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Abstract
We study a family of matroid optimization problems with a linear constraint (MOL). In these
problems, we seek a subset of elements which optimizes (i.e., maximizes or minimizes) a linear
objective function subject to (i) a matroid independent set, or a matroid basis constraint, (ii)
additional linear constraint. A notable member in this family is budgeted matroid independent
set (BM), which can be viewed as classic 0/1-knapsack with a matroid constraint. While special
cases of BM, such as knapsack with cardinality constraint and multiple-choice knapsack,
admit a fully polynomial-time approximation scheme (Fully PTAS), the best known result for BM
on a general matroid is an Efficient PTAS. Prior to this work, the existence of a Fully PTAS for
BM, and more generally, for any problem in the family of MOL problems, has been open.

In this paper, we answer this question negatively by showing that none of the (non-trivial)
problems in this family admits a Fully PTAS. This resolves the complexity status of several well
studied problems. Our main result is obtained by showing first that exact weight matroid basis
(EMB) does not admit a pseudo-polynomial time algorithm. This distinguishes EMB from the
special cases of k-subset sum and EMB on a linear matroid, which are solvable in pseudo-polynomial
time. We then obtain unconditional hardness results for the family of MOL problems in the oracle
model (even if randomization is allowed), and show that the same results hold when the matroids
are encoded as part of the input, assuming P ̸= NP. For the hardness proof of EMB, we introduce
the Π-matroid family. This intricate subclass of matroids, which exploits the interaction between a
weight function and the matroid constraint, may find use in tackling other matroid optimization
problems.
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1 Introduction

Matroids are simple combinatorial structures, providing a unified abstraction for independence
systems such as linear independence in a vector space, or cycle-free subsets of edges in a
given graph. A matroid is a set system (E, I), where E is a finite set and I ⊆ 2E are the
independent sets (IS) such that (i) ∅ ∈ I, (ii) for all A ∈ I and B ⊆ A it holds that B ∈ I,
and (iii) for all A, B ∈ I where |A| > |B|, there is e ∈ A \B such that B ∪ {e} ∈ I.1

1 Properties (ii) and (iii) are known, respectively, as hereditary property, and exchange property.
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56:2 Lower Bounds for Matroid Optimization Problems

While serving as a generic abstraction for numerous applications, matroids possess useful
combinatorial properties that allow the development of efficient algorithms. These algorithms
include such canonical results as the classic greedy approach for finding a maximum weight
independent set of a matroid (see, e.g., [13]), Edmond’s algorithm for matroid partitioning [21],
and Lawler’s algorithm for matroid intersection [31]. In all of the above, polynomial running
time is enabled due to the structure of the problem − a single objective function with
a matroid constraint. However, in many natural applications, there is an added linear
constraint.

Consider, for example, the problem of finding a maximum independent set in a matroid
subject to a budget constraint. Formally, we are given a set of elements E, a membership
oracle for a collection of independent sets I ⊆ 2E of a matroid (E, I), a budget L > 0,
a weight function w : E → R≥0, and a value function v : E → R≥0. A solution for the
problem is an independent set S ∈ I of total weight at most L, i.e., w(S) ≤ L.2 The value
of a solution S is given by v(S), and the objective is to find a solution of maximum value.
This problem, known as budgeted matroid independent set (BM), is a generalization
of the classic 0/1-knapsack, which is NP-hard and therefore unlikely to admit an exact
polynomial-time algorithm. Thus, obtaining efficient approximations has been a main focus
in the study of BM.

For an instance I of an optimization problem G, let OPTG(I) be the value of an optimal
solution for I. For some ρ ≥ 1, a ρ-approximate solution S for I is a solution of value
v ≥ OPTG(I)

ρ (v ≤ ρ ·OPTG(I)) if G is a maximization (minimization) problem. We say that
A is a randomized ρ-approximation algorithm for G if given an instance I of G A returns with
probability at least 1

2 a ρ-approximate solution for I − if a solution exists. If no solution
exists − A returns that I does not have a solution.

Let |I| be the encoding size of an instance I of a problem G. A (randomized) polynomial-
time approximation scheme (PTAS) for G is a family of algorithms (Aε)ε>0 such that, for
any ε > 0, Aε is a (randomized) polynomial-time (1 + ε)-approximation algorithm for G.
A (randomized) Efficient PTAS (EPTAS) is a (randomized) PTAS (Aε)ε>0 with running
time of the form f

( 1
ε

)
· |I|O(1), where f is an arbitrary computable function. The strong

dependence of run-times on the error parameter, ε > 0, often renders the above schemes
highly impractical. This led to the study of the following more desirable class of schemes. A
(randomized) approximation scheme (Aε)ε>0 is a (randomized) Fully PTAS (FPTAS) if the

running time of Aε is of the form
(

|I|
ε

)O(1)
.3

In the past decades, BM was shown to admit a PTAS [2, 12, 25], and more recently an
Efficient PTAS [18, 17]. As the special case of 0/1-knapsack admits a Fully PTAS, it is
natural to explore the existence of a Fully PTAS for BM. There are known Fully PTASs
for BM on restricted families of matroids. This includes knapsack with a cardinality
constraint [7], multiple-choice knapsack [32], and BM with laminar matroid
constraint [19]. However, the question whether BM admits a Fully PTAS on general
matroids remained open.

In this paper, we resolve this question negatively for BM and other fundamental matroid
optimization problems with a linear constraint.

2 For every set X, a function f : X → R≥0 and Y ⊆ X we define f(Y ) =
∑

e∈Y
f(e).

3 To better distinguish between EPTAS and FPTAS, we use throughout the paper Efficient PTAS and
Fully PTAS.
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1.1 Our Results
For a matroid M = (E, I) we define IS(M) = I and bases(M) = {S ∈ I | |S| = rank(M)},
where rank(M) = maxT ∈I |T | is the rank of M, i.e., the maximum cardinality of an inde-
pendent set. We study a family of matroid optimization problems with a linear constraint
(MOL). Problems in this family are characterized by three parameters:

(i) The optimization objective opt − either the operator “max” or “min”.
(ii) A matroid feasibility constraint F − either the independent sets of a matroid, or the

set of bases of a matroid. The feasibility constraint is F ∈ {IS, bases}.
(iii) A relation ◁ − realized by one of the relations “≥” or “≤”.

Let P = {max, min} × {bases, IS} × {≤,≥} be the set of parameters for MOL problems.
Based on the set of parameters P, we define for every triplet a problem in the MOL family.
For P ∈ P where P = (opt,F , ◁), define the P -matroid optimization with a linear
constraint (P -MOL) problem as follows. An instance is a tuple I = (E, I, v, w, L) such
that M = (E, I) is a matroid, v : E → R≥0 is the objective function, w : E → R≥0 is a
weight function, and L ∈ R≥0 is a bound for the linear constraint. A solution of I is S ⊆ E

which satisfies the matroid feasibility constraint S ∈ F(M) and the linear constraint w(S)◁L.
The goal is to optimize (i.e., maximize or minimize) the value v(S). Thus, we can formulate
a P-MOL optimization problem as

opt v(S) s.t. S ∈ F(M), w(S) ◁ L. (1)

Observe that (max, IS,≤)-MOL is the BM problem. That is, given a BM instance (equi-
valently, (max, IS,≤)-MOL instance) I = (E, I, v, w, L), the goal is to find an independent
set S ∈ I of maximum total value v(S) such that w(S) ≤ L. Other notable examples for
MOL problems are constrained minimum basis of a matroid (CMB) [26], which can be
cast as (min, bases,≤)-MOL, and knapsack cover with matroid constraint (KCM)
[8] formalized by (min, IS,≥)-MOL.4

We note that (1) does not refer to the representation of the instance I. We consider two
possible representations. For any P ∈ P , in an instance (E, I, v, w, L) of oracle P -MOL, the
arguments E, v, w, L are given as the input, and the independent sets I are accessed via a
membership oracle, which determines whether a given set S ⊆ E belongs to I in a single
query. Thus, the independent sets are not considered in the encoding size of the instance.
The term running time for problems involving oracles refers to the sum of the number of
queries to the oracle and the number of basic operations. Previous works on MOL problems
often consider membership oracles [12, 2, 8, 18, 17]. As hardness with oracles does not
necessarily imply hardness in non-oracle models (see, e.g., [6, 9]), in Section 4 we show lower
bounds for variants of MOL problems in which the independent sets are encoded as part of
the input.

Clearly, the problem (min, IS,≤)-MOL is trivial since the empty set achieves the optimal
objective value. However, for any other P ∈ P, solving the P -MOL problem is challenging.
The non-trivial MOL problems are all the MOL problems excluding (min, IS,≤)-MOL. That
is, P -MOL is non-trivial if P ∈ Q where Q = P \ {(min, IS,≤)}. Observe that non-trivial
MOL problems are NP-hard (e.g., 0/1-knapsack is a special case of (max, IS,≤)-MOL);
however, all previously studied MOL problems admit approximation schemes.

4 CMB, KCM, and other MOL problems may not have a solution; however, we can decide in polynomial
time if a solution exists, and our definition of approximation algorithms captures instances with no
solution.
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56:4 Lower Bounds for Matroid Optimization Problems

For certain special cases of MOL problems, e.g., BM with simple matroid constraints, the
existence of a Fully PTAS is known for decades [38, 7]. However, for MOL problems with
arbitrary matroid constraints, the best known results are Efficient PTAS. While matroids
form an important generalization of well known basic constraints, the complexity of the
corresponding MOL problems remained open. Specifically, prior to this work, the existence
of a MOL problem which does not admit a Fully PTAS was open.

Our main result is that none of the (non-trivial) oracle matroid optimization problem with
a linear constraint admits a Fully PTAS, even if randomization is allowed. This unconditioned
hardness result is established by deriving a lower bound on the minimum number of queries
to the membership oracle.

▶ Theorem 1. For every P ∈ Q there is no randomized Fully PTAS for oracle P -MOL.

Table 1 Implications of our results for previously studied MOL problems. All of our bounds hold
for randomized algorithms.

Problem Previous Results This Paper

Budgeted Matroid Independent Set Efficient PTAS [18] No Fully PTAS
Budgeted Matroid Intersection Efficient PTAS [17] No Fully PTAS
Constrained Minimum Basis of Matroid Efficient PTAS [26] No Fully PTAS
Knapsack Cover with a Matroid PTAS [8] No Fully PTAS

Theorem 1 conclusively distinguishes MOL problems with arbitrary matroids, such as
BM, from special cases with simpler matroid constraints. Furthermore, it shows that existing
Efficient PTAS [26, 18, 17] for MOL problems on general matroids are the best possible.
Notable implications of our results are given in Table 1, and consequences of our lower
bounds for a set of previously studied problems [5, 26, 2, 12, 25, 8, 18, 17, 16] are given in
Section 1.3. By resolving the complexity status of MOL problems on general matroids, our
results promote future research to design (or rule out) Fully PTAS for MOL problems on
restricted matroid classes (see Section 5).

To prove Theorem 1, we turn our attention to the following problem.

▶ Definition 2. An instance of Exact Matroid Basis (EMB) is I = (E, I, c, T ), where
(E, I) is a matroid, c : E → N is a weight function, and T ∈ N is a target value. A solution
is a basis S of (E, I) such that c(S) = T . The goal is to decide if there is a solution.

Similar to MOL problems, EMB does not specify the input. In an instance (E, I, c, T ) of
oracle-EMB, E, c, T are explicitly given, and the independent sets I are accessed via
a membership oracle. An instance I of a decision problem D is a “yes”-instance if the
correct answer for I is “yes”; otherwise, I is a “no”-instance. We say that A is a randomized
algorithm for a decision problem D if, given a “yes”-instance I of D, A returns “yes” with
probability at least 1

2 ; for a “no”-instance, A returns “no” with probability 1. The next
result rules out a pseudo-polynomial time algorithm for oracle-EMB, thus distinguishing the
problem from the special cases of k-subset sum and EMB on linear matroids, which admit
a pseudo-polynomial time algorithm [5].

▶ Theorem 3. For any oracle-EMB instance I = (E, I, c, T ), there is no randomized
algorithm for oracle-EMB that runs in time (n · (T + 2) ·m)O(1), where n = |E|+ 1 and
m = c(E) + 1.
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1.2 Technical Contribution
We derive our results by introducing Π-matroids. This new family of paving matroids carefully
exploits a simple weight function to define a matroid that successfully hides a specific property
Π within its independent sets (see Section 2).5 Using Π-matroids, we define oracle-EMB
instances whose solutions must satisfy the property Π. This shows the unconditional hardness
of oracle-EMB, as Π can be discovered only via an exponential number of queries to the
membership oracle. Our hardness results for MOL problems (as stated in Theorem 1) are
derived via reduction from oracle-EMB.

Despite the abundance of lower bounds for matroid problems [33, 28, 29, 39], as well
as for knapsack problems [10, 30, 14, 3], we are not aware of lower bounds that leverage
the interaction between the matroid constraint and the additional linear constraint required
for deriving our new lower bound for EMB, and consequently for MOL problems. Indeed,
if the matroid constraint is removed from (1) (equivalently, F(M) = 2E), MOL problems
become variants of classic 0/1-knapsack, which admits a Fully PTAS. Alternatively, if the
linear constraint imposed by w, L is removed, then we have the polynomially solvable maxim-
um/minimum weight matroid independent set problem. This distinguishes our construction
from existing lower bounds for matroid problems, as even previous constructions of paving
matroids (e.g., [28]) cannot be easily adapted to tackle both the knapsack constraint along
with the matroid constraint. Π-matroids may be useful for deriving lower bounds for other
problems (see Section 5).

Our unconditional lower bounds apply in the oracle model, where the independent sets
of the given matroid can be accessed only via a membership oracle. One may question the
validity of the bounds for variants of the problems where the matroid is encoded as part of
the input. Indeed, in some scenarios, the use of oracles makes problems harder [6, 9]. Thus,
we complement our results by showing that the same lower bounds hold under the standard
complexity assumption P ̸= NP, even if the matroid is encoded as part of the instance and
membership can be decided in polynomial time. We accomplish this by designing the family
of SAT-matroids − a counterpart of the Π-matroid family whose members can be efficiently
encoded. This construction can be used to obtain hardness results for other matroid problems
in non-oracle models, based on existing analogous lower bounds in the oracle model (e.g., [28]).
We elaborate on that in Section 4.

1.3 Implications of Our Results and Prior Work
Below we describe in further detail the implications of our results, and discuss previous work
on MOL problems. In the following problems, general matroids are assumed to be accessed
via membership oracles.

Exact Matroid Basis (EMB). This is a generalization of the k-subset sum problem (where
(E, I) is a uniform matroid).6 Thus, EMB is unlikely to be solvable in polynomial time.
Instead, we seek a pseudo-polynomial time algorithm whose running time has polynomial
dependence on the encoding size of the instance and the target value T . Indeed, the
special case of EMB in which the matroid is representable (or, linear) admits such a pseudo-
polynomial time algorithm [5]. Since the 1990s, it has been an open question whether the
result of Camerini et al. [5] can be extended to general matroids. Theorem 3 resolves this
question, ruling out the existence of a pseudo-polynomial time algorithm for EMB.

5 We note that paving matroids have been used in earlier work, e.g., to show intractability of the matroid
matching problem in the oracle model [33, 28].

6 In a uniform matroid, I = {S ⊆ E | |S| ≤ k}.
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Budgeted Matroid Independent Set (BM). This problem is cast as (max, IS,≤)-MOL. BM
is a natural generalization of the classic 0/1-knapsack problem, for which a Fully PTAS has
been known since the 1970s [32]. As mentioned above, a Fully PTAS is known also for other
special cases of BM. A PTAS for BM was first given in [2] as a special case of budgeted
matroid intersection (BMI). In this generalization of BM, we are given two matroids
(E, I1) and (E, I2), and a solution has to be an independent set of both matroids. A PTAS
for BM also follows from the results of [25, 12] which present PTASs for multi-budgeted
variants of BM. An Efficient PTAS for BM was recently given in [18] and for BMI in [17].
The existence of a Fully PTAS for BM was posed as a central open question in [2, 18, 17].
We answer this question negatively, as formalized in Theorem 1, giving a tight lower bound
for BM and BMI.

Constrained Minimum Basis of a Matroid (CMB). This problem can be cast as the
matroid optimization problem (min, bases,≤)-MOL. The constrained minimum spanning
tree (CST) problem is the special case of CMB in which the matroid (E, I) is graphical
[36, 1, 26, 27], namely, there is a graph G = (V, E) such that the independent sets I are
cycle-free subsets of edges in G. A PTAS for CST was given by Ravi and Goemans [36]. This
result was improved to an Efficient PTAS by Hassin and Levin [26]. A bicriteria FPTAS,
which violates the budget constraint by a factor of (1 + ε), was presented in [27]. The authors
of [26] mention that their result actually gives an Efficient PTAS for CMB. The existence
of a Fully PTAS for CMB remained an open question. Theorem 1 shows that the Efficient
PTAS for CMB cannot be improved.

Knapsack Cover with a Matroid (KCM). As a final implication, Theorem 1 rules out the
existence of a Fully PTAS for a coverage variant of 0/1-knapsack, formulated as (min, IS,≥)-
MOL. In [8], Chakaravarthy et al. presented a PTAS for KCM using integrality properties of
a linear programming formulation of KCM. Moreover, for the special case of KCM with a
partition matroid, they give a Fully PTAS based on dynamic programming. The existence of
a Fully PTAS for KCM on a general matroid was posed in [8] as an open question. Theorem 1
answers this question negatively. Our initial study indicates that an Efficient PTAS for KCM
can potentially be obtained by adapting the approach of Hassin and Levin [26] to the setting
of KCM. This suggests that our lower bound cannot be strengthened.

1.4 Organization
In Section 2 we introduce the Π-matroid family and give the proof of Theorem 3. In Section 3
we prove Theorem 1, and in Section 4 we show that similar lower bounds hold in the standard
computational model. We conclude in Section 5 with a summary and directions for future
work. Due to space constraints, some of the proofs are given in the full version of the
paper [20].

2 The Hardness of oracle exact matroid basis

In this section, we prove Theorem 3. We use in the proof the family of Π-matroids. For
any m ∈ N, let [m] = {1, . . . , m}. A member in the Π-matroid family is given by four
arguments: n, k, α ∈ N>0, and Π ⊆ 2[n]. The first argument, n ∈ N>0, is the number of
elements, and the ground set is [n]. The second argument, k ∈ [n], is the rank of the matroid.
The third argument, α ∈ N>0, is a target value, that is usually equal to sum(S) for some
S ⊆ [n], where sum(S) =

∑
i∈S i. The last argument is a family of subsets Π ⊆ 2[n].
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1 2

3 4

Π = {independent sets of G}A graph G

J4,2 = {∅, {1}, {2}, {3}, {4}}, K4,2,5 = {{2,4}, {2,1}, {4,3}, {3,1}}, L4,2,5(Π) = {{2,3}}

Figure 1 The independent sets of the Π-matroid Mn,k,α(Π), with parameters n = 4, k = 2, and
α = 5. The secret family Π contains all independent sets in the graph G, where {2, 3} is the only
independent set in G with k elements.

The set Π is called the secret family because finding S ∈ Π is possible only via repeated
queries to the membership oracle of the matroid. Since Π can have an arbitrary structure,
this may require exhaustive enumeration.

▶ Definition 4. Let n, k, α ∈ N>0. For some Π ⊆ 2[n], define the Π-matroid on n, k, and α

as Mn,k,α(Π) = ([n], In,k,α(Π)), where

In,k,α(Π) = Jn,k ∪ Kn,k,α ∪ Ln,k,α(Π)

and Jn,k,Kn,k,α,Ln,k,α(Π) are defined as follows.

Jn,k =
{

S ⊆ [n]
∣∣ |S| < k

}
Kn,k,α =

{
S ⊆ [n]

∣∣ |S| = k, sum(S) ̸= α
}

Ln,k,α(Π) =
{

S ⊆ [n]
∣∣ |S| = k, sum(S) = α, S ∈ Π

}
.

(2)

In words, Jn,k contains all subsets of strictly less than k elements; Kn,k,α contains all
subsets of cardinality k whose total sum is not α. Finally, Ln,k,α(Π) contains all subsets
of cardinality k and total sum α which also belong to Π. See Figure 1 for an example of a
member of the Π-matroid family. Using a simple argument, we show that the set system in
Definition 4 is indeed a matroid. For the sets In,k,α(Π), Jn,k, Kn,k,α and Ln,k,α(Π) defined
in Definition 4, we often omit the subscripts n, k, α and n, k when the values of n, k, α are
known by context. For simplicity, for any set A and an element a, let A + a, A−a be A∪{a}
and A \ {a}, respectively.

▶ Lemma 5. For every n, k, α ∈ N>0, and Π ⊆ 2[n] it holds that Mn,k,α(Π) is a matroid.7

Proof. We first note that ∅ ∈ J since 0 < k; therefore, ∅ ∈ I(Π). For the hereditary property,
let A ∈ I(Π). For all B ⊂ A it holds that |B| < k; thus, B ∈ J and it follows that B ∈ I(Π).
For the exchange property, let A, B ∈ I(Π) such that |A| > |B|. We consider the following
cases.
1. |B| < k − 1. Then, for all e ∈ A \ B it holds that |B + e| < k − 1 + 1 = k. Hence,

B + e ∈ J and it follows that B + e ∈ I(Π). Note that there is such e ∈ A \B because
|A| > |B|.

2. |B| = k − 1 and |A| = k. We consider two subcases.
a. B ⊆ A. Then, as |A| > |B| there is e ∈ A \B. Hence, B + e = A (because |B| = k− 1

and |A| = k). As A ∈ I(Π), it follows that B + e ∈ I(Π).

7 We remark that the lemma can be proved using Theorem 5.3.5 in [23]. We give the proof for completeness.
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I

1

no

2

yes

3

no . . .

|Q(b)|

no S /∈ Q(b), S /∈ I(Π∅)

IS

1

no

2

yes

3

no . . .

|Q(b)|

no S /∈ Q(b), S ∈ I(ΠS)

Figure 2 An illustration of the proof of Theorem 3. The figure presents the sequences of queries
to the membership oracles by the algorithm on the instances I and IS for a string of bits b, such
that S /∈ Q(b). The label ”yes” (”no”) indicates that the queried set is (not) independent in the
matroid. The only query that distinguishes between I and IS is on the set S, which is not queried;
thus, the algorithm returns the same output for I and IS .

b. B ̸⊆ A. Then, as |B| = k − 1 and |A| = k it follows that |B ∩A| < |B| = k − 1. Thus,
|A \ B| = |A| − |A ∩ B| > k − (k − 1) = 1. Hence, there are e, f ∈ A \ B such that
e ̸= f . It follows that there is g ∈ {e, f} such that sum(B + g) = sum(B) + g ̸= α. We
conclude from (2) that B + g ∈ K, implying that B + g ∈ I(Π). ◀

Observe that Kn,k,α ∪ Ln,k,α(Π) is the set of bases of the matroid. Moreover, for any
arguments n, k, α and Π, the cardinality of every dependent set S ∈ 2[n] \ In,k,α(Π) is at
least the rank of the Π-matroid Mn,k,α(Π) = ([n], In,k,α(Π)). Such matroids are known as
paving matroids (see, e.g., [34, 35]). Using Π-matroids, we define the following collection
of oracle-EMB instances. In these instances, the matroid is a Π-matroid, where Π is some
unknown fixed family of subsets of the ground set.

▶ Definition 6. For every n, k, α ∈ N>0, and Π ⊆ 2[n] define the induced oracle-EMB instance
of n, k, α, Π, denoted In,k,α(Π), as follows. Let idn : [n] → [n], where idn(i) = i ∀i ∈ [n].
Then, In,k,α(Π) = ([n], In,k,α(Π), idn, α).

Observe that the above is indeed an oracle-EMB instance if the independent sets of the
given matroid are accessible via a membership oracle. The following is an easy consequence
of Definition 6.

▶ Observation 7. For every n, k, α ∈ N>0 and Π ⊆ 2[n], it holds that In,k,α(Π) is an oracle-
EMB ”yes”-instance if and only if there is S ∈ Π such that |S| = k and sum(S) = idn(S) = α.

By Observation 7, an algorithm that finds an independent set of Mn,k,α(Π) satisfying
|S| = k and sum(S) = α, in fact outputs a subset S ∈ Π. As the input for an induced
oracle-EMB instance In,k,α(Π) does not contain an explicit encoding of Π, finding S ∈ Π
requires a sequence of queries to the membership oracle of Mn,k,α(Π). Roughly speaking, to
decide In,k,α(Π), an algorithm for oracle-EMB must iterate over all (exponentially many)
subsets S ⊆ [n] such that |S| = k and sum(S) = α. This is the intuition behind the proof of
the next result.

▶ Theorem 3. For any oracle-EMB instance I = (E, I, c, T ), there is no randomized
algorithm for oracle-EMB that runs in time (n · (T + 2) ·m)O(1), where n = |E|+ 1 and
m = c(E) + 1.
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Proof. Assume towards contradiction that there exist a constant d ∈ N and a randomized
algorithm A that decides every oracle-EMB instance (E, I, c, T ) in time ((T + 2) · n ·m)d,
where n = |E|+ 1 and m = c(E) + 1. For every n, k, α ∈ N>0, consider the set of all subsets
of [n] with cardinality k and sum α, i.e.,

Fn,k,α =
{

S ⊆ [n]
∣∣ |S| = k, sum(S) = α

}
.

To reach a contradiction, we construct an induced oracle-EMB instance on which A does not
compute the proper output with sufficiently high probability. The parameters of the instance
are extracted from the following combinatorial claim.

▷ Claim 8. There are ñ ∈ N>0, k̃ ∈ [ñ], and α̃ ∈
[
ñ2]

such that |Fñ,k̃,α̃| > 2 ·
(
12 · ñ5)d.

Proof. Since d is a constant, there is ñ ∈ N>0 such that

(
12 · ñ5)d

<
2ñ − 1
2 · ñ3 . (3)

Fix ñ ∈ N>0 satisfying (3). Recall that
∑

k∈{0,1,...,ñ}
(

ñ
k

)
= 2ñ from a basic property of the

Pascal triangle; therefore,
∑

k∈{1,...,ñ}
(

ñ
k

)
= 2ñ − 1. Thus, there is k̃ ∈ {1, . . . , ñ}, such that(

ñ

k̃

)
≥ 2ñ − 1

ñ
. (4)

Fix k̃ ∈ [ñ] satisfying (4). Observe that for each S ∈ 2[ñ] satisfying |S| = k̃ > 0, it holds that
1 ≤ sum(S) ≤ |S| ·maxi∈[ñ] i = ñ2. Thus, there are ñ2 possibilities for α ∈

[
ñ2]

satisfying
α = sum(S), for some S ∈ 2[ñ] such that |S| = k̃. Moreover, there are

(
ñ
k̃

)
subsets of [ñ] of

cardinality k̃. By the pigeonhole principle, there is α̃ ∈
[
ñ2]

such that |Fñ,k̃,α̃| ≥
(ñ

k̃)
ñ2 . Thus,

|Fñ,k̃,α̃| ≥
(

ñ
k̃

)
ñ2 ≥

2ñ − 1
ñ · ñ2 > 2 ·

(
12 · ñ5)d

.

The second inequality follows from (4), and the third inequality holds by (3). ◁

Let ñ ∈ N>0, k̃ ∈ [ñ], and α̃ ∈
[
ñ2]

satisfying the conditions of Claim 8. Define t to be
the maximum running time of A on an induced EMB instance Iñ,k̃,α̃(Π) over all Π ∈ 2[ñ].

▷ Claim 9. t ≤
(
12 · ñ5)d.

Proof. Let T = α̃, n = ñ + 1, and m = idñ([ñ]) + 1. By the running time guarantee of A, it
follows that t ≤ (n · (T + 2) ·m)d. It remains to bound n·(T +2)·m. Since idñ([ñ]) = sum([ñ])
and α̃ ≤ ñ2,

n · (T + 2) ·m ≤ (ñ + 1) ·
(
ñ2 + 2

)
(sum([ñ]) + 1) ≤ 2ñ · 3ñ2 ·

(
ñ · (ñ + 1)

2 + 1
)
≤ 12 · ñ5.

The second inequality follows from the sum of the terms of an arithmetic sequence. By the
above and the running time guarantee of A, it follows that t ≤ (n · (T + 2) ·m)d ≤

(
12 · ñ5)d.

◁

Given an induced oracle-EMB instance Iñ,k̃,α̃(Π), for some Π ⊆ [ñ], the randomized
algorithm A generates a random string of bits b̄ ∈ {0, 1}t and performs a sequence of queries
to the membership oracle of Mñ,k̃,α̃, based on b̄, ñ, k̃, α̃, and the results of the previous queries.
Then, the algorithm decides the given instance based on the queries.
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Let Π∅ = ∅, and consider the induced oracle-EMB instance I = Iñ,k̃,α̃(Π0). Given a
string of bits b ∈ {0, 1}t, let Q(b) ⊆ 2[ñ] be the set of all subsets S ⊆ [ñ] queried by A on the
instance I and the bit-string b (on the membership oracle of Mñ,k̃,α̃(Π∅)). For clarity, we
use b̄ for a random string, and b for a realization of b̄ to a specific string. Note that Q(b) is a
set, since the algorithm is deterministic for every b ∈ {0, 1}t; conversely, Q(b̄) is a random
set for a random string b̄ ∈ {0, 1}t. As the running time of A on I is bounded by t, it holds
that |Q(b)| ≤ t for every b ∈ {0, 1}t. Let

R(I) =
{

S ∈ Fñ,k̃,α̃

∣∣∣∣ Pr
(
S ∈ Q(b̄)

)
≥ 1

2

}
be all sets in Fñ,k̃,α̃ that are queried by A with probability at least 1

2 .

▷ Claim 10. |R(I)| < |Fñ,k̃,α̃|.

Proof. By the definition of R(I), it holds that

|R(I)| =
∣∣∣∣{S ∈ Fñ,k̃,α̃

∣∣∣∣ Pr
(
S ∈ Q(b̄)

)
≥ 1

2

}∣∣∣∣
≤ 2 ·

∑
S∈Fñ,k̃,α̃

Pr
(
S ∈ Q(b̄)

)
= 2 ·

∑
S∈Fñ,k̃,α̃

∑
b∈{0,1}t

Pr (S ∈ Q(b)) · Pr(b̄ = b).

Thus, by changing the order of summation, we have

|R(I)| ≤ 2 ·
∑

b∈{0,1}t

Pr(b̄ = b) ·
∑

S∈Fñ,k̃,α̃

Pr (S ∈ Q(b)) ≤ 2 ·
∑

b∈{0,1}t

Pr(b̄ = b) · |Q(b)|.

Since |Q(b)| ≤ t for all b ∈ {0, 1}t, by the above we have

|R(I)| ≤ 2t ·
∑

b∈{0,1}t

Pr(b̄ = b) = 2 · t ≤ 2 ·
(
12 · ñ5)d

< |Fñ,k̃,α̃|.

The second inequality follows from Claim 9. The last inequality holds by Claim 8. ◁

By Claim 10, there exists S ∈ Fñ,k̃,α̃ \R(I). Consider the induced oracle-EMB instance
IS = Iñ,k̃,α̃(ΠS) where ΠS = {S}, and let B = {b ∈ {0, 1}t | S /∈ Q(b)} be all strings for
which S is not queried by A on the instance I. Observe that for all b ∈ B it holds that
the answers to all queries for T ∈ Q(b) are the same for both oracles (of Mñ,k̃,α̃(Π∅) and
Mñ,k̃,α̃(ΠS)). Moreover, the decision on which set to query next depends only on b, ñ, k̃, α̃,
and the answers to previous queries.

Hence, for all b ∈ B, the executions of A on the instances I and IS are identical. Since
Π∅ = ∅, by Observation 7, I is a “no”-instance for oracle-EMB; thus, A returns that IS is a
“no”-instance for every b ∈ B. However, since idn(S) = sum(S) = α, |S| = k, and S ∈ ΠS ,
it follows that IS is a “yes”-instance by Observation 7. Therefore, A does not decide IS

correctly for all b ∈ B. We give an illustration in Figure 2. Since S /∈ R(I), it holds that
Pr

(
b̄ ∈ B

)
= Pr

(
S /∈ Q(b̄)

)
> 1

2 ; thus, with probability greater than 1
2 , A does not decide

correctly the instance IS . A contradiction to the correctness of A as a randomized algorithm
for oracle-EMB. The statement of the theorem follows. ◀
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3 Hardness of Matroid Optimization with a Linear Constraint

In this section we use Theorem 3 to prove Theorem 1. We apply the following reductions
from EMB to MOL problems. Recall that Q = P \ {(min, IS,≤)} is the set of parameters for
non-trivial MOL problems. Given a P -MOL problem for some P ∈ Q, and an EMB instance
I, the reduction returns an instance RP (I) of the P -MOL problem. Note that the reduction
is purely mathematical, and does not specify the encoding of the instance. This will be useful
for obtaining our hardness results in non-oracle computational models (see Section 4).

Given (opt,F , ◁), (opt′,F ′, ◁′) ∈ Q, we use the notation (opt is opt′), (F is F ′), (◁ is ◁′)
to denote the boolean expressions of equality between parameters of a MOL problem. For
example, (opt is opt′) is true if and only if either opt, opt′ are both max, or opt, opt′ are
both min.

▶ Definition 11. Given an EMB instance I = (E, I, c, T ) and P ∈ Q where P = (opt,F , ◁),
define the reduced P -MOL instance of I, denoted by RP (I) = (E, I, vI , wI,P , LI,P ), as
follows.
1. Define the auxiliary variable

d(P ) =

0 if
(

(opt is max) and (◁ is ≤)
)

or
(

(opt is min) and (◁ is ≥)
)

1 otherwise.

For example, if P = (max, IS,≤) then d(P ) = 0, and if P ′ = (max, IS,≥) then d(P ′) = 1.
2. Let HI = 2 ·max{1, c(E)}.
3. For all e ∈ E let vI(e) = HI + c(e).
4. For all e ∈ E let wI,P (e) = HI + c(e) · (−1)d(P ).
5. Let kI = maxS∈I |S| be the rank of (E, I).
6. Define LI,P = kI ·HI + T · (−1)d(P ).

Now, for every EMB instance I = (E, I, c, T ), define the error parameter of I as

εI = 1
8 · (|E|+ 1) · (T + 1) · (c(E) + 1) . (5)

Indeed, since the value selected for of the error parameter is sufficiently small, we can use a
(1 + εI)-approximation for RP (I) to decide an EMB instance I.

▶ Theorem 12. Given an instance I = (E, I, c, T ) of EMB, and P ∈ Q with P = (opt,F , ◁),
the following holds.
1. If there is a solution S for RP (I) such that vI(S) = kI ·HI +T , then I is a “yes”-instance.

2. If I is a “yes”-instance then: (i) RP (I) has a solution, and (ii) every (1+εI)-approximate
solution S for RP (I) satisfies vI(S) = kI ·HI + T .
Using Theorem 12 and an assumed randomized Fully PTAS for the P -MOL problem, we

can decide EMB in time which contradicts Theorem 3. This gives the proof of Theorem 1.
We first prove Theorem 1, and later give the proof of Theorem 12.

▶ Theorem 1. For every P ∈ Q there is no randomized Fully PTAS for oracle P -MOL.

Proof. Assume towards a contradiction that there is a randomized Fully PTAS A for oracle
P -MOL. We use A to decide oracle-EMB. Let I = (E, I, c, T ) be an oracle-EMB instance,
and consider the following randomized algorithm B that decides I.
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1. Construct the oracle P -MOL instance RP (I) with the membership oracle of (E, I).
2. Execute A with the input RP (I) and εI .
3. If A returns that RP (I) does not have a solution − Return ”no” on I.
4. Otherwise, let S ← A(RP (I), εI) be the solution returned by A.
5. Return ”yes” on I if and only if vI(S) = HI · kI + T .

Let n = |E|+ 1 and m = c(E) + 1. Note that RP (I) can be naively constructed from
I in time (n · (T + 2) ·m)O(1) using Definition 11. As A is a randomized Fully PTAS for
oracle P -MOL, and by the selection of the error parameter (5), the running time of B on I

is (n · (T + 2) ·m)O(1). We now show correctness.
If B returns “yes” on I, then Step 4 of the algorithm computes a solution S for Rp(I)
satisfying vI(S) = HI · kI + T . Thus, by Theorem 12, I is a “yes” instance.
If I is a “yes” instance then RP (I) has a solution by Theorem 12. As A is a randomized
Fully PTAS, with probability at least 1

2 A returns a (1 + εI)-approximate solution S

for RP (I) in Step 4. By Theorem 12, vI(S) = HI · kI + T (with probability at least 1
2 ).

Thus, B returns “yes” on I with probability at least 1
2 .

Hence, B is a randomized algorithm which decides the oracle-EMB instance I in time
(n · (T + 2) ·m)O(1). This is a contradiction to Theorem 3. ◀

In the remainder of this section we prove Theorem 12. We start with some basic properties
of the reduction outlined in Definition 11.

▶ Lemma 13. Given an instance I = (E, I, c, T ) of EMB, let P ∈ Q and consider a solution
S for RP (I) satisfying vI(S) = kI ·HI + T . Then, S is a solution for I.

Proof. Let M = (E, I). As S is a solution for RP (I), it holds that S ∈ IS(M); thus,
|S| ≤ kI . Assume towards contradiction that |S| < kI . Then,

vI(S) = |S| ·HI + c(S) ≤ (kI −1) ·HI + c(S) ≤ (kI −1) ·HI + c(E) < kI ·HI ≤ kI ·HI +T.

We reach a contradiction since vI(S) = kI ·HI + T ; thus, |S| = kI , and

kI ·HI + T = vI(S) = |S| ·HI + c(S) = kI ·HI + c(S). (6)

As |S| = kI , we have that S is a basis of M, and by (6), c(S) = T . Hence, S is a solution
for I. ◀

The next result is the converse of the statement in Lemma 13.

▶ Lemma 14. Let S be a solution for a given EMB instance I = (E, I, c, T ), and let P ∈ Q
where P = (opt,F , ◁). Then, S is a solution for RP (I) of value vI(S) = kI ·HI + T .

Proof. LetM = (E, I). Since S is a solution for I we have S ∈ bases(M); thus, S ∈ F(M).
Then,

wI,P (S) = |S| ·HI + c(S) · (−1)d(P ) = kI ·HI + T · (−1)d(P ) = LI,P .

The second equality holds since S is a solution for I; thus, |S| = kI (as S is a basis of M),
and c(S) = T . We conclude that S is a solution for RP (I). Finally, note that S satisfies

vI(S) = |S| ·HI + c(S) = kI ·HI + T ◀

The next claim gives an upper bound on the optimal value for maximization MOL
problems. We then derive an analogous lower bound for minimization (non-trivial) MOL
problems.
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▶ Lemma 15. Let I = (E, I, c, T ) be an EMB instance and P ∈ Q, where P = (opt,F , ◁)
and (opt is max). Then, for every solution S of RP (I) it holds that vI(S) ≤ kI ·HI + T .

Proof. Let S be an optimal solution for RP (I). Thus, |S| ≤ kI as S ∈ I. If |S| < kI then

vI(S) ≤ (kI − 1) ·HI + c(S) ≤ (kI − 1) ·HI + c(E) < kI ·HI ≤ kI ·HI + T.

Otherwise, |S| = kI . Consider the two cases for ◁.
1. (◁ is ≤). Then, d(P ) = 0 (see Definition 11); thus, since S is a solution for RP (I):

vI(S) = wI,P (S) ≤ LI,P = kI ·HI + T.

2. (◁ is ≥). Then, d(P ) = 1. As S is a solution for RP (I),

kI ·HI − c(S) = |S| ·HI − c(S) = wI,P (S) ≥ LI,P = kI ·HI − T. (7)

By (7), it follows that c(S) ≤ T ; thus, vI(S) = kI ·HI + c(S) ≤ kI ·HI + T .

In all the above cases, we have that vI(S) ≤ kI ·HI + T , implying the statement of the
lemma. ◀

Now, for minimization problems we have the next result.

▶ Lemma 16. Let I = (E, I, c, T ) be an EMB instance, and P ∈ Q, where P = (opt,F , ◁)
and (opt is min). Then, for every solution S of RP (I), it holds that vI(S) ≥ kI ·HI + T .

Using Lemmas 13–16, we can now prove Theorem 12.

▶ Theorem 12. Given an instance I = (E, I, c, T ) of EMB, and P ∈ Q with P = (opt,F , ◁),
the following holds.
1. If there is a solution S for RP (I) such that vI(S) = kI ·HI +T , then I is a “yes”-instance.
2. If I is a “yes”-instance then: (i) RP (I) has a solution, and (ii) every (1+εI)-approximate

solution S for RP (I) satisfies vI(S) = kI ·HI + T .

Proof. We note that Property 1 follows directly from Lemma 13. For Property 2, assume
that I is a “yes”-instance, then by Lemma 14, there is a solution D for RP (I) such that
vI(D) = HI · kI + T . It remains to show Property 2. (ii). Let S be a (1 + εI)-approximate
solution for RP (I). We distinguish between two cases.

1. (opt is max). Then, by Lemma 15,

0 ≤ HI · kI + T − vI(S).

Moreover, since S is a (1 + εI)-approximate solution for RP (I), and D is a solution for
RP (I),

HI · kI + T − vI(S) ≤ HI · kI + T − vI(D)
(1 + εI) = εI · (HI · kI + T )

(1 + εI) ≤ εI · (HI · kI + T ) .

By the above, it follows that

|vI(S)− (HI · kI + T )| ≤ εI · (HI · kI + T ) .

ICALP 2024



56:14 Lower Bounds for Matroid Optimization Problems

2. (opt is min). This case is analogous to the above. By Lemma 16,

0 ≤ vI(S)− (HI · kI + T ) .

Since S is a (1 + εI)-approximate solution for RP (I), and D is a solution for RP (I),

vI(S)− (HI · kI + T ) ≤ (1 + εI) · vI(D)− (HI · kI + T ) = εI · (HI · kI + T ) .

By the above,

|vI(S)− (HI · kI + T )| ≤ εI · (HI · kI + T ) .

Thus in both cases it holds that,

|vI(S)− (HI · kI + T )| ≤ εI · (HI · kI + T ) . (8)

Let n = |E|+ 1 and m = c(E) + 1. Then, by the selection of εI in (5),

εI · (HI · kI + T ) = HI · kI + T

8 · n · (T + 1) ·m ≤
2 ·m · n + T

8 · n · (T + 1) ·m <
4 ·m · n · (T + 1)
8 · n · (T + 1) ·m = 1

2 . (9)

The first inequality holds since kI ≤ |E| and HI ≤ 2 ·m. Therefore, by (8) and (9),

|vI(S)− (HI · kI + T )| ≤ εI · (HI · kI + T ) <
1
2 . (10)

Since vI(S) ∈ N by Definition 11, it follows from (10) that vI(S) = HI · kI + T . This gives
the statement of the theorem. ◀

4 Lower Bounds in the Standard Computational Model

Our hardness result in Section 2 shows that oracle Exact Matroid Basis (EMB) is
hard, leading to the unconditional lower bounds for all non-trivial oracle MOL problems
in Section 3. Nonetheless, these hardness results consider matroids with general membership
oracles, and do not give a lower bound for matroids that can be efficiently encoded. This
is particularly important, as in some settings oracle models differ from non-oracle models
w.r.t complexity [6, 9]. Moreover, some matroids show up in problems that can be encoded
efficiently. This includes partition matroids, graphic matroids, linear matroids, etc (see,
e.g., [37] for a survey on various families of matroids). Next, we formally define an efficient
encoding of matroids.

▶ Definition 17. A function f : {0, 1}∗ → 2N × 22N is called matroid decoder if for every
I ∈ {0, 1}∗ it holds that f(I) =

(
Ef(I), If(I)

)
is a matroid, and the following holds.

1. There is an algorithm that given I ∈ {0, 1}∗ returns Ef(I) in time |I|O(1).
2. There is an algorithm that given I ∈ {0, 1}∗ and S ⊆ Ef(I) decides if S ∈ If(I) in time
|I|O(1).

There is a simple matroid decoder that can decode every matroid (E, I) (such that
E ⊆ N), in which the encoding I explicitly lists I. However, using such a matroid decoder,
the encoding size of a matroid might be very large, up to |I| = Ω

(
2|E|), while we often seek

algorithms with running times polynomial in |E|. One way to overcome this difficulty is
via the oracle model considered in previous sections. However, our results in this model
may suggest that the hardness of EMB and MOL problems is due to the intrinsic hardness
of the oracle model. Yet, there are families of matroids with very efficient encoding. For
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U V W

u1

u2 u3

v1

v2 w3 w2w1

Figure 3 An example of a partition matroid (E, I), which can be efficiently encoded. The ground
set is E = {u1, u2, u3, v1, v2, w1, w2, w3}, partitioned into three sets: U, V, W . The independent sets
are all subsets of E containing at most one element from U, V , and W ; that is, I = {S ⊆ E | ∀X ∈
{U, V, W } : |S ∩ X| ≤ 1}. A simple efficient encoding of (E, I) is I = (E, U, V, W ). Membership can
be decided efficiently given I, by checking the feasibility of a given set S w.r.t. U, V and W .

example, a uniform matroid (E, I), where I = {S ⊆ E | |S| ≤ k}, can be efficiently encoded
using I = (E, k) ∈ {0, 1}∗. Clearly, the time to decide membership of a given subset S ⊆ E

depends only on |S| and k. Another example is given in Figure 3.
We start with a definition of an encoded variant of EMB. We technically define a different

problem for every decoder f . The definition of the problem is analogous to the versions
of EMB considered earlier in the paper, besides that the matroid is given via an arbitrary
bit-string I ∈ {0, 1}∗, that a matroid decoder f decodes into a matroid f(I).

f-decoded Exact Matroid Basis (f-decoded EMB)
Decoder f : {0, 1}∗ → 2N × 22N is a matroid decoder.
Instance (I, c, T ), where I ∈ {0, 1}∗, c : Ef(I) → N, T ∈ N.
Solution A basis S of the matroid f(I) such that c(S) = T .
Objective Decide if there is a solution.

▶ Definition 18. The f-decoded Exact Matroid Basis (f-decoded EMB) problem is
defined as follows.

Decoder: f : {0, 1}∗ → 2N × 22N is a matroid decoder.
Instance: (I, c, T ), where I ∈ {0, 1}∗, c : Ef(I) → N, T ∈ N.
Solution: A basis S of the matroid f(I) such that c(S) = T .
Objective: Decide if there is a solution.

As a simple example, consider the fu-decoded EMB problem, for a specific matroid decoder
fu that decodes uniform matroids. The matroid decoder fu interprets every I ∈ {0, 1}∗

as I = (E, k) where E is a set (of numbers) and k ∈ N, and returns the uniform matroid
fu(I) = (E, I) such that I = {S ⊆ E | |S| ≤ k}; clearly, fu is a matroid decoder. Thus,
an instance of fu-decoded EMB is a tuple U = ((E, k), c, T ) and a solution of U is S ⊆ E

such that |S| = k and c(S) = T ; the goal, as before, is to decide if there is a solution. This
problem is commonly known as the k-subset sum.

Recall that Theorem 3 asserts that oracle-EMB does not admit a pseudo-polynomial time
algorithm. However, this does not rule out that hypothetically, for every matroid decoder f

there is a pseudo-polynomial time algorithm for f -decoded EMB. The next result excludes
this option.

▶ Theorem 19. Assuming P ̸= NP, there is a matroid decoder f such that there is no
algorithm for f-decoded EMB that for any f-decoded EMB instance U = (I, c, T ), where
n =

∣∣Ef(I)
∣∣ + 1 and m = c

(
Ef(I)

)
+ 1, runs in time (n · (T + 2) ·m)O(1).
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The proof of Theorem 19 is given towards the end of this section. Analogously to our
hardness result for oracle MOL problems, we use Theorem 19 to give a hardness result for
an encoded version of MOL problems. For every matroid decoder f and every P ∈ P, we
define a variant of the P -matroid optimization with a linear constraint (P -MOL)
problem in which the matroid is given via an arbitrary bit-string which a matroid decoder f

decodes into a matroid. Formally, let P ∈ P, where P = (opt,F , ◁), be the parameters of
the P -MOL problem. For a matroid decoder f , we define the f -decoded P -MOL problem as
follows.

▶ Definition 20. The f-decoded P -matroid optimization with a linear constraint
(f -decoded P -MOL) problem is defined as follows.

Decoder: f : {0, 1}∗ → 2N × 22N is a matroid decoder.
Instance: (I, v, w, L), where I ∈ {0, 1}∗, v : Ef(I) → R≥0, w : Ef(I) → R≥0, L ∈ R≥0.
Solution: A basis S of the matroid f(I) such that c(S) = T .
Objective: opt v(S) s.t. S ∈ F (f(I)) , w(S) ◁ L.

For example, consider the encoded version of the P -MOL for P = (max, IS,≤) with the
matroid decoder fu that decodes uniform matroids. An instance of the fu-decoded P -MOL
problem is a tuple U = (I, v, w, L) where I = (E, k) is a bit-string used for extracting the
uniform matroid fu(I) = (E, I) such that I = {S ⊆ E | |S| ≤ k}, v is the value function, w

is the weight function, and L is the bound. A solution of U is S ⊆ E such that |S| ≤ k and
w(S) ≤ L; the goal is to find a solution S of maximum value v(S). This problem is widely
known as knapsack with cardinality constraint.

Recall that Q = P \ {(min, IS,≤)} is the set of parameters for non-trivial MOL problems.
Using the hardness of f -decoded, for some matroid decoder f (details on f are given towards
the end of the section), we show the hardness of the f -decoded variant of all non-trivial
MOL problems.

▶ Theorem 21. Assuming P ≠ NP, for any P ∈ Q there is a matroid decoder f such that
there is no Fully PTAS for f -decoded P -MOL.

In the remainder of this section, we prove Theorem 19 and Theorem 21. The matroid
decoder used in our proofs decodes a subclass of the Π-matroid family (see Section 2), in
which the secret family Π consists of the solutions for a boolean satisfiability problem
(SAT) instance.

In a SAT instance A = (V, V̄ , C) with n ∈ N variables (in a slightly simplified notation),
we are given a set V = {v1, . . . , vn} of variables, their negations V̄ = {v̄1, . . . , v̄n}, and a set
C ⊆ 2V ∪V̄ of clauses. The goal is to decide if there is a set S ⊆ [n] satisfying that for all
C ∈ C there is i ∈ [n] such that one of the following holds.

vi ∈ C and i ∈ S.
v̄i ∈ C and i /∈ S.

Such a set S is called a solution of A; let S(A) be the set of solutions of a SAT instance
A. In addition, let n(A) = n be the number of variables in the instance A. The family of
SAT-matroids is the subfamily of Π-matroids where Π = S(A) for some SAT instance A (for
the notation and definition of Π-matroids, see Definition 4). Specifically,

▶ Definition 22. Let A be a SAT instance, k ∈ [n(A)], and α ∈
[
n(A)2

]
. Define the

SAT-matroid on A, k, α as Mn(A),k,α(S(A)) =
(
[n(A)] , In(A),k,α(S(A))

)
.
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We show below that SAT-matroids can be encoded efficiently. For every I ∈ {0, 1}∗, we
interpret I as I = (A, k, α), where A is a SAT instance, k ∈ [n(A)], and α ∈

[
n(A)2

]
;

w.l.o.g., we may assume that every I = (A, k, α) ∈ {0, 1}∗ can be interpreted in that manner;
moreover, we can assume that n(A) ≤ |A|, where |A| is the encoding size of A. The following
definition defines a matroid decoder that decodes SAT-matroids from a bit-string.

▶ Definition 23. Define the SAT-decoder as the function fSAT : {0, 1}∗ → 2N × 22N such
that for all I = (A, k, α) ∈ {0, 1}∗ it holds that fSAT(I) = Mn(A),k,α(S(A)).

In the next result, we show that the SAT-decoder fSAT is indeed a matroid decoder.

▶ Lemma 24. fSAT is a matroid decoder such that |I| = |A|O(1) for every I = (A, k, α) ∈
{0, 1}∗.

Recall the sets Jn,k, Kn,k,α, Ln,k,α(Π) and In,k,α(Π) were defined in Definition 4. We will
use an algorithm for f -decoded EMB to obtain an algorithm for SAT. To this end, consider
the following family of structured fSAT-decoded EMB instances.

▶ Definition 25. An fSAT-decoded EMB instance (I, c, T ), where I = (A, k, α) is called
structured if α ∈

[
n(A)2

]
, T = α, and c : [n(A)] → N such that for all i ∈ [n(A)] it holds

that c(i) = i

The next observation immediately follows from the definition of structured fSAT-decoded
EMB instances and SAT-matroids.

▶ Observation 26. for any structured fSAT-decoded EMB instance U = (I, c, T ), where
I = (A, k, α), and S ⊆ [n(A)], it holds that: S is a solution for U if and only if S ∈ S(A),
|S| = k, and sum(S) = c(S) = α.

We show that given a polynomial algorithm that decides structured fSAT-decoded EMB
instances, we can decide SAT. This result easily imply Theorem 19 as shown afterwards.

▶ Lemma 27. Assuming P ̸= NP, there no algorithm that decides every fSAT-decoded EMB
structured instance (I, c, T ) in time |I|O(1).

From the above result, the hardness of the more general fSAT-decoded EMB easily follows.
As an immediate corollary, Theorem 28 gives the proof of Theorem 19.

▶ Theorem 28. Assuming P ̸= NP, there is no algorithm for fSAT-decoded EMB that
runs in time (n · (T + 2) ·m)O(1), for any fSAT-decoded EMB instance U = (I, c, T ) where
n =

∣∣EfSAT(I)
∣∣ + 1 and m = c

(
EfSAT(I)

)
+ 1.

Finally, we show that the variants of non-trivial matroid optimization with a linear
constraint (MOL) problems, in which the decoding is performed by the SAT-decoder fSAT,
do not admit Fully PTAS under the standard assumption P ̸= NP. The proof is similar to
the proof of Theorem 1 in Section 3. Lemma 29 directly gives the proof of Theorem 21.

▶ Lemma 29. Assuming P ̸= NP, for any P ∈ Q there is no Fully PTAS for fSAT-decoded
P -MOL.

ICALP 2024
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5 Discussion

In this paper, we derive lower bounds for a family of matroid optimization problems with a
linear constraint. We show that none of the (non-trivial) members of this family admits a
Fully PTAS. In particular, this rules out a Fully PTAS for well studied problems such as
budgeted matroid independent set, constrained minimum basis of a matroid,
and knapsack cover with a matroid. As BM and CMB admit an Efficient PTAS, our
lower bounds resolve the complexity status of these problems, which has been open also for
the generalization of budgeted matroid intersection [12, 2, 17]. Our preliminary study
shows that using the techniques of [26], we may be able to derive Efficient PTAS for all MOL
problems. This would imply that Theorem 1 gives a tight lower bound for the entire MOL
family. We leave the details for future work.

A key result of this paper is that exact matroid basis (EMB) does not admit a
pseudo-polynomial time algorithm, unlike the known special cases of k-subset sum and
EMB on a linear matroid. Our proofs can be used to obtain lower bounds for other problems.
For example, the hardness result for EMB can be adapted to yield lower bounds for related
parameterized problems [22, 16]. Moreover, the proof of Theorem 1 can be modified to show
that an Efficient PTAS for a non-trivial MOL problem with running time f

( 1
ε

)
·poly(n) must

satisfy f
( 1

ε

)
= Ω

(
2ε− 1

4
)

. We leave these generalizations of our results to a later version of
this paper.

Our results build on the Π-matroid family introduced in this paper. Such matroids exploit
the interaction between a weight function and the underlying matroid constraint of the given
problem. Aside from the implications of our results for previously studied problems, the
new subclass of Π-matroids may enable to derive lower bounds for other problems. For
example, consider the generalization of BM where the objective function is submodular
and monotone. This is known as monotone submodular maximization with a knapsack and
a matroid constraint [11]. Indeed, if the knapsack constraint is removed, there is a tight(
1− 1

e

)
-approximation for the problem [4]. The same bound holds if we relax the matroid

constraint [40]. However, the best known approximation for the problem with a knapsack
and a matroid constraint is

(
1− 1

e − ε
)

[11]. This setting resembles the status of MOL
problems prior to our work, where removing either the linear or the matroid constraint
induces a substantially easier problem. The potential use of Π-matroid variants to rule out a(
1− 1

e

)
-approximation for the above problem remains an interesting open question.

In the context of solving configuration LPs for packing problems with a matroid constraint
(e.g., [24, 15]), our lower bound implies that an FPTAS for an LP in this class cannot be
obtained using the standard ellipsoid method.

We show unconditional hardness results in the oracle model (even if randomization is
allowed), and give analogous lower bounds where the matroids are encoded as part of the
input, assuming P ̸= NP. Our construction in Section 4 can be used to derive hardness
results for other matroid problems in non-oracle models. Specifically, we can obtain in the
standard computational model hardness results analogous to those in the oracle model of [28].
This includes a proof that it is NP-hard to decide if a given matroid is uniform, analogous
to the unconditional hardness result in the oracle model of [28]. We leave these results for
future work.

Our lower bounds for MOL problems on general matroids call for a more comprehensive
study of these problems on restricted classes of matroids. We note the existence of Fully
PTASs for MOL problems on some restricted matroid classes, e.g., BM on a laminar matroid
or KCM on a partition matroid. The question whether (non-trivial) MOL problems admit
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Fully PTAS on broader matroid classes, such as graphical matroids or linear matroids,
remains open. In particular, it would be interesting to obtain a Fully PTAS for constrained
minimum spanning tree [26] and BM on a linear matroid − or show that one does not
exist.
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