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—— Abstract

We design new parallel algorithms for clustering in high-dimensional Euclidean spaces. These
algorithms run in the Massively Parallel Computation (MPC) model, and are fully scalable, meaning
that the local memory in each machine may be n° for arbitrarily small fixed o > 0. Importantly,
the local memory may be substantially smaller than the number of clusters k, yet all our algorithms
are fast, i.e., run in O(1) rounds.

We first devise a fast MPC algorithm for O(1)-approximation of uniform FACILITY LOCATION.
This is the first fully-scalable MPC algorithm that achieves O(1)-approximation for any clustering
problem in general geometric setting; previous algorithms only provide poly(log n)-approximation
or apply to restricted inputs, like low dimension or small number of clusters k; e.g. [Bhaskara
and Wijewardena, ICML’18; Cohen-Addad et al., NeurIPS’21; Cohen-Addad et al., ICML’22].
We then build on this FACILITY LOCATION result and devise a fast MPC algorithm that achieves
O(1)-bicriteria approximation for k-MEDIAN and for k-MEANS, namely, it computes (1 + ¢)k clusters
of cost within O(1/e?)-factor of the optimum for & clusters.

A primary technical tool that we introduce, and may be of independent interest, is a new
MPC primitive for geometric aggregation, namely, computing for every data point a statistic of
its approximate neighborhood, for statistics like range counting and nearest-neighbor search. Our
implementation of this primitive works in high dimension, and is based on consistent hashing
(aka sparse partition), a technique that was recently used for streaming algorithms [Czumaj et al.,

FOCS™22).
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1 Introduction

Clustering large data sets is a fundamental computational task that has been studied
extensively due to its wide applicability in data science, including, e.g., unsupervised learning,
classification, data mining. Two highly popular and extremely basic problems are k-MEDIAN
and k-MEANS. In the geometric (Euclidean) setting, the k-MEDIAN problem asks, given
as input an integer k and a set P C R? of n data points, to compute a set C' C R? of k
center points, so as to minimize the sum of distances from each point in P to its nearest
center. The k-MEANS problem is similar except that instead of the sum of distances, one
minimizes the sum of squares of distances. A closely related problem is (uniform) FAcCILITY
LOCATION, which can be viewed as a Lagrangian relaxation of k-MEDIAN, where the number
of centers can vary but it adds a penalty to the objective, namely, each center (called open
facility) incurs a given cost f > 0. Other variants include a similar relaxation of k-MEANS, or
generalizing the squaring each distance to raising it to power z > 1 (see Section 2 for formal
definitions), and there is a vast literature on these computational problems.

Clustering is often performed on massive datasets, and it is therefore important to
study clustering in the framework of distributed and parallel computations. We consider
fundamental clustering problems in the theoretical model of Massively Parallel Computation
(MPC), which captures key aspects of modern large-scale computation systems, such as
MapReduce, Hadoop, Dryad, or Spark. The MPC model was introduced over a decade ago
by Karloff, Suri, and Vassilvitskii [55], and over time has become the standard theoretical
model to study data-intensive parallel algorithms (see, e.g., [11, 41, 47]). At a high level, the
MPC model consists of many machines that communicate with each other synchronously
in a constrained manner, in order to solve a desired task in a few rounds. In more detail,
an MPC system has m machines, each with a local memory of s words, hence the system’s
total memory is the product m - s. Computation takes place in synchronous rounds, where
machines perform arbitrary computations on their local memory and then exchange messages
with other machines. Every machine is constrained to send and receive at most s words in
every round, and every message must be destined to a single machine (not a broadcast). At
each round, every machine processes its incoming messages to generate its outgoing messages,
usually without any computational restrictions on this processing (e.g., running time). At
the end of the computation, the machines collectively output the solution. The efficiency
of an algorithm is measured by the number of rounds and by the local-memory size s. The
total space should be low as well, but this is typically of secondary importance.

The local-memory size s is a key parameter and should be sublinear in the input size IV
(for if s > N then any sequential algorithm can be executed locally by a single machine in
one round). We focus on the more challenging regime, called fully-scalable MPC, where the
local-memory size is an arbitrarily small polynomial, i.e., s = N¢ for any fixed o € (0, 1).
This regime is highly desirable because in practice, the local memory of the machines is
limited by the hardware available at hand, and the parameter o can be used to model
this limitation. The total memory should obviously be large enough to fit the input, i.e.,
m-s > N, and ideally not much larger.
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Modern research on MPC algorithms aims to solve fundamental problems in as few rounds
as possible, ideally in O(1) rounds, even in the fully-scalable regime, and so far there have
been some successes in designing fast (i.e., O(1)-rounds) algorithms for fixed o < 1; see
e.g., [4, 12, 41]. In contrast, many graph problems, including fundamental ones such as
connectivity or even distinguishing between 1 and 2 cycles, seem to require super-constant
number of rounds (at the same time, proving a super-constant lower bound would yield a
breakthrough in circuit complexity [62]). One can also consider smaller local space s, i.e.,
o = o(1), and in fact many algorithms work as long as s > polylog(N). In this regime,
the best one can hope for is usually not O(1) but rather O(log, N) rounds, because even
broadcasting a single number to all machines requires Q(log, V) rounds; see [62] for further
discussion.

Clustering of massive datasets has received significant attention recently, with numerous
algorithms that span multiple computational models, such as streaming [18, 63] or distributed
and parallel models [16, 35, 15, 8, 9, 60, 6, 21, 12, 34]. However, this advance is facing a
barrier, first identified by Bhaskara and Wijewardena [13]: State-of-the-art methods for
k-clustering (i.e., when the number k of clusters is specified in the input) typically fail to yield
fully-scalable MPC algorithms, because when implemented in the MPC model, these methods
usually require local-memory size s > Q(k). For example, many streaming algorithms for
k-clustering problems are based on a linear sketch and thus readily applicable to the MPC
model; however, all known streaming algorithms require Q(k) space, and in fact there are
lower bounds to this effect [23] even in low dimension. Another example is coresets [43],
an extremely effective method to decrease the size of the dataset, even in high dimension;
see [29, 17, 26] for the latest in this long line of research. Coresets can often be merged and/or
applied repeatedly via the so-called “merge-and-reduce” framework [43], and can thus be
applied successfully in many different settings, including the parallel setting. However, this
method suffers from the drawback (which so far seems inherent) that each coreset must be
stored in its entirety in a single machine, and it is easy to see that a coreset for k-clustering
must be of size at least k; see also [26].

These shortcomings have led to a surge of interest in MPC algorithms for clustering, with
emphasis on fully-scalable and fast algorithms (i.e., taking O(1) rounds even for large k)
that work in high dimension d. The first such result for k-clustering was by Bhaskara and
Wijewardena [13]; their O(1)-round fully-scalable MPC algorithm achieves polylogarithmic
bicriteria approximation for k-MEANS, i.e., it outputs k-polylog(n) centers (or clusters) whose
cost is within polylog(n)-factor of the optimum for k centers. Recent work by Cohen-Addad
et al. [27] achieves for k-MEDIAN a true polylog(n)-approximation (i.e., without violating the
bound & on number of centers); their algorithm actually computes a hierarchical clustering,
that is, a single hierarchical structure of centers that induces an approximate solution for
k-MEDIAN for every k. These were the best fully-scalable O(1)-round MPC algorithms
known for k-MEDIAN and k-MEANS prior to our work, and it remained open to achieve
better than O(logn)-approximation, even as a bicriteria approximation.

Not surprisingly, previous work on MPC algorithms has focused also on achieving improved
approximation for restricted inputs. In particular, (1 + £)-approximation is achieved in [28]
for k-MEANS and k-MEDIAN on inputs that are perturbation-resilient [14], meaning that
perturbing pairwise distances by (bounded) multiplicative factors does not change the optimal
clusters; unfortunately, results for such special cases rarely generalize to all inputs. There
are also known fully-scalable MPC algorithms for k-center [10, 30], but they are applicable
only in low dimension d and thus less relevant to our focus.
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Despite these many advances on fully-scalable MPC algorithms, we are not aware of O(1)-
approximation for any clustering problem in high dimension.! From a technical perspective,
the primary difficulty is to distribute the data points across machines, so that points arriving
to the same machine are from the same cluster. This task seems to require knowing the
clustering, which is actually the desired output, so we run into a chicken-and-egg problem!
Fortunately, powerful algorithmic tools can spot points that are close together, even in
high-dimensional geometry. Namely, locality sensitive hashing (LSH) is employed in [13] and
tree embedding is used in [27], but as mentioned above, these previous results do not achieve
O(1)-approximation. We rely instead on the framework of consistent hashing, which was first
employed for streaming algorithms in [33], although it was originally proposed in [53]; see
Section 1.2 for details.

1.1 Our Results

We devise fully-scalable O(1)-round MPC algorithms for a range of clustering problems
in R, most notably FACILITY LOCATION, k-MEDIAN, and k-MEANS. We first devise an
O(1)-approximation algorithm for FACILITY LOCATION and then exploit the connection
between the problems to solve k-clustering.

By convention, we express memory bounds in machine words, where each word can store
a counter in the range [poly(n)], i.e., O(logn) bits, and/or a coordinate of a point from
R? with restricted precision (comparable to that of a point from P). For example, the
input P C R?, |P| = n fits in nd words. Throughout, the notation O.(-) hides factors that
depend on €. We stress that in the next theorem, the memory bounds are polynomial in
the dimension d (and not exponential); this is crucial because the most important case is
d = O(logn), as explained in Remark 1.2f below.

» Theorem 1.1 (Simplified version). Let €,0 € (0,1) be fizred. There is a randomized fully-
scalable MPC algorithm that, given a multiset P C R of n points distributed across machines
with local memory of size s > n? - poly(d), computes in O, (1) rounds an O (1)-approximation
for uniform FACILITY LOCATION. The algorithm uses O(n'*¢) - poly(d) total space.

» Remark 1.2. This simplified statement omits standard technical details:

a) We consider here fixed o, but the algorithm works for any local-memory size s >
poly(dlogn), and in that case the number of rounds becomes O(log, n).

b) Similarly, € can be part of the input, and the approximation factor is in fact (1/¢)°™).

c) The algorithm succeeds with high probability 1 — 1/ poly(n).

d) The input P can be a multiset, in contrast to streaming algorithms for such problems [49,
33], where data points must be distinct.

e) The algorithm outputs a feasible solution, i.e., a set of facilities F' C R? and an assignment
of the input points to facilities. In fact, in all our algorithms F' C P. We focus throughout
on computing F', since our methods can easily compute a near-optimal assignment given
F.

f) We state here the dependence on d explicitly for sake of completeness, but our result
works whenever s > polylog(dn), which is preferable when d > logn. This is achieved by
reducing to the case d = O(logn), using a standard dimension reduction, as discussed in
Remark 2.4.

! Having said that, (3 + ¢)-approximation is known for (non-geometric) correlation clustering [12].
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Our full result (in the full version) is more general in two respects. First, it addresses
a generalization of FACILITY LOCATION where distances are raised to power z > 1 (see
Section 2 for definitions). Second, it assumes access to consistent hashing with parameters T’
and A, and here we plugged in a known construction [33] that achieves a tradeoff I' = O(1/¢)
and A = n for any desired ¢ € (0, 1); see Lemma 2.3 and Remark 2.4. The description of
the hash function should be included in our MPC algorithm, but it takes only poly(d) bits,
which is easily absorbed in our bounds.

Previously, no fully-scalable MPC algorithm was known for FACILITY LOCATION, al-
though one can apply the algorithm for k-MEDIAN from [27] to obtain an O(polylog(n))-
approximation in O(log, n) rounds. Another previous result that one could use is a streaming
algorithm that achieves O(1)-approximation [33]. Although many streaming algorithms, in-
cluding this one, can be implemented in the MPC model, they approximate the optimal value
without reporting a solution; see Section 1.3 for details. Thus, from a technical perspective,
our chief contribution is to compute an approximately optimal solution, which is a set of
facilities F', in the fully-scalable regime.

k-Clustering. Our second result presents MPC algorithms for k-MEDIAN and k-MEANS
that achieve an (O(u=2),1 + u)-bicriteria approximation, for any desired pu € (0,1). As
usual, («, 8)-bicriteria approximation means that for every input, the algorithm outputs
at most Sk centers whose cost is at most a-factor larger than the optimum cost for &
centers. By letting p > 0 be arbitrarily small but fixed, our algorithm gets arbitrarily
close (multiplicatively) to k centers, while still approximating the optimal cost within O(1)-
factor; in both respects, this is far stronger than the previous bicriteria approximation for
kE-MEANS [13]. Our result is incomparable to the previous bound for k-MEDIAN, which is a
true O(polylog(n))-approximation [27]. Nevertheless, our bicriteria approximation breaks
a fundamental technical barrier in their tree-embedding approach, which cannot go below
O(logn) ratio, due to known distortion lower bounds, and moreover does not generalize to
k-MEANS, because it fails to preserve the squared distance.

Our approach is to tackle k-MEDIAN and k-MEANS via Lagrangian relaxation and rely on
our algorithm for FACILITY LOCATION. This approach can inherently handle large k, because
our core algorithms for FACILITY LOCATION can even output n clusters. The Lagrangian
technique was initiated by Jain and Vazirani [51], who achieved a true O(1)-approximation
for k-MEDIAN by leveraging special properties of their algorithm for FACILITY LOCATION
(see Section 1.2). However, their primal-dual approach for FACILITY LOCATION seems
challenging to implement in fully-scalable MPC. We thus develop an alternative approach
that is inherently more parallel, albeit achieves only bicriteria approximation for k-clustering.

» Theorem 1.3 (Simplified version). Let ¢,0 € (0,1) be fixred. There is a randomized fully-
scalable MPC' algorithm that, given p € (0,1), k > 1, and a multiset P C R? of n points
distributed across machines of memory s > n? - poly(d), computes in O,(1) rounds an
(O (u=2),1 + p)-bicriteria approzimation for k-MEDIAN, or alternatively k-MEANS. The
algorithm uses O(n'*) - d°W) total space.

This simplified statement omits the same standard details as in Theorem 1.1, and
Remark 1.2 applies here as well. In addition, it is known for k-MEDIAN and k-MEANS (but
not known for FACILITY LOCATION) that any (true) finite approximation requires Q(log, n)
rounds [13].
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1.2 Technical Overview

We overview the main components in our algorithms, and highlight technical ideas that may
find more applications in the future. We focus in this overview on FACILITY LOCATION and
k-MEDIAN, noting that our algorithm for k-MEANS (and other powers z > 1) is essentially
the same. We further assume that s = n? - poly(d) for a fixed o € (0,1), and we aim to
achieve round complexity O(log,n) = O,(1).

Facility Location. Several different algorithmic approaches have been used in the past to
achieve O(1)-approximation for FACILITY LOCATION, including LP-rounding [19, 56], primal-
dual [51], greedy [50], and local search [5]. Some of these sequential algorithms were adapted to
the PRAM model [16], i.e., to run in polylogarithmic parallel time (RNC algorithms). These
algorithms can be implemented in the MPC model, but as some logarithmic factors in the time
complexity seem inherent, these fall short of O(1) rounds in the fully-scalable regime. Our
starting point is the Mettu-Plaxton (MP) algorithm [61], which is a combinatorial algorithm
inspired by [51], that has been previously used to achieve O(1)-approximation in a few related
models, particularly streaming, congested clique, and sublinear-time computation [7, 38, 33].
At a high level, this MP algorithm has two steps, it first computes a “radius” r, > 0 for
every p € P, and then uses these r, values to determine which facilities to open. However,
implementing these steps in MPC is technically challenging:
Computing r, (approximately) can be reduced to counting the number of points in P
within a certain distance from p [7], which is non-trivial to compute in O(1) rounds, because
many geometric techniques are ineffective in high dimension, for instance quadtrees/tree
embeddings incur large approximation error and grids/nets require large memory. We
overcome this issue by devising a new MPC primitive for geometric aggregation (in high
dimension), that can handle a wide range of statistics, including the counting mentioned
above.
The MP algorithm determines which facilities to open by scanning the points in P in
order of non-decreasing r, value and deciding greedily whether to open each point as
a facility. We design a new algorithm that avoids any sequential decision-making and
decides whether to open each facility locally and in parallel. Our new algorithm may
thus be useful also in other models.
Let us discuss these two new ideas in more detail.

MPC Primitive for Geometric Aggregation in High Dimension. We propose a new MPC
primitive for aggregation tasks in high-dimensional Euclidean spaces (see Theorem 3.1 for
details). Given a radius r > 0, this primitive outputs, for every data point p € P, a certain
statistic of the ball Bp(p,7) := PN {y € R¢ : dist(z,y) < r}. Our implementation can
handle any statistic that is defined by a composable function f, which means that f(U;S;)
for disjoint sets S; C R? can be evaluated from the values {f(5;)},. Composable functions
include counting the number of points, or finding the smallest label (when data points are
labeled). In fact, this primitive can even be used for approximate nearest-neighbor search in
parallel for all points (see Section 3.1). This natural aggregation tool plays a central role in
all our MPC algorithms, and we expect it to be useful for other MPC algorithms in high
dimension.

Technically, exact computation of such statistics may be difficult, and our algorithm
estimates the statistic by evaluating it (exactly) on a set Ap(p,r) that approximates the ball
Bp(p,r) in the sense that it is sandwiched between Bp(p,r) and Bp(p, 8r) for some error
parameter § > 1. To implement this algorithm in MPC, a natural idea is to “collect” all
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data points in the ball Bp(p,r) at a single machine, however this set might be too large to
fit in one or even few machines. A standard technique to resolve this issue in low dimension
is to impose a grid of fine resolution, say er, and move each data point to its nearest grid
point, which provides a decent approximation (e.g., f =1+ \/EE) However, a ball Bp(p,r)
might contain e ~©(@ grid points, which for high dimension might still not fit in one machine.

Our approach is to use consistent hashing (see Definition 2.2), which was first introduced
in [53] under the name sparse partition, and was recently employed in the streaming setting
for FACILITY LOCATION in high dimension [33]. Roughly speaking, consistent hashing is a
partition of the space R, such that each part has diameter bounded by S, and every ball
Bp(p,r) intersects at most n'/# parts.?2 Our algorithm moves each data point p € P to a
fixed representative point inside its own part, then computes the desired statistic on each
part (namely, on the data points moved to the same representative), and finally aggregates,
for each p € P, the n'/? statistics of the parts that intersect Bp(p,r). This algorithm can
be implemented in O(log, n) rounds on MPC, albeit with slightly bigger total space nit1/8,
An interesting feature of this algorithm is that its core is deterministic and hence leads to
new deterministic MPC algorithms, including for approximate nearest-neighbor search; see
Section 3.1.

Computing A Solution for Facility Location. Our algorithm is based on the MP algorithm,
where a key notion is the “radius” 7, > 0 defined for each data point p € P. Formally,
it takes the value r such that serving all points in the ball B(p,r) by p, i.e., opening a
facility at p and assigning points to p, incurs a cost of |Bp(p,r)| - r. This value r always
exists and is unique. It is known that a constant-factor approximation 7, of r, satisfies
that |Bp(p,7p)| =~ 1/#p, hence computing |Bp(p, )| for O(polylogn) different values of r
suffices to compute an O(1)-approximation of r, [7, Lemma 1]. However, it is not easy
to estimate |Bp(p,r)| in MPC (simultaneously for all p and r), and the abovementioned
geometric aggregation only estimates |Ap(p,r)| for some Ap(p,r) that is sandwiched between
B(p,r) and B(p, fr). Nonetheless, we show this weaker estimate suffices for approximating
rp within O(8) factor. Thus, our aggregation primitive yields an O(1)-approximation for all
the rp, values in O(1) rounds.

An O(1)-factor estimate of the optimal cost OPT can be computed from an O(1)-
approximation of the r, values for all p € P, because >_ . prp = O(OPT) [7, 38]. Moreover,
the r, values can be used to compute an O(1)-approximate solution for FACILITY LOCATION.
Specifically, the MP algorithm [61] scans the points in P in order of non-decreasing r, value,
and opens a facility at each point p if so far no facility was opened within distance 27, from
p. The sequential nature of this algorithm makes it inadequate for MPC, and we therefore
design a new algorithm that makes decisions in parallel. It has two separate rules to decide
whether to open a facility at each point p € P:

(P1) open a facility at p with probability ©(r,), independently of other points; and

(P2) open a facility at p if it has the smallest label among Bp(p,rp), where each point g € P
is assigned independently a random label h(q) € [0, 1].

Let us give some intuition for these rules. Rule (P1) is a straightforward way to use the r,

values so that the expected opening cost is O(3_,7p) = O(OPT), but it is not sufficient by

itself because the connection cost might be too large. Indeed, if a cluster of points is very far

from all other points, say, a cluster of ¢ points all with the same 7, = 1/¢, then with constant

2 This tradeoff between Br and n'/? is just one specific choice of known parameters. Our theorem works
with any possible parameters of consistent hashing, see Lemma 2.3 and Remark 2.4.
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probability, (P1) does not open any facility inside this cluster, and the closest open facility is
prohibitively far. However, (P2) guarantees that at least one facility is opened inside this
cluster, at the point that has the smallest label. Rule (P2) is not sufficient by itself as well.
Indeed, let 21 € P be the minimizer from the viewpoint of p, i.e., have the smallest label
in Bp(p,rp). Then it may happen that there is no facility at x; because Bp(z1,7s,) has
another point xo with an even smaller label. The same may happen also to x2, and we may
potentially get a long “assignment” sequence (p = xg, x1, 2,3, ...,2:), where each ;41 is
the minimizer from the viewpoint of x; and only the last point x; is an open facility. In this
case, the connection cost of p can be as large as Ef;é rz, (i.e., matching the bound obtained
by the triangle inequality), which might be unbounded relative to r,. This might happen
not only for one point p but actually for many points, and the total connection cost would
be prohibitive.

We deal with this assignment issue using rule (P1), and in effect use both rules together.
Given such an assignment sequence, we prove that for every ¢ > 0, either (i) Bp(z;,7s,)
contains an open facility with constant probability, or (i) r,,,, < s, /2, i.e., the r, value
drops significantly in the next step. Property (i) means that the sequence stops at x; with
constant probability and thus, unless (ii) occurs, the expected length of the assignment
sequence is O(1). Property (ii) implies that the connection cost of the next step drops
significantly as it is proportional to its r, value, and hence, we just sum up a subsequence
of geometrically decreasing r, values. Combining the two properties, we obtain that the
expected connection cost for every point p is O(r,). Hence, the expected total connection
cost is O(3_, rp) = O(OPT).

The main technical challenge is to show property (i) when (ii) does not occur. Specifically,
we need to show that, given a partial reassignment sequence (p = x, . .., 2;—1), the probability
that the sequence does not terminate at x; is bounded by a small constant. This event can
be broken into two sub-events: (a) rule (P1) does not open any facility at the “new” points
of Bp(xi,7,), where a point is considered new if it is not in Uj;Bp(x;,75;); and (b) the
smallest label appears at a new point (and thus rule (P2) does not open a facility at z;). Let
t € [0,1] be the fraction of points that are new in Bp(x;,7,,;). Then the probability of (a)
is roughly (1 — 1y, )2/ ") ~ =21 where this calculation crucially uses that (ii) does not
occur, which means all new points have a similar r, value as x;, and that for every point z,
the ball Bp(z,r,) roughly contains Q(1/r,) points. Since the two events are independent
and since (b) happens with probability ¢ by symmetry, we conclude that the probability
we need to bound is at most exp(—O(¢)) - t < O(1). Here, one can observe that (P1) and
(P2) are “complementing” each other to make the said probability small: when ¢ is large,
the probability exp(—O(t)) of (a), which comes from rule (P1), is small; otherwise, the
probability ¢ of (b), which comes from rule (P2), is small.

The idea of opening facilities using random labels and analyzing the cost by constructing
an assignment sequence was previously used in [3]. The context there is of a dynamically
changing input, and this technique is used to limit changes in the solution over time, while
our goal is to have a fast parallel implementation. Although the high level idea is similar,
the setup is quite different, as their algorithm needs a solution to a linear-programming (LP)
relaxation for FACILITY LOCATION, while ours only needs the r, values; and consequently
also the analysis is different, as their analysis uses the LP constraints and bounds the cost
relative to LP value, while our analysis crucially uses basic properties of the r;, values.

It remains to bound the opening cost which is the easy part. We show that the number
of open facilities is O(>_, 7)) in expectation. Indeed, for points selected by rule (P1) this is
clear. For rule (P2), since Bp(p,rp) contains at least 1/r, points, the probability that p has
the smallest label in Bp(p,r,) is at most 7.
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When implementing our algorithm in the MPC model, the only non-trivial part (except
for estimating the r, values) is to check that p has the minimum label in the ball B(p,r,).
Nevertheless, it is sufficient to look for the minimum label in a larger set that approximates
the ball, such as a set sandwiched between this ball and a ball whose radius is larger by
O(1)-factor. Therefore, the MPC primitive for geometric aggregation is sufficient to execute
rule (P2).

Overall, these rules compute a set of open facilities. To compute also an assignment
of each point p € P to an open facility, we use our approximate nearest-neighbor search
algorithm, to find for each point p € P its O(1)-approximately closest facility (see Section 3.1).
Notice that the assignment algorithm searches for the closest facility, but the analysis is still
based on the assignment sequence as above, even though the connection cost of this sequence
may substantially exceed the distance to the closest facility.

k-Clustering. Our algorithm for k-MEDIAN follows the Lagrangian-relaxation framework
established by Jain and Vazirani [51] (and used implicitly earlier by Garg [37]). They
managed to obtain a true O(1)-approximation for k-MEDIAN by leveraging a special property
guaranteed by their algorithm for FACILITY LOCATION, namely, its output solution has
opening cost costp and connection cost costo that satisfy « - costp + coste < a - OPT for a
certain & = O(1). Unfortunately, this stronger property is obtained via a highly sequential
primal-dual approach, and seems difficult to implement efficiently in MPC, particularly
because it is too sensitive for the known toolkit for high dimension, like locality sensitive
hashing (LSH) and our geometric aggregation via consistent hashing.

We therefore take another approach of relying on a generic y-approximation algorithm for
FAciLiTy LOCATION, and using it in a black-box manner to obtain bicriteria approximation
for k-MEDIAN. Our algorithm can output (1 + )k centers whose cost is at most O(1/u?)-
factor larger than the optimum cost for k centers, for any desired 0 < p < 1. This type of
tradeoff, where the number of centers is arbitrarily close to k, was relatively less understood, as
previous work has focused mostly on a smaller O(1)-factor in the cost, but using significantly
more than k centers [57, 58, 1, 64, 46]. The result of [59] does give (1 + u)k centers, and
is thus the closest to ours in terms of bicriteria bounds, however it relies explicitly on LP
rounding, which seems difficult to implement in MPC. To the best of our knowledge, obtaining
(1 + p)k centers for k-clustering by a black-box reduction to FACILITY LOCATION was not
known before. We believe this new reduction, and the smooth tradeoff it offers, may be of
independent interest.

In more detail, the black-box reduction from k-MEDIAN to FACILITY LOCATION goes as
follows: Assume momentarily that we know (an approximation of) the optimal clustering
cost OPT, and consider the clustering instance as an input for FACILITY LOCATION with
opening cost f := OPT /k. The optimal cost of this instance is at most k - f + OPT = 20PT
as the optimal k-MEDIAN solution is also a feasible solution for FACILITY LOCATION with
at most k facilities; note that the choice of f balances the opening and connection costs
in this solution. We then run (any) vy-approximation algorithm for FACILITY LOCATION,
and it will find a solution whose cost is at most v -2 OPT. The choice of f implies that the
number of open facilities in this solution is at most v -2 OPT /f = 2v - k. Hence, we obtain
a (27, 2v)-bicriteria approximation of k-MEDIAN. Finally, we remove the assumption of
knowing OPT by running this procedure in parallel for a logarithmic number of guesses for
OPT, and taking the cheapest solution that uses at most O(y - k) centers. Using our MPC
algorithm for FACILITY LOCATION, this gives an efficient MPC algorithm for clustering with
(O(7), O())-bicriteria approximation guarantees.
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In this approach, the number of centers (in the solution) might exceed k by a large
constant factor. We now use a different method to reduce it to be arbitrarily close to k. First,
we observe that the (O(v), O(v))-approximate solution can be used to get a weak coreset,
namely, a weighted set of at most O(v - k) distinct points, such that any a-approximate set
of centers for the coreset is also an O(« - y)-approximate solution for the original instance.
To obtain the coreset, we just move every point to its approximately nearest facility in the
approximate solution, which is a standard step in the clustering literature (see e.g. [42]).
Then, weight w(p) of a point p is the number of original points rounded to p. We note that
the problem becomes trivial if the coreset fits in one machine, and thus the interesting case
is when k is very large.

Given this weak coreset, we find an approximate solution with at most, say, 2k centers
and cost increased by another factor of O(v), using the following simple but sequential
algorithm: Process the coreset points in order of non-increasing weights w(-), and open a
center at point p if so far there is no center within distance OPT /(k - w(p)) from p; here
we again need a guess for OPT. In a nutshell, the analysis of this algorithm is based on
averaging arguments; intuitively, only few points in the weak coreset can have a relatively
large connection cost in the optimal solution.

We then convert this sequential algorithm into a parallel one using similar ideas as for
FaciLiTy LOCATION. That is, for every point in parallel, we add it to the set of centers using
two separate rules: (i) independently with probability 1/+; or (ii) if there is no point with
larger weight within distance OPT /(k - w(p)). To implement (ii) in MPC, we need to ensure
a consistent tie-breaking, for which a small random perturbation of the weights is sufficient.
Finally, to efficiently find the point of maximum (perturbed) weight in the neighborhood of
every point, we again employ our MPC primitive for geometric aggregation.

1.3 Related Work

Parallel and Distributed Algorithms. A more general metric setting of FACILITY LOCATION
has been studied earlier in the distributed Congest and CongestedClique models (see, e.g.,
[38, 44, 45]), and these results immediately transfer into MPC algorithms with O(n) local
memory and O(n?) total space. In particular, in combination with the recent result in [20],
these results yield an O(1)-round MPC algorithm for metric FACILITY LOCATION. In this
general-metric setting of FACILITY LOCATION, instances have size O(n?), which makes the
problem significantly different from our geometric setting, e.g., instances in R are trivial if
the local memory is O(n). Furthermore, those results for general metrics rely on computing
O(1)-ruling sets, and by the conditional lower bounds in [40, 31], this seems to require
w(1) rounds on a fully-scalable MPC. Our algorithms bypass the obstacle of ruling sets by
leveraging the geometric structure in R? and one can view our high-level contribution as
proposing a setting avoiding that obstacle.

Clustering problems (e.g., FACILITY LOCATION, k-MEANS, k-MEDIAN) have been also
studied in the PRAM model of parallel computation [16, 15]. These algorithms can be
implemented in the MPC model, but the logarithmic factors in the running time or the
approximation ratio seem inherent, and they fall short of achieving O(1) rounds in the
fully-scalable regime.

Connections to Streaming. A closely related model is the streaming model, which mainly
focuses on sequential processing of large datasets by a single machine with a limited (sublinear)
memory. In general, if a streaming algorithm is storing only a linear sketch and uses space
O(s'79) for a fixed ¢ > 0, then it can be simulated on MPC in O(log, N) rounds (recall
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s is the local memory per machine and N is the input size); this was also observed and
mentioned in, e.g., [24]. Thus, the various recent results on streaming algorithms in high
dimension can be readily applied in MPC, and we briefly discuss the most relevant ones in
the following. We note that streaming algorithms typically assume the input is discrete, i.e.,
P C [A]? with A = poly(n).

For both k-MEDIAN [18] and k-MEANS [63], it is possible to find (1 4 €)-approximate
solution with k centers using space poly(e~1kdlog A). However, these algorithms are not
directly applicable in our setting, since to simulate these algorithms it requires local memory
size s = Q(k) which is not fully scalable. For FACILITY LOCATION, [49] gave O(dlog A)-
approximation (along with several other problems including minimum spanning tree and
matching), using space poly(dlog A). Later on, an O(d/logd)-approximation for FACIL-
ITY LOCATION was obtained using similar space poly(dlog A), and alternatively O(1/¢)-
approximation using space O(n®) [33]. However, these results for FACILITY LOCATION can
only estimate the optimal cost, as storing the solution requires linear space (which is too
costly since streaming algorithms aim to use sublinear space). Hence, simulating these results
only leads to estimating the optimal cost in MPC, while our result for FACILITY LOCATION
can indeed find an approximate solution.

MPC Algorithms for MST. A similar issue of cost estimation versus finding approximate
solutions is present also for the minimum spanning tree (MST) problem. The classical
streaming algorithm of [49] was recently improved to an O(logn)-approximation using the
same space regime poly(dlog A) [25] and to an O(1/e?)-approximation for the n® space
regime [24]. However, these results are for estimating the optimal MST cost, and it is still
open to find an O(1)-approximate solution for high-dimensional MST in O(log, n) rounds
of MPC. Indeed, the currently best MPC algorithm finds an O(1)-approximate MST in
O(loglog n) rounds [52] (using local space polynomial in n), while in O(log, n) rounds, one
can only find an O(1)-approximation in a low dimension [4] (see also [22] for an exact MST
algorithm for d = 2) or a poly(logn)-approximation in a high dimension [2]. For a related
problem of single-linkage clustering in a low dimension, there is a (1 + €)-approximation on
MPC in O(logn) rounds [65].

2 Preliminaries

For integer n, let [n] := {1,2,...,n}. For a function ¢ : X — Y, the image of a subset
S C X is defined ¢(S) = {¢(z) : x € S}, and the preimage of y € Y is defined as
¢ (y) = {x € X : p(x) = y}. A Euclidean ball centered at x € R? with radius r > 0 is
defined as B(z,r) = {y € R? : dist(z,y) < r}, where dist(z,y) := ||z —y|2 refers throughout
to Euclidean distance. For a set P C R¢, we define Bp(z,r) := B(x,r) N P, which is also a
metric ball inside P. Let diam(S) denote the diameter of S C R?. For two sequences S, T,

denote their concatenation by S o 7. The aspect ratio of a point set S C R¢ is the ratio
maxg yes dist(z,y)
’ mingzycg dist(z,y)

» Fact 2.1 (Generalized triangle inequality). Let (V, p) be a metric space, and let z > 1. Then
Vo, o',y €V, pla,y) <2771 (p%(x, 7)) + p7 ().

between the maximum and minimum inter-point distance of S, i.e.

Power-z (Uniform) Facility Location. Given a set of data points P C R%, a (uniform)
opening cost f > 0 and some z > 1, the objective function of POWER-z (UNIFORM) FACILITY
LOCATION for a set of facilities F/ C R? is defined as
,(P,F) = |F|-f+ Z dist*(p, F),
peP
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where again dist(x,y) = ||z — y||2 and dist(z, S) := minyecg dist(z, y). From now on, we omit
“uniform” from the name of the problem, and simply use POWER-z FACILITY LOCATION. We
denote the minimum value of a solution for POWER-z FACILITY LOCATION by OPT!(P) :=
minpcga fl. (P, F); we omit P if it is clear from the context.

(k, z)-Clustering. Given a set of data points P C R?, an integer k¥ > 1 and some z > 1, the
objective function of (k, z)-CLUSTERING for a center set C C R? with |C| < k is defined as

cl.(P,C) = dist*(p,C).

peP

Notice that the special cases z = 1 and z = 2 are called k-MEDIAN and k-MEANS, respect-
ively. We denote the minimum value of a solution for (k, z)-CLUSTERING by OPTY(P) :=
mingcpe|oj<k clz (P, C); we again omit P when it is clear from the context.

Consistent Hashing. As mentioned above, our MPC primitive for geometric aggregation
relies on consistent hashing. We define it below, and then state the best known bounds for
its parameters, which are near-optimal [36].

» Definition 2.2 ([33, Definition 1.6]). A mapping ¢ : R? — R< is called a T-gap A-consistent
hash with diameter bound ¢ > 0, or simply (T, A)-hash,? if it satisfies:

1. Diameter: for every image z € p(R?), we have diam(¢~1(z)) < ¢; and

2. Consistency: for every S C R* with diam(S) < £/T, we have |¢(S)| < A.

» Lemma 2.3 ([33, Theorem 5.1]). For every I' € [8,2d], there exists a (deterministic)
(T, A)-hash ¢ : RY — R where A = exp(8d/T) - O(dlogd). Furthermore, ¢ can be described
using O(d?log? d) bits and one can evaluate (x) for any point x € R? in space O(d?log? d).

» Remark 2.4. Our main results also hold under the assumption that s > polylog(dn),
which is preferable when d > logn. It follows by the well-known idea of applying a JL
transform 7 (named after Johnson and Lindenstrauss [54]) with target dimension O(logn) as
a preprocessing of the input P C R?, i.e., running our algorithm on 7(P) instead of P. Then,
with probability 1 — 1/ poly(n), all the guarantees in our results would suffer only an O(1)
factor. To implement this preprocessing in MPC using polylog(dn) words of local memory, we
use a bounded-space version of the JL transform [48], that requires only polylog(dn) words
to specify 7 (in comparison, a naive implementation of 7 requires O(dlogn) words). One
machine can randomly generate this specification of 7 and broadcast it, and then all machines
can apply 7 locally in parallel. This requires additional O(polylog(dn)) local memory and
O(log, n) rounds, and these additional costs are easily absorbed in our bounds. Hence, in all
our results we can assume without loss of generality that P is replaced by 7(P). Furthermore,
after this preprocessing, we can use d = O(logn) also in the consistent hashing bounds in
Lemma 2.3 to obtain a tradeoff I' = O(1/¢) and A = O(n®), for any desired fixed ¢ € (0, 1),
and also the hash can be described using polylog(n) bits.

3 MPC Primitive for Geometric Aggregation in High Dimension

In our MPC algorithms, we often face a scenario where we want to compute something for
each input point p € P. That computation is a relatively simple problem, like computing
the number of points in the ball Bp(p,r) for some global value r > 0. A more general

3 Note that this definition is scale invariant with respect to ¢, i.e., a scaling of R? will scale ¢ but not
affect the parameters I" and A. Thus, upper and lower bounds can restrict attention to the case £ = 1.
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version is to allow different radii r (local for each p); another generalization is to compute
some function f over the points in Bp(p, ), like finding the point with smallest identifier or
smallest distance to p. A naive approach is to collect (copies of) all the points in Bp(p,r) to
the same machine, say the one holding p, and then compute f there. This is very challenging
and our solution is to approximate these balls by generating sets Ap(p,r) ~ Bp(p,r), and
evaluate f on these sets instead of on the balls. The approximation here just means that

the set Ap(p,r) is sandwiched between a ball of radius r and one of larger radius, see (1).

Informally, we thus compute f(Ap(p,7)) ~ f(Bp(p,r)), but of course the approximation
here need not be multiplicative.

Our MPC algorithm derives these sets Ap(p, ) from consistent hashing (see Definition 2.2),
and thus our description below requires access to such a hash function ¢, and moreover
the final guarantees depend on the parameters I' and A of the consistent hashing. The
theorem below is stated in general, i.e., for any (', A)-hash, but we eventually employ known
constructions with I' = O(1/¢) and A = n®, for any desired € > 0 (see Remark 2.4 and
Lemma 2.3 for details). Obviously, running this algorithm in MPC requires an implementation
of consistent hashing, which might require additional memory; but this memory requirement
is typically much smaller than /s, and thus the hash function can be easily stored in each
machine.

Yet another challenge is that the entire set Ap(p,r) might not fit in a single machine,
and we thus impose on f another requirement. We say that a function f is composable
if for every disjoint Si,...,S; € R%, one can evaluate f(S; U---US;) from the values of
f(S1),..., f(S;).* In our context, f maps finite subsets of R? to R. For instance, f(S) = |S]
is clearly composable. For a few more interesting examples, suppose every = € R? is associated
with a value h(x) € R. Now if h(x) represents the weight of =, then f(S) =) .o h(z) is
the total weight of S; and if h(x) represents an identifier (perhaps chosen at random), then
f(S) = mingeg h(x) is the smallest identifier in S.

» Theorem 3.1 (Geometric Aggregation in MPC). There is a deterministic fully-scalable
MPC algorithm with the following guarantees. Suppose that
the input is r > 0 and a multiset P C R? of n points distributed across machines with
local memory s > poly(dlogn); and
the algorithm has access to a composable function f (mapping finite subsets of R? to R)
and to a (I',A)-hash ¢ : R — R<,
Then the algorithm uses O(log, n) rounds and O(A - poly(d)) - O(n) total space, and computes
for each p € P a value f(Ap(p,r)), where Ap(p,r) is an arbitrary set that satisfies

BP(p7r) QAP(p7r) gBP(p73FT) (1)
(In fact, the set Ap(p,r) is determined by p.)

Proof. Our algorithm makes use of the following standard subroutines in MPC, and we note
that they are deterministic. In the broadcast procedure, to send a message of length at
most /s from some machine M to every other ones, one can build an /s-ary broadcasting
tree whose nodes are the machines (with My as the root), and send/replicate the message
level-by-level through the tree (starting from the root). Observe that the height of the tree
is O(log, n) and hence the entire process runs in O(log, n) rounds. The reversed procedure
defined on the same broadcast tree, sometimes called converge-cast [39], can be used to

4 We use general t here because of our intended application, but obviously it follows from the special case
t=2.
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aggregate messages with size at most /s distributed across machines to some root machine
My (for instance, to aggregate the sum of vectors of length /s distributed across machines),
in O(log, n) rounds. In particular, it can be used to evaluate the composable function f on a
(distributed) set S, where each machine M evaluates f(Spq) for its own part Sy C S, and
aggregate using converge-cast.

» Lemma 3.2 (Sorting in MPC [41]). There is a deterministic MPC' algorithm that given
a set X of N comparable items distributed across machines with local memory s, sorts X
such that each x € X knows its rank and Vx <y € X, it holds that the machine that holds x
has an ID no larger than that of y. The algorithm uses O(log, N) rounds and total space of
O(N) words.

We give an outline of our algorithm in Algorithm 1; the implementation details in MPC
are discussed below. The algorithm starts with “partitioning” R? into buckets with respect
to the (T', A)-hash ¢, and approximates each ball B(p,r) by the union of buckets that this
ball intersects. This distorts the radius by at most an O(T')-factor. Then, we evaluate the f
value on each bucket, and the approximation to f(Bp(p,r)) is obtained by “aggregating” the
f value for the intersecting buckets of B(p, ), where the composability of f is crucially used.

Implementation Details. Here we discuss how each step of Algorithm 1 is implemented
efficiently in MPC. In line 3, since after the sorting, for each u € ¢(P) the points in P,, i.e.,
the set of points p such that u = ¢(p), span a (partial) segment of machines with contiguous
IDs, one can use a converge-cast in parallel in each segment to aggregate f(P,). In line 4,
although the total space is sufficient to hold all tuples, we may not have enough space to
store the O(A) tuples for a point p in a single machine. Instead, we allocate for every point
p a (partial) segment of machines whose total space is O(A) (which can be figured out via
sorting), replicate p’s to them (via broadcast), and generate p(B(p,r)) in parallel on those
machines. Specifically, each machine in the segment is responsible for generating a part of
©(B(p,r)), and a part can be generated locally without further communication since every
machine holds the same deterministic ¢. Line 6 and line 7 can be implemented similarly by
broadcast and converge-cast, respectively, in parallel on each segment of machines.

Algorithm 1 MPC algorithm for evaluating f(Ap(p,r)) for p € P, for given P C R, r > 0.

1: each machine imposes the same (I', A)-hash ¢ : RY — R? with diameter bound ¢ := 2I'r
> notice that ¢ is deterministic, hence no communication is required
2: sort P with respect to ¢(p) for p € P (using Lemma 3.2)
3: for u € p(P), evaluate and store f(P,) where P, := ¢~ (u) N P
4: for each p € P and u € ¢(B(p,r)), create and store a tuple (p, u)
> as |o(B(p,r))| = O(A) by Definition 2.2, the total space is enough to hold all
tuples
5: sort the tuples with respect to u (using Lemma 3.2)
6: let T, = {(-,u)}, append f(P,) to all tuples in Ty,
> f(P,) is already evaluated and stored, as in line 3
7: sort the tuples with respect to p, and evaluate f(Ap(p,r)) for each p, where

Ap(p,r) = U P,

u€p(B(p,r))
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Round Complexity and Total Space. The round complexity is dominated by the sorting,
broadcast and converge-cast procedures, which all take O(log, n) rounds to finish and are
invoked O(1) times in total. Therefore, the algorithm runs in O(log, n) rounds. The total
space is asymptotically dominated by poly(dlogn) times the total number of tuples, which
is O(A) - n by Definition 2.2.

Correctness. Observe that the algorithm is deterministic, and hence there is no failure

probability. It remains to show that Ap(p,r) satisfies that Bp(p,r) C Ap(p,r) C Bp(p,3I'r).

Recall that P, = ¢~ !(u) N P as defined in line 3, and that Ap(p,r) = Unep(B(p,r) Pu as in
line 7. Hence, we have

Ap(p,r) = PN~ (o(B(p,r))).

Therefore, the first inequality is straightforward as Bp(p,7) C ¢~ (p(B(p,r)))NP = Ap(p,7)
for any mapping .

To prove the second inequality, fix some p € P. For a point ¢ € Ap(p,r), by definition
there is a u; € p(Bp(p,r)) such that ¢ € ¢~ '(u,). Then by Definition 2.2, we have

diam (¢~ (ug)) < € = 2I'r which implies that any point « € ¢~ (u,) satisfies dist(z, q) < 2I'r.
Now, pick a point & € Bp(p,r) such that ¢(z) = ug; such a point exists as uq € p(Bp(p,r)).

Then by definition, € Bp(p,r) N ¢~ (u,) and dist(p, z) < r. Hence, by triangle inequality,
we have that dist(p,q) < dist(p,x) + dist(x,q) < r + 2I'r < 3I'r, which implies that
Ap(p,7) C Bp(p,3T'r). This finishes the proof. <

3.1 Application to Nearest Neighbor Search

Given a set X C R of terminals and a set P C R? of data points, the p-approximate
nearest neighbor search problem asks to find for every p € P a terminal z € X, such
that dist(p,z) < p - dist(p, X). This process is useful in clustering and facility location
problems, since one can find an assignment of every data point to its approximately nearest
center/facility. We show how to solve this problem using Theorem 3.1, provided the knowledge
of the aspect ratio A of X U P.

Pick an arbitrary point € X U P, compute in O(log, n) rounds the maximum distance

M := maxyc xyup dist(z,y) from z to every other point (via broadcast and converge-cast).

Since M is a 2-approximation to diam(X U P), we conclude that for every z £y € X U P,
M/A < dist(z,y) < 2M. Rescale the instance by dividing M/A, then the distances are
between 1 and O(A). Then, let Z := {2¢ : 1 < 2! < O(A)}. We apply Theorem 3.1 in
parallel for r € Z and f such that f(Y) for Y C X finds the terminal with the smallest ID
in Y (where the ID of a point can be defined arbitrarily as long as it is consistent), and f
returns L if Y = (). This f is clearly composable. After we obtain the result of Theorem 3.1,
ie., f(Ax(p,r)) for p € P and r € Z, we find in parallel for each p € P the smallest r € Z
such that f(Ax(p,r)) # L. This way, we explicitly get for each point p an approximately
nearest facility in X. This algorithm has approximation factor p = O(T"), using total space
by an O(log A)-factor larger than that of Theorem 3.1, while the round complexity remains
O(log, n).

We remark that techniques based on locality sensitive hashing (LSH) can also be applied
in MPC to solve the approximate nearest neighbor problem [13, 28]. LSH in fact achieves a
slightly better tradeoff, namely, an O(c)-approximation using total space n'/ . O(n), while
our approach requires total space n'/¢
dimension reduction in Remark 2.4 is performed. Alternatively, if d < O(logn), one can

-O(n), by plugging in Lemma 2.3 and assuming the
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obtain the same n'/c - O(n) bound without applying the randomized dimension reduction in

Remark 2.4, which leads to a deterministic algorithm, whereas approaches based on LSH are
inherently randomized.
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