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Abstract
Temporal graphs are dynamic graphs where the edge set can change in each time step, while the
vertex set stays the same. Exploration of temporal graphs whose snapshot in each time step is a
connected graph, called connected temporal graphs, has been widely studied. In this paper, we
extend the concept of graph automorphisms from static graphs to temporal graphs and show for the
first time that symmetries enable faster exploration: We prove that a connected temporal graph
with n vertices and orbit number r (i.e., r is the number of automorphism orbits) can be explored
in O(rn1+ϵ) time steps, for any fixed ϵ > 0. For r = O(nc) for constant c < 1, this is a significant
improvement over the known tight worst-case bound of Θ(n2) time steps for arbitrary connected
temporal graphs. We also give two lower bounds for temporal exploration, showing that Ω(n log n)
time steps are required for some inputs with r = O(1) and that Ω(rn) time steps are required for
some inputs for any r with 1 ≤ r ≤ n.

Moreover, we show that the techniques we develop for fast exploration can be used to derive the
following result for rendezvous: Two agents with different programs and without communication
ability are placed by an adversary at arbitrary vertices and given full information about the connected
temporal graph, except that they do not have consistent vertex labels. Then the two agents can
meet at a common vertex after O(n1+ϵ) time steps, for any constant ϵ > 0. For some connected
temporal graphs with the orbit number being a constant, we also present a complementary lower
bound of Ω(n log n) time steps.
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1 Introduction

For many decades, graph theory has been a tool used to model and study many real world
problems and phenomena [15]. A usual assumption for many of these problems is that
the graphs have a fixed structure. However, there are quite a number of cases where the
structure of a system changes over time. For example, consider the problem of routing in
transportation networks (roads, rails) where specific connections can become unavailable
(due to a disaster) or they are active during specific times (due to safety). Such scenarios can
be modeled using temporal graphs, a sequence of graphs over the same vertex set where the
edges possibly change in each time step. The temporal graph setting has received significant
interest from the research community in the recent past as seen in recent surveys [19, 48].

In this paper, we study two problems on temporal graphs. The first is the temporal
exploration problem (texp), which has been studied, e.g., by Michail and Spirakis [49, 50]
and by Ilcinkas et al. [37]. It requires an agent to explore all vertices of the temporal graph
as quickly as possible. The second is the temporal rendezvous problem (trp), which we
formulate for the first time in this paper. It requires two heterogeneous agents (in terms of
the programs they run) to rendezvous on a temporal graph when they cannot communicate
with one another. For both problems, we assume that each agent has complete knowledge of
the temporal graph in advance (a common assumption [3, 14, 27, 28, 30, 31, 37, 49, 50, 62]).
However, in the case of trp the agents may have different names for the same vertices, i.e.,
the local labels of the vertices may be different.

The problem of exploration has been well studied in the static setting since it was
introduced in 1951 by Shannon [59]. It has also been intensively studied in the temporal
graph setting since 2014 (see all references from the previous paragraph). On an application-
oriented note, the problem captures the setting where a person is trying to visit various
parts of a city using public transportation. For example, train schedules involve multiple
train stations (vertices) with trains running between them at different times (i.e., repeatedly
changing edges). Thus, planning a visit to multiple destinations over a given day using
railways is an example of solving texp.

The rendezvous problem can be broadly categorized into two types: symmetric and
asymmetric rendezvous. The version where agents have the same strategy (symmetric
rendezvous) was introduced by Alpern [10]. The version where agents can have distinct
strategies (asymmetric rendezvous) was introduced by Alpern [7] and is the focus of research
in this paper. trp is a natural extension of the asymmetric rendezvous problem to the
dynamic setting. As a real world example, consider a pair of tourists who want to explore a
city together and have to agree on a strategy to meet up in case they are separated and their
cell phones die. In this scenario, they may use public transportation (dynamically changing
network) to meet and agree in advance to use different strategies that guarantee that they
meet quickly.

In this paper, we present results that extend the literature in two ways. Firstly, we
formalize the trp problem in the setting where agents have complete knowledge of the
temporal graph a priori and develop good upper and lower bounds for it. Secondly, we utilize
interesting structural properties (namely automorphisms of a graph and associated orbits
of vertices) in order to analyze bounds on the number of time steps required by temporal
walks that solve certain problems. In particular, we develop upper and lower bounds for
both texp and trp that leverage the aforementioned graph properties. To the best of our
knowledge, this is the first work that takes advantage of these graph properties to study
problems in temporal graphs.
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1.1 Our Contributions
We present results for two problems: first, the temporal exploration problem (texp)
which, for a given temporal graph G, asks for a temporal walk that visits all vertices of G,
and secondly, the temporal rendezvous problem (trp), which considers two agents that
try to meet in the given temporal graph, meaning they must be stationed at the same vertex
in the same time step.

One of our primary contributions is formalizing the problem of trp in Section 2, and
in doing so extending the problem of asymmetric rendezvous to the temporal graph setting
where agents have complete knowledge of the temporal graph in advance. Another significant
contribution is that we show how to leverage the use of a structural graph property, namely
the automorphism group of a temporal graph and the associated notion of orbits, to bound
the number of time steps required by algorithms we devise for these problems. To the best
of our knowledge, this work is the first instance of leveraging such properties to study any
problem on temporal graphs apart from a practical implementation of a generator for listing
all non-isosomorphic simple temporal graphs [18]. Intuitively, an automorphism of a graph is
a mapping from the set of vertices of the graph to the same set of vertices that preserves
the neighborhood relation between the vertices. The set of automorphisms of a temporal
graph consists of the intersection of the sets of automorphisms of the graph at each time
step. The set of automorphisms of the temporal graph, along with function composition
as group operation, forms the automorphism group of the temporal graph. An orbit of the
automorphism group of a temporal graph is a maximal set of vertices such that each vertex
can be mapped to any other vertex in the set via an automorphism of the group. Intuitively,
the vertices in an orbit look indistinguishable to an agent that has full information about
the temporal graph but without meaningful vertex labels. As the agents are able to compute
a consistent numbering of the orbits (Lemma 13), they can agree to meet in some specific
orbit, but not at a specific vertex. Therefore, temporal graphs where all orbits are large
(or that even have a single orbit containing all vertices) appear to be the most challenging
graphs for solving trp. Our result providing fast exploration schedules in temporal graphs
with few orbits is therefore a crucial ingredient for enabling our solution to trp to handle all
possible temporal graphs (including those with a single orbit).

We give precise definitions and present further preliminaries in Section 2. Then, we
introduce some useful utilities related to automorphisms in Section 3. These will be used in
later sections, where we present the following results.

Upper bounds. In Section 4, we develop a deterministic algorithm to solve texp in
O(rn1+ϵ) time steps for any fixed ϵ > 0 (see Corollary 12), where n is the number
of vertices in the temporal graph and r is the number of orbits of the automorphism
group of the temporal graph. Note that r can range in value from 1 to n. Thus, for
r = O(nc) for constant c < 1, this is a significant improvement over the known tight
worst-case bound of Θ(n2) time steps for arbitrary connected temporal graphs [27]. In
Section 5, we leverage this algorithm for texp to develop a deterministic solution for trp
using O(n1+ϵ) time steps for any fixed ϵ > 0 (see Theorem 14). Our focus is on bound-
ing the time steps of the temporal walks required to solve texp and trp, and not on
optimizing the running time of the respective algorithms to compute such walks.

Lower bounds. We complement our algorithms with lower bounds for both texp and
trp in Section 6. In particular, we design an instance of trp such that any solution for
it requires Ω(n log n) time steps (see Theorem 16). We then show how this translates to a
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lower bound of Ω(n log n) time steps for some instances of texp where the temporal graph
at hand has an orbit number r = O(1) (see Corollary 17). By revisiting the lower bound
of [27] for texp, which focused on arbitrary temporal graphs, and studying it through the
lens of automorphisms and orbits, we can obtain a more fine-grained lower bound of Ω(rn)
time steps (see Lemma 15) for some temporal graphs with orbit number 1 ≤ r ≤ n. Notice
that the multiplicative gap between our upper and lower bounds for both problems is only a
factor of O(nϵ).

Relevance of the orbit number. It is well known in graph theory that almost all (static)
graphs are rigid [12], meaning that the automorphism group contains only the trivial identity
function. This is in contrast to observations in practice. Many real-world graphs have
non-trivial automorphisms. A recent analysis of real-world graphs in the popular database
https://networkrepository.com showed that over 70% of the analyzed graphs had non-
trivial automorphisms [12]. One may reasonably expect that real-world temporal graphs have
similar properties. Symmetries are also abundant in graphs arising in chemistry [11], which
have been studied in temporal settings as well [57]. We believe that these observations provide
a strong motivation for studying temporal graph problems for temporal graphs with fewer
than n orbits, e.g., with algorithms parameterized via the number of orbits. Furthermore,
we emphasize that our results for trp hold for all temporal graphs, independent of the orbit
number parameter, even though they utilize techniques we develop for texp parameterized
by the orbit number. Roughly speaking, for orbit number r, the penalty factor r in the
number of time steps to solve texp is saved when solving trp by focusing only on a smallest
orbit of size at most n/r.

1.2 Technical Overview and Challenges
Firstly, we give an intuitive overview of our upper bound results. The concepts used in this
section are more precisely defined in the next sections.

For texp, we first consider the problem of visiting all the vertices of one orbit S. One
key insight is that, if we have a temporal walk W that visits k vertices of S, we can use the
automorphisms of the temporal graph to transform W into other walks that visit different
sets of k vertices of S (Lemma 3). Therefore, even if the k vertices visited by W have already
been explored earlier, we can transform W into a temporal walk W ′ that visits a “good”
number of previously unexplored vertices of S. The number of previously unexplored vertices
of S that W ′ is guaranteed to visit increases with the number of possible start vertices in
S that we allow for W ′, but the larger that set X of possible start vertices is, the longer it
may take the agent to reach the best start vertex in that set. A challenge is to analyze this
tradeoff. By carefully relating the size of X to the guaranteed number of unexplored vertices
that a walk W ′ starting at a vertex in X can visit (Corollary 4), we manage to balance the
number of time steps needed to move to the start vertex of W ′ and the number of previously
unexplored vertices that W ′ visits. To show that vertices of X can be reached quickly, we
study the structure of edges that connect vertices in different orbits (Lemma 5) and use it to
analyze reachability between orbits (Lemmas 6 and 7).

We then employ a recursive construction: We recursively construct a temporal walk W1
that visits k vertices of S, concatenate W1 with a temporal walk that moves quickly from
the endpoint of W1 to a good start vertex in S for what follows, and then use a second
recursively constructed walk (transformed via an automorphism to a “good” temporal walk
W2 starting in a vertex of S) to visit “nearly” k further vertices of S. A careful analysis then
shows that in this way we can visit a constant fraction of the vertices of S in O(r|S|1+ϵ) steps

https://networkrepository.com
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(Lemma 9 and Corollary 10). We then show that the concatenation of O(log |S|) such walks
(each one again transformed via an automorphism to maximize the number of newly explored
vertices) suffices to visit all vertices of S in O(r|S|1+ϵ + n log |S|) time steps (Theorem 11),
which can be bounded by O(rn1+ϵ′) time steps). By visiting the r orbits one after another,
we can finally show that the whole temporal graph can be explored in O(rn1+ϵ′) time steps
(Corollary 12).

For trp, a simple and fast solution one first thinks of is to have the agents simply meet
at a vertex with a specific label. However, this is not feasible in the model we consider. In
particular, we assume that the agents cannot communicate and, while both agents have
complete information about the temporal graph, they do not have access to consistent vertex
labels. As such, the agents are unable to agree upon the same vertex based on the vertex
label. We rely, instead, on structural graph properties and let the agents meet at a vertex in
a smallest orbit: One agent moves to any vertex in that orbit, and the other searches all
vertices in that orbit. The first challenge is for the agents to independently identify the same
orbit in which to meet. We show that this can be done by letting each agent enumerate
all temporal graphs, together with colorings of their orbits, until it encounters for the first
time a temporal graph that is isomorphic to the input graph in which trp is to be solved.
In this way both agents obtain the same colored temporal graph and can independently
select, among all orbits of smallest size, the one with smallest color (Lemma 13). Then
one agent moves to a vertex in that orbit S, while the other searches all vertices of S. The
challenge here is to deal with orbits that are large, because previously known techniques
would require Θ(n2) time steps to explore an orbit of size Ω(n). Fortunately, this is where
our above-mentioned results for exploration of (orbits of) temporal graphs come to the rescue:
As |S| ≤ n/r, we have O(r|S|1+ϵ + n log |S|) = O(n1+ϵ′), and hence S can be explored (and
trp solved) in O(n1+ϵ′) time steps (Theorem 14).

Now we turn to our lower bounds. For texp, we first observe that the existing lower
bound construction that shows that Ω(n2) time steps are necessary for exploration on some
temporal graphs uses temporal graphs with n

2 +1 orbits. By slightly varying the construction,
we can show for any r in the range from 1 to n that there are temporal graphs with r orbits
that require Ω(rn) time steps for exploration (Lemma 15). Our main lower bound result is
the lower bound of Ω(n log n) for trp in temporal graphs with a single orbit (Theorem 16).
The temporal graph is a cycle on n = 2m − 1 vertices in every step, and the edges change
every ⌊n/16⌋ time steps. Each period of ⌊n/16⌋ time steps in which the edges do not change
is called a phase. We number the vertices of the cycle from 0 to n − 1 and consider the
binary representation of the vertex labels. In phase 1, each vertex j is adjacent to j + 1 and
j − 1, while in any phase i > 1, it is adjacent to j + 22i and j − 22i (with all computations
done modulo n). As all vertices are indistinguishable to the agents, we can force each
agent to make the same movements no matter where we place it initially. By fixing the
five highest-order bits of the agents’ start positions in a certain way, we can ensure that
the agents do not meet in the first phase, no matter how the remaining bits of their start
positions are chosen. Depending on the positions where the agents end up at the end of
each phase (relative to their start position in that phase), we fix a certain number of bits
of the binary representations of the start positions of the agents: After the first phase, we
fix the lowest four bits, and after each further phase, we fix the next-higher two bits. We
can show that this is sufficient to ensure that the agents start the next phase at vertices
that are sufficiently far from each other in the cycle of that phase. This process can be
repeated Ω(log n) times, showing that it takes Ω(n log n) time steps for the agents to meet.
This lower bound for trp implies also that exploration of the constructed temporal graph
requires Ω(n log n) steps (Corollary 17).

ICALP 2024
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1.3 Related Work

There is a divide in the research on temporal graphs with respect to the amount of knowledge
known in advance by the agents on the graph. When complete knowledge of the temporal
graph is known in advance to the agents, as is assumed in this paper, the setting is sometimes
referred to as the post-mortem setting (see, e.g., Santoro [58]). Since we consider scenarios
where agents plan temporal walks using advance knowledge of future time steps, we refer to
the post-mortem setting as the clairvoyant setting in the remainder of this section.

The clairvoyant setting is in contrast to the live setting where agents only have partial
knowledge of the temporal graph, and the solutions to problems in these different settings are
of a different nature. The reader can refer to the survey by Di Luna [22] for more information
on problems and solutions in the live setting. We restrict the rest of this related work section
to work in the clairvoyant setting.

Exploration. We trace the progress of solving instances of texp, first by identifying which
assumptions are required for the problem to even be solvable, and then by identifying
properties that were leveraged to give faster and faster solutions.

Michail and Spirakis [49, 50] showed that it is NP-complete to decide whether a given
temporal graph with a given lifetime, i.e., the number of time steps it exists, is explorable
when no assumptions are made on the input graph. This holds even if the graph is connected
in every time step, termed connected (and sometimes called always-connected in the literature).
Even when a restriction is placed on the underlying graph, i.e., the union of the graphs at
each time step, such that the underlying graph has pathwidth at most 2, Bodlaender and
van der Zanden [14] showed that texp is NP-complete.

However, the exploration is always possible when the lifetime of the graph is sufficiently
large. In particular, Michail and Spirakis [50] showed that a connected graph with n vertices
may be explored in O(n2) time steps. For the rest of the related work on texp, we focus on
the case of connected temporal graphs with a sufficiently large lifetime. Erlebach et al. [27]
showed that exploration on arbitrary temporal graphs takes Ω(n2) time steps. By restricting
their study of temporal graphs to those where the underlying graph belongs to a special
graph class, however, they showed that texp can be solved in o(n2) time steps in several such
cases. In particular, when the underlying graph is planar, has bounded treewidth k, or is a
2 × n grid, they showed that texp can be solved in O(n1.8 log n) time steps, O(n1.5k1.5 log n)
time steps, and O(n log3 n) time steps, respectively. They also showed a lower bound of
Ω(n log n) when the underlying graph is a planar graph of degree at most 4.

The study of texp when the temporal graph is restricted continued in several papers.
Taghian Alamouti [62] showed that texp can be solved in O(k2(k!)(2e)kn) time steps when
the underlying graph is a cycle with k chords. Adamson et al. [3] improved this to O(kn)
time steps. They also improved the upper bounds on texp for underlying graphs that have
bounded treewidth k or are planar to O(kn1.5 log n) and O(n1.75 log n), respectively. In
addition, they strengthened the lower bound for underlying planar graphs by showing that
even if the degree is at most 3, the lower bound is Ω(n log n). Erlebach et al. [28] further
improved work on bounded degree underlying graphs by showing that texp can be solved
in O(n1.75) time steps for such temporal graphs. Ilcinkas et al. [37] showed that when the
underlying graph is a cactus, the exploration time is 2Θ(

√
log n)n time steps.

Other variants of texp have been studied where the problem is slightly different, or
the edges of the temporal graph vary in some particular way (e.g., periodically, T -interval
connected, k-edge deficient), or multiple agents explore the graph [1, 2, 5, 17, 30, 31, 38].
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Rendezvous. Symmetric rendezvous [10] and asymmetric rendezvous [7] have received
much interest over the years, resulting in numerous surveys [8, 9, 32, 40, 41, 54, 55] being
written on the problems covering different settings. In this work, we are the first to extend
asymmetric rendezvous to temporal graphs in the clairvoyant setting. Note that there has
been previous work [16, 21, 23, 51, 53, 60, 61] that has studied multi-agent rendezvous (also
called gathering) in a dynamic graph setting, but that was in the live setting. For an overview
of rendezvous in static graphs we refer the reader to [9, 41]. Rendezvous has been studied in
deterministic settings [13, 56] and asynchronous settings [24, 43], and has been shown to be
solvable in logarithmic space [20].

Other Related Work. Other problems have also been studied in the temporal graph setting,
e.g., matchings [46], separators [34, 63], vertex covers [6, 36], containments of epidemics [26],
Eulerian tours [17, 44], graph coloring [45, 47], network flow [4], treewidth [33] and cops and
robbers [29, 52]. See the survey by Michail [48] for more information.

2 Preliminaries

Basic terminology. We use standard graph terminology. All static graphs are assumed to
be simple and undirected. We write [x] = {1, . . . , x} for any integer x.

A temporal graph G = (G1, . . . , Gℓ) is a sequence of static graphs, all with the same vertex
set V . For a temporal graph G, the graph G = (V,

⋃
t∈[ℓ] E(Gt)) is the underlying graph of

G. We call G connected if each Gt for t ∈ [ℓ] is connected. We use n to refer to the number
of vertices of the (temporal) graph under consideration. A temporal walk W is a walk in
a temporal graph G that is time respecting, i.e., traverses edges in strictly increasing time
steps. For a temporal walk W starting at time step t we write W = (u1, u2, u3, . . .) to mean
the temporal walk starts at vertex u1 in time step t, is at vertex u2 at the beginning of time
step t + 1, and so forth. Note that subsequent vertices in the temporal walk can be the same
vertex, i.e., we can wait for an arbitrary number of time steps at a vertex. We say that a
temporal walk spans x time steps if it starts at some time step t and ends at some time step
t′ with t′ − t = x. We assume that the lifetime ℓ is large enough such that a desired temporal
walk can be constructed. For all our results it is enough to assume ℓ ≥ n2, as n2 time steps
suffice for texp [27] and therefore also for trp. For any function f : X → X for a universe
X we write f i(x) when we mean applying the function i-times iteratively for any x ∈ X

and integer i, e.g., f2(x) = f(f(x)). We use ◦ to denote function composition, i.e., for two
functions f : X → X and g : X → X, we denote with f ◦ g the function that maps x ∈ X to
f(g(x)).

Isomorphisms and automorphisms. Two static graphs G and H are isomorphic exactly if a
bijection θ : V (G) → V (H) (called an isomorphism) exists with the following property: two
vertices u, v are adjacent in G exactly if θ(u) is adjacent to θ(v) in H. We write G ∼= H if G

is isomorphic to H. An automorphism is an isomorphism from a graph G to itself. The set
of all automorphisms of a graph G forms a group Aut(G), with ◦ as group operation. Refer
to [35, 39, 42] for further reading on the topic of isomorphisms and automorphisms of graphs.

For a temporal graph G with lifetime ℓ we denote with Aut(G) the set of all functions
σ such that σ is an automorphism of each graph Gt at every time step t ∈ [ℓ] (and hence
also an automorphism of the underlying graph G). Aut(G) with ◦ as group operation is the
automorphism group of the temporal graph G. We remark that the automorphism group of
the temporal graph G is the intersection of the automorphism groups of the graphs Gt for
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t ∈ [ℓ] and that the automorphism group of G can be viewed as the automorphism group of
the underlying graph G of G with edge labels such that each edge is labeled with the set of
time steps in which it occurs.

The orbit of a vertex u in a temporal graph G with respect to Aut(G) is the set V ′ ⊆ V

of all vertices that u can be mapped to by automorphisms in Aut(G). Note that, if V ′ is the
orbit of u, then the orbit of every vertex in V ′ is also V ′: For any two vertices v, v′ in V ′,
the automorphisms σ and σ′ that map u to v and v′, respectively, can be composed to the
automorphism σ′ ◦ σ−1 that maps v to v′. Furthermore, there cannot be an automorphism ρ

that maps v to a vertex outside V ′ because ρ ◦ σ would then be an automorphism that maps
u to a vertex outside V ′; a contradiction to the definition of the orbit V ′ of u. We denote by
G/Aut(G) the set of all orbits of the vertices of G. Note that this set forms a partition of V .
We call |G/Aut(G)| the orbit number of G. We call an edge {u, v} ∈ E(Gt) for t ∈ [ℓ] an orbit
boundary edge if u and v are in different orbits, and inner orbit edge otherwise. Two orbits
connected by an orbit boundary edge in time step t are called adjacent (in time step t).

We use automorphisms to transform temporal walks, as outlined in the following. For a
temporal graph G with lifetime ℓ and any automorphism σ ∈ Aut(G) and any temporal walk
W = (ut, ut+1, . . . , ut′) that starts at time t and ends at time t′ with t, t′ ∈ [ℓ], we say we
apply σ to W when we construct the temporal walk W ′ = (σ(ut), σ(ut+1), . . . , σ(ut′)).

Temporal Exploration Problem. The temporal exploration problem (texp) is defined
for a given temporal graph G with vertex set V and lifetime ℓ and asks for the existence of a
temporal walk W such that W starts at a given vertex u ∈ V and visits all vertices of V .
In connected temporal graphs with sufficiently large lifetime such a walk always exists, and
this is the setting we consider throughout this work. As such, the question of existence is no
longer of interest, and instead we focus on the time span of temporal walks that start at u at
time step 1 and visit all (or a certain set of) vertices.

The following is an adaptation of a result of Erlebach et al. [27], slightly modified to fit
our notation and use case. Intuitively speaking, the lemma states that with every extra time
step at least one additional vertex becomes reachable. Thus, starting from any vertex at any
time step, we can reach any particular other vertex in n − 1 steps. Consequently, there is
always a temporal walk that visits all vertices of G within n2 time steps.

▶ Lemma 1 (Reachability, [27]). Let G be a connected temporal graph with vertex set V and
lifetime ℓ. Denote by Rt,t′(u) the set of vertices reachable by some temporal walk starting at
vertex u ∈ V at time step t ∈ [ℓ] and ending at time step t′ ∈ [ℓ] with t′ ≥ t. If Rt,t′(u) ̸= V

and t′ < ℓ, then Rt,t′(u) ⊊ Rt,t′+1(u).

Temporal Rendezvous Problem. We consider a problem we call temporal rendezvous
problem (trp) defined as follows. Let G be a temporal graph with vertex set V and lifetime
ℓ. Two agents a1, a2 are placed at arbitrary vertices u1, u2 ∈ V (respectively) in G1 of G.
They compute respective temporal walks W1 and W2 such that the agents meet at the same
vertex in the same time step at least once during these walks. The agents have the full
information of G available, but they cannot communicate with each other. Furthermore, they
do not know the location of the other agent, and the vertex labels that one agent sees can be
arbitrarily different from the vertex labels that the other agent sees. The lack of consistent
labels prohibits trivial solutions such as the two agents agreeing to meet at a vertex with a
specific label, e.g., the lowest labeled vertex. We call such agents label-oblivious. A solution
to trp is a pair of possibly different programs p1 and p2 for agents a1 and a2, respectively,
that the agents use to compute and execute their temporal walks. The respective start
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positions u1, u2 ∈ V of the agents (and the vertex labels that each agent sees) are chosen
by an all-knowing adversary once a solution (p1, p2) is provided. As we assume that ℓ ≥ n2,
there is always a solution that ensures that the agents meet: Agent a1 simply waits at its
start vertex, while agent a2 explores the whole graph and visits every vertex, which is always
possible within n2 time steps as mentioned above. Therefore, we are interested in solutions
that enable the agents to meet as early as possible and aim to obtain worst-case bounds
significantly better than n2 on the number of steps that are required for trp.

3 Automorphism Utilities

We now introduce some helpful utilities regarding automorphisms that we use in the following
sections. Intuitively, we build up to a framework that allows us to transform a temporal
walk W into a temporal walk W ′ that visits more vertices that are desirable (with respect
to the exploration goal) than W does, by applying a well-chosen automorphism to W . The
following is needed to give specific guarantees that the transformed temporal walks must
uphold. Throughout this section we use and extend techniques of the field of algebraic graph
theory [35, 39, 42], adapted to our specific use cases.

For this, we begin with some definitions. Let G be a temporal graph with vertex set V

and let S ∈ G/Aut(G) be any orbit. For any X ⊆ S and any u ∈ S denote with Aut(G)[u, X]
the set of all automorphisms σ ∈ Aut(G) that map u to any vertex v ∈ X. We use the
shorthand Aut(G)[u, x] for Aut(G)[u, {x}]. We can then show the following.

▶ Lemma 2. Let S ∈ G/Aut(G) be any orbit. Then |Aut(G)[u, x1]| = |Aut(G)[u, x2]| for any
u, x1, x2 ∈ S.

Let S ∈ G/Aut(G). We now consider a special 2-dimensional automorphism matrix
Mu,Y,X for any u ∈ S, Y ⊆ S, and X ⊆ S. It has columns C1, C2, . . . , C|Y |+1, and a row for
each σ ∈ Aut(G)[u, X]. We refer to the row for some σ simply as row σ. The entry in row σ

of column C1 is σ(u). Each vertex y ∈ Y is assigned a unique column among C2, . . . C|Y |+1
in an arbitrary way. The entry in row σ of the column to which y is assigned is σ(y). We
now give some intuition about the application of an automorphism matrix. Assume that we
are constructing a temporal walk W that has already visited a set T ⊊ S and we want to
extend it to visit the vertices of S \ T (with S an arbitrary orbit). To facilitate this extension
we first construct a temporal walk W ′ that visits at least a certain number of vertices of S,
but that is not guaranteed to visit vertices of S \ T . This walk W ′ cannot be used to extend
W in a meaningful way. Instead, using the automorphism matrix we show that there always
exists an automorphism σ ∈ Aut(G) that we can apply to W ′ to obtain a temporal walk Wσ

that visits a guaranteed fraction of vertices of S \ T . We can then use Wσ as our desired
extension. Figure 2 visualizes this concept. In later sections we will show how repeated
application of such extensions leads to temporal walks that visit all vertices of an orbit S.
Note that the value p in the following lemma represents the fraction of vertices that we
still need to visit compared to all vertices in the orbit under consideration. While T is a
set of already visited vertices in the application sketched above, the following lemma and
Corollary 4 are formulated more generally for arbitrary sets T ⊆ S.

▶ Lemma 3. Let G be a connected temporal graph with lifetime ℓ and let S ∈ G/Aut(G) be
any orbit. Let T ⊆ S with p = (|S| − |T |)/|S| and W = (u1, u2, . . . , ux) a temporal walk
starting at time step t and ending at t′ with t, t′ ∈ [ℓ] and u1 ∈ S such that W visits k vertices
of S. Then there exists a temporal walk W ′ starting at a vertex u′ ∈ S in time step t and
ending at time step t′ that visits at least pk vertices of S \ T .
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When restricting the possible start vertices where the temporal walk W ′ of Lemma 3 is
allowed to start, we obtain the following corollary. In detail, we are given a set X ⊂ S such
that the walk W ′ is only allowed to begin at a vertex u′ ∈ X. In Lemma 3, W ′ was allowed
to start at any vertex of S. Our use case for the following corollary is that X is a set of
vertices that can be reached faster, making them better candidates for start vertices when
extending walks in the way sketched above Lemma 3.

▶ Corollary 4. Let G be a connected temporal graph with lifetime ℓ and let S ∈ G/Aut(G) be
any orbit. Let T ⊊ S and W a temporal walk starting at time step t and ending at t′ with
t, t′ ∈ [ℓ] such that the first vertex of W is in S and such that W visits k different vertices
of S. For any X ⊆ S with |X| > |T | there exists a temporal walk W ′ starting at a vertex
u′ ∈ X at time step t and ending at time step t′ that visits at least (c − 1)/c · k vertices of
S \ T , with c = |X|/|T |.

4 Upper Bounds for TEXP

A common approach to build a temporal walk for texp is to use Lemma 1, i.e., to construct
a (large) set X of reachable vertices so that an unseen vertex v of the current walk is in the
set X and the walk can then be extended by v. We are interested in exploring the vertices of
one orbit quickly, as this will be useful for trp in Section 5 where the agents try to meet in
one orbit, and for texp because we can explore a temporal graph orbit by orbit. Therefore,
we want to find walks visiting many vertices of one orbit. Our approach is similar to the
common approach mentioned above, and so we want to construct a (large) set X of reachable
vertices, but now with the property that X is a subset of the orbit under consideration. To
construct X, we show in Lemma 6 a kind of “reachability between orbits.”

To describe this in more detail, we need the concept of so-called lanes. Intuitively, lanes
are defined for a set of vertices that are all contained in some single orbit, and give us
knowledge about the vertices that are quickly reachable while only using orbit boundary
edges in each time step. Using this concept of lanes we derive a first result for exploring a
single large orbit with a temporal walk that spans O((n5/3 +rn) log n) time steps (Theorem 8).
In the proof of that lemma we build the final temporal walk iteratively, by concatenating
multiple smaller temporal walks. To make sure each new such small temporal walk visits a
desired number of vertices not yet visited, we use Lemma 3, which – informally – lets us
transform temporal walks that visit too many previously visited vertices into temporal walks
that visit many previously unvisited vertices.

We follow this up with a more refined technique that considers the size of the orbit S one
wants to explore as a parameter, but also uses the concept of lanes and walk transformations
sketched above. It gives us an upper bound of O(|S|1+ϵ + n log |S|), for any constant ϵ > 0.
This result is formulated in Theorem 11. Finally, we use a repeated application of Theorem 11
to achieve an upper bound for TEXP of O(rn1+ϵ). We start with an auxiliary lemma that
focuses on the orbit boundary edges between two orbits.

▶ Lemma 5. Let Gt be the graph at time step t in a connected temporal graph G and
S, S′ ∈ G/Aut(G), and let G′ be the subgraph of Gt that contains only orbit boundary edges.
Then all vertices in S have the same degree in the bipartite graph G′[S ∪ S′].

To describe reachability between orbits, we have to introduce some extra notation. Let G
be a temporal graph with lifetime ℓ and vertex set V and S ∈ G/Aut(G) be an orbit. We call
a lane Lt,t′(X) with X ⊆ S and t, t′ ∈ [ℓ] the set of all vertices reachable from any u ∈ X in
G by any temporal walk W that only uses orbit boundary edges and starts in time step t

and ends in time step at most t′. We write Lt,t′(u) instead of Lt,t′({u}). See Fig. 1 for some
intuition.
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S0 S1 S2 S3

(a)

S0S1 S2 S3

(b)
S0 S1 S3 S2

(c)

S3 S1 S2 S0

(d)

Figure 1 Visualization of the properties of a lane Lt,t+r(X). Each vertex in the set X is colored
black, and the set of reachable vertices in each time step is colored gray. Each figure represents one
additional time step. In the second time step (Figure b) all vertices of the lane are reachable. In the
third time step (Figure c) one vertex outside the lane must be reachable, for example the diamond
shaped vertex. This is due to the fact that the temporal graph at hand is connected, and thus at
least one additional vertex is reachable with every next time step. Here, one additional time step
then suffices to reach a vertex of S2 \ X (Figure d).

The next lemma gives us a lower bound on the number of vertices of an orbit S′ that
can be reached from a subset X of the vertices of an orbit S within r time steps. Intuitively
speaking, we show a lower bound on the number of vertices reachable from orbit S in another
orbit S′. A simple consequence of the following lemma is that, from any start vertex in the
temporal graph, at least one vertex in every orbit is reachable within r time steps.

▶ Lemma 6 (Reachability between Orbits). Let G be a connected temporal graph with lifetime
ℓ and S ∈ G/Aut(G). For any X ⊆ S and S′ ∈ G/Aut(G) it holds that |Lt,t′(X) ∩ S′| ≥
⌈|X| · |S′|/|S|⌉ for any t ∈ [ℓ] and t′ = t + r, where r = |G/Aut(G)| is the orbit number.

By using Lemma 1 and Lemma 6, we now bound the number of time steps needed to
reach a set of h vertices within an orbit S.

▶ Lemma 7. Let G be a connected temporal graph with lifetime ℓ and vertex set V . Let
S ∈ G/Aut(G) and let r = |G/Aut(G)| be the orbit number. For any h ≤ |S|, start vertex
u ∈ S and start time t, there exists a set X ⊂ S with |X| = h such that we can reach any
vertex in X in at most O(min{h · n/|S|, hr} + r) time steps. That is, for every vertex u′ of
X, we have a temporal walk starting at u at time step t and ending at u′ at time step t′ with
t′ − t = O(min{h · n/|S|, hr} + r).

Next we present Theorem 8, which states an upper bound for visiting all vertices of a
given orbit S. The rough idea used in the proof is that we iteratively build the final temporal
walk W by concatenating smaller temporal walks. In each step of the iteration, a small
temporal walk W ′ is first constructed via Lemma 7 to visit a subset of the vertices of S,
which are not necessarily unvisited, but such that the size of the subset is at least a certain
threshold value. Using Lemma 3 we find an automorphism σ that we apply to W ′ to obtain
a temporal walk Wσ that visits many unvisited vertices of S. We then extend W via this
transformed walk Wσ (see Fig. 2 for a sketch of the proof idea). In this way we can explore
all vertices of a large orbit S faster than by repeated application of Lemma 1. The key to
obtain a good bound on the number of time steps required is to find a good value for the
number of vertices of S visited by each small temporal walk.
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1 2 3 4 5 6 7 8 9...
W

:T

:S \ T
:V \ S

10 2 13 11 3 . . .

8 10 7 12 13 . . .
.
.
.

14 3 10 15 8 . . .

( )
M10,Y,S :

10 9 2 13 19 18 11 3 23 ...
W ′

8 22 10 7 1 2 12 13 56 ...

..
.

Wσ

14 1 3 10 5 16 15 8 22 ...

Figure 2 The construction scheme of Theorem 8. W is the temporal walk constructed so far. We
aim to extend the walk with a walk Wσ that visits many vertices of S \ T , where T is the set of
vertices of orbit S that we have already visited. To find Wσ, we construct W ′ and the automorphism
matrix (bottom left) for the vertex with label 10 (the start vertex of W ′), the set Y of vertices of S

visited by W ′, and the entire orbit S as the set of possible start vertices of Wσ. One of the rows in
the matrix then gives us an automorphism σ that, when applied to W ′, yields the desired walk Wσ.

▶ Theorem 8. Let G be a temporal graph with lifetime ℓ and vertex set V . Take S ∈
G/Aut(G) and r = |G/Aut(G)| the orbit number. For any t ∈ [ℓ] there exists a temporal
walk W starting at time step t that visits all vertices of S and ends at time step t′ with
t′ − t = O((n5/3 + rn) log n).

The following lemma is concerned with visiting a fraction 1/c of the vertices of a given orbit
S with a temporal walk. One significant contribution to the number of time steps required
by the temporal walk constructed in Theorem 8 is the use of Lemma 3. Roughly speaking,
Lemma 3 provides a temporal walk that visits a large number of unvisited vertices, but with
the caveat that every vertex of S can potentially be the start vertex of this transformed walk
(instead of restricting the potential start vertices for the walk to a smaller subset, which might
be reachable more quickly). The consequence of this is that for each such transformation we
require, we must plan a “buffer” of n time steps to ensure that all vertices of S are reachable
by the time step in which the transformed walk starts (Lemma 1). Corollary 4 provides
a “trade-off” for this: a decrease in the set of possible start vertices of the transformed
walk Wσ decreases the number of previously unvisited vertices Wσ visits, but also decreases
the number of time steps required to reach the first vertex of Wσ. Using this property we
construct a recursive algorithm that visits a fraction of the vertices of S quickly instead of
applying the iterative construction of Theorem 8. In our recursive construction, the walks
we concatenate shrink with each recursive call. If we were to use Lemma 3 during this, we
would have an additional n time steps with each recursive call. Instead, Corollary 4 lets us
reduce the number of possible start vertices dramatically. The time span required by this
walk is then not dependent on n, but dependent on |S| and r (the orbit number), and thus is
especially useful for exploring smaller orbits. This can then be used iteratively to construct
a temporal walk that visits all vertices of S, which we in turn use to visit all vertices V by
visiting all orbits one after the other.

▶ Lemma 9. Let G be a connected temporal graph with lifetime ℓ and vertex set V . Let
S ∈ G/Aut(G) and let r = |G/Aut(G)| be the orbit number. For any t ∈ [ℓ] and any u ∈ S

there exists a temporal walk W that starts at vertex u in time step t and visits a fraction 1/c

(for any 1 < c < |S|) of the vertices of S such that W spans O(rc(|S|/c)ϕ(c) log |S|) time
steps, with ϕ(c) = 1/(log f(c)) and f(c) = (1 + (c − 1)/c).
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▶ Corollary 10. Let G be a temporal graph with lifetime ℓ and vertex set V . Let S ∈ G/Aut(G)
and r = |G/Aut(G)| be the orbit number. For any t ∈ [ℓ], any u ∈ S, and any fixed ϵ > 0,
there exists a temporal walk W that starts at vertex u in time step t and visits some constant
fraction α < 1 of the vertices of S such that W spans O(r|S|1+ϵ) time steps.

We now present an improved version of Theorem 8 for exploring a whole orbit.

▶ Theorem 11. Let G be a temporal graph with lifetime ℓ and vertex set V . Let S ∈ G/Aut(G)
and r = |G/Aut(G)| be the orbit number. For any t ∈ [ℓ], any u ∈ V , and any fixed ϵ > 0,
there exists a temporal walk W that starts at vertex u in time step t and visits all vertices of
S such that W spans O(r|S|1+ϵ + n log |S|) time steps.

By using the theorem above repeatedly for each orbit, we get a temporal walk for the whole
temporal graph.

▶ Corollary 12. Let G be a temporal graph with lifetime ℓ and vertex set V . For any fixed
ϵ > 0, there exists a temporal walk W that spans O(rn1+ϵ) time steps and visits all vertices
of V , where r = |G/Aut(G)| is the orbit number.

5 Upper Bound for TRP

Using Theorem 11 we show that trp can be solved by constructing a walk that spans
(asymptotically) the same number of steps as a walk for exploring an arbitrary single orbit.
The idea is that the two agents identify an orbit in which they meet, and then the first agent
moves to this orbit, and after n time steps the second agent starts exploring this orbit. For
this the agents must be able to independently identify the same orbit, for which we introduce
some additional notation. We extend the definition of isomorphism to temporal graphs
as follows. Let G, H be two temporal graphs with lifetime ℓ and vertex sets VG and VH,
respectively. We call a bijection θ : VG → VH a temporal isomorphism if θ is an isomorphism
from Gt to Ht for each t ∈ [ℓ] (and thus also an isomorphism from G to H, which denote the
underlying graphs of G and H, respectively). If clear from the context, we say isomorphism
instead of temporal isomorphism.

We define an integer coloring as a coloring of the vertices in the vertex set V of a temporal
graph G (with the colors being integer values). The assigned colors induce a partial order
≺P on the vertex set V such that, for all vertices u, v ∈ V that are assigned colors cu and
cv, respectively, with cu ̸= cv it holds that u ≺P v if cu < cv. The idea is now that the two
agents compute the same integer coloring of the given temporal graph G with the property
that two vertices u, v ∈ V are assigned the same color c if and only if u, v ∈ S, with S some
orbit of G/Aut(G). The agents then meet at the smallest orbit, breaking ties via the coloring.

Note that, since the agents do not have access to consistent labels of the vertices in V ,
they are unable to distinguish between two vertices u, v ∈ S with S being an orbit. Intuitively,
the two agents a1 and a2 view G as different temporal graphs G1 and G2, respectively, such
that G1 ∼= G ∼= G2. A natural idea is for the agents to pick a smallest orbit for their meeting,
but the challenge is how to ensure that the agents pick the same orbit if there are multiple
equal-size orbits that all have the smallest size. Therefore, in the proof of the following
lemma we let the agents iterate over all possible temporal graphs until they find a graph
H with G1 ∼= H ∼= G2. Then both agents compute an integer coloring for H as outlined in
the previous paragraph. This coloring is translated to a coloring of G1 by agent a1 and to a
coloring of G2 by agent a2 via isomorphism functions, which are independently computed by
the agents.
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▶ Lemma 13. Let G be a temporal graph with vertex set V and lifetime ℓ and let a1, a2 be
two label-oblivious agents. There exists a pair of programs (p1, p2) assigned to a1 and a2,
respectively, such that each agent computes the same integer coloring of V and such that two
vertices u, v ∈ V have the same color exactly if u, v are in the same orbit of G/Aut(G).

We can now easily construct an algorithm for trp. The agents simply meet in a smallest
orbit, breaking ties via the integer coloring (Lemma 13). The first agent moves to said orbit,
then the second agent searches the orbit for the first agent. Note that the smallest orbit has
size at most n/r, where r is the orbit number. Thus, the bound on the number of time steps
provided by Theorem 11 becomes O(r(n/r)1+ϵ + n log(n/r)) = O(n1+ϵ), and we obtain the
following upper bound for trp.

▶ Theorem 14. Let G be a temporal graph with lifetime ℓ and a1, a2 two label-oblivious agents.
For any fixed ϵ > 0, there exists a pair of programs (p1, p2) assigned to a1, a2, respectively,
such that the two agents are guaranteed to meet after O(n1+ϵ) time steps.

6 Lower Bounds for TEXP and TRP

We start this section with a simple lower bound for texp, which is a fairly straightforward
adaptation of the known lower bound of Ω(n2) time steps [27]. Following that, we give
a lower bound of Ω(n log n) time steps for trp. For this we describe the construction of
a temporal graph that is connected and has only a single orbit. We then show how an
adversary can choose the starting positions of the two agents that want to meet in order to
delay their meeting. Intuitively, the graph we create is a cycle that changes repeatedly after
some number of steps. By our construction, the adversary can make sure that after every
change of the graph, the two agents are placed far away from each other. In the end, we also
show that the resulting lower bound for trp yields a corresponding lower bound for texp.

▶ Lemma 15. For any 1 ≤ r ≤ n, there exist n-vertex instances of texp with orbit number
r that require Ω(rn) time steps to be explored.

▶ Theorem 16. For any two agents a1 and a2 with arbitrary deterministic programs, there
exist instances of trp where the agents require Ω(n log n) time steps to meet.

▶ Corollary 17. There exist connected temporal graphs G with vertex set V , lifetime ℓ and a
single orbit such that all temporal walks W require Ω(n log n) time steps to visit all vertices
of V .

The lower bounds of Theorem 16 and Corollary 17 can be adapted to temporal graphs with r

orbits for any constant r as follows: Use the construction from the proof of Theorem 16, but
instead of letting the graph Gt in each time step be a single cycle Ci, let Gt contain 2r − 1
copies of Ci, and for each vertex u of Ci connect all copies of u by a path Pu (starting with
the vertex u in the first copy of Ci and ending with the vertex u in the (2r − 1)-th copy of
Ci). The resulting temporal graph has r orbits: The vertices of the “middle” copy of Ci form
one orbit, and the vertices in the two copies of Ci that have distance k from the middle copy,
for 1 ≤ k ≤ r − 1, also form an orbit. Let n′ = n/r denote the number of vertices in one copy
of Ci. By the arguments in the proof of Theorem 16, it takes Ω(n′ log n′) time steps for the
two agents to reach a location in the same path Pu, and thus trp requires Ω(n′ log n′) time
steps. As n′ = n/r and r is a constant, this gives a lower bound of Ω(n log n) for trp. The
lower bound of Ω(n log n) time steps for exploration of temporal graphs with orbit number r

for any constant r then follows as in the proof of Corollary 17.
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7 Conclusions & Future Work

In this work, we looked at temporal graphs where agents know the complete information
of the temporal graph ahead of time. In this clairvoyant setting, we studied the temporal
exploration problem (texp) and showed how to bound the exploration time of a temporal
graph using the structural graph property of the number of orbits of the automorphism group
of the temporal graph. Additionally, we formalized the problem of asymmetric rendezvous in
this setting as the temporal rendezvous problem (trp) and showed how to adapt our ideas
for texp to solve trp quickly. For both texp and trp we provided lower bounds such that
the gap between upper and lower bounds is O(nϵ) for any fixed ϵ > 0. There are several ways
in which our work can be extended. One line of research for both problems is to reduce the
gap between the lower and upper bounds by improving either of them. A second line of work
is to study the symmetric variant of rendezvous in the given setting and see if something
can be said about it. Another interesting situation to explore is when multiple agents are
used to explore the temporal graph (and also if multiple agents need to perform temporal
rendezvous) and how much faster solutions in these scenarios might be. Lastly, a possible
avenue of research is to study the structural properties provided by automorphism groups
and how they can be used to tackle other problems that concern temporal graphs.
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