program which solves Weighted
Set Cover in time O(2|U | · |U | · |R|) [15, Lemma 2]. Applying this algorithm to J , one
obtains an optimal solution for the input instance I in time O(2n · poly(n, m)), which is
polynomial in m.

Hence it remains to consider the case m ≤ 2n. We show how to reduce the number of
facilities to Oε(n2 log(nN)) = Oε(n3), while losing the approximation factor in the claim.
By exactly the same reduction as in Lemma 1.8, we can assume that in the input metric d

the maximum distance is 0 < dmax ≤ NL and the minimum non-zero distance is dmin ≥ ε
n L

while loosing a factor (1 + 4ε) in the approximation. Here L is some value that lower bounds
the cost of a given optimum solution opt. Let us guess the largest value P of pf over the
facilities with at least one assigned client in opt. We discard all the facilities f with pf > P .
Now, assuming P > 0, we replace each pf with the value p′

f := ⌈ pf ·n
εP ⌉ · εP

n (p′
f = pf for

P = 0). Notice that this can only increase the cost of a given solution φ, however this
increase is upper bounded by n · εP

n ≤ ε · costI(opt), where I is the input instance of the
problem. Hence this reduction preserves the approximation guarantee up to a factor 1 + ε.
After this reduction, the set P ′ of different possible values of p′

f has cardinality at most n
ε .

Let I = (C, F, d, p′, w, g(·)) be the instance of Affine SFL obtained after the above two
reductions. Consider the complete edge-weighted graph on nodes C ∪F , with weights induced
by d. We modify this graph as follows. For each client c and value p′ ∈ P ′, we consider the
set of facilities Fp′ with p′

f = p′. Let Fp′(c, i), i ≥ 0, be the facilities in Fp′ whose distances
from c are in the range [ε

n L · (1 + ε)i, ε
n L · (1 + ε)i+1). We also define the set Fp′(c, −1)

of the facilities in Fp′ at distance 0 from c. Notice that there are at most 1 + ⌈log1+ε
nN

ε ⌉
sets Fp′(c, i) which are non-empty. For each Fp′(c, i) ̸= ∅, we choose a facility f = fp′(c, i)
with minimum value of wf . We create a dummy facility f ′ = f ′

p′(c, i) with opening cost
g′

f ′(C ′) = p′ + wf · g(C ′) for C ′ ̸= ∅, and add a dummy edge {c, f ′} of weight d(c, f). Let F ′

F. Abbasi et al. 5:19

be the set of dummy facilities. Notice that, considering also the previous reduction, one has
|F ′| ≤ n · n

ε · (1 + ⌈log1+ε
nN

ε ⌉) = O(n2 log(nN)). We remove the original facilities F , and let
d′ be the metric given by the distances in the resulting graph G′ on nodes C ∪ F ′. We solve
the problem on the resulting instance I ′ = (C, F ′, d′, p′, w, g(·)). Given a solution φ′ for I ′,
we obtain a solution φ for I naturally as follows: if φ′(c′) = f ′

p′(c, i), we assign c′ to fp′(c, i).
Let us analyze the approximation factor of this final reduction. The opening costs of

φ and φ′ are identical. Furthermore, for each client c′ assigned to f = fp′(c, i) in φ, and
for f ′ = f ′

p′(c, i), one has d(c′, f) ≤ d(c′, c) + d(c, f) = d′(c′, c) + d′(c, f ′) = d′(c′, f ′). Hence
costI(φ) = costI′(φ′).

Next consider an optimum solution opt for I. We construct a feasible solution opt′ for I ′ as
follows. Let Sf ̸= ∅ be the clients assigned to some f ∈ F in opt. Recall that the opening cost
of f is g′

f (Sf) = p′
f +wf ·g(Sf). Let c ∈ Sf be the client at minimum distance d(c, f) from f .

Define i as −1 if d(c, f) = 0, and otherwise, i such that d(c, f) ∈ [ε
n L · (1+ε)i, ε

n L · (1+ε)i+1).
In opt′ we reassign all the clients in Sf to f ′ = f ′

p′
f
(c, i). The opening cost associated with

f ′ in opt′ is no larger than the corresponding cost in opt since

p′
f ′ + wf ′ · g(Sf ′

) = p′
f + wf ′ · g(Sf) ≤ p′

f + wf · g(Sf).

In the last inequality above we used the fact that f ∈ Fp′
f
(c, i) and fp′

f
(c, i) is the facility

in the latter set with minimum wf value. The connection cost of each c′ ∈ Sf w.r.t. opt′

satisfies

d′(c′, f ′) = d′(c′, c) + d′(c, f ′) = d(c, c′) + d(c, fp′
f
(c, i))

≤ d(c′, f) + d(c, f) + (1 + ε)d(c, f) ≤ (3 + ε)d(c′, f).

Altogether, costI′(opt′) ≤ (3 + ε) costI(opt). Considering also the first two reductions,
we obtain a global reduction which preserves the approximation guarantee up to a factor
(1 + 4ε)(1 + ε)(3 + ε) ≤ 3 + 37ε. ◀

B.2 SFL with Multiplicative Opening Costs
In this section we sketch the proof of Theorem 1.3. By Lemma B.1, it is sufficient to provide
an O(log log N) approximation.

For f ∈ F and R ⊆ C let gf (R) := wf · g(R). Note that gf (·) is submodular, monotone
and has g(∅) = 0 for every f ∈ F . For any (partial) assignment S = (Sf) and any vector
(xf

R)f∈F
R⊆C let also open′(S) :=

∑
f∈F gf (Sf), resp. open′(x) :=

∑
f∈F

∑
R⊆C gf (R) · xf

R and
cost′(S) := open′(S) + conn(S) resp. cost′(x) := open′(x) + conn(x).

By these definitions, the LP-relaxation of the multSFL is given by the constraints from
(Conf-LP) and the objective cost′(·). In particular, the LP-relaxation of multSFL can be
solved with the approach from Lemma 1.2. We keep the merging rule defined in Section 1.4
and the sampling procedure from Section 2. It is easy to verify that the vector ẍ resulting
from this procedure fulfills Lemma 2.2 w.r.t. open′ instead of open.

We reduce multSFL to a similar problem to DLA which we call DLA∗ which is the
same problem as DLA and with the same input variables as DLA, additional inputs w̃f ≥ 0
for every f ∈ F̃ and cost cost∗

DLA(φ) =
∑

f∈F̃ hf (φ−1(f)) where hf (·) := w̃f h(·) for every
f ∈ F̃ . Its convex relaxation is given by the constraints in (DLA-CP) with the cost function
cost∗

DLA(z) :=
∑

f∈F̃ ĥf (zf) (where ĥf is the Lovász extension of hf). The reduction described
in Lemma 3.2 can be reproduced to reduce multSFL to DLA∗. We define the input values

ICALP 2024

5:20 An O(log log n)-Approximation for Submodular Facility Location

of DLA∗ w.r.t. multSFL in the same way we define the input values of DLA w.r.t. SFL,
with additionally w̃f = wf for every f ∈ F . Notice that hf (·) = w̃f h(·) = gf (·) = wf g(·).
Every reasoning made in the proof of Lemma 3.2 stays valid.

We now adjust Algorithm 1 for DLA∗ as follows: in Step 3, we select the facility fv ∈ F̃v

with minimum weight w̃fv
. In the if-clause 4, we search and verify for supportedness w.r.t.

hfv instead of h (which is equivalent unless w̃fv = 0, in which case Lθ(zfv) is supported
for every θ). Since the new algorithm functions exactly like Algorithm 1, except for an
arbitrary selection step becoming determined (in particular, the new algorithm is a possible
implementation of Algorithm 1), its correctness is implied by the correctness of Algorithm 1.

Notice that since fv in Step 3 is now chosen to have minimal weight, we have for any
f ′ ∈ F̃v \ {fv}

ĥfv

(
zfv + zf ′)

≤ ĥfv

(
zfv

)
+ ĥfv

(
zf ′)

≤ ĥfv

(
zfv

)
+ ĥf ′

(
zf ′)

,

which means that the cost of z does not increase at any time by the arguments as before.
Also, notice that since hf is submodular, monotone and hf (∅) = 0 we can apply Lemma 3.4
with respect to hfv instead of h. Thus, the cost of the sets added at Step 5 and Step 7 is
still bounded as in (4) and (5).

B.3 SFL with Additive Opening Costs
In this section we sketch the proof of Theorem 1.4. As in the previous section, by Lemma
B.1, it is sufficient to provide an O(log log N) approximation.

Similarly to the previous section, we define the set function gf (·) as gf (R) = g(R) + pf

for R ≠ ∅ and gf (∅) = 0. As argued in the previous section, we can find an optimum to the
LP relaxation of addSFL and reduce it to the problem DLA∗ as defined in the last section,
but with input weights p̃f instead of w̃f and hf (·) as hf (R) := h(R) + pf for R ̸= ∅, and
hf (∅) = 0.

We adapt Algorithm 1 like in the previous section: in Step 3, we select the facility fv ∈ F̃v

with minimum weight p̃fv . In the if-clause 4, we search and verify for supportedness w.r.t.
hfv

instead of h. The correctness of the new algorithm here is given by the same argument
as in the previous section. Notice that by (2) we have ĥf (z) = ĥ(z) + pf · maxc∈C̃ zc, which
implies ĥfv (zfv + zf ′) ≤ ĥfv

(zfv) + ĥf ′(zf ′) with fv chosen as in Step 3 in Algorithm 1. The
cost of z does therefore not increase throughout the algorithm. Bounding the cost of sets
added to the solution at Step 5 and Step 7 can be done, like for multSFL, by applying
Lemma 3.4 to hfv

.

	1 Introduction
	1.1 Our Results and Techniques
	1.2 Generalizations and Variants
	1.3 Related Work
	1.4 Preliminaries and Notation

	2 Reducing the Connection Cost
	3 Approximating SFL on an HST
	3.1 A Reduction to DLA
	3.2 An Approximation Algorithm for DLA

	4 Universal Stochastic Facility Location
	A Some Omitted Proofs about SFL
	B Generalizations of SFL
	B.1 Reduction of the Number of Facilities
	B.2 SFL with Multiplicative Opening Costs
	B.3 SFL with Additive Opening Costs

