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Abstract
This paper considers correlation clustering on unweighted complete graphs. We give a combinatorial
algorithm that returns a single clustering solution that is simultaneously O(1)-approximate for
all ℓp-norms of the disagreement vector; in other words, a combinatorial O(1)-approximation of
the all-norms objective for correlation clustering. This is the first proof that minimal sacrifice is
needed in order to optimize different norms of the disagreement vector. In addition, our algorithm
is the first combinatorial approximation algorithm for the ℓ2-norm objective, and more generally the
first combinatorial algorithm for the ℓp-norm objective when 1 < p < ∞. It is also faster than all
previous algorithms that minimize the ℓp-norm of the disagreement vector, with run-time O(nω),
where O(nω) is the time for matrix multiplication on n × n matrices. When the maximum positive
degree in the graph is at most ∆, this can be improved to a run-time of O(n∆2 log n).
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1 Introduction

Correlation clustering is one of the most prominent problems in clustering, as it cleanly
models community detection problems [38, 36] and provides a way to decompose complex
network structures [39, 32]. The input to the unweighted correlation clustering problem is
a complete graph G = (V, E), where |V | = n and each edge e ∈ E is labeled positive (+)
or negative (−). If the edge (u, v) is positive, this indicates that u and v are similar, and
analogously if the edge (u, v) is negative, this indicates that u and v are dissimilar. The
output of the problem is a partition of the vertex set into parts C1, C2, . . ., where each part
represents a cluster.
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52:2 Simultaneously Approximating All ℓp-Norms in Correlation Clustering

The output should cluster similar vertices together and separate dissimilar vertices.
Specifically, for a fixed clustering (i.e., partition of the vertices), a positive edge (u, v) is
a disagreement with respect to the clustering if u and v are in different clusters and an
agreement if u and v are in the same cluster. Similarly, a negative edge (u, v) is a disagreement
with respect to the clustering if u and v are in the same cluster and an agreement if u and
v are in different clusters. The goal is to find a clustering that minimizes some objective
that is a function of the disagreements.1 For example, the most commonly studied objective
minimizes the total number of disagreements.

As an easy example to illustrate the problem, consider a social network. Every pair of
people has an edge between them, and the edge is positive if the two people have ever met
before, and negative otherwise. The goal of correlation clustering translates to partitioning all
the people into clusters so that people are in the same cluster as their friends/acquaintances
and in different clusters than strangers. The difficulty in constructing a clustering is that
the labels may not be consistent, making disagreements unavoidable. Consider in the social
network what happens when there is one person with two friends who have never met each
other (u, v, w with (u, v) and (u, w) positive but (v, w) negative). The choice of objective
matters in determining the best clustering.

For a given clustering C, let yC(u) denote the number of edges incident to u that are
disagreements with respect to C (we drop C and write y when it is clear from context). The
most commonly considered objectives are ∥yC∥p = p

√∑
u∈V yC(u)p for p ∈ R≥1 ∪ {∞}, the

ℓp-norms of the disagreement vector y. Note that the optimal objective values may drastically
vary for different norms too. (For instance, in the example in Appendix A of [35], V = A⊔B2,
where |A| = |B| = n/2, and all edges are positive except for a negative matching between A

and B. The optimal ℓ∞-norm objective value is 1 whereas the optimal for ℓ1 is Θ(n).) When
p = 1, this objective minimizes the total number of disagreements. Setting p = ∞ minimizes
the maximum number of disagreements incident to any node, ensuring a type of worst-case
fairness.3 Balancing these two extremes – average welfare on one hand and fairness on the
other – is the ℓ2-norm, which minimizes the variance of the disagreements at each node.

Correlation clustering was proposed by Bansal, Blum, and Chawla [7] with the objective of
minimizing the ℓ1-norm of the disagreement vector. The problem is NP-hard and several ap-
proximation algorithms have been proposed [7, 4, 16, 18]. Puleo and Milenkovic [35] proposed
studying ℓp-norms of the disagreement vector for p > 1, and they give a 48-approximation for
any fixed p. Charikar, Gupta, and Schwartz [15] introduced an improved 7-approximation,
which Kalhan, Makarychev, and Zhou [29] further improved to a 5-approximation. When
p > 1, up until recently, the only strategies were LP or SDP rounding, and it has been of
interest to develop fast combinatorial algorithms [37]. Davies, Moseley, and Newman [19]
introduced a combinatorial O(1)-approximation algorithm for p = ∞ (see also [25] for a
different combinatorial algorithm), and leave open the question of discovering a combinatorial
O(1)-approximation algorithm for 1 < p < ∞.

In all prior work, solutions obtained for ℓp-norms are tailored to each norm (i.e., p is
part of the input to the algorithm), and it was not well-understood what the trade-offs were
between solutions that optimize different norms. Solutions naively optimizing one norm can
be arbitrarily bad for other norms (see Figure 1). A natural question is whether this loss
from using a solution to one objective for another is avoidable. More specifically:

1 Note that the sizes and number of clusters are unspecified.
2 ⊔ denotes disjoint union.
3 In the social network example, minimizing the ℓ1-norm corresponds to finding a clustering that minimizes

the total number of friends who are separated plus the total number of strangers who are in the same
cluster. The ℓ∞-norm corresponds to finding a clustering minimizing the number of friends any person
is separated from plus the number of strangers in that person’s same cluster.
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Figure 1 Two clusterings of the star graph, which has one node (w) with positive edges to all
nodes, and the rest of the edges negative. Left: Clustering assigns all nodes to one (blue) cluster,
and is (almost) optimal for the ℓ∞-norm with cost Θ(n). Right: Clustering assigns all nodes to
different clusters and is (almost) optimal for the ℓ1-norm with cost Θ(n). The left solution is terrible
for the ℓ1-norm, as the negative clique has Θ(n2) edges that are disagreements.

For any graph input to unweighted, complete correlation clustering, does there exist a
partition (clustering) that is simultaneously O(1)-approximate for all ℓp-norm objectives?

Phrased another way, does there exist a universal algorithm for ℓp-norm correlation
clustering – one which is guaranteed to produce a solution that well-approximates many
objectives at once? When the goal is to simultaneously optimize every ℓp-norm, this is known
as the all-norms objective.4 Universal algorithms and the all-norms objective are well-studied
in combinatorial optimization problems, such as load balancing and set cover (see Section 1.2
for more discussion). In the context of correlation clustering, such an algorithm outputs a
partition that has good global performance (i.e. ℓ1-norm) and also has no individual node
with too many adjacent disagreements (i.e. ℓ∞-norm). Universal algorithms exist for some
problems and are provably impossible for others. The question looms, what can be said
about universal algorithms for correlation clustering?

As far as we are aware, there are no known results for the all-norms objective in other
clustering problems. In fact, for the popular k-median and k-center problems, it is ac-
tually impossible to O(1)-approximate (or even o(

√
n)-approximate) these two objectives

simultaneously [5].

1.1 Results

This paper is focused on optimizing all ℓp-norms (p ≥ 1) for correlation clustering at the
same time. The main result of the paper answers the previous question positively: perhaps
surprisingly, there is a single clustering that simultaneously O(1)-approximates the optimal
for all ℓp-norms. Further, it can be found through an efficient combinatorial algorithm. This
is also the first known combinatorial approximation algorithm for the ℓ2-norm objective and
more generally ℓp-norm objective for fixed 2 ≤ p < ∞.

In what follows, let O(nω) denote the run-time of n × n matrix multiplication.

▶ Theorem 1. Let G = (V, E) be an instance of unweighted, complete correlation clustering
on |V | = n nodes. There exists a combinatorial algorithm returning a single clustering that
is simultaneously an O(1)-approximation5 for all ℓp-norm objectives, for all p ∈ R≥1 ∪ {∞},
and its run-time is O(nω).

4 In some of the literature, for instance that of Golovin et al. [24], it is called the all-ℓp-norms objective.
5 Note this is independent of p.
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The algorithm gives the fastest run-time of any O(1)-approximation algorithm for the
ℓp-norm objective when p ∈ R>1. Further, the run-time can be improved when the positive
degree of the graph is bounded, as shown in the following corollary.

▶ Corollary 2. Let ∆ denote the maximum positive degree in an instance G = (V, E) of
unweighted, complete correlation clustering on |V | = n nodes. Suppose G is given as an
adjacency list representation of its positive edges. There exists a combinatorial algorithm
returning a single clustering that is simultaneously an O(1)-approximation for all ℓp-norm
objectives, for all p ∈ R≥1 ∪ {∞}, and its run-time is O(n∆2 log n).

The run-time of the algorithm matches the fastest known algorithm for the ℓ∞-norm
objective [19], in both the general case and when the maximum positive degree is bounded.
The best-known algorithm before our work relied on solving a convex relaxation on |V |2
variables and |V |3 constraints. We improve the run-time by avoiding this bottleneck.

In the setting when the positive edges form a regular graph, the interested reader may
also find a clean proof (which is much simpler than that of Theorem 1) in Section 3 showing
there is a solution that is simultaneously O(1)-approximate for the ℓ1-norm and ℓ∞-norm
objectives.

1.2 Related work

Correlation clustering was introduced by Bansal, Blum, and Chawla [7]. The version they
introduced also studies the problem on unweighted, complete graphs, but is concerned with
minimizing the ℓ1-norm of the disagreement vector. For this problem, Ailon, Charikar, and
Newman [4] designed the Pivot algorithm, which is a randomized algorithm that in expectation
obtains a 3-approximation. While we know algorithms with better approximations for ℓ1
correlation clustering than Pivot [16, 18], the algorithm remains a baseline in correlation
clustering due to its simplicity. (However, Pivot can perform arbitrarily badly – i.e., give Ω(n)
approximation ratios – for other ℓp-norms; see again the example in Appendix A of [35].) It
is an active area of research to develop algorithms for the ℓ1-norm that focus on practical
scalability [11, 17, 33, 36, 14]. Correlation clustering has also been studied on non-complete,
weighted graphs [15, 29], with conditions on the cluster sizes [34], and with asymmetric errors
[26]. In fact, in recent work Veldt [37] highlighted the need for deterministic techniques
in correlation clustering that do not use linear programming. Much interest in correlation
clustering stems from its connections to applications, including community detection, natural
language processing, location area planning, and gene expression [38, 36, 39, 32, 9, 21].

Puleo and Milenkovic [35] introduced correlation clustering with the goal of minimizing
the ℓp-norm of the disagreement vector. They show that even for minimizing the ℓ∞-norm on
complete, unweighted graphs, the problem is NP-hard (Appendix C in [35]). Several groups
found O(1)-approximation algorithms for minimizing the ℓp-norm on complete, unweighted
graphs [35, 15, 29], the best of which is currently the 5-approximation of Kalhan, Makarychev,
and Zhou [29]. Many other interesting objectives for correlation clustering focus on finding
solutions that are (in some sense) fair or locally desirable [3, 8, 1, 22, 27, 2]. All of these
previous works that study general ℓp-norms or other notions of fairness or locality rely on
solving a convex relaxation. This has two downsides: (1) the run-time of the algorithms are
bottle-necked by the time it takes to solve the relaxation with at least Ω(n2) many variables
and Ω(n3) constraints; in fact, it is time-consuming to even enumerate the Ω(n2) variables
and Ω(n3) constraints; and (2) the solution is only guaranteed to be good for one particular
value of p.



S. Davies, B. Moseley, and H. Newman 52:5

Several problems have been studied with the goal of finding a solution that is a good
approximation for several objectives simultaneously. The all-norms objective was introduced
by Azar et al. [6], where the goal is to design a ρ-approximation algorithm for all ℓp-norm
objectives of a problem. They originally introduced the objective for the restricted assignment
load balancing problem and showed an all-norms 2-approximation. Further follow-up on
the all-norms objective has been done for load balancing [30, 10, 31], and for set cover [24].
The term “universal” algorithm has also been used for Steiner tree [12, 13], TSP [28], and
clustering [23], though in these settings the goal is different, namely, to find a solution that
is good for any potential input; e.g., in Universal Steiner Tree, the goal is to find a spanning
tree where for any set of terminals, the sub-tree connecting the root to the terminals is a
good approximation of the optimal.

2 Preliminaries

We will introduce notation, and then we will discuss two relevant works – the papers by
Kalhan, Makarychev, and Zhou [29] and Davies, Moseley, and Newman [19].

2.1 Notation
Recall our input to the correlation clustering problem is G = (V, E), an unweighted, complete
graph on n vertices, and every edge is assigned a label of either positive (+) or negative (−).
Let the set of positive edges be denoted E+ and the set of negative edges E−. Then, we can
define the positive neighborhood and negative neighborhood of a vertex u as N+

u = {v ∈ V |
(u, v) ∈ E+} and N−

u = {v ∈ V | (u, v) ∈ E−}, respectively. We further assume without loss
of generality that every vertex has a positive self-loop to itself.

A clustering C is a partition of V into clusters C1, . . . , Ck (but recall that k is not pre-
specified). Let C(u) denote the cluster that vertex u is in, i.e., if C has k clusters, there
exists exactly one i ∈ [k] such that C(u) = Ci. It is also helpful to consider the vertices in a
different cluster than u, and so we let C(u) = V \ C(u) denote this. We say that a positive
edge e = (u, v) ∈ E+ is a disagreement with respect to C if v ∈ C(u). On the other hand, we
say that a negative edge e = (u, v) ∈ E− is a disagreement with respect to C if v ∈ C(u). For
a fixed clustering C, we denote the disagreement vector of C as yC ∈ Zn

≥0, where for u ∈ V ,
yC(u) is the number of edges incident to u that are disagreements with respect to C. We
omit the subscript throughout the proofs when a clustering is clear.

Throughout, we let OPT be the optimal objective value, and the ℓp-norm to which it
corresponds will be clear from context. The next fact follows from the definitions seen so far
(recalling also the positive self-loops).

▶ Fact 3. For any u, v ∈ V , n = |N+
u ∩ N+

v | + |N−
u ∩ N−

v | + |N+
u ∩ N−

v | + |N−
u ∩ N+

v |.

2.2 Summary of work by Kalhan, Makarychev, and Zhou
The standard linear program relaxation for correlation clustering is given in (P) below.6 In
the integer LP, the variable xuv indicates whether vertices u and v will be in the same cluster
(0 for yes, 1 for no), and the disagreement vector is y; the optimal solution to the integer LP
has value OPT, while the optimal solution to the relaxation gives a lower bound on OPT.
Note the triangle inequality is enforced on all triples of vertices, inducing a semi-metric space

6 Technically this is a convex program as the objective is convex; we say LP as the constraints are linear.

ICALP 2024
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on V . Throughout this paper, as in [19], we refer to the algorithm by Kalhan, Makarychev,
and Zhou as the KMZ algorithm. The KMZ algorithm has two phases: it solves (P), and then
uses the KMZ rounding algorithm to obtain an integral assignment of vertices to clusters. At
a high-level, the KMZ rounding algorithm is an iterative, ball-growing algorithm that uses
the semi-metric to guide its choices. Their algorithm is a 5-approximation, and produces
different clusterings for different p, since the optimal solution x∗ to (P) depends on p.

min ∥y∥p

s.t. yu =
∑

v∈N+
u

xuv +
∑

v∈N−
u

(1 − xuv) ∀u ∈ V (P)

xuv ≤ xuw + xvw ∀u, v, w ∈ V

0 ≤ xuv ≤ 1 ∀u, v ∈ V.

▶ Definition 4. Let f be a semi-metric on V , i.e., taking x = f gives a feasible solution to
(P). The fractional cost of f in the ℓp-norm objective is the value of (P) that results from
setting x = f . When p is clear from context, we will simply call this the fractional cost of f .

2.3 Summary of work by Davies, Moseley, and Newman

The main take-away from the work of Kalhan, Makarychev, and Zhou [29] is that one only
requires a semi-metric on the set of vertices, whose cost is comparable to the cost of an optimal
solution, as input to the KMZ rounding algorithm. Thus, the insight of Davies, Moseley, and
Newman [19] for the ℓ∞-norm objective is that one can combinatorially construct such a
semi-metric without solving an LP, and at small loss in the quality of the fractional solution.
They do this by introducing the correlation metric.

▶ Definition 5 ([19]). For all u, v ∈ V , the correlation metric defines the distance between u

and v as

duv = 1 − |N+
u ∩ N+

v |
|N+

u ∪ N+
v |

= |N+
u ∩ N−

v | + |N−
u ∩ N+

v |
|N+

u ∩ N+
v | + |N+

u ∩ N−
v | + |N−

u ∩ N+
v |

.

Note that the rewrite in the second equality is apparent from Fact 3.
The correlation metric captures useful information succinctly. Intuitively, if u and v

have relatively large positive intersection, i.e., N+
u ∩ N+

v is large compared to their other
relevant joint neighborhoods (N+

u ∩ N−
v ) ∪ (N−

u ∩ N+
v ), then from the perspective of u and

v, fewer disagreements are incurred by putting u and v in the same cluster than by putting
them in different clusters. This is because if u and v are in the same cluster, then they
have disagreements on edges (u, w) and (v, w) for w ∈ (N+

u ∩ N−
v ) ∪ (N−

u ∩ N+
v ), but if they

are in different clusters, then u and v have disagreements on edges (u, w) and (v, w) for
w ∈ N+

u ∩ N+
v . For more on intuition behind the correlation metric, see Section 2 in [19].

Davies, Moseley, and Newman [19] prove that the correlation metric d can be used as
input to the KMZ rounding algorithm by showing that (1) d satisfies the triangle inequality
and (2) the fractional cost of d in the ℓ∞-norm (recall Definition 4) is no more than 8 times
the value of the optimal integral solution (OPT). Since the KMZ rounding algorithm loses a
factor of at most 5, inputting d to that algorithm returns a 40-approximation algorithm. A
benefit of the correlation metric is that it can be computed in time O(nω), and even faster
when the subgraph on positive edges is sparse.
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2.4 Technical overview
It is not hard to see that the correlation metric cannot be used as input to the KMZ algorithm
for ℓp-norms other than p = ∞, as one cannot bound the fractional cost of the correlation
metric against the optimal with only an O(1)-factor loss. To see why, consider the star again,
as in Figure 1. Here, for all u, v ∈ {v1, . . . , vn−1}, duv = 1 − 1/(n − (n − 3)) = 2/3, but for
the ℓ1-norm, we need the semi-metric to have the value 1 − duv be close to 0, i.e. O(1/n),
for such u, v, in order for the fractional cost to be comparable to the value of OPT for p = 1.

There are several possible fixes one could try to make to the correlation metric. One idea is
that since one can interpret the correlation metric as a coarse approximation of the probability
the Pivot algorithm7 separates u and v, one could try to adapt the correlation metric to
more accurately approximate this probability.8 Another idea, inspired by an observation
below, is that one could define a semi-metric for edges in E+ and another semi-metric for
edges in E−, but then there is the difficulty of showing the triangle inequality holds when
positive and negative edges are mixed. Both of these ideas were, for us, unsuccessful.

Instead, the following two observations of how the correlation metric works with respect
to the ℓ1-norm led us to an effective adaptation:
1. One can bound the fractional cost, restricted to positive edges, of the correlation metric in

the ℓ1-norm by an O(1)-factor times the optimal solution’s cost (see Claim 1 in Appendix
C of the full version [20]). Negative edges still pose a challenge.

2. If the subgraph of positive edges is regular, then we can actually bound the fractional
cost of the correlation metric in the ℓ1-norm on negative edges as well.9 See Section 3.

These observations led us to ask whether some adjustments to the correlation metric
might yield a semi-metric with bounded fractional cost in the ℓ1-norm or even the ℓp-norm
more generally (while still remaining bounded in the ℓ∞-norm). Moreover, since the KMZ
rounding algorithm does not depend on p (whereas in the KMZ algorithm, the solution to the
LP does depend on p), inputting the same semi-metric to the rounding algorithm produces
the same clustering for all ℓp-norms!

We are ready to define the adjusted correlation metric. Let ∆u denote the positive degree
of u (the degree of u in the subgraph of positive edges).

▶ Definition 6. Define the adjusted correlation metric f : E → [0, 1] as follows:
1. For d the correlation metric, i.e., duv = 1 − |N+

u ∩N+
v |

|N+
u ∪N+

v | , initially set f = d.
2. If e ∈ E− and de > 0.7, set fe = 1 (round up).
3. For u ∈ V such that |N−

u ∩ {v : duv ≤ 0.7}| ≥ 10
3 ∆u, set fuv = 1 for all v ∈ V \ {u}.

The idea in Step 3 is that if the fractional cost of negative edges incident to u is sufficiently
large, we instead trade this for the cost of positive disagreements, as the rounding algorithm
will now put u in its own cluster. For the ℓ∞-norm, this trade-off is innocuous. For ℓp-norms
in general, a refined charging argument is needed to show that post-processing d in this way
sufficiently curbs the (too large) fractional cost of d.

In Section 3, we start with a warm-up exercise and show that if the graph on positive
edges is regular, then the (original) correlation metric d has O(1)-approximate fractional
cost. Note this section is not necessary to understanding the rest of the paper, but we

7 Pivot operates as follows: Choose a random unclustered u ∈ V . Take u and all its unclustered positive
neighbors and let this be the newest cluster. Continue until all vertices in V are clustered.

8 If in (P), xuv is set exactly to the probability that u and v are separated by Pivot, then x will be a
feasible solution with cost at most 3OPT. However, this probability seems difficult to express in closed
form, even approximately.

9 In contrast, one cannot bound the fractional cost of the correlation metric on the star (Figure 1).

ICALP 2024



52:8 Simultaneously Approximating All ℓp-Norms in Correlation Clustering

include it in the main body because we find the proof here is clean and lends insight into
the challenges for the irregular case. The main technical result of the paper is Section 4,
where we prove Theorem 1 by showing that the adjusted correlation metric can be input to
the KMZ rounding algorithm. Namely, we will first show (quite easily) that the adjusted
correlation metric satisfies an approximate triangle inequality. Then, it remains to upper
bound the fractional cost of the adjusted correlation metric against OPT. We tackle this with
a combinatorial charging argument. This argument leverages a somewhat different approach
from that used in [19] and is simpler than their proof for only the ℓ∞-norm. The constant
approximation factor obtained from inputting the adjusted correlation metric to the KMZ
rounding algorithm is bounded above (and below) by universal constants for all p (this is the
worst case and one can get better constants for each p).

3 A Special Case: Regular Graphs

In general, the original correlation metric d (Definition 5) does not necessarily have bounded
fractional cost for the ℓ1-norm objective (or more generally for ℓp-norm objectives). So, we
use the adjusted correlation metric f (Definition 6) as input to the KMZ rounding algorithm.
In this section, we show that if the subgraph of positive edges is regular, then the correlation
metric d can be used as is (i.e., without the adjustments in Steps 2 and 3 of Definition 6) to
yield a clustering that is constant approximate for the ℓ1-norm and ℓ∞-norm simultaneously:

▶ Theorem 7. Let G = (V, E) be an instance of unweighted, complete correlation clustering,
and let E+ denote the set of positive edges. Suppose that the subgraph induced by E+ is
regular. The fractional cost of d in the ℓ1-norm objective is within a constant factor of OPT:∑

u∈V

∑
v∈N+

u

duv +
∑
u∈V

∑
v∈N−

u

(1 − duv) = O(OPT).

Therefore, the clustering produced by inputting d to the KMZ rounding algorithm is a constant-
factor approximation simultaneously for the ℓ1-norm and ℓ∞-norm objectives.

Proof. Let ∆ be the (common) degree of the positive subgraph. To show that the fractional
cost of d in the ℓ1-norm objective is O(OPT) for regular graphs, we will use a dual fitting
argument. The LP relaxation we consider is from [4], which uses a dual fitting argument
to show constant approximation guarantees for Pivot (although the proof here does not
otherwise resemble the proof for Pivot). The primal is given by

min
{∑

e∈E

xe | xij + xjk + xki ≥ 1, ∀ijk ∈ T , x ≥ 0
}

(P ′)

where T is the set of bad triangles (i.e. triangles with exactly two positive edges and one
negative edge). For x ∈ {0, 1}|E|, x corresponds to disagreements in a clustering: we set
xe = 1 if e is a disagreement and xe = 0 otherwise. The constraints state that every clustering
must make a disagreement on every bad triangle. Thus, (P ′) is a relaxation for the ℓ1-norm
objective. In fact, we will prove the stronger statement that the fractional cost is O(OPTP ′),
where OPTP ′ is the optimal objective value of (P ′).

The dual is given by

max
{ ∑

T ∈T
yT |

∑
T ∈T :T ∋e

yT ≤ 1, ∀e ∈ E, y ≥ 0
}

. (D′)



S. Davies, B. Moseley, and H. Newman 52:9

We show that by setting yT = 1
2∆ for all T ∈ T , y satisfies the following properties:

1. y is feasible in (D′).
2. The fractional cost of d is at most 6 ·

∑
T ∈T yT .

Letting OPTD′ be the optimal objective value of (D′), we have 6 ·
∑

T ∈T yT ≤ 6 ·OPTD′ =
6 · OPTP ′ ≤ 6 · OPT, which will conclude the proof.

To prove feasibility, we case on whether e is positive or negative.
If e ∈ E−, then |{T ∈ T : T ∋ e}| = |N+

u ∩ N+
v | ≤ ∆, where equality is by the definition

of a bad triangle. So
∑

T ∈T :T ∋e yT ≤ ∆
2∆ ≤ 1.

If e ∈ E+, then |{T : T ∋ e}| = |(N+
u ∩ N−

v ) ∪ (N−
u ∩ N+

v )| ≤ 2∆. We conclude y is
feasible, since

∑
T ∈T :T ∋e yT ≤ 2∆

2∆ = 1.

Now we need to show that the fractional cost of d is bounded in terms of the objective
value of (D′). First we bound the fractional cost of the negative edges:∑

(u,v)∈E−

(1 − duv) ≤
∑

(u,v)∈E−

|N+
u ∩ N+

v |/∆ =
∑

e∈E−

∑
T ∈T :T ∋e

1/∆ =
∑

e∈E−

∑
T ∈T :T ∋e

2yT ,

where in the first inequality we have used that |N+
u ∪N+

v | ≥ ∆. Next we bound the fractional
cost of the positive edges:∑

(u,v)∈E+

duv ≤
∑

(u,v)∈E+

(|N+
u ∩ N−

v | + |N−
u ∩ N+

v |)/∆ =
∑

e∈E+

∑
T ∈T :T ∋e

1/∆ =
∑

e∈E+

∑
T ∈T :T ∋e

2yT .

So the total fractional cost is bounded by
∑

e∈E

∑
T ∈T :T ∋e 2yT = 6 ·

∑
T ∈T yT , since each

triangle contains three edges. This is what we sought to show. Since the fractional cost of d

is bounded for the ℓ1-norm objective (and the ℓ∞-norm objective by [19]), using d as input
to KMZ rounding algorithm produces a clustering that is simultaneously O(1)-approximate
for the ℓ1- and ℓ∞-norm objectives. ◀

4 Proof of Theorem 1

The goal of this section is to prove Theorem 1 and the subsequent Corollary 2. We begin by
outlining that the adjusted correlation metric satisfies an approximate triangle inequality
in Subsection 4.1. Then in Subsection 4.2, we prove the fractional cost of the adjusted
correlation metric in any ℓp-norm objective is an O(1) factor away from the optimal solution’s
value. We tie it all together to prove Theorem 1 and Corollary 2 in Subsection 4.3.

We start with an easy but key proposition. Loosely, it states that if two vertices are close
to each other according to d, then they have a large shared positive neighborhood.

▶ Proposition 8. Fix vertices u, v ∈ V and a clustering C on V such that duv ≤ 0.7 and
|N+

u ∩ C(u)| / |N+
u | ≥ 0.85. Then |N+

u ∩ N+
v ∩ C(u)| ≥ 0.15 · |N+

u |.

4.1 Triangle inequality
Recall that the correlation metric d satisfies the triangle inequality (see Section 4.2 in [19]). We
will show that the adjusted correlation metric f satisfies an approximate triangle inequality,
which is sufficient for the KMZ rounding algorithm. Formally, we say that a function g is
a δ-semi-metric on some set S if it is a semi-metric on S, except instead of satisfying the
triangle inequality, g satisfies g(u, v) ≤ δ · (g(u, w) + g(v, w)) for all u, v, w ∈ S.

▶ Lemma 9 (Triangle Inequality). The adjusted correlation metric f is a 10
7 -semi-metric.

ICALP 2024
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The proof of Lemma 9 is straightforward given that d satisfies the triangle inequality.
Lemma 3 in [19] proves that one can input a semi-metric that satisfies an approximate

triangle inequality (instead of the exact triangle inequality) to the KMZ rounding algorithm
(with some loss in the approximation factor). We summarize the main take-away below.

▶ Lemma 10 ([19]). If g is a δ-semi-metric on the set V , instead of a true semi-metric (i.e.,
1-semi-metric), then the KMZ algorithm loses a factor of 1 + δ + δ2 + δ3 + δ4.10

Since we show in Lemma 9 that f is a 10
7 -semi-metric, we lose a factor of 12 in inputting f

to the KMZ algorithm (along with the factor loss from the fractional cost).

4.2 Bounding the fractional cost of ℓp-norms
This section bounds the fractional cost of the adjusted correlation metric for the ℓp-norms.
The following lemma considers the case where p = ∞. The general case is handled after.

▶ Lemma 11. The fractional cost of the adjusted correlation metric f in the ℓ∞-norm
objective is at most 56 · OPT, where OPT is the cost of the optimal integral solution.

The lemma follows from the fact that the fractional cost of the correlation metric d in
the ℓ∞-norm is known to be bounded by [19], and that it only decreases when d is replaced
by f due to Definition 6. See Appendix B in the full version [20] for a proof.

We use two primary lemmas – one for the positive edge fractional cost and one for the
negative edge fractional cost – to show that the adjusted correlation metric well approximates
the optimal for general ℓp-norms.

▶ Lemma 12. The fractional cost of the adjusted correlation metric f in the ℓp-norm objective
is a constant factor (independent of p) away from the cost of the optimal integral ℓp solution.

Proof. Let y be the disagreement vector for an optimal clustering C in the ℓp-norm, for
any p ∈ R≥1 ∪ {∞}. When p = ∞, see Lemma 11. For p ∈ R≥1, by definition OPTp =∑

w∈V (y(w))p, and the pth power of the fractional cost of f is given by

cost(f)p =
∑
u∈V

 ∑
v∈N+

u

fuv +
∑

v∈N−
u

(1 − fuv)

p

.

Observe that cost(f)p ≤ 2p
∑
u∈V

( ∑
v∈N+

u

fuv

)p

︸ ︷︷ ︸
(S+)p

+2p
∑
u∈V

( ∑
v∈N−

u

(1 − fuv)
)p

︸ ︷︷ ︸
(S−)p

.

We refer to bounding (S+)p as bounding the fractional cost of the positive edges, and
likewise (S−)p for the negative edges. The first sum, (S+)p, is bounded in Lemma 13 and
the second sum, (S−)p, is bounded in Lemma 16. Using those two bounds, together we
have cost(f) ≤ [2p((S+)p + (S−)p)]1/p ≤ 529, for p ∈ [1, ∞). Specifically, the middle term is
maximized at p = 1, giving the bound of 529, and tends to below 214 as p → ∞. (A more
tailored analysis gives a constant of 74 for p = 1; see Appendix C in the full version [20].) ◀

We note that, as our main interest is determining whether a simultaneous constant ap-
proximation is even possible (and a combinatorial one, at that), we did not pay particular
attention to optimizing constants, but suspect these could be greatly reduced.

10 When δ = 1, this factor equals 5, which is the loss in the KMZ algorithm.
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4.2.1 Fractional cost of positive edges in ℓp-norms

We first bound the fractional cost of the positive edges.

▶ Lemma 13. For p ∈ R≥1, the fractional cost of the adjusted correlation metric f in the
ℓp-norm objective for the set of positive edges is a constant factor approximation to the
optimal, i.e.,

(S+)p =
∑
u∈V

( ∑
v∈N+

u

fuv

)p

≤ 2p · [(8p/2 + 1)((20/3)p + 2 + 2 · 4p) + 8p + 1] · OPTp.

One of the challenges in bounding the cost of f is that disagreements in the ℓp-norm
objective for p ̸= 1 are asymmetric, in that a disagreeing edge charges y(u) and y(v) (whereas
for p = 1 we can just sum the number of disagreeing edges). Step 3 rounds up the edges
incident to u when the tradeoff is good from u’s perspective. However, an edge (u, v) may be
rounded up to 1 when this tradeoff is good from v’s perspective, but not from u’s perspective.
The high-level idea for why this is fine is that if u and v are close under d, their positive
neighborhoods overlap significantly and, in some average sense, u can charge to v. Proving
this requires a double counting argument using a bipartite auxiliary graph. If u and v are far
under d, on the other hand, we can charge to the cost of the correlation metric, which will
be bounded on an appropriate subgraph. The second challenge is showing that the ℓp-norm
of the disagreement vector, restricted to vertices u that are made singletons in Step 3, is
bounded. This again requires a double counting argument.

Proof. Fix an optimal clustering C. We partition vertices based on membership in C(u) or
C(u) (as defined in Subsection 2.1). Let y denote the disagreement vector of C. We have

(S+)p =
∑
u∈V

( ∑
v∈N+

u

fuv

)p

≤ 2p
∑
u∈V

( ∑
v∈N+

u ∩C(u)

fuv

)p

︸ ︷︷ ︸
S+

1

+2p
∑
u∈V

( ∑
v∈N+

u ∩C(u)

fuv

)p

︸ ︷︷ ︸
S+

2

.

It is easy to bound S+
2 by using the trivial upper bound fuv ≤ 1:

S+
2 =

∑
u∈V

( ∑
v∈N+

u ∩C(u)

fuv

)p

≤
∑
u∈V

( ∑
v∈N+

u ∩C(u)

1
)p

≤
∑
u∈V

(y(u))p = OPTp,

where we used that every edge (u, v) ∈ E+ with v ̸∈ C(u) is a disagreement incident to u.
Next, we bound S+

1 . Let R1 be the set of u for which Step 3 of Definition 6 applies. For
these u, we have fuv = 1 for all v ∈ V \ {u}. Let R2 = V \ R1. For u ∈ R2 and v ∈ N+

u , we
have that either v ∈ R2, in which case fuv = duv; or v ∈ R1, in which case fuv = 1. (Note
that V is the disjoint union of R1 and R2.) So

S+
1 =

∑
u∈R1

( ∑
v∈N+

u ∩C(u),v ̸=u

1
)p

︸ ︷︷ ︸
S+

11

+
∑

u∈R2

( ∑
v∈N+

u ∩C(u)

fuv

)p

︸ ︷︷ ︸
S+

12

,

ICALP 2024



52:12 Simultaneously Approximating All ℓp-Norms in Correlation Clustering

and in particular

S+
12 =

∑
u∈R2

( ∑
v∈N+

u ∩C(u)∩R1

1 +
∑

v∈N+
u ∩C(u)∩R2

duv

)p

=
∑

u∈R2

( ∑
v∈N+

u ∩C(u)∩R1
duv≤1/4

1 +
∑

v∈N+
u ∩C(u)∩R1
duv≥1/4

1 +
∑

v∈N+
u ∩C(u)∩R2

duv

)p

≤
∑

u∈R2

( ∑
v∈N+

u ∩C(u)∩R1
duv≤1/4

1 +
∑

v∈N+
u ∩C(u)∩R1
duv≥1/4

4 · duv +
∑

v∈N+
u ∩C(u)∩R2

duv

)p

≤
∑

u∈R2

( ∑
v∈N+

u ∩C(u)∩R1
duv≤1/4

1 +
∑

v∈N+
u ∩C(u)

4 · duv

)p

≤ 2p
∑

u∈R2

( ∑
v∈N+

u ∩R1
duv≤1/4

1
)p

︸ ︷︷ ︸
S+

13

+8p ·
∑

u∈R2

( ∑
v∈N+

u ∩C(u)

duv

)p

︸ ︷︷ ︸
S+

14

.

First we bound S+
13. We will strongly use that duv ≤ 1/4 in the inner sum. Observe:

▶ Proposition 14. Let d be the correlation metric, and duv ≤ 1/4. Then |N+
u | ≤ 7

3 · |N+
v |.

Next, we will need to create a bipartite auxiliary graph H = (R2, R1, F ) with R2 and
R1 being the sides of the partition, and F being the edge set. We will then use a double
counting argument. Place an edge between u ∈ R2 and v ∈ R1 if uv ∈ E+ and duv ≤ 1/4.
Then we have precisely that S+

13 =
∑

u∈R2
degH(u)p. We will show that

S+
13 =

∑
u∈R2

degH(u)p ≤ 4p−1 ·
∑

v∈R1

|N+
v |p ≤ 4p−1 · ((20/3)p + 2 + 2 · 4p) · OPTp (1)

where the last bound follows from Proposition 15, which we establish separately below.
We will bound via double counting the quantity L, defined below. Let NH(·) denote the
neighborhoods in H of the vertices.

L :=
∑

f=uv∈F

(degH(u) + degH(v))p−1 ≤
∑

v∈R1

∑
u∈NH (v)

(degH(v) + degH(u))p−1

≤
∑

v∈R1

∑
u∈NH (v)

(
|N+

v | + |N+
u |
)p−1 ≤

∑
v∈R1

∑
u∈NH (v)

4p−1 · |N+
v |p−1 (2)

≤ 4p−1 ·
∑

v∈R1

|N+
v | · |N+

v |p−1 = 4p−1 ·
∑

v∈R1

|N+
v |p

where in (2) we’ve used Proposition 14. Note that L is upper bounded by the right-hand
side in (1). Now it just remains to show that L is lower bounded by the left-hand side in (1).

L =
∑

f=uv∈F

(degH(u) + degH(v))p−1 =
∑

u∈R2

∑
v∈NH (u)

(degH(u) + degH(v))p−1

≥
∑

u∈R2

∑
v∈NH (u)

degH(u)p−1 =
∑

u∈R2

degH(u) · degH(u)p−1 =
∑

u∈R2

degH(u)p,
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which is what we sought to show. Now we bound S+
14.

S+
14 ≤

∑
u∈V

( ∑
v∈N+

u ∩C(u)

|N+
u ∩ N−

v | + |N−
u ∩ N+

v |
|N+

u ∪ N+
v |

)p

≤
∑
u∈V

( ∑
v∈N+

u

y(u) + y(v)
|N+

u ∪ N+
v |

)p

≤
∑
u∈V

|N+
u |p−1

∑
v∈N+

u

(y(u) + y(v))p

|N+
u ∪ N+

v |p

≤ 2p
∑
u∈V

∑
v∈N+

u

|N+
u |p−1 · y(u)p

|N+
u ∪ N+

v |p
+ 2p

∑
u∈V

∑
v∈N+

u

|N+
u |p−1 · y(v)p

|N+
u ∪ N+

v |p
.

In the second line, the first inequality uses the fact that for w ∈ (N+
u ∩ N−

v ) ∪ (N−
u ∩ N+

v ),
then at least one of (u, w), (v, w) is a disagreement, since v ∈ C(u) in the inner summation
of the first line. The second inequality in the second line uses Jensen’s inequality.

To bound the first double sum above, we use an averaging argument:∑
u∈V

∑
v∈N+

u

|N+
u |p−1 · y(u)p

|N+
u ∪ N+

v |p
≤
∑
u∈V

∑
v∈N+

u

y(u)p

|N+
u |

=
∑
u∈V

y(u)p = OPTp.

To bound the second double sum, we first have to flip it:∑
u∈V

∑
v∈N+

u

|N+
u |p−1 · y(v)p

|N+
u ∪ N+

v |p
=
∑
v∈V

∑
u∈N+

v

|N+
u |p−1 · y(v)p

|N+
u ∪ N+

v |p

≤
∑
v∈V

∑
u∈N+

v

|N+
u |p−1 y(v)p

|N+
u |p−1 · |N+

v |
=
∑
v∈V

y(v)p = OPTp.

In total, we have

S+
14 ≤ 2 · 2p · OPTp = 2p+1 · OPTp

and S+
12 ≤ 2p · S+

13 + 8p · S+
14 ≤ 2p · 4p−1 · ((20/3)p + 2 + 2 · 4p) · OPTp + 8p · OPTp.

Next we turn to bounding S+
11. Recall that R1 = {u : |N−

u ∩ {v : duv ≤ 0.7}| ≥ 10
3 · ∆u}

and

S+
11 ≤

∑
u∈R1

|N+
u ∩ C(u)|p ≤

∑
u∈R1

|N+
u |p.

So it suffices to bound the right-hand side, which we do in the following proposition.

▶ Proposition 15. Let R1 be the set of u for which Step 3 of Definition 6 applies. Then∑
u∈R1

|N+
u |p ≤ ((20/3)p + 2 + 2 · 4p) · OPTp.

Proof of Proposition 15. For u ∈ R1, define R1(u) = N−
u ∩ {v : duv ≤ 0.7}, so in particular

|R1(u)| ≥ 10
3 · ∆u. Fix a vertex u ∈ R1. We consider a few cases. The crux is Case 2a(ii).

Case 1. At least a 0.15 fraction of N+
u is in clusters other than C(u).

Let u ∈ V 1 be the vertices in this case. This means that 0.15 · |N+
u | ≤ y(u), so

∑
u∈V 1

|N+
u |p ≤

∑
u∈V 1

1
0.15p

y(u)p ≤ (20/3)p · OPTp.
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+
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. . .  . . .  

. . .  
w

Figure 2 Left: Case 2a(i). For v ∈ |N−
u ∩ C(u)|, (u, v) is a disagreement. Right: Case 2a(ii).

For w ∈ |N+
u ∩ C(u)| and v ∈ N+

w ∩ R′
1(u), (w, v) is a disagreement.

Case 2. At least a 0.85 fraction of N+
u is in C(u).

We further partition the cases based on how much R1(u) intersects C(u).

Case 2a: At least half of R1(u) is in clusters other than C(u).
We partition into cases (just one more time!) based on the size of N−

u ∩ C(u). See
Figure 2.
Case 2a(i): At least half of R1(u) is in clusters other than C(u) and |N−

u ∩ C(u)| ≥ ∆u.
Let u ∈ V 2a(i) be the vertices in this case. Note that y(u) ≥ |N−

u ∩ C(u)|. Then∑
u∈V 2ai

|N+
u |p =

∑
u∈V 2ai

∆p
u ≤

∑
u∈V 2ai

|N−
u ∩ C(u)|p ≤

∑
u∈V 2ai

y(u)p ≤ OPTp.

Case 2a(ii): At least half of R1(u) is in clusters other than C(u) and |N−
u ∩C(u)| ≤ ∆u.

Let u ∈ V 2a(ii) be the vertices in this case. Denote the vertices in R1(u) that are in
clusters other than C(u) by R′

1(u). By definition of Case 2a(ii), |R′
1(u)| ≥ 5

3 · ∆u. A
key fact we will use is that |C(u)| ≤ 2 · ∆u:

|C(u)| = |N−
u ∩ C(u)| + |N+

u ∩ C(u)| ≤ ∆u + ∆u = 2 · ∆u.

For u ∈ V 2a(ii) and w ∈ N+
u ∩ C(u), define φ(u, w) = |R′

1(u) ∩ N+
w |.

Each w ∈ N+
u ∩ C(u) dispenses φ(u, w)p/|C(u)| charge to u. Also, observe that for

v ∈ R′
1(u), we have that duv ≤ 0.7, so we know by Proposition 8 that |N+

u ∩ N+
v ∩

C(u)| ≥ 0.15 · |N+
u |. This implies that∑

w∈N+
u ∩C(u)

|R′
1(u) ∩ N+

w | =
∑

w∈N+
u ∩C(u)

∑
v∈R′

1(u)∩N+
w

1 =
∑

v∈R′
1(u)

∑
w∈∩N+

v

∩C(u)∩N
+
u

1

=
∑

v∈R′
1(u)

|C(u) ∩ N+
u ∩ N+

v | ≥
∑

v∈R′
1(u)

0.15 · |N+
u |

= 0.15 · |N+
u | · |R′

1(u)| ≥ 0.15 · ∆u · 5
3∆u = 0.25 · ∆2

u.

By Jensen’s inequality, the amount of charge each u satisfying Case 2a(ii) receives is
at least

1
|C(u)|

∑
w∈N+

u ∩C(u)

φ(u, w)p ≥ 1
|C(u)| · 1

|N+
u ∩ C(u)|p−1 ·

( ∑
w∈N+

u ∩C(u)

φ(u, w)
)p

≥ 1
2∆u

· 1
∆p−1

u

·
(

0.25 · ∆2
u

)p

≥ 1
2 · 0.25p · |N+

u |p,
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Next we need to upper bound the amount of charge dispensed in total to all u satisfying
Case 2a(ii). Note by definition that φ(u, w) ≤ y(w). Each vertex w ∈ V dispenses at
most y(w)p/|C(u)| = y(w)p/|C(w)| charge to each u ∈ C(w) ∩ N+

w . So in total each w

dispenses at most |C(w)| · y(w)p/|C(w)| = y(w)p charge to all u satisfying Case 2a(ii).
Now we put together the lower and upper bounds on the total charge dispensed:∑

w∈V

y(w)p ≥ charge dispensed ≥
∑

u∈V 2a(ii)

1
|C(u)|

∑
w∈N+

u ∩C(u)

φ(u, w)p

≥
∑

u∈V 2a(ii)

1
2 · 0.25p · |N+

u |p.

In all,
∑

u∈V 2a(ii)

|N+
u |p ≤ 2 · 4p ·

∑
w∈V

y(w)p ≤ 2 · 4p · OPTp.

Case 2b: At least half of R1(u) is in C(u).
Let u ∈ V 2b be the vertices in this case. Denote the vertices in R1(u) that are in C(u) by
R′′

1 (u). By definition of Case 2b, |R′′
1 (u)| ≥ 5

3 · ∆u. Since every vertex in R′′(u) is in N−
u ,

there are at least |R′′(u)| disagreements incident to u. So y(u) ≥ |R′′(u)| ≥ 5
3 · ∆u, giving∑

u∈V 2b

|N+
u |p =

∑
u∈V 2b

∆p
u ≤

∑
u∈V 2b

y(u)p ≤ OPTp.

Adding the terms in the boxed expressions across all cases, the proposition follows. ◀

So we have S+
11 ≤

∑
u∈R1

|N+
u |p ≤ ((20/3)p + 2 + 2 · 4p) · OPTp.

Adding together all the cases, we conclude that

(S+)p ≤ 2p·(S+
1 +S+

2 ) ≤ 2p·(S+
11S12+ +S+

2 ) ≤ 2p·[(8p/2+1)((20/3)p+2+2·4p)+8p+1]·OPTp.

◀

4.2.2 Fractional cost of negative edges in ℓp-norms
This section bounds the cost of negative edges. The meanings of C, C(·), and y are as before.

▶ Lemma 16. For p ∈ R≥1, the fractional cost of the adjusted correlation metric f in the
ℓp-norm objective for the set of negative edges is a constant factor away from optimal:

(S−)p =
∑
u∈V

( ∑
v∈N−

u

(1 − fuv)
)p

≤ 2p((200/9)p + 1 + (10/3)p + 2 · (20/3)p) · OPTp.

Proof. We have

(S−)p =
∑
u∈V

( ∑
v∈N−

u

(1 − fuv)
)p

≤ 2p
∑
u∈V

( ∑
v∈N−

u ∩C(u)

(1 − fuv)
)p

︸ ︷︷ ︸
S−

1

+ 2p
∑
u∈V

( ∑
v∈N−

u ∩C(u)

(1 − fuv)
)p

︸ ︷︷ ︸
S−

2

.
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It is easy to bound S−
1 by using the trivial upper bound 1 − fuv ≤ 1:

S−
1 =

∑
u∈V

( ∑
v∈N−

u ∩C(u)

(1 − fuv)
)p

≤
∑
u∈V

( ∑
v∈N−

u ∩C(u)

1
)p

≤
∑
u∈V

y(u)p = OPTp,

where we have used that every edge (u, v) ∈ E− with v ∈ C(u) is a disagreement incident to
u. Next, we bound S−

2 . Let R1 and R2 be as in the previous subsection: R1 = {u : |N−
u ∩{v :

duv ≤ 0.7}| ≥ 10
3 · ∆u} and R2 = V \ R1. For u ∈ R2, define

Vu = {v : v ∈ N−
u ∩ C(u), duv ≤ 0.7}.

Note that the definition of Vu is the same as R′
1(u) in the previous subsection, but here

Vu is only defined for u ∈ R2, while R′
1(u) was defined for u ∈ R1. For u ∈ R1, we have

1 − fuv = 0 for every v ∈ V \ {u}. So the outer sum in S−
2 only need be taken over u ∈ R2:

S−
2 =

∑
u∈R2

( ∑
v∈N−

u ∩C(u)

(1 − fuv)
)p

≤
∑

u∈R2

( ∑
v:v∈N−

u ∩C(u),
duv≤0.7

(1 − duv)
)p

≤
∑

u∈R2

|Vu|p

In the second equality, we have used that if u ∈ R2 and v ∈ N−
u , then fuv = duv, unless fuv

was rounded up to 1 in Step 2 of Definition 6 (which happens when duv > 0.7), or fuv was
rounded up to 1 in Step 3 (in which case 1 − fuv = 0 ≤ 1 − duv).

A key observation is that since u ∈ R2, it is the case that |Vu| ≤ 10
3 · ∆u.

Fix a vertex u ∈ R2. We consider a few cases.

Case 1. At least a 0.15 fraction of N+
u is in clusters other than C(u).

Define V 1 to be the set of u ∈ R2 satisfying Case 1. Then for u ∈ V 1, 0.15 · |N+
u | ≤ y(u), and

|Vu| ≤ 10
3 ∆u ≤ 1

0.15 · 10
3 y(u) = 200

9 y(u).

so
∑

u∈V 1

|Vu|p ≤ (200/9)p ·
∑

u∈V 1

y(u)p ≤ (200/9)p · OPTp.

Case 2. At least a 0.85 fraction of N+
u is in C(u).

Define V 2 to be the set of u ∈ R2 that satisfy Case 2. Fix u ∈ V 2 and v ∈ Vu. Define
Nu,v = N+

u ∩ N+
v ∩ C(u). Since duv ≤ 0.7 and by the assumption of this case, using

Proposition 8 we have

|Nu,v| = |N+
u ∩ N+

v ∩ C(u)| ≥ 0.15 · ∆u.

Observe that since v ̸∈ C(u) for v ∈ Vu, (v, w) is a (positive) disagreement for all w ∈ Nu,v.
Case 2a: |N−

u ∩ C(u)| ≥ ∆u.
Define V 2a to be the set of u ∈ V 2 that satisfy Case 2a. Since all edges (u, v) with
v ∈ N−

u ∩ C(u) are disagreements, we have y(u) ≥ ∆u. Recalling that |Vu| ≤ 10
3 · ∆u for

u ∈ R2, we have∑
u∈V 2a

|Vu|p ≤
∑

u∈V 2a

(10/3 · ∆u)p ≤ (10/3)p ·
∑

u∈V 2a

y(u)p ≤ (10/3)p · OPTp.
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Case 2b: |C(u)| ≤ 2∆u.
Define V 2b to be the u ∈ V 2 satisfying Case 2b. Fix w ∈ N+

u ∩ C(u) and u ∈ V 2b. Define

φ(u, w) = |Vu ∩ N+
w |,

i.e. φ(u, w) is the number of v ∈ Vu with w ∈ Nu,v. Each w ∈ N+
u ∩ C(u) dispenses

φ(u,w)p

|C(u)| charge to u. Also,∑
w∈N+

u ∩C(u)

φ(u, w) =
∑

w∈N+
u ∩C(u)

|Vu ∩ N+
w | =

∑
w∈N+

u ∩C(u)

∑
v∈Vu∩N+

w

1

=
∑

v∈Vu

∑
w∈Nu,v

1 =
∑

v∈Vu

|Nu,v| ≥ |Vu| · 0.15 · ∆u.

By Jensen’s inequality, the amount of charge each u satisfying Case 2b receives is at least

1
|C(u)|

∑
w∈N+

u ∩C(u)

φ(u, w)p ≥ 1
|C(u)| · 1

|N+
u ∩ C(u)|p−1

( ∑
w∈N+

u ∩C(u)

φ(u, w)
)p

≥ 1
2∆u

· 1
∆p−1

u

(|Vu| · 0.15 · ∆u)p = 1
2 · 0.15p · |Vu|p,

To upper bound the amount of charge dispensed in total to all u satisfying Case 2b,
first note that φ(u, w) ≤ y(w). Also, each vertex w ∈ V only distributes charge to
u ∈ C(w) ∩ N+

w , and the amount of charge distributed to each such u is

φ(u, w)p

|C(u)| = φ(u, w)p

|C(w)| ≤ y(w)p

|C(w)| ,

so that in total each w dispenses at most y(w)p

|C(w)| · |C(w)| ≤ y(w)p charge. Putting together
the lower and upper bounds on the amount of charge dispensed:∑

w∈V

y(w)p ≥ total charge dispensed ≥
∑

u∈V 2b

1
|C(u)|

∑
w∈N+

u ∩C(u)

φ(u, w)p

≥
∑

u∈V 2b

1
2 · 0.15p · |Vu|p.

In all,
∑

u∈V 2b

|Vu|p ≤ 2 · (20/3)p ·
∑
w∈V

y(w)p = 2 · (20/3)p · OPTp.

Combining the cases, we see that (S−)p ≤ 2p((200/9)p + 1 + (10/3)p + 2 · (20/3)p) ·OPTp. ◀

4.3 Proofs of Theorem 1 and Corollary 2
Here we show that Theorem 1 follows directly from the preceding lemmas. We defer the
proof of Corollary 2 to the full version [20].

Proof of Theorem 1. First we show that Lemma 12 implies that the clustering resulting
from inputting f into the KMZ rounding algorithm is O(1)-approximate in any ℓp-norm.
Since the rounding algorithm does not depend on p, the clustering will be the same for all
p. Let C∗ be the clustering produced by running the KMZ rounding algorithm with the
adjusted correlation metric f as input. Let ALG(u) be the number of edges incident to u

that are disagreements with respect to C∗. From [29] and Lemmas 9 and 10, we have that
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for every u ∈ V , ALG(u) ≤ 12 · yu where yu is as in LP P when taking x = f . So ||y||p is the
fractional cost of f in the ℓp-norm. In what follows, ||ALG||p is the objective value of C∗ in
the ℓp-norm and OPT(p) is the optimal objective value in the ℓp-norm. Thus using Lemma
12 in the last inequality, we have

||ALG||p ≤ 12 · ||y||p ≤ 12 · 529 · OPT(p) = 6348 · OPT(p).

The overall run-time is O(nω). From the analysis in [19], computing the correlation
metric takes time O(nω), and the KMZ rounding algorithm takes time O(n2). We just have
to show the post-processing of d in Steps 2 and 3 of Definition 6 that were done in order to
obtain the adjusted correlation metric f can be done quickly. Indeed, Step 2 takes O(n2)
time as it simply iterates through the edges. Step 3 also takes O(n2) time, since it visits
each vertex and iterates through the neighbors. Thus, the run-time remains O(nω). ◀

5 Conclusion

This paper considered correlation clustering on unweighted, complete graphs, a problem that
arises in many settings including community detection and the study of large networks. All
previous works that study minimizing the ℓp-norm (for p ∈ R>1) of the disagreement vector
rely on solving a large, convex relaxation (which is costly to the algorithm’s run-time) and
produce a solution that is only O(1)-approximate for one specific value of p. We innovate
upon this rich line of work by (1) giving the first combinatorial algorithm for the ℓp-norms
for p ∈ R>1, (2) designing scalable algorithms for this practical problem, and (3) obtaining
solutions that are O(1)-approximate for all ℓp-norms (for p ∈ R≥1 ∪ {∞}) simultaneously.
We emphasize this last point, as such solutions are good in both global and local senses, and
thus may be more desirable than typical optimal or approximate solutions. The existence of
these solutions reveals a surprising structural property of correlation clustering.

One question is whether there is a simpler existential (not necessarily algorithmic) proof
that there exists an O(1)-approximation for the all-norm objective for correlation clustering.

It is also of interest to implement the KMZ algorithm with the adjusted correlation
metric as input, and empirically gain an understanding of how good the adjusted correlation
metric is for different ℓp-norms. We suspect that our analysis is lossy (we did not focus on
optimizing constants), and that the approximation obtained would be of much better quality.
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