
Nearly Optimal Independence Oracle Algorithms
for Edge Estimation in Hypergraphs
Holger Dell
Goethe University Frankfurt, Germany
IT University of Copenhagen and Basic Algorithms Research Copenhagen (BARC), Denmark

John Lapinskas
University of Bristol, UK

Kitty Meeks
University of Glasgow, UK

Abstract
Consider a query model of computation in which an n-vertex k-hypergraph can be accessed only
via its independence oracle or via its colourful independence oracle, and each oracle query may
incur a cost depending on the size of the query. Several recent results (Dell and Lapinskas, STOC
2018; Dell, Lapinskas, and Meeks, SODA 2020) give efficient algorithms to approximately count
the hypergraph’s edges in the colourful setting. These algorithms immediately imply fine-grained
reductions from approximate counting to decision, with overhead only logΘ(k) n over the running
time nα of the original decision algorithm, for many well-studied problems including k-Orthogonal
Vectors, k-SUM, subgraph isomorphism problems including k-Clique and colourful-H, graph motifs,
and k-variable first-order model checking.

We explore the limits of what is achievable in this setting, obtaining unconditional lower bounds
on the oracle cost of algorithms to approximately count the hypergraph’s edges in both the colourful
and uncoloured settings. In both settings, we also obtain algorithms which essentially match these
lower bounds; in the colourful setting, this requires significant changes to the algorithm of Dell,
Lapinskas, and Meeks (SODA 2020) and reduces the total overhead to logΘ(k−α) n. Our lower
bound for the uncoloured setting shows that there is no fine-grained reduction from approximate
counting to the corresponding uncoloured decision problem (except in the case α ≥ k − 1): without
an algorithm for the colourful decision problem, we cannot hope to avoid the much larger overhead
of roughly n(k−α)2/4. The uncoloured setting has previously been studied for the special case k = 2
(Peled, Ramamoorthy, Rashtchian, Sinha, ITCS 2018; Chen, Levi, and Waingarten, SODA 2020),
and our work generalises the existing algorithms and lower bounds for this special case to k > 2 and
to oracles with cost.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Oracles and decision trees; Mathematics of computing → Graph algorithms

Keywords and phrases Graph oracles, Fine-grained complexity, Approximate counting, Hypergraphs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.54

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2211.03874 [14]

Funding Kitty Meeks: Supported by EPSRC grant EP/V032305/1.

1 Introduction

Many decision problems in computer science, particularly those in NP, can naturally be
expressed in terms of determining the existence of a witness. For example, solving SAT
requires determining the existence of a satisfying assignment to a CNF formula. All such
problems Π naturally give rise to a counting version #Π, in which we ask for the number of

EA
T

C
S

© Holger Dell, John Lapinskas, and Kitty Meeks;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 54; pp. 54:1–54:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8955-0786
https://orcid.org/0000-0003-3197-0854
https://orcid.org/0000-0001-5299-3073
https://doi.org/10.4230/LIPIcs.ICALP.2024.54
https://arxiv.org/abs/2211.03874
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs

witnesses. It is well-known that #Π is often significantly harder than Π; for example, Toda’s
theorem implies that it is impossible to solve #P-complete counting problems in polynomial
time with access to an NP-oracle unless the polynomial hierarchy collapses. However, the
same is not true for approximately counting witnesses (to within a factor of two, say). For
example, it is known that: if Π is a problem in NP, then there is an FPRAS for #Π using
an NP-oracle [30]; if Π is a problem in W [i], then there is an FPTRAS for #Π using a
W [i]-oracle [25]; and that the Exponential Time Hypothesis is equivalent to the statement
that there is no subexponential-time approximation algorithm for #3-SAT [12].

In this paper we are concerned with analogous results in the fine-grained setting, which
considers exact running times rather than coarse-grained classifications such as polynomial,
FPT, or subexponential; such results turn out to be inextricably bound to graph oracle
results of independent interest.

Past work in this area has focused on the family of uniform witness problems [13]. Roughly
speaking, these are problems which can be expressed as counting edges in a k-hypergraph G in
which the edges correspond to witnesses and induced subgraphs correspond to sub-problems.
(See Section 3 for a detailed definition.) Many of the most important problems in fine-grained
and parameterised complexity can be expressed as uniform witness problems including k-
SUM, k-OV, k-Clique, Hamming weight-k solutions to CNFs, Size-k Graph Motif, most
subgraph detection problems (including weighted problems such as Zero-Weight k-Clique
and Negative-Weight Triangle), and first-order model-checking [13], in addition to
certain database queries [16] and patterns in graphs [9]. Here k may be either a constant, as
in the case of k-SUM, or a parameter, as in the case of k-Clique. In this setting, invoking
a decision algorithm on a sub-problem of the original problem corresponds to invoking an
oracle to test, given a set of vertices S, whether the induced subgraph G[S] contains any
edges; this oracle is called an independence oracle for G and is well-studied in its own right
(see Section 4 for an overview).

Surprisingly, there is a partial analogue of the above reductions from approximate counting
to decision in this setting. If the vertices of G are coloured, given a set S ⊆ V (G), a colourful
independence oracle tests whether G[S] contains any edges with one vertex of each colour.
This typically corresponds to a natural colourful variant of the original decision problem –
for example, for k-Clique, it corresponds to deciding whether a k-coloured graph contains a
size-k clique with one vertex of each colour. These oracles are again well-studied in their own
right (see Section 4), and for many but not all uniform witness problems they can be efficiently
simulated using the independence oracle. Given access to a colourful independence oracle
for a graph G, we can count G’s edges to within a factor of 1 ± ε using ε−2kO(k) logΘ(k) n

oracle queries [13]. (See [4] for an improvement to the log factor.) In fact, we can say more –
if we can simulate the colourful independence oracle in time nαk with αk ≥ 1, then these
queries dominate the running time and we obtain an approximate counting algorithm with
running time nαk · ε−2kO(k) logΘ(k) n in the usual word-RAM model. Translating back out
of the oracle setting, this means that if we simulate the oracle by running an algorithm
for the colourful decision problem, then for constant k and ε, we obtain an approximate
counting algorithm with only polylogarithmic overhead over that decision algorithm. This
result has led to several improved approximate counting algorithms – see [13] for applications
to k-OV over finite fields and graph motifs, [16] for applications to database queries, and [9]
for applications to patterns in graphs.

We are left with two major open problems of concern to researchers in fine-grained
complexity, parameterised complexity and graph oracles, and we expect our paper to be of
interest to all three communities. First, can the result of [13] be generalised from colourful

H. Dell, J. Lapinskas, and K. Meeks 54:3

independence oracles to independence oracles? This would imply, for example, a fine-grained
reduction from approximate induced sub-hypergraph counting to induced sub-hypergraph
detection. In this setting, efficiently simulating the colourful independence oracle using the
independence oracle requires solving a long-standing open problem – see Section 3 – so the
result of [13] does not straightforwardly apply. Second, in the parameterised setting, the
factor of logΘ(k) n is not truly polylogarithmic, but equivalent to a factor of kO(k)no(1). Can
it be improved to logO(1) n?

In this paper, we answer both questions, and in the process substantially generalise recent
graph oracle results for the k = 2 case [11]. In both the colourful and uncoloured settings, we
pin down the optimal oracle algorithm almost exactly. In both cases this algorithm improves
on the current state of the art, and it allows for the desired fine-grained reductions if and
only if the cost of calling the oracle on an x-vertex set (corresponding to the run-time of a
decision algorithm on an x-element instance) is close to xk. Moreover, our lower bounds are
unconditional – they do not rely on conjectures such as SETH or FPT ̸= W[1].

In a little more detail, suppose for the moment that ε = 1/2, and that the cost of
calling the oracle on an x-vertex set is xαk for some αk ∈ [0, k]. In the uncoloured setting,
we define a function g(k, αk) ≈ (k − α)2/(4k) (see (2.1.1)) and show that an overhead of
2O(k)ng(k,αk)±o(1) is both achievable and required; we have g(k, αk) = 0 when αk ≥ k − 1,
so in this regime we obtain a fine-grained reduction. In the colourful setting, we show
that the logΘ(k) n overhead of [13, 4] can be improved to logΘ(k−αk) n, but no further; thus
polylogarithmic overhead is possible if and only if k − αk ∈ O(1) as k → ∞. For general
values of ε, both of our upper bounds have an additional multiplicative overhead of O(ε−2),
which is common in approximate counting algorithms.

In the rest of the paper, we state our results for graph oracles more formally in Section 2,
followed by their (immediate) corollaries for uniform witness problems in Section 3. We then
give an overview of related work in Section 4, followed by a brief description of our proof
techniques in Section 5 and a generalisation to non-polynomial running times in Section 6.
A full version of the paper is available as [14].

2 Oracle results

Our results are focused on two graph oracle models on k-hypergraphs: independence oracles
and colourful independence oracles. Both oracles are well-studied in their own right from a
theoretical perspective, as they are both natural generalisations of group testing from unary
relations to k-ary relations, and the apparent separation between them in power is already a
source of substantial interest. They also provide a point of comparison for a rich history of
sublinear-time algorithms for oracles which provide more local information, such as degree
oracles. See the introduction of [11] for a more detailed overview of the full motivation, and
Section 4 for a survey of past results.

In both the colourful and uncoloured case, while formally the oracles are bitstrings and a
query takes O(1) time, in order to obtain reductions from approximate counting problems to
decision problems in Section 3 we will simulate oracle queries using a decision algorithm. As
such, rather than focusing on the number of queries as a computational resource, we define a
more general cost function which will correspond to the running time of the algorithm used
to simulate the query; thus the cost of a query will scale with its size. In our application,
this allows for more efficient reductions by exploiting cheap queries, while also substantially
strengthening our lower bounds. Indeed, simulating an oracle query typically requires between
poly(k) and poly(n) time, so a lower bound on the total number of queries required would
tell us very little; meanwhile, setting the cost of all queries to 1 in our results yields tight
bounds for the number of queries required.

ICALP 2024

54:4 Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs

We are also concerned with the running times of our oracle algorithms, again due to
our applications in Section 3. We work in the standard RAM-model of computation with
Θ(log n) bits per word and access to the usual O(1)-time arithmetic and logical operations on
these words; in addition, oracle algorithms can perform oracle queries, which are considered
to take O(1) time.

As shorthand, for all real x, y > 0 and ε ∈ (0, 1), we say that x is an ε-approximation to
y if |x − y| < εy. We define an ε-approximate counting algorithm to be an oracle algorithm
that is given n and k as explicit input, is given access to an oracle representing an n-vertex
k-hypergraph G, and outputs an ε-approximation to the number of edges of G, denoted
by e(G). We allow ε to be part of the input (for upper bounds) or fixed (for lower bounds).

2.1 Our results for the uncoloured independence oracle
Given a k-hypergraph G with vertex set [n], the (uncoloured) independence oracle is the
bitstring IND(G) such that for all sets S ⊆ [n], IND(G)S = 1 if G[S] contains no edges and 0
otherwise. Thus a query to IND(G)S allows us to test whether or not the induced subgraph
G[S] contains an edge. We define the cost of an oracle call IND(G)S to be a polynomial
function of the form costk(S) = |S|αk , where the map k 7→ αk satisfies αk ∈ [0, k] but
is otherwise arbitrary. (This upper bound is motivated by the fact that we can trivially
enumerate all edges of G by using O(nk) queries to all size-k subsets of [n], incurring oracle
cost at most nk · kαk .)

It is not too hard to show that the naive O(nk)-cost exact edge-counting algorithm of
querying every possible edge and the naive O(nαk)-cost algorithm to decide whether any
edge is present by querying [n] are both essentially optimal. For approximate counting we
prove the following, where for all real numbers x we write ⌊x⌉ := ⌊x + 1/2⌋ for the value of x

rounded to the nearest integer, rounding up in case of a tie.

▶ Theorem 1 (Uncoloured independence oracle, polynomial cost function). Let αk ∈ [0, k] for
all k ≥ 2, let costk(x) = xαk , and let

g(k, β) := 1
k

·
⌊k − β

2

⌉
·
(

k − β −
⌊k − β

2

⌉)
. (2.1.1)

There is a randomised ε-approximate counting algorithm Uncol(IND(G), ε, δ) with failure
probability at most δ, worst-case running time

O
(

log(1/δ)
(
k5k + ε−225k log5 n · ng(k,1) · n

))
,

and worst-case oracle cost

O
(

log(1/δ)
(
k7k + ε−225k log5 n · ng(k,αk) · nαk

))
under costk. Moreover, every randomised (1/2)-approximate edge-counting IND-oracle al-
gorithm with failure probability at most 1/10 has Ω((ng(k,αk)/k3k) · nαk) worst-case expected
oracle cost under costk.

Observe that the polynomial overhead ng(k,αk) of approximate counting over decision is
roughly equal to n(k−αk)2/(4k). If αk = 0, then the worst-case oracle cost of an algorithm is
simply the worst-case number of queries that it makes. Thus Theorem 1 generalises known
matching upper and lower bounds of Θ̃(

√
n) queries in the graph case [11], both by allowing

k > 2 and by allowing αk > 0. (See Section 4 for more details.) Moreover, if αk ≥ k − 1,

H. Dell, J. Lapinskas, and K. Meeks 54:5

then g(k, αk) = 0; thus in this case, Theorem 1 shows that approximate counting requires
the same oracle cost as decision, up to a polylogarithmic factor. Taking k = 2 and αk = 1,
this implies that whenever we can simulate an edge-detection oracle for a graph in linear
time, then we can also obtain a linear-time approximate edge-counting algorithm (up to
polylogarithmic factors). Analogous upper bounds on the running time and oracle cost
of Uncol also hold for any “reasonable” cost function of the form costk(n) = nαk+o(1); for
details, see Section 6 and Theorem 10.

2.2 Our results for the colourful independence oracle
Given a k-hypergraph G with vertex set [n], the colourful independence oracle is the bitstring
cIND(G) such that for all disjoint sets S1, . . . , Sk ⊆ [n], cIND(G)S1,...,Sk

= 1 if G contains
no edge e ∈ E(G) with |Si ∩ e| = 1 for all i, and 0 otherwise. We view S1, . . . , Sk as
colour classes in a partial colouring of [n]; thus a query to cIND(G)S1,...,Sk

allows us to test
whether or not G contains an edge with one vertex of each colour. (Note that we do not
require S1 ∪ · · · ∪ Sk = [n].) Analogously to the uncoloured case, we define the cost of
an oracle call cIND(G)S1,...,Sk

to be a polynomial function of the form costk(S1, . . . , Sk) =
costk(|S1| + · · · + |Sk|) = (|S1| + · · · + |Sk|)αk , where the map k 7→ αk satisfies αk ∈ [0, k]
but is otherwise arbitrary.

It is not too hard to show that the naive O(nk)-cost exact edge-counting algorithm of
querying every possible edge and the naive O((kk/k!)nαk)-cost algorithm to decide whether
any edge is present by randomly colouring the vertices are both essentially optimal, and
indeed we prove as Proposition 65 of the full version that any such decision algorithm requires
cost Ω(nαk). For approximate counting, we prove the following.

▶ Theorem 2 (Colourful independence oracle, polynomial cost function). Let αk ∈ [0, k]
for all k ≥ 2, let costk(x) = xαk , and let T := log(1/δ)ε−2k27k log4(k−⌈αk⌉)+18 n. There
is a randomised ε-approximate edge counting algorithm Count(cIND(G), ε, δ) with worst-
case running time O(T · nmax(1,αk)), worst-case oracle cost O(T · nαk) under costk, and
failure probability at most δ. Moreover, every randomised (1/2)-approximate edge counting
cIND-oracle algorithm with failure probability at most 1/10 has worst-case oracle cost

Ω
(

k−9k
(log n

log log n

)k−⌊αk⌋−3
· nαk

)
under costk.

The upper bound replaces a logΘ(k) n term in the query count of the previous best-known
algorithm ([5] for αk = 0) by a logΘ(k−αk) n term in the multiplicative overhead over decision,
giving polylogarithmic overhead over decision when k − αk = O(1). The lower bound shows
that this term is necessary and cannot be reduced to logO(1) n; this is a new result even
for αk = 0. (See Section 4 for more details.) Analogous upper bounds on the running
time and oracle cost of Count also hold for any “reasonable” cost function of the form
costk(n) = nαk+o(1); for details, see Section 6 and Theorem 10.

2.3 Approximate sampling results
There is a known fine-grained reduction from approximate sampling to approximate count-
ing [13]. Strictly speaking this, reduction is proved for αk = 1 with a colourful independence
oracle, but the only actual use of the oracle in the reduction is to enumerate all edges in
a set X with O(|X|k) size-k queries, so it transfers immediately to our setting. The upper
bounds of Theorems 1 and 2 therefore also yield approximate sampling algorithms with
overhead 2O(k) logO(1) n over approximate counting.

ICALP 2024

54:6 Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs

2.4 A parameterised complexity motivation for our lower bound results
To understand an important motivation for the lower bounds in our results, consider as an
example the longest path problem: Given (G, k), does there exist a simple path of length k?
A long sequence of works in parameterised complexity led to a spectacular algorithm [7] for
this problem in undirected graphs that runs in time 1.66k · poly(n). There is a somewhat
shorter sequence of works for the corresponding approximate counting version of the problem,
which culminated in a 4k poly(n)-time algorithm [8, 20].

Instead of designing ever-more sophisticated algorithms for approximately counting k-
paths in order to get closer to the running time of the decision problem, our dream result
would instead be a subexponential-time approximate-counting-to-decision reduction that uses
the decision problem in a black-box fashion and causes only a factor 2o(k) poly(n) overhead in
the running time. This way, any improvements to the decision algorithm would automatically
carry over. One way to formalise what the black-box can do is captured by defining the
k-hypergraph whose edges are the k-paths of the underlying graphs; using an algorithm for
the k-path decision problem, it is trivial to simulate the independence oracle and easy to
simulate the colourful independence oracle for this hypergraph.

Theorem 2 implies that any decision algorithm for k-path can be turned into an approx-
imate counting algorithm by paying a logO(k) n-factor overhead in the running time. While
this is still a fixed-parameter tractable running time, it leads to a useless algorithm, since the
running time is much worse than ck poly(n). The main consequence of Theorem 2 for k-path
stems not from this meaningless upper bound, but from the lower bound, which is new even
for αk = 0: Our results imply that if the decision algorithm for k-path is formalized using
the colourful independence oracle, then the overhead of the approximate-counting-to-decision
reduction must be logΩ(k) n, and so a subexponential-time reduction cannot exist. Conversely,
if a useful approximate-counting-to-decision reduction exists, it cannot merely be based on
the hypergraph whose edges consist of all k-paths; instead, the reduction would have to have
access to and exploit the underlying structure of the original graph. We believe that this is a
useful insight for the design of future algorithms for approximate counting.

3 Reductions from approximate counting to decision

Theorems 1 and 2 can easily be applied to obtain reductions from approximate counting to de-
cision for many important problems in fine-grained and parameterised complexity. The follow-
ing definition is taken from [13]; recall that a counting problem is a function #Π: {0, 1}∗ → N
and its corresponding decision problem is defined via Π = {x ∈ {0, 1}∗ : #Π(x) > 0}.

▶ Definition 3. The decision problem Π is a uniform witness problem if there is a function
that maps instances x ∈ {0, 1}∗ to uniform hypergraphs Gx such that the following statements
hold:

(i) #Π(x) is equal to the number e(Gx) of edges in Gx;
(ii) V (Gx) and the size k(Gx) of edges in E(Gx) can be computed from x in time Õ(|x|);
(iii) there exists an algorithm which, given x and S ⊆ V (Gx), in time Õ(|x|) prepares an

instance Ix(S) ∈ {0, 1}∗ such that GIx(S) = Gx[S] and |Ix(S)| ∈ O(|x|).
The set E(Gx) is the set of witnesses of the instance x.

Intuitively, we can think of a uniform witness problem as a problem of counting witnesses
in an instance x that can be naturally expressed as edges in a hypergraph Gx, in such a way
that induced subgraphs of Gx correspond to sub-instances of x. This allows us to simulate
a query to IND(Gx)S by running a decision algorithm for Π on the instance Ix(S), and if

H. Dell, J. Lapinskas, and K. Meeks 54:7

our decision algorithm runs on an instance y in time T (|y|) then this simulation will require
time Õ(T (|S|)). Typically there is only one natural map x 7→ Gx, and so we consider it to
be a part of the problem statement. Simulating the independence oracle in this way, the
statement of Theorem 1 yields the following.

▶ Theorem 4. Suppose αk ∈ [1, k] for all k ≥ 2. Let Π be a uniform witness problem.
Suppose that given an instance x of Π, writing n = |V (Gx)| and k = k(Gx), there is an
algorithm to solve Π on x with error probability at most 1/3 in time Õ(nαk). Then there is
an ε-approximation algorithm for #Π(x) with error probability at most 1/3 and running time

kO(k) + ε−2nαk · 2O(k)ng(k,αk) .

Note that the running time of the algorithm for #Π is the sum of the oracle cost and
the running time of the algorithm of Theorem 1; by requiring αk ≥ 1, we ensure this is
dominated by the oracle cost. (Indeed, for most uniform witness problems it is very easy to
prove that every decision algorithm must read a constant proportion of the input, and so we
will always have αk ≥ 1.) The lower bound of Theorem 1 implies that the nαk+g(k,αk) term
in the running time cannot be substantially improved with any argument that relativises;
thus in simple terms, there is a generic fine-grained reduction from approximate counting to
decision if and only if the decision algorithm runs in time Ω(nk−1).

It is instructive to consider an example. Take Π to be the problem Induced-H of
deciding whether a given input graph G contains an induced copy of a fixed graph H. In this
case, the hypergraph corresponding to an instance G will have vertex set V (G) and edge set
{X ⊆ V (G) : G[X] ≃ H}; thus the witnesses are vertex sets which induce copies of H in G.
The requirements of Definition 3(i) and (ii) are immediately satisfied, and Definition 3(iii) is
satisfied since deleting vertices from the hypergraph corresponds to deleting vertices of G.
Thus writing k = |V (H)|, Theorem 4 gives us a reduction from approximate #Induced-H to
Induced-H with overhead ε−22O(k)ng(k,αk) over the cost of the decision algorithm. Moreover,
on applying the fine-grained reduction from approximate sampling to counting in [13] we also
obtain an approximate uniform sampling algorithm with overhead ε−22O(k)ng(k,αk). Many
more examples of uniform witness problems to which Theorem 4 applies can be found in the
introduction of [13].

We now describe the corresponding result in the colourful oracle setting, which we now
set out – again, the following definition is taken from [13].

▶ Definition 5. Suppose Π is a uniform witness problem. Colourful-Π is defined as the
problem of, given an instance x ∈ {0, 1}∗ of Π and a partition of V (Gx) into disjoint sets
S1, . . . , Sk, deciding whether cINDGx

(S1, . . . , Sk) = 0 holds.

Continuing our previous example, in Colourful-Induced-H, we are given a (perhaps
improper) vertex colouring of our input graph G, and we wish to decide whether G contains
an induced copy of H with exactly one vertex from each colour. Simulating an oracle call
to cIND(Gx)S1,...,Sk

corresponds to running a decision algorithm for Colourful-Π on the
instance Ix(S1 ∪ · · · ∪ Sk) with colour classes S1, . . . , Sk, and if this decision algorithm runs
on an instance y in time T (|y|) then this simulation will require time Õ(T (|S1| + · · · + |Sk|)).
Simulating the colourful independence oracle in this way, the statement of Theorem 2 yields
the following.

▶ Theorem 6. Suppose αk ∈ [1, k] for all k ≥ 2. Let Π be a uniform witness problem.
Suppose that given an instance x of Π, writing n = |V (Gx)| and k = k(Gx), there is an
algorithm to solve Colourful-Π on x with error probability at most 1/3 in time O(nαk).
Then there is an ε-approximation algorithm for #Π(x) with error probability at most 1/3
and running time ε−2nαk · kO(k)(log n)O(k−αk) .

ICALP 2024

54:8 Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs

As in the uncoloured case, the requirement αk ≥ 1 ensures that the dominant term in the
running time is the time required to simulate the required oracle queries, and the lower bound
of Theorem 2 implies that the logO(k−αk) n term in the running time cannot be substantially
improved with any argument that relativises. Again writing k = |V (H)|, Theorem 6 gives
us a reduction from approximate #Induced-H to Colourful-Induced-H with overhead
ε−2kO(k)(log n)O(k−αk) over the cost of the decision algorithm. This result improves on
the reduction of [13, Theorem 1.7] by a factor of logΩ(αk) n, and using the fine-grained
reduction from approximate sampling to counting in [13] it can immediately be turned into
an approximate uniform sampling algorithm.

Observe that in most cases, there is far less overhead over decision in applying Theorem 6
to reduce #Induced-H to Colourful-Induced-H than there is in applying Theorem 4 to
reduce #Induced-H to Induced-H. In some cases, such as the case where H is a k-clique,
there are simple fine-grained reductions from Colourful-Induced-H to Induced-H, and
in this case Theorem 6 is an improvement. However, it is not known whether the same is
true of all choices of H, and indeed even an FPT reduction from Colourful-Induced-H to
Induced-H would imply the long-standing dichotomy conjecture for the embedding problem
introduced in [18]. More generally, but still within the setting of uniform witness problems,
the problem of detecting whether a graph contains a size-k set which either spans a clique
or spans an independent set is in FPT by Ramsey’s theorem, but its colourful version is
W[1]-complete [22].

While the distinction between colourful problems and uncoloured problems is already
well-studied in subgraph problems, these results strongly suggest that it is worth studying
in many other contexts in fine-grained complexity as well. Indeed, it is easy to simulate
IND(G) from cIND(G) with random colouring; thus the lower bound of Theorem 1 and the
upper bound of Theorem 2 imply that there is a fine-grained reduction from uncoloured
approximate counting to colourful decision, but not to uncoloured decision. By studying the
relationship between colourful problems and their uncoloured counterparts, we may therefore
hope to shed light on the relationship between approximate counting and decision.

Finally, we observe that the set of running times allowed by Theorems 4 and 6 may
not be sufficiently fine-grained to derive meaningful results for some problems. In fine-
grained complexity, even a subpolynomial improvement to a polynomial-time algorithm
may be of significant interest – the classic example is the Negative-Weight-Triangle
algorithm of [31], which runs in n3/eΩ(

√
log n) time on an n-vertex instance, compared to the

naive O(n3)-time algorithm. In order to “lift” such improvements from decision problems
to approximate counting, we must generalise the upper bounds of Theorems 1 and 2 to
cost functions of the form costk(x) = xαk±o(1) while maintaining low overhead. We do
so in Theorem 10 for all “reasonable” cost functions, including any function of the form
costk(x) = nαk logβk n and any function of the form costk(x) = nαk e±(log n)γk where γk < 1.
A full list of technical requirements is given in Section 6, but the most important one is
regular variation – this is a standard notion from probability theory for “almost polynomial”
functions, and requiring it avoids pathological cases where (for example) we may have
costk(x) = O(x) as x → ∞, but costk(2xi) = ω(costk(xi)) as i → ∞ along some sequence
(xi : i ≥ 1).

4 Discussion of related work

In order to compare algorithms without excessive re-definition of notation, throughout this
subsection we consider the problem of ε-approximating the number of edges in an m-edge,
n-vertex k-hypergraph.

H. Dell, J. Lapinskas, and K. Meeks 54:9

Colourful and uncoloured independence oracles were introduced in [3] in the graph setting,
then first generalised to hypergraphs in [6]. Edge estimation using these oracles was first
studied in the graph setting (i.e. for k = 2) in [3], which gave an ε−4 logO(1) n-query algorithm
for colourful independence oracles and an (ε−4 + ε−2 min{

√
m, n2/m}) logO(1) n = (ε−4 +

ε−2n2/3) logO(1) n-query algorithm for uncoloured independence oracles. The connection to
approximate counting in fine-grained and parameterised complexity was first studied in [12].

For colourful independence oracles in the graph setting, [12] (independently from [3])
gave an algorithm using ε−2 logO(1) n cIND queries and ε−2n logO(1) n adjacency queries. [1]
subsequently gave a non-adaptive algorithm using ε−6 logO(1) n cIND queries.

The case of edge estimation in k-hypergraphs (i.e. for arbitrary k ≥ 2) was first con-
sidered independently by [13, 4]; [13] gave an algorithm using ε−2kO(k) log4k+O(1) n queries,
while [4] gave an ε−4kO(k) log4k+O(1)-query algorithm. [13] also introduced a reduction from
approximate sampling to approximate counting in this setting (which also applies in the
uncoloured setting) with overhead kO(k) logO(1) n. [5] then improved the query count further
to ε−2kO(k) log3k+O(1) n.

In this paper, we give an algorithm with total query cost ε−2kO(k) log4(k−αk)+O(1) n under
costk(x) = xαk , giving polylogarithmic overhead when αk ≈ k. We also give a lower bound
which shows that a logΘ(k−αk) term is necessary; no lower bounds were previously known
even for αk = 0 (i.e. the case where the total query cost equals the number of queries).

For uncoloured independence oracles of graphs, [11] improved the algorithm of [3] to use

ε−Θ(1) min{
√

m, n/
√

m} polylog n = ε−Θ(1)√n polylog n (4.0.1)

queries and gave a matching lower bound. (It is difficult to tell the exact value of the Θ(1)
term from the proof, but it is at least 9 – see the definition of N in the proof of Lemma
3.9 on p. 15.) It is worth noting that the bound in (4.0.1) is stated as a function of both n

and m. We believe that our results can be stated in such a way as well, but we defer doing
so to the journal version of this paper.

To the best of our knowledge, no results on uncoloured edge estimation for αk > 0 or k > 2
have previously appeared in the literature. However, we believe it would be easy to partially
generalise the proof of [3] to this setting. Very roughly speaking, their argument works by
running a naive sampling algorithm and a more subtle branch-and-bound approximation
algorithm in parallel, with the sampling algorithm running quickly on dense graphs and
the branch-and-bound algorithm running quickly on sparse graphs. The main obstacle to
generalising this approach would be the branch-and-bound approximation algorithm; however,
by replacing it with a slower branch-and-bound enumeration algorithm for k-hypergraphs such
as [23], we believe we would obtain worst-case oracle cost kO(k) +ε−22O(k)nαk+(k−αk)/2 under
costk(x) = xαk ; this technique is well-known in the literature and also appears in e.g. [29].
By comparison (see Figure 1), the algorithm of Theorem 1 achieves a much smaller worst-case
oracle cost of kO(k) + ε−22O(k)nαk+g(k,αk), where g(k, αk) ≈ (k − αk)2/(4k) < (k − αk)/2
and where g(k, αk) = 0 for αk ≥ k − 1. This substantially improves on the algorithm implicit
in [3], and indeed is optimal up to a factor of εΘ(1)kΘ(k). Also, our algorithm has a better
dependence on ε compared with [11] when k = 2; however, we bound the cost only in terms
of n and not in terms of m.

Although a full survey is beyond the scope of this paper, there are natural generalisations
of (colourful and uncoloured) independence oracles [27], and edge estimation problems are
studied for other oracle models including neighbourhood access [28]. Other types of oracle
are also regularly applied to fine-grained complexity in other models, notably including cut
oracles [24, 2]. Perhaps surprisingly, we were unable to find any previous examples in the

ICALP 2024

54:10 Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

1
2

2
3

1

1.2

𝛼

Overhead exponent in 𝑛

𝑘 = 5
𝑘 = 4
𝑘 = 3
𝑘 = 2

1 2 4 6 8 10 12

20

40

60

𝛼

Overhead exponent in log 𝑛

𝑘 = 12

1

Figure 1 Left: If each IND-query of size x has cost xαk , then up to kO(k) logO(1) n factors, we
show in Theorem 1 that ng(k,αk)+αk is the smallest possible IND-oracle cost to (1/2)-approximate
the number of edges. Plotted here in thick lines is the overhead α 7→ g(k, α) in the exponent of n

for k ∈ {2, 3, 4, 5}, and in dashed lines is the larger overhead exponent α 7→ (k − α)/2 obtained from
a naive generalisation of the techniques of [3]. Right: If each cIND-query of size x has cost xαk , then
up to kO(k)(log n)O(1)(log log n)O(k−αk) factors, we show in Theorem 2 that nαk log4(k−⌈αk⌉)+18 n is
the smallest possible cIND-oracle cost to (1/2)-approximate the number of edges. Plotted in thick
lines is the overhead α 7→ 4(k − ⌈α⌉) + 18 in the exponent of log n for k = 12, and the dashed line
depicts the overhead α 7→ 3k + 5 obtained by using the bound on the number of queries by [5]; our
bound is better if ⌈αk⌉ ≥ k/4 + Θ(1).

literature of unconditional oracle lower bounds relative to a general query cost function, and
so our definitions and methods are novel in that sense. Of course, many existing works prove
unconditional lower bounds in terms of query count [28], or consider algorithmic construction
of graph oracles with bounded query times [19], or provide oracle algorithms with fast running
times in addition to low query counts [26]. In our setting, however, a lower bound in terms
of query cost is absolutely necessary. Recall that for us, query cost is the running time of
an algorithm for the decision problem we are reducing to, and the algorithmic results of
Theorems 4 and 6 all rely on smaller queries running faster; thus to prove they are “best
possible” in any meaningful sense, we absolutely require the formal notion of query cost set
out in Section 2.

Outside the oracle setting, it was recently proved [21] that any decision algorithm built
around the representative family technique of [17] can be turned into an approximate counting
algorithm with substantially lower overheads in k than those of [13]. More recently, several
important decision problems in the fine-grained setting with k = 3 have been discovered to
be “equivalent” to their exact counting versions [10]. This work is not directly comparable
to ours, as they work in a substantially stronger setting and use a correspondingly weaker
notion of equivalence. Their equivalence is in the sense of equivalence of conjectures – for
example, they prove that if there is an O(n2−ε)-time algorithm for 3-SUM, then there exists
0 < ε′ < ε such that there is an O(n2−ε′)-time algorithm for #3-SUM. We stress that for
exact counting problems as studied in [10], such equivalence results are genuinely deep and
surprising. However, for the approximate counting problems we study, analogous results are
typically quite easy to prove via the standard combination of sampling and branch-and-bound
approaches discussed above, and so we instead study the stronger notion of fine-grained
reductions from approximate counting to decision. Where no such reductions exist, we aim
to nail down the exact value of ε′. (Recall also that there are uniform witness problems
whose decision versions are in FPT but whose exact counting versions are W[1]-hard [22], so
we cannot hope to extend our results to exact counting in this setting.)

H. Dell, J. Lapinskas, and K. Meeks 54:11

5 Proof techniques

5.1 Colourful upper bound
We first discuss the proof of the upper bound of Theorem 2, our cIND-oracle algorithm for edge
estimation using the colourful independence oracle of an n-vertex k-hypergraph G. In [13], it
is implicitly proved that a cIND-oracle algorithm that computes a “coarse approximation”
to e(G), which is accurate up to multiplicative error b, can be bootstrapped into a full
ε-approximation algorithm with overhead ε−22O(k) logO(1) n · b2. (See Theorem 49 of the full
version for details.) It therefore suffices to improve the coarse approximation algorithm of [13]
from kO(k) logΘ(k) n queries and kO(k) logΘ(k) n multiplicative error to kO(k) logΘ(k−αk) n

query cost and kO(k) logΘ(k−αk) n multiplicative error. Moreover, by a standard colour-
coding argument, it suffices to make this improvement when G is k-partite with vertex classes
V1, . . . , Vk known to the algorithm.

Oversimplifying a little, and assuming n is a power of two, the algorithm of [13] works by
guessing a probability vector (Q1, . . . , Qk) ∈ {1, 1/2, 1/4, . . . , 1/n}k. It then deletes vertices
from V1, . . . , Vk independently at random to form sets X1, . . . , Xk, so that for all v ∈ Vj we
have P(v ∈ Xj) = Qj . After doing so, in expectation, Q1Q2 . . . Qk proportion of the edges
of G remain in the induced k-partite subgraph G[X1, . . . , Xk]. If e(G) ≪ 1/(Q1 . . . Qk), it is
easy to show with a union bound that no edges are likely to remain. What is more surprising
is that there exist q1, . . . , qk with q1 . . . qk ≈ 1/e(G) such that if Q⃗ = q⃗, then at least one edge
is likely to remain in G[X1, . . . , Xk]. Thus the algorithm of [13] iterates over all logΘ(k) n

possible values of Q⃗, querying cIND(G) on X1, . . . , Xk for each, and then outputs the least
value m such that e(G[X1, . . . , Xk]) > 0 for some Q1, . . . , Qk with 1/(Q1 . . . Qk) = m.

Our algorithm improves on this idea as follows. First, [13] does not actually prove the
existence of the vector q⃗ described above – it relies on a coupling between the different
guesses of Q⃗. We require not only the existence of q⃗ but also a structural result which may
be of independent interest. For all I ⊆ [k] and all ζ ∈ (0, 1], we define an (I, ζ)-core to be an
induced subgraph H = G[Y1, . . . , Yk] of G such that:

(i) H contains at least k−O(k) proportion of the edges of G.
(ii) For all i ∈ I, the set Yi is very small, containing at most 2/ζ vertices.
(iii) For all i /∈ I, every vertex of Yi is contained in at most ζ proportion of edges in H.

As an example, the most extreme core is the rooted star : It consists of some vertices ri ∈ Yi

for all i ∈ I and all k-partite edges e with e ⊇ { ri : i ∈ I }. We prove in Lemma 56 of the
full version that, for all ζ ∈ (0, 1], there is some I ⊆ [k] such that G contains an (I, ζ)-core H.

Suppose for the moment that we are given the value of I, but not Y1, . . . , Yk. By
property (i), it would then suffice to approximate e(H) using kO(k) logO(k−αk) n query cost.
If |I| ≥ αk, then we can adapt the idea of the algorithm of [13], but taking Qj = 1 for all i /∈ I

to use only logO(k−αk) n queries in total; intuitively, this is possible due to property (ii), which
implies that this is the “correct” setting. We set this algorithm out as CoarseLargeCore in
Section 4.1.3 of the full version.

If instead |I| ≤ αk, then we will exploit the fact that query cost decreases polynomially
with instance size by breaking H into smaller instances. For all i /∈ I, we randomly delete
vertices from Vi with a carefully-chosen probability p. Property (iii), together with a
martingale bound (see Lemma 59 of the full version), guarantees that the number of edges
in the resulting hypergraph G′ will be concentrated around its expectation of pke(G). If
we had access to Y1, . . . , Yk, we could then intersect Vi with Yi for all i ∈ I to obtain a
substantially smaller instance, whose edges we could count with cheap queries; we could
then divide the result by pk to obtain an estimate for e(G). Unfortunately we do not have

ICALP 2024

54:12 Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs

access to Y1, . . . , Yk, but we can still break G′ into smaller sub-hypergraphs by applying
colour-coding to the vertex sets Vi with i ∈ I, and as long as |I| ≤ αk this still gives enough
of a saving in query cost to prove the result. We set this algorithm out as CoarseSmallCore
in Section 4.1.2 of the full version.

Now, we are not in fact given the value of I in the (I, ζ)-core of G. But both
CoarseLargeCore and CoarseSmallCore fail gracefully if they are given an incorrect value of
I, returning an underestimate of e(G) rather than an overestimate. We can therefore simply
iterate over all 2k possible values of I, applying CoarseLargeCore or CoarseSmallCore as
appropriate, and return the maximum resulting estimate of e(G). This proves the result.

5.2 Colourful lower bound
We now discuss the proof of the lower bound of Theorem 2. Using the minimax principle, to
prove the bound for randomised algorithms, it is enough to give a pair of random graphs G1
and G2 with e(G2) ≫ e(G1) and prove that no deterministic algorithm A can distinguish
between G1 and G2 with constant probability and worst-case oracle cost as in the bound.
We base these random graphs on the main bottleneck in the algorithm described in the
previous section: the need to check all possible values of Q in a k-partite k-hypergraph with
an (I, ζ)-core where |I| ≈ k − αk.

We take G1 to be an Erdős-Rényi k-partite k-hypergraph with edge density p :=
t−(k−⌊αk⌋−2)/2. We take the vertex classes V1, . . . , Vk of G1 to have equal size t, so that
t = n/k. We then define a random complete k-partite graph H as follows. We first define a
random vector Q⃗ of probabilities, then take binomially random subsets X1, . . . , Xk−⌊αk⌋−2
of V1, . . . , Vk−⌊αk⌋−2, with P(v ∈ Xj) = Qj for all v ∈ Vj . For j ≥ k − ⌊αk⌋ − 1, we take
Xj ⊆ Vj to contain a single uniformly random vertex. We then define H to be the complete
k-partite graph with vertex classes X1, . . . , Xk, and form G2 = G1 ∪ H by adding the edges
of H to G1. We choose Q in such a way that Q1 · . . . · Qk−⌊αk⌋−2 is guaranteed to be a
bit larger than pt⌊αk⌋+2, so that E(e(H)) ≫ E(e(G1)). Intuitively, this corresponds to the
situation of a randomly planted (I, ζ)-core where I = {k − ⌊αk⌋ − 1, . . . , k} – we will show
that the algorithm A needs to essentially guess the value of Q using expensive queries.

To show that a low-cost deterministic algorithm A cannot distinguish G1 from G2, suppose
for simplicity that A is non-adaptive, so that its future oracle queries cannot depend on the
oracle’s past responses. In this setting, it suffices to bound the probability of a fixed query
S = (S1, . . . , Sk) distinguishing G1 from G2.

It is not hard to show that without loss of generality we can assume Si ⊆ Vi for all i ∈ [k].
If |Sj | ≪ t for some j ≥ k − ⌊αk⌋ − 1, then with high probability Sj will not contain the
single “root” vertex of Xj , so H[S1, . . . , Sk] will contain no edges and S will not distinguish
G1 from G2. With some effort (a simple union bound does not suffice), this idea allows us
to essentially restrict our attention to large, expensive queries S. However, if |S1| . . . |Sk| is
large, then with high probability G1[S1, . . . , Sk] will contain an edge, so again S will not
distinguish G1 from G2 = G1 ∪H. With some more effort, this allows us to essentially restrict
our attention to queries where for some possible value q⃗ of Q⃗ we have |Sj | ≈ 1/qj for all
j ≤ k − ⌊α⌋ − 2; we choose these possible values to be far enough apart that such a query is
only likely to distinguish G1 from G2 if Q⃗ = q⃗. There are roughly ((log n)/ log log n)k−⌊αk⌋−2

possible values of Qj , so the result follows.
Of course, in our setting A may be adaptive, and this breaks the argument above. Since

the query A makes depends on the results of past queries, we cannot bound the probability
of a fixed query distinguishing G1 from G2 in isolation – we must condition on the results
of past queries. This is not a small technical point – it is equivalent to allowing A to be

H. Dell, J. Lapinskas, and K. Meeks 54:13

adaptive in the first place. The most damaging implication is that we could have a query
S = (S1, . . . , Sk) with |S1| . . . |Sk| very large but such that G1[S1, . . . , Sk] contains no edges,
because most of the potential edges have already been exposed as not existing in past queries.
We are able to deal with this while preserving the spirit of the argument above, by arguing
based on the number of unexposed edges rather than |S1| . . . |Sk|, but it requires significantly
more effort and a great deal of care.

5.3 Uncoloured upper bound
We now discuss the proof of the upper bound of Theorem 1. We adapt a classic framework
for approximate counting algorithms that originated in [30], and that was previously applied
to edge counting in [12]. We first observe that by using an algorithm from [23], we can
enumerate the edges in an n-vertex k-hypergraph G with 2O(k) logO(1) n · e(G) queries to an
independence oracle. Suppose we form an induced subgraph Gi of G by deleting vertices
independently at random, keeping each vertex with probability 2−i; then in expectation,
we have e(Gi) = 2−kie(G). If e(Gi) is small, and e(Gi) ≈ E(e(Gi)), then we can efficiently
count the edges of Gi using [23] and then multiply by 2ki to obtain an estimate of e(G). We
can then simply iterate over all i from 0 to log n and return an estimate based on the first i

such that e(Gi) is small enough for [23] to return a value quickly.
Of course in general we do not have e(Gi) ≈ E(e(Gi))! One issue arises if, for some

r ∈ [k − 1], every edge of G contains a common size-r set R – a “root”. Then with probability
1 − 2−ri, at least one vertex in R will be deleted and Gi will contain no edges. We address
this issue in the simplest way possible: by taking more samples. Roughly speaking, suppose
we are given i, and that we already know (based on the failure of previous values of i to
return a result) that e(G) > nk−r−1 for some 0 ≤ r ≤ k − 1. This implies that G cannot
have any “roots” of size greater than r. Rather than taking a single random subgraph Gi,
we take ti ≈ 2ri independent copies of Gi and sum their edge counts using [23]; thus if G

does contain a size-r root, we are likely to include it in the vertex set of at least one sample.
Writing Σi for the sum of their edge counts, we then return Σi/(ti2−ik) if the enumeration
succeeds.

The exact expression we use for ti is more complicated than 2ri, due to the possibility of
multiple roots – see Section 3.2.2 of the full version for a more detailed discussion – but the
idea is the same. The proof that Σi is concentrated around its expectation is an (admittedly
somewhat involved) application of Chebyshev’s inequality, in which the rooted “worst cases”
correspond to terms in the variance of Σi. We consider it surprising and interesting that
such a conceptually simple approach yields an optimal upper bound, and indeed gives us a
strong hint as to how we should prove the lower bound of Theorem 1.

5.4 Uncoloured lower bound
We finally discuss the proof of the lower bound of Theorem 1. As in the colourful case, we
apply the minimax principle, so we wish to define random k-hypergraphs G1 and G2 with
e(G2) ≫ e(G1) which cannot be distinguished by a low-cost deterministic algorithm A.

Our construction of G1 and G2 is natural from the above discussion, and the special case
with k = 2 and αk = 0 is very similar to the construction used in [11]. We take G1 to be
an Erdős-Rényi k-hypergraph with edge probability roughly k!/nr. We choose a random
collection of size-r sets in V (G1) to be “roots”, with a large constant number of roots present
in expectation, and we define a k-hypergraph H to include every possible edge containing at
least one of these roots as a subset. We then define G2 := G1 ∪ H.

ICALP 2024

54:14 Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs

Similarly to the colourful lower bound, in the non-adaptive setting, any fixed query Si

with |Si| large is likely to contain an edge of G1, and any fixed query with |Si| small is
unlikely to contain a root and therefore unlikely to contain any edges of H; in either case,
the query does not distinguish G1 from G2. Also as in the colourful case, generalising this
argument from the non-adaptive setting to the adaptive setting requires a significant amount
of care and effort.

6 More general cost functions for upper bounds

In our previous theorem statements we focused on polynomial cost functions of the form
costk(S) = |S|αk for some αk ∈ [0, k], and these functions are easy to work with. However,
even subpolynomial improvements to an algorithm’s running time can be of interest and
by considering more general cost functions we can lift these improvements from decision
algorithms to approximate counting algorithms. To take a well-known example, in the
negative-weight triangle problem, we are given an n-vertex edge-weighted graph G and
asked to determine whether it contains a triangle of negative total weight; this problem is
equivalent to a set of other problems under subcubic reductions, including APSP [32]. The
naive Θ(n3)-time algorithm can be improved by a subpolynomial factor of eΘ(

√
log n) [31],

but as stated in the introduction our result would not lift this improvement from decision
to approximate counting – we would need to take k = 3 and cost(n) = n3/eΘ(

√
log n). (For

clarity, in this specific case the problem is equivalent to its colourful version and a fine-grained
reduction is already known [12, 13].)

While we cannot hope to say anything meaningful in the algorithmic setting with a fully
general cost function, our results do extend to all cost functions which might reasonably arise
as running times. A natural first attempt to formalise what we mean by “reasonable” would
be to consider cost functions of the form costk(n) = nαk+o(1) as n → ∞. Unfortunately, such
cost functions can still have a pathological property which makes a fine-grained reduction
almost impossible: the o(1) term might vary wildly between different values of n. For
example, if we take costk(n) = nαk+sin(πn/2)/

√
log(n), then we have costk(n) = nαk+o(1), but

costk(2n)/costk(n) could be ω(polylog(n)), Θ(1) or o(1/ polylog(n)) depending on whether
n is congruent to 3, 2 or 1 modulo 4 (respectively). It is even possible to construct a similar
example which is monotonically increasing. We will need to be able to approximate f(Ax)
by Aαk f(x) and so we require something slightly stronger, borrowing a standard notion from
the probability literature for distributions which are “almost power laws”.

▶ Definition 7. A function f : (0, ∞) → R is regularly-varying if, for all fixed A > 0,

lim
x→∞

|f(Ax)/f(x)| ∈ (0, ∞).

We say f is slowly-varying if this limit is always 1.

Observe that any cost function likely to arise as a running time is regularly-varying.
While Definition 7 may look overly general for our purposes, in fact it gives us exactly what
we need – regularly-varying functions are all of the form f(x) = xα+o(1) as x → ∞, are
eventually increasing whenever α > 0, and satisfy very strict bounds on f(Ax)/f(x) as
x → ∞ as detailed in the following lemma. (These properties are all well-known, see e.g.
Feller [15].) With these properties in hand, the extra generality of Definition 7 adds very
little overhead to our existing arguments.

H. Dell, J. Lapinskas, and K. Meeks 54:15

▶ Lemma 8. Let f : (0, ∞) → R be a function. Then f is regularly-varying if and only if
there exists a unique α ∈ R, called the index of f , and a unique slowly-varying function
σ : (0, ∞) → R, called the slowly-varying component of f , such that f(x) = xασ(x). Moreover,
any regularly-varying function f and slowly-varying function σ satisfy the following properties.

(i) σ(x) = xo(1) as x → ∞.
(ii) For all fixed A > 0, limx→∞(σ(Ax)/σ(x)) = 1. Moreover, for all closed intervals I ⊆ R,

this limit is uniform over all A ∈ I.
(iii) For all δ > 0, there exists x0 such that for all x ≥ x0 and all Ax ≥ 1,

A−δ
x ≤ σ(Axx)/σ(x) ≤ Aδ

x.

(iv) If f has positive index, then there exists x0 such that f is strictly increasing on [x0, ∞).

Our cost function will be a function of both the parameter k and the number n of vertices
in the instance, and we will only require regular variation in n. We are now ready to state
the technical requirements on our cost functions.

▶ Definition 9. For each k ≥ 2, let costk : (0, ∞) → (0, ∞). We say that cost = {costk : k ≥
2} is a regularly-varying parameterised cost function if costk(x) ≤ xk for all k and x, and
there exists a slowly-varying function σ : (0, ∞) → (0, ∞) and a map k 7→ αk satisfying the
following properties:

(i) for all k and x, costk(x) = xαk σ(x);
(ii) for all k, αk ∈ [0, k];
(iii) for all k and x, costk(x) ≤ xk;
(iv) either lim infk→∞ αk > 0 or there exists x0 such that for all k, costk is non-decreasing

on (x0, ∞);
(v) there is an algorithm to compute ⌊αk⌋ in time O(k9k).

We say that k is the parameter of cost, α is the index of cost, and σ is the slowly-varying
component of cost.

Point (i) is the main restriction, and the one we have been discussing until now. Points
(ii) and (iii) have already been discussed in the introduction. In the colourful case we will
need to compute ⌊αk⌋, so point (v) avoids an additive term in the running time; the precise
choice of k9k is purely for technical convenience. Finally, the purpose of point (iv) is to
guarantee monotonicity (together with point (i) and Lemma 8(iv)). Requiring point (iv) is
unlikely to affect applications of our results – typically such applications would satisfy either
αk = 0 (for tracking total query count) or αk ≥ 1 (for tracking total running time, where
query cost is the running time of a decision algorithm which needs to read its entire input).

▶ Theorem 10. Theorems 1 and 2 remain valid when the cost function costk(x) = xαk is
replaced by an arbitrary regularly-varying parameterised cost function. Likewise, Theorems 4
and 6 remain valid when the the running time Õ(nαk) of the decision algorithm is replaced
by an arbitrary regularly-varying parameterised cost function.

References
1 Raghavendra Addanki, Andrew McGregor, and Cameron Musco. Non-adaptive edge counting

and sampling via bipartite independent set queries. In Shiri Chechik, Gonzalo Navarro, Eva
Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms,
ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages
2:1–2:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ESA.
2022.2.

ICALP 2024

https://doi.org/10.4230/LIPIcs.ESA.2022.2
https://doi.org/10.4230/LIPIcs.ESA.2022.2

54:16 Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs

2 Simon Apers, Yuvan Efron, PawełGawrychowski, Troy Lee, Sagnif Mukhopadhyay, and
Danupon Nanongkai. Cut query algorithms with star contraction. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), 2022, to appear. arXiv:2201.05674.

3 Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rashtchian,
and Makrand Sinha. Edge estimation with independent set oracles. ACM Trans. Algorithms,
16(4):52:1–52:27, 2020. doi:10.1145/3404867.

4 Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Hyperedge estimation
using polylogarithmic subset queries. CoRR, abs/1908.04196, 2019. arXiv:1908.04196.

5 Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Faster counting
and sampling algorithms using colorful decision oracle. In Petra Berenbrink and Benjamin
Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science,
STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of
LIPIcs, pages 10:1–10:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.STACS.2022.10.

6 Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, and Saket Saurabh. Para-
meterized query complexity of hitting set using stability of sunflowers. In Wen-Lian Hsu,
Der-Tsai Lee, and Chung-Shou Liao, editors, 29th International Symposium on Algorithms
and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan, volume
123 of LIPIcs, pages 25:1–25:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ISAAC.2018.25.

7 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017. doi:10.1016/j.
jcss.2017.03.003.

8 Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Ilias Diakonikolas,
David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 151–164. ACM, 2018. doi:10.1145/3188745.3188902.

9 Marco Bressan and Marc Roth. Exact and approximate pattern counting in degenerate
graphs: New algorithms, hardness results, and complexity dichotomies. In 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 276–285, 2022.
doi:10.1109/FOCS52979.2021.00036.

10 Timothy Chan, Virginia Vassilevska Williams, and Yinzhan Xu. Fredman’s trick meets
dominance product: Fine-grained complexity of unweighted APSP, 3SUM counting, and more.
CoRR, abs/2303.14572, 2023. arXiv:2303.14572.

11 Xi Chen, Amit Levi, and Erik Waingarten. Nearly optimal edge estimation with independent
set queries. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
2916–2935. SIAM, 2020. doi:10.1137/1.9781611975994.177.

12 Holger Dell and John Lapinskas. Fine-grained reductions from approximate counting to
decision. ACM Trans. Comput. Theory, 13(2):8:1–8:24, 2021. doi:10.1145/3442352.

13 Holger Dell, John Lapinskas, and Kitty Meeks. Approximately counting and sampling
small witnesses using a colorful decision oracle. SIAM J. Comput., 51(4):849–899, 2022.
doi:10.1137/19m130604x.

14 Holger Dell, John Lapinskas, and Kitty Meeks. Nearly optimal independence oracle algorithms
for edge estimation in hypergraphs. CoRR, 2024. arXiv:2211.03874, doi:10.48550/arXiv.
2211.03874.

15 William Feller. An introduction to probability theory and its applications. Vol. II. Second
edition. John Wiley & Sons Inc., New York, 1971.

16 Jacob Focke, Leslie Ann Goldberg, Marc Roth, and Stanislav Zivný. Approximately counting
answers to conjunctive queries with disequalities and negations. In Proceedings of the 41st
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS ’22,
pages 315–324, New York, NY, USA, 2022. Association for Computing Machinery. doi:
10.1145/3517804.3526231.

https://arxiv.org/abs/2201.05674
https://doi.org/10.1145/3404867
https://arxiv.org/abs/1908.04196
https://doi.org/10.4230/LIPIcs.STACS.2022.10
https://doi.org/10.4230/LIPIcs.STACS.2022.10
https://doi.org/10.4230/LIPIcs.ISAAC.2018.25
https://doi.org/10.1016/j.jcss.2017.03.003
https://doi.org/10.1016/j.jcss.2017.03.003
https://doi.org/10.1145/3188745.3188902
https://doi.org/10.1109/FOCS52979.2021.00036
https://arxiv.org/abs/2303.14572
https://doi.org/10.1137/1.9781611975994.177
https://doi.org/10.1145/3442352
https://doi.org/10.1137/19m130604x
https://arxiv.org/abs/2211.03874
https://doi.org/10.48550/arXiv.2211.03874
https://doi.org/10.48550/arXiv.2211.03874
https://doi.org/10.1145/3517804.3526231
https://doi.org/10.1145/3517804.3526231

H. Dell, J. Lapinskas, and K. Meeks 54:17

17 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

18 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. J. ACM, 54(1), March 2007. doi:10.1145/1206035.1206036.

19 Hung Le. Approximate distance oracles for planar graphs with subpolynomial error dependency.
In Proceedings of the 2023 annual ACM-SIAM symposium on discrete algorithms (SODA),
pages 1877–1904, 2023.

20 Daniel Lokshtanov, Andreas Björklund, Saket Saurabh, and Meirav Zehavi. Approximate
counting of k-paths: Simpler, deterministic, and in polynomial space. ACM Trans. Algorithms,
17(3):26:1–26:44, 2021. doi:10.1145/3461477.

21 Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Efficient computation of representative
weight functions with applications to parameterized counting (extended version). In Dániel
Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, Virtual Conference, January 10 - 13, 2021, pages 179–198. SIAM, 2021. doi:10.1137/
1.9781611976465.13.

22 Kitty Meeks. The challenges of unbounded treewidth in parameterised subgraph counting
problems. Discrete Applied Mathematics, 198:170–194, 2016. doi:10.1016/j.dam.2015.06.
019.

23 Kitty Meeks. Randomised enumeration of small witnesses using a decision oracle. Algorithmica,
81(2):519–540, 2019. doi:10.1007/s00453-018-0404-y.

24 Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: Sequential, cut-query,
and streaming algorithms. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, pages 496–509, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3357713.3384334.

25 Moritz Müller. Randomized approximations of parameterized counting problems. In Hans L.
Bodlaender and Michael A. Langston, editors, Parameterized and Exact Computation, Second
International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Pro-
ceedings, volume 4169 of Lecture Notes in Computer Science, pages 50–59. Springer, 2006.
doi:10.1007/11847250_5.

26 Pan Peng and Jiapeng Zhang. Towards a query-optimal and time-efficient algorithm for
clustering with a faulty oracle. In Proceedings of Machine Learning Research (COLT), volume
134, pages 1–19, 2021.

27 Cyrus Rashtchian, David P. Woodruff, and Hanlin Zhu. Vector-matrix-vector queries for
solving linear algebra, statistics, and graph problems. In Jaroslaw Byrka and Raghu Meka,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference, volume
176 of LIPIcs, pages 26:1–26:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.APPROX/RANDOM.2020.26.

28 Jakub Tetek and Mikkel Thorup. Edge sampling and graph parameter estimation via vertex
neighborhood accesses. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022,
pages 1116–1129. ACM, 2022. doi:10.1145/3519935.3520059.

29 Marc Thurley. An approximation algorithm for #k-SAT. In Christoph Dürr and Thomas Wilke,
editors, 29th International Symposium on Theoretical Aspects of Computer Science, STACS
2012, February 29th - March 3rd, 2012, Paris, France, volume 14 of LIPIcs, pages 78–87. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.STACS.2012.78.

30 Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions. Theor.
Comput. Sci., 47:85–93, 1986. doi:10.1016/0304-3975(86)90135-0.

31 R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,
47(5):1965–1985, 2018. doi:10.1137/15M1024524.

32 Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,
matrix, and triangle problems. J. ACM, 65(5):27:1–27:38, 2018. doi:10.1145/3186893.

ICALP 2024

https://doi.org/10.1145/2886094
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/3461477
https://doi.org/10.1137/1.9781611976465.13
https://doi.org/10.1137/1.9781611976465.13
https://doi.org/10.1016/j.dam.2015.06.019
https://doi.org/10.1016/j.dam.2015.06.019
https://doi.org/10.1007/s00453-018-0404-y
https://doi.org/10.1145/3357713.3384334
https://doi.org/10.1007/11847250_5
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.26
https://doi.org/10.1145/3519935.3520059
https://doi.org/10.4230/LIPIcs.STACS.2012.78
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1137/15M1024524
https://doi.org/10.1145/3186893

	1 Introduction
	2 Oracle results
	2.1 Our results for the uncoloured independence oracle
	2.2 Our results for the colourful independence oracle
	2.3 Approximate sampling results
	2.4 A parameterised complexity motivation for our lower bound results

	3 Reductions from approximate counting to decision
	4 Discussion of related work
	5 Proof techniques
	5.1 Colourful upper bound
	5.2 Colourful lower bound
	5.3 Uncoloured upper bound
	5.4 Uncoloured lower bound

	6 More general cost functions for upper bounds

