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Abstract
We formulate and study non-linear paging - a broad model of online paging where the size of subsets
of pages is determined by a monotone non-linear set function of the pages. This model captures
the well-studied classic weighted paging and generalized paging problems, and also submodular and
supermodular paging, studied here for the first time, that have a range of applications from virtual
memory to machine learning.

Unlike classic paging, the cache threshold parameter k does not yield good competitive ratios
for non-linear paging. Instead, we introduce a novel parameter ℓ that generalizes the notion of
cache size to the non-linear setting. We obtain a tight deterministic ℓ-competitive algorithm for
general non-linear paging and a o

(
log2(ℓ)

)
-competitive lower bound for randomized algorithms.

Our algorithm is based on a new generic LP for the problem that captures both submodular and
supermodular paging, in contrast to LPs used for submodular cover settings. We finally focus on the
supermodular paging problem, which is a variant of online set cover and online submodular cover,
where sets are repeatedly requested to be removed from the cover. We obtain polylogarithmic lower
and upper bounds and an offline approximation algorithm.

2012 ACM Subject Classification Theory of computation

Keywords and phrases paging, competitive analysis, non-linear paging, submodular and supermodu-
lar functions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.57

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2404.13334 [14]

Funding Joseph (Seffi) Naor : Supported in part by Israel Science Foundation grant 2233/19 and
United States – Israel Binational Science Foundation (BSF) grant 2033185.

1 Introduction

In the well studied paging problem, we are given a collection of n pages and a cache that can
contain up to k pages simultaneously, where k < n. At each time step, one of the pages is
requested. If the requested page is already in the cache, the request is immediately served.
Otherwise, there is a cache miss and the requested page is fetched to the cache; to ensure
that the cache contains at most k pages, some other page is potentially evicted. In the most
fundamental model, the goal is to minimize the number of cache misses (or equivalently,
number of evictions).

In more general models, pages may have different sizes and costs (see, e.g., [1, 5]) and
then the sum of the sizes of the pages in cache cannot exceed its capacity. However, a linear
function over page sizes that defines cache feasibility fails to capture scenarios with more
involved relations between subsets of pages that can reside together in cache. Consider a
system in which pages share parts of their memory and then only the missing memory parts
of a requested page can contribute to the increase in cache size. This setting can be modeled
using a submodular function that defines cache feasibility. Another example is a setting in
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57:2 Non-Linear Paging

which items stored in cache have dependencies yielding additional overhead in their mutual
storage demand. The rule caching problem is one such setting and it has been well studied
in networking [12, 46, 37, 21, 25, 39, 24, 17, 9, 35, 26, 16, 45, 34, 33, 47, 13].

Our focus in this paper will be on settings where such non-linear behavior exists. We will
further motivate our model in detail in Section 1.2.

1.1 Our Model
Before presenting our model, we give some required preliminary definitions. Let P be a
set and let f : 2P → N be a set function of P. The function f is called monotone if for
every S ⊆ P and S′ ⊆ S it holds that f(S′) ≤ S. In addition, f is called submodular if for
every S, S′ ⊆ P it holds that f(S) + f(S′) ≥ f (S ∪ S′) + f (S ∩ S′). Conversely, f is called
supermodular if for every S, S′ ⊆ P it holds that f(S) + f(S′) ≤ f (S ∪ S′) + f (S ∩ S′).

In this work, we introduce a very general model of paging with an arbitrary function
defining cache feasibility. In the non-linear paging problem, we are given a collection P of n

pages where each page p ∈ P has a fixed eviction cost c(p). We are also given a monotone
feasibility function f : 2P → N that assigns a value to every subset of pages, indicating their
size. Finally, we are given a cache threshold k. As in standard paging, in each time step t

there is a request pt for one of the pages. If pt is already in cache, the request is immediately
served. Otherwise, pt is fetched to the cache and possibly some subset of pages is evicted to
ensure that the set of pages in the cache, denoted by St, is feasible, i.e., f (St) ≤ k. The goal
is to minimize the total cost incurred from page evictions. The classic paging problem is
obtained by setting f(S) = |S| for all S ⊆ P. Other interesting applications of our model
are described below.

Generalized Paging [5, 1]. Here the feasibility function is linear; that is, for every S ⊆ P
it holds that f(S) =

∑
p∈S f(p), where f(p) is the size of page p ∈ P.

Submodular Paging. The feasibility function is submodular. A natural application of this
variant is to settings where pages share memory items (see Section 1.2).
Supermodular Paging. The feasibility function is supermodular, implying a submodular
cover function for pages remaining out of the cache. This setting effectively captures
online submodular covering problems [2, 23, 20]. Supermodular paging will be the main
focus of our paper.

Supermodular paging is a variant of online set cover [2] and online submodular cover [20].
In online set cover, we are given a ground set X and a family S of subsets of X. Requests
for elements of X arrive online; if a requested element is not already covered by a previously
chosen set, a set S ∈ S containing it is chosen, paying a cost c(S). The goal is to minimize
the cost of the selected sets. Online submodular cover generalizes online set cover - the goal
is to cover a general (monotone) submodular function with an increasing cover demand over
time. In supermodular paging (submodular cover), the cover demand does not change over
time, as the same page (a set S ∈ S in online set cover) may be requested (removed from the
cover) multiple times. We show in the full version of the paper (see [14]) that supermodular
paging is even more challenging than (online) submodular cover.

1.2 Motivation
Non-linear paging generalizes several fundamental caching problems, capturing many real
world applications. Besides known applications of the classic paging models with linear
feasibility functions [38, 15, 4, 5, 1], there are many scenarios in which the interaction between
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Figure 1 An illustration of a shared memory systems with four pages and four shared memory
units (“atoms”). The cache is of size k = 3 and contains pages p2, p3 (in blue) whose shared memory
is of size 3 - the three red atoms. Observe that either fetching p1 or evicting it will not change the
number of atoms stored in cache, however, fetching p4 requires evicting p2.

pages is non-linear, requiring the more general non-linear paging model. As already indicated,
supermodular paging roughly generalizes online set cover and therefore has both theoretical
and practical importance [20, 2]. We describe below several interesting applications of
non-linear paging.

A major motivation for the study of non-linear paging is caching in shared memory
systems (e.g., [28, 7, 43, 40]). Each process in a multi-process memory system is associated
with a virtual memory [11], providing the illusion that it has a much larger memory. In some
shared memory systems, caching policies are defined over entire processes, that is, the entire
virtual address space of a process can be taken to the cache. Since the virtual memory of two
processes typically overlaps in physical memory, the increase in (physical) memory in cache
is larger if the cache is empty, as the entire memory of a process is loaded to the cache. In
contrast, if the cache is nearly full, and a process is loaded to the cache, the increase in total
size is smaller, as most of the virtual memory addresses are already in cache. In a similar
vein, when caching hot data at the network edge, to avoid serving requests from a remote
cloud, space efficiency of similar files is achieved through deduplication (e.g. [27]), which is
very similar to the way overlaps are handled in virtual memory.

Thus, caching in shared memory systems is a special case of submodular paging. More
formally, consider a cache that can store up to k atoms from a larger set A = {a1, . . . , an}
spanning the physical memory. Each page (process) p contains a subset of atoms a(p) ⊆ A

corresponding to the physical memory to which process p is mapped. The feasibility
function f ensures that a collection S of pages contains jointly at most k atoms. Thus,
f(S) =

∣∣∣⋃p∈S a(p)
∣∣∣, and it is a submodular function. See Figure 1 for an illustration.

Paging with a supermodular feasibility function arises in common settings where the
storage demand grows rapidly as a function of the number of “pages” stored in cache. In
these scenarios, there is a large set of n entities (corresponding to vertices), and among
subsets of entities certain interactions exist (represented by hyperedges). This data struc-
ture, known as a hypergraph, is ubiquitous in applications such as recommendation sys-
tems [19, 41] (where vertices represent individuals and hyperedges represent communities),
image retrieval [29](vertices represent images and hyperedges represent correlations), and
bioinformatics [32] (vertices represent substances and hyperedges stand for biochemical
interactions). Other applications arise in machine learning [42, 18, 49] and databases [6].

In various practical settings, the hypergraph is very large (e.g., [36, 31, 22]). Therefore,
a natural approach is to store frequently accessed vertices in a cache. However, caching is
effective only if all interactions (i.e., hyperedges) among subsets of vertices in cache are also
stored therein. As a set of x vertices may have up to 2x induced hyperedges, the storage
demand for hyperedges tends to be significantly larger compared to the number of vertices.
Caching hypergraphs in the non-linear paging framework can be formally defined as follows:

ICALP 2024



57:4 Non-Linear Paging

consider a set P of vertices and define a feasibility function f over P, such that for a subset
of vertices S ⊆ P, the storage demand f(S) is the number of induced hyperedges in S plus
the cardinality of S. Function f is a supermodular function.

For example, a real-world problem related to supermodular paging is caching in device-to-
device (D2D) communication networks, with social ties among users and common interests
that are used as key factors in determining the caching policy and are modeled via a
hypergraph [3]. Here, the number of hyperedges (describing roughly interferences among
users of the network, content, transmission rate, etc.) grows in a supermodular manner with
respect to the number of users placed in cache. In addition, our reduction from online set
cover (similarly, online submodular cover) to supermodular paging implies that applications
of online set cover are also applications of supermodular paging.

1.3 Our Results and Techniques
We now present our results and elaborate on the techniques used. We start with general
non-linear paging and then proceed to the special case of supermodular paging.

1.3.1 General Non-Linear Paging
In classic paging models, competitive ratios are typically given as a function of k, the cache
size. However, non-linear paging is more difficult. Even for non-linear paging instances
with k = 0 the competitive ratio can be very high. For example, consider a (classic) paging
instance I ′ with cache threshold k′; define a non-linear paging instance I with a (non-linear)
feasibility function f for which f(S) = 0 if S is feasible for I ′ and f(S) = 1 otherwise. In
addition, we set k = 0 as the cache threshold of I. Clearly, a solution for I implies a solution
for I ′. Hence, by the hardness of paging [38, 15] the best competitive ratio of non-linear
paging is arbitrarily large as a function of k (we give the remaining details in [14]). Thus,
instead of k, we look for a parameter that better captures the competitiveness of general
non-linear paging. This parameter turns out to be the maximum cardinality of a minimally
infeasible set, i.e., an infeasible set where every proper subset of it is feasible1. Formally,

▶ Definition 1. A set S ⊆ P is called feasible if f(S) ≤ k and is infeasible otherwise.
Additionally, S is minimally infeasible if S is infeasible and every S′ ⊂ S is feasible, and let
M = {S ⊆ P | f(S) > k and f(S′) ≤ k ∀S′ ⊂ S} be all minimally infeasible sets. Finally,
let the width of f be

ℓ(f) = max
S∈M

(|S| − 1) .

We simply let ℓ = ℓ(f) when it is clear from context. Clearly, for paging (or weighted
paging) the width ℓ equals k. Hence, the width accurately captures the optimal performance
of paging algorithms: there is a tight ℓ-competitive deterministic algorithm [38] and a
tight Θ(log(ℓ))-competitive randomized algorithm [15]. However, the width behaves quite
differently in other scenarios. For example, in the setting of submodular paging described
in Section 1.2, the instance can have a fixed width ℓ = O(1), but the number of pages in
cache can be unbounded (e.g., all pages use the same atom). Interestingly, we show that the
width gives a tight competitive ratio also for general non-linear paging via a new LP for the
problem (see Sections 2 and 2.1).

1 Technically, we subtract one so that the definition coincides with the parameter k in paging.
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▶ Theorem 2. There is a deterministic ℓ-competitive algorithm for non-linear paging.
Moreover, every deterministic algorithm for non-linear paging is at least ℓ-competitive.

The algorithm achieving Theorem 2 is based on a new LP relaxation, designed for the
general setting of non-linear paging. We now explain why previous techniques for classic
paging are not sufficient for obtaining a competitive online algorithm for this setting.

Previous work on generalized paging [5, 1] and on other online covering problems [20, 10]
use knapsack cover constraints. This powerful technique, originated by Wolsey [44], is very
useful for relaxing submodular cover constraints using linear inequalities. Indeed, paging
problems are often studied from the viewpoint of a covering problem (e.g., [4]), where the
complement of the cache (i.e., pages outside the cache) needs to be covered. In classic paging,
at any point of time at least n− k pages are not in the cache.

Consider the covering function g : 2P → N of a feasibility function f defined to be the
(non-linear) size requirement outside of the cache: g(S) = f(P)− f(P \ S) for every S ⊆ P.
Observe that for classic paging it holds that g(S) = n− (n− |S|) = |S| and the feasibility
constraint translates to g(S) ≥ n − k at all times. If f is submodular (i.e., submodular
paging) then g is supermodular, and vice versa. Knapsack cover constraints yield a relaxation
of the covering problem when the cover function g is submodular [20], as is the case in classic
paging problems.

However, for submodular paging, the covering function g is supermodular and knapsack
cover constraints do not even provide a relaxation of the problem. For example, let g(S) = 1
for S = P and g(S) = 0 otherwise. Then, the knapsack constraints are not satisfied by the
unique solution that covers a demand of k = 1 (the entire set P). Specifically, P does not
satisfy the knapsack constraint for S = ∅, i.e.,

∑
p∈P xp · g∅({p}) = 0, but g∅(P) = 1.

To circumvent the limits of knapsack cover constraints for submodular paging, we
formulate a new set of covering constraints that are valid for any feasibility functions f and
g. Specifically, the constraints require removing at least one page from every infeasible set.
Then, using the online primal-dual approach applied to this set of constraints, we obtain a
tight ℓ-competitive deterministic algorithm for non-linear paging. Specifically, upon arrival
of a page that induces an infeasible set of pages in cache, our algorithm identifies a minimally
infeasible set of pages and continuously increases their corresponding dual variable in the LP,
evicting tight pages.

Interestingly, as a special case, Theorem 2 gives a simple k-competitive deterministic
algorithm for generalized paging; to the best of our knowledge, there are only (k + 1)-
competitive deterministic algorithms [8, 48] for generalized paging. Thus, our bound is tight
for this problem.

▶ Corollary 3. There is a deterministic k-competitive algorithm for generalized paging.

We emphasize that the lower bound of Theorem 2 can be obtained for any function f

with a minimally infeasible set of cardinality ℓ (regardless of whether f is linear, submodular,
supermodular, or any other function). This shows the robustness of the parameter ℓ as an
indicator for the competitiveness of non-linear paging. Thus, it is natural to ask whether the
parameter ℓ for non-linear paging is analogous to the parameter k for classic paging when
allowing randomization. We answer this question in the negative by showing that in contrast
to paging, that admits an O(log(ℓ))-competitive randomized algorithm [15], non-linear paging
is substantially harder w.r.t. the parameter ℓ.

▶ Theorem 4. Unless NP ⊆ BPP, there is no polynomial-time randomized o(log2(ℓ))-
competitive algorithm for non-linear paging.

ICALP 2024
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A very intriguing open question is whether there exists a randomized polylog(ℓ)-competi-
tive algorithm for general non-linear paging. Unfortunately, we show that the LP used for
obtaining Theorem 2 has an integrality gap of ℓ, and thus would need to be strengthened to
achieve this end (see Section 2.3). Hence, obtaining a polylog(ℓ) competitive factor would
require a new set of techniques. As we have already discussed earlier, existing techniques
for obtaining randomized online algorithms for paging problems and related variants focus
on solving covering linear programs (LP) online, and they break down in the presence of
general non-linear paging constraints.

To overcome the integrality gap of our LP, we formulate a stronger LP for non-linear
paging (see Section 2.3). Obtaining even a fractional polylog(ℓ)-competitive algorithm for
this LP seems a hard task. Thus, we consider another parameter which allows us to get a
better competitive ratio. The parameter is the maximum number of pages that fit together
in the cache. Formally, define

µ = max
S⊆P s.t. f(S)≤k

|S| (1)

as the maximum cardinality of a feasible set in cache. Observe that µ = k for e.g., generalized
paging, hence it is a natural parameter to also consider in our setting. We also remark
that in many practical settings, such as classic paging, it holds that n≫ µ and obtaining a
competitive ratio that depends on µ (rather than n) is much more desirable.

Clearly, µ ≥ ℓ. The following example illustrates a scenario demonstrating a scenario
where µ≫ ℓ. Consider a non-linear paging instance on a set P of pages which is partitioned
into disjoint sets X, Y , where |X| = n, |Y | = k +1, and n≫ k. Define a feasibility function f

such that for all subsets S of P , f(S) = |Y ∩ S|. Define the cache threshold as k. Therefore,
the only minimally infeasible set is Y ; thus, ℓ = k. On the other hand, the maximum
cardinality of a set that fits into cache is the cardinality of all pages in X and any k pages
from Y ; thus, µ = n + k. Since n ≫ k (i.e., n can be chosen to be arbitrarily large with
respect to k) it follows that µ≫ ℓ.

We give the following fractional algorithm for solving the strengthened LP online.

▶ Theorem 5. There is an O (log µ)-competitive algorithm for obtaining a fractional solution
for the strengthened LP.

It as an interesting open question if a randomized polylog(µ)-competitive algorithm for
non-linear paging can be designed by rounding the fractional solution obtained in Theorem 5.

1.3.2 Supermodular Paging
We now discuss our results and techniques for supermodular paging. Our main result is a
polylogarithmic randomized competitive algorithm for supermodular paging, i.e., submodular
cover paging. As we show later on, our upper bound turns out to be quite close to the lower
bound we prove.

▶ Theorem 6. There is an O
(

log2 µ · log
(

cmax
cmin
· f(P)

))
-competitive randomized algorithm

for supermodular paging (submodular cover paging), where cmax, cmin are the maximum and
minimum costs of pages, respectively.

In particular, for unweighted supermodular paging (where cp = 1 ∀p ∈ P), the above theorem
implies an O

(
log2(µ) · log (f(P))

)
-competitive algorithm.

Our algorithm relies on a different LP relaxation than the one described in Section 1.3.1.
As we aim to solve supermodular paging, which implies a submodular cover function g, we
design an LP relaxation inspired by the submodular cover relaxation of Wolsey [44] (see



I. Doron-Arad and J. Naor 57:7

also [20]). We solve this LP in the case that the constraints arrive online to obtain a fractional
O(log(µ))-competitive (deterministic) algorithm, while maintaining the property that the
entries are either integral or multiples of 1

k .
To obtain an integral solution, one is tempted to maintain online a set of feasible cache

states respecting (even approximately) the marginal probabilities induced by the fractional
solution, similarly to previous works on weighted paging and generalized paging [4, 5, 1].
However, techniques for online cache state maintenance of [4, 5, 1] seem to break down in
the presence of submodular cover constraints. Instead, we augment the fractional solution
by an additional polylogarithmic boosting factor and perform randomized rounding, with
possible corrections to ensure feasibility. The probability of a page to be evicted at some
point in time is shown to be proportional to the page’s fractional increase normalized by the
probability that the page is in cache.

We also give lower bounds for online supermodular paging. Surprisingly, even though
online set cover seems starkly different from supermodular paging, in particular since the
cover constraints change over time for online set cover, we can show that supermodular
paging is in a sense harder to solve online.

▶ Theorem 7. For any ρ ≥ 1, if there is a ρ-competitive algorithm for supermodular paging,
then there is a ρ-competitive algorithm for online set cover having the same running time up
to polynomial factors.

By Theorem 7 and the results of [2, 23], we give a lower bound on the competitiveness of
supermodular paging, indicating the necessity of the factor log µ · log (P).

▶ Corollary 8. Unless NP ⊆ BPP, there is no polynomial o (log µ · log (f(P)))-
competitive algorithm for supermodular paging. Moreover, there is no deterministic
o

(
log µ·log(f(P))

log log µ+log log(f(P))

)
-competitive algorithm for supermodular paging of any running time.

We remark that some of our results from Section 1.3.1 can be stated using the parameter
µ as well. However, as we showed earlier, there are non-linear paging instances in which
the parameter µ≫ ℓ and it grows artificially apart from the true hardness of the instance –
in terms of competitive analysis. In contrast, every minimally infeasible set of cardinality
ℓ + 1 can be used to obtain the lower bounds for classic paging [38, 15] (i.e., ℓ- deterministic
and O(log ℓ)-randomized lower bounds). Thus, in an informal sense, an increase in ℓ always
incurs an increase in the difficulty of the problem, unlike an increase in µ. For this reason,
we believe that searching for competitive algorithms and lower bounds in terms of ℓ, rather
than µ, may be of greater interest in the non-linear paging setting.

Finally, we also aim at obtaining an offline approximation algorithms for supermodular
paging (i.e., where all requests are known in advance). A first attempt would be to reduce
the problem to offline submodular cover, as follows. Define a covering function G on the
domain containing all pairs (p, j), for every page p and the j-th time it is requested. Define
the value of G on a subset of pairs S as G(S) =

∑
t∈T g(St), where g is the covering function

of the instance (see Section 1.3.1), and St is the set of all pages p, where (p, j) belongs to
S and the time interval between requests j and (j + 1) for p intersects t. Clearly, the total
cover demand, even with a unit demand per-time slot, is a function of T ; thus, applying an
offline set cover algorithm in a black box manner gives only an Ω (log (T ))-approximation
[30]. As T may be very large, a different technique is in place.

Combined with the strong round-or-separate algorithm of [20], our techniques yield an
approximation algorithm for supermodular paging independently of T (see Section 3). We
defer the details to the full version of the paper.

ICALP 2024
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▶ Theorem 9. There is an offline O
(

log
(

cmax
cmin
· f(P)

))
-approximation algorithm for su-

permodular paging.

Due to space constraints, some of the proofs (including our lower bounds) are given only
in the full version of the paper [14].

2 Deterministic Algorithm for Non-Linear Paging

In this section, we present a deterministic algorithm for non-linear paging and show that it
gives a tight competitive ratio for the problem, thus providing proofs for Theorem 2 and
Corollary 3. Our algorithmic results are based on a new LP relaxation for the problem which
we introduce here.

2.1 LP Relaxation for Non-Linear Paging
Consider a non-linear paging instance with a set of pages P, a feasibility function f , cache
threshold k, a set of time points T , and a page request pt ∈ P for every time t ∈ T . To
simplify notation, for a set S and an element p we use S + p = S ∪ {p} and S − p = S \ {p}.
The LP is as follows.

The variables of the LP are xp(j) for every page p ∈ P and the j-th time that p is
requested. Intuitively, the value of the variable xp(j) indicates to what extent page p is
evicted between its j-th and (j +1)-th requests. The constraints state that for every infeasible
set S containing the requested page pt, for time point t, we must “break” this set - i.e.,
evicting at least one page from S − pt. If this constraint is satisfied for every such infeasible
set by an integral solution, then it induces a feasible set of pages in the cache at all times.
See Figure 2 for a visualization of these constraints.

We use np to denote the number of requests for page p during the request sequence.
Also, we use r(p, t) to denote the number of requests for page p until time t. We assume
that xp(0) is a variable always set to 0, for all p ∈ P. To simplify notation, for every t ∈ T ,
let S(t) = {S ⊆ P | pt ∈ S and f(S) > k} denote the infeasible sets containing pt. For any
w ∈ N, let [w] = {1, 2, . . . , w}. Our LP relaxation is as follows.

min
∑

p∈P

∑
j∈[np]

xp(j) · c(p)

s.t.∑
p∈S−pt

xp(r(p, t)) ≥ 1, ∀t ∈ T ∀S ∈ S(t)

xp(j) ≥ 0 ∀p ∈ P ∀j ∈ [np]

(2)

We now define the dual LP. For page p ∈ P and j ∈ [np] let I(p, j) = {t ∈ T | j = r(p, t)} be
the interval of all time points between the j-th request to p till the last time point before the
(j + 1)-st request for page p. The dual of (2) is the following.

max
∑
t∈T

∑
S∈S(t)

yt(S)

s.t.∑
t∈I(p,j)

∑
S∈S(t)

∣∣p∈S−pt

yt(S) ≤ c(p), ∀p ∈ P ∀j ∈ [np]
(3)
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p1
p2pt

Figure 2 An illustration of the LP constraints. Each colored shape represents a minimally
infeasible set of pages upon the arrival of a page pt. Removing pages p1 and p2 ensures cache
feasibility.

We use Primal-LP and Dual-LP to denote the values of the optimal solutions for the primal
and dual programs, respectively, and by OPT the offline (integral) optimum. The next result
follows from weak duality and since our LP is a relaxation of non-linear paging.

▶ Lemma 10. Dual-LP ≤ Primal-LP ≤ OPT.

Proof. The first inequality follows from weak duality, since (3) is the dual program of (2).
For the second inequality, we show that (2) is a relaxation of non-linear paging. Consider an
integral feasible solution M to our instance; define a solution x for (2) such that xp(j) = 1
if and only if page p is removed from the cache during the interval I(p, j) in M , for every
p ∈ P and j ∈ [np]. Then, for every time t ∈ T and S ∈ S(t), S cannot be fully contained in
the cache at time t, since M is a feasible solution, and there is at least one p ∈ S − pt which
is not in the cache at this time. Therefore, the primal constraint corresponding to t and S is
satisfied. We conclude that x is feasible for (2); consequently, (2) is indeed a relaxation of
non-linear paging, implying the second inequality. ◀

2.2 A Deterministic Algorithm for Non-Linear Paging
In this section, we give a primal-dual algorithm, based on the LP relaxation of non-linear
paging presented in Section 2.1. For brevity, we denote the left handside of the dual constraint
corresponding to page p and j ∈ [np] as

Yp(j) =
∑

t∈I(p,j)

∑
S∈S(t)

∣∣p∈S−pt

yt(S). (4)

We call a page p tight at time t if Yp(j) = c(p).
The algorithm initializes an infeasible primal solution and a feasible dual solution as

vectors of zeros 0̄. In every time step t, if the set of pages currently in cache, denoted by
Cachet, is infeasible, then our algorithm finds a subset of pages Q in the cache such that:
first, Q is infeasible; second, Q contains the requested page pt, i.e., Q ∈ S(t); third, Q has
minimum cardinality amongst all such sets. we increase the variable yt(Q) continuously.
Once one of the pages becomes tight, we remove it from cache. If the cache is feasible, the
algorithm proceeds to time t + 1; otherwise, we repeat this process with a new set Q′ from
the current cache. The pseudocode is given in Algorithm 1.

We start by showing the feasibility of the algorithm.
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Algorithm 1 Deterministic.

1 Initialize (infeasible) primal and (feasible) dual solutions x← 0̄ and y ← 0̄.
2 for time t ∈ T do
3 Let Cachet = {p ∈ P | r(p, t) ≥ 1 and xp(r(p, t)) = 0} be the pages currently in

cache.
4 while f (Cachet) > k do
5 Find Q ⊆ Cachet such that Q ∈ S(t) of minimum cardinality.
6 while Yp(r(p, t)) < c(p) ∀p ∈ Q− pt do
7 Increase yt(Q) continously.
8 end
9 for p ∈ Q− pt such that Yp(r(p, t)) = c(p) do

10 Remove p from cache: xp(r(p, t))← 1, Cachet ← Cachet − p.
11 end
12 end
13 end
14 Return the (primal) solution x and the (dual) solution y.

▶ Lemma 11. Algorithm 1 returns primal and dual feasible solutions of (2).

Proof. By Algorithm 1, the algorithm keeps evicting pages until reaching a feasible set of
pages in the cache. By the monotonicity of the feasibility function f , we eventually reach
a feasible set in cache: every page p is considered to be feasible alone in the cache, i.e.,
f({p}) ≤ k; thus, in the worst case, the content of the cache at the end of time step t is
pt. The above shows that the primal solution x is feasible, being a relaxation of the integer
problem. In addition, the dual y is feasible since for all p ∈ P and j ∈ [np] it holds that
Yp(j) ≤ c(p) by Algorithm 1. ◀

In the following we bound the competitive ratio of the algorithm. Let c(x) be the cost
of our (integral) solution x and let v(y) be the value of the dual solution y obtained by
Algorithm 1. Using the selection of minimal sets for Q in Algorithm 1 we have the following
result. Recall the width parameter ℓ defined in Definition 1.

▶ Lemma 12. c(x) ≤ ℓ · v(y)

Proof. By LP (2),

c(x) =
∑

p∈P

∑
j∈[np]

xp(j) · c(p) ≤
∑

p∈P

∑
j∈[np]

xp(j) · Yp(j)

=
∑

p∈P

∑
j∈[np]

xp(j) ·

 ∑
t∈I(p,j)

∑
S∈S(t)

∣∣p∈S−pt

yt(S)

 .

(5)

The inequality holds since we only evict tight pages. By changing summation order in (5),

c(x) ≤
∑
t∈T

∑
S∈S(t)

yt(S) ·
∑

p∈S−pt

xp(r(p, t)) ≤
∑
t∈T

∑
S∈S(t)

yt(S) · ℓ = ℓ · v(y).

The second inequality holds since in Algorithm 1 we always choose a minimally infeasible set
of cardinality at most ℓ + 1; hence, yt(S) ̸= 0 only if |S| ≤ ℓ + 1. ◀
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We are now ready to give the proof of our main theorem.

Proof of Theorem 2. By Lemma 11, the returned solution x is a feasible solution. Combined
with Lemma 10 and Lemma 12, c(x) ≤ ℓ · v(y) ≤ ℓ ·OPT. Along with the tight lower bound
from the special case of paging [38], the statement of the theorem follows.

We remark that for any ℓ and function f such that ℓ(f) = ℓ, there is a minimally infeasible
set S of cardinality ℓ; as a result, the lower bound for deterministic algorithms of paging [38]
can be obtained from the set S. Namely, given a deterministic algorithm A for unweighted
non-linear paging, construct a sequence of requests for pages in S that always requests the
page missing in cache by algorithm A; clearly, A pays a cost of one at each time step, since S

is minimally infeasible. Conversely, the offline optimum would evict the page that is requested
latest in the future, missing only once in ℓ requests, giving the lower bound of ℓ. ◀

2.3 Integrality Gap
In this section, we show the limitations of the LP. Specifically, we show that the integrality
gap of the LP defined in (2) is at least ℓ; together with our algorithmic upper bound the
integrality gap is exactly ℓ. We then discuss a stronger LP formulation based on (2).

▶ Lemma 13. The integrality gap of LP (2) is ℓ.

Proof. For some n ≥ 1, consider an instance with n pages P = {p1, . . . , pn} with uniform
costs c(p) = 1 ∀p ∈ P and a uniform feasibility function f as in classic paging, i.e., f(S) = |S|
for all S ⊆ P , and some cache capacity k. Thus, all minimally infeasible sets are of cardinality
k + 1 and it follows that ℓ(f) = k. Define the sequence of requests p1, . . . , pn. That is, each
page is requested exactly once. Observe that each request results in a page fault. Hence, any
integral solution, in particular the optimal integral solution, evicts at least n− k pages. On
the other hand, define a fractional solution such that xp(1) = 1

k for all p ∈ P , i.e., each page
is evicted after its first request with fraction 1

k (note that each page is requested exactly
once). Consider some infeasible set S ⊆ P such that |S| > k. It holds that

∑
p∈S

xp(1) = |S| · 1
k
≥ k + 1

k
≥ 1.

Thus, x satisfies the constraints of (2). The cost paid by the fractional solution x is n
k .

Therefore, as n and k can be chosen arbitrarily, the integrality gap of the LP is at least

lim
n→∞

n− k
n
k

= lim
n→∞

(
k − k2

n

)
= k = ℓ(f).

Therefore, in general, the integrality gap cannot be smaller than ℓ. ◀

2.3.1 Discussion: a Stronger LP
The integrality gap example shows that LP (2) is not sufficient for obtaining a randomized
polylog(ℓ)-competitive algorithm for general non-linear paging. Instead, we describe a
stronger version of our LP (2), in which we require removing from each infeasible set S a
set of pages S′, so that the complement of S′ in S, S \ S′, will be feasible in the cache (i.e.,
f (S \ S′) ≤ k). The strengthened LP and our fractional algorithm for solving the LP online
are presented in [14], giving the proof of Theorem 5.
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3 A Randomized Algorithm for Supermodular Paging

We provide here an O(log µ)-competitive algorithm for a fractional version of supermodular
paging. Then, we design randomized online and offline algorithms for supermodular paging.

3.1 LP for Supermodular Paging

The starting point of our fractional algorithm is earlier work on submodular cover LP
[44, 20, 10]. Consider a supermodular paging instance with a set of pages P, a feasibility
function f inducing the submodular cover function g (recall that g(S) = f(P) − f(P \ S)
for every S ⊆ P), cache threshold k, a set of time points T , and a page request pt ∈ P for
every time t ∈ T . We use the following LP relaxation of supermodular paging. As in the LP
introduced in Section 2.1, the variables of the LP are xp(j) for every page p ∈ P and the
j-th time that p is requested. We will use the same notation as in the LP of (2). Recall that
for some S ⊆ P and p ∈ P we use gS(p) = gS({p}) = g(S + p)− g(S). Let N = f(P)− k be
our cover demand; at any point of time, the (non-linear) total size outside of the cache must
be at least N .

Our LP relaxation goes as follows; the constraints of the LP require that for every time t

and subset of pages S (assumed to already be outside of the cache) we must evict from the
cache (fractionally) a total size of at least N − g(S) = f (P \ S)− k, since we cannot have
more than a total size of k in cache. This constraint is very natural in the linear case (i.e.,
classic paging), but more involved in the submodular cover setting.

min
∑

p∈P

∑
j∈[np]

xp(j) · c(p)

s.t.∑
p∈P−pt

xp(r(p, t)) · gS(p) ≥ N − g(S), ∀t ∈ T ∀S ⊆ P

xp(j) ≥ 0 ∀p ∈ P ∀j ∈ [np]

(6)

In the following we define the dual LP of (6).

max
∑
t∈T

∑
S⊆P

yt(S) · (N − g(S))

s.t.∑
t∈I(p,j)

∑
S⊆P

∣∣p∈S−pt

yt(S) ≤ c(p), ∀p ∈ P ∀j ∈ [np]

yt(S) ≥ 0 ∀t ∈ T ∀S ⊆ P.

(7)

We use Primal-LP and Dual-LP to denote the values of the optimal solutions for the primal
and dual programs, respectively, and by OPT the offline (integral) optimum.

Before we describe our fractional algorithm, we show that it is sufficient to satisfy only
minimal constraints rather than all constraints of the LP. Formally, a primal constraint of
(6) corresponding to t ∈ T and S ⊆ P is called minimal for some solution x′ if for all p ∈ P
where x′

p(r(p, t)) = 1 it holds that p ∈ S.

▶ Lemma 14. If x′ satisfies all minimal constraints of (6), then x′ is feasible for (6).
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Our fractional algorithm initializes the (infeasible) primal solution x and the (feasible)
dual solution y both as vectors of zeros 0̄. When the requested page pt at time t arrives, we
do the following til x satisfies all LP constraints (6) up to time t.

At time t, the algorithm considers a minimally violating set of pages Q ⊆ P . This set is a
minimal set for our solution x violating the primal constraint in (6) corresponding to t and Q.
We increase variable yt(P \Q) continuously and at the same time increase variables xp(r(p, t))
for all pages in (P − pt) \Q except pt. The increasing rate is a function of Yp(r(p, t)), where

Yp(j) =
∑

t∈I(p,j)

∑
S⊆P

∣∣p∈S−pt

yt(S) (8)

is the left hand side of the corresponding dual constraint of p and j = r(p, t) in (6) (analogously
to (4)). This growth function has an exponential dependence on Yp(r(p, t)) scaled by the
cost of the page c(p) and the number of pages possible in cache - the parameter µ. The
growth of the variable xp(j) stops once it reaches 1

2 .

Algorithm 2 Fractional.

1 Initialize (infeasible) primal solutions x, z ← 0̄
2 Initialize (feasible) dual solution y ← 0̄.
3 for t ∈ T do
4 while x is not feasible for t do
5 Find a minimal set Q ⊆ P for x such that∑

p∈P−pt
xp(r(p, t)) · gQ(p) < N − g(Q).

6 while
∑

p∈P−pt
xp(r(p, t)) · gQ(p) < N − g(Q) and Q is minimal for x do

7 Increase yt(P \Q) continously.
8 forall p ∈ (P − pt) \Q do
9 increase xp(r(p, t)) according to

xp(r(p, t))← 1
µ
·
(

exp
(

ln(µ + 1)
c(p) · Yp(r(p, t))

)
− 1

)
.

10 if xp(r(p, t))− zp(r(p,t))
2 ≥ 1

4·N ·µ then
11 zp(r(p, t))← 2 · xp(r(p, t)).
12 end
13 if xp(r(p, t)) ≥ 1

2 then
14 zp(r(p, t)), xp(r(p, t))← 1.
15 end
16 end
17 end
18 end
19 end
20 Return the (primal) solution x and the (dual) solution y.

Once the primal constraint corresponding to t, Q is satisfied, or Q is no longer minimal for
x (a page p ∈ P \Q reaches 1), there are two cases. If x is feasible, the algorithm proceeds to
the next time step. Otherwise, the algorithm repeats the above process with a new minimal
violating set Q′. An additional property that will be useful in the analysis is that all non-zero
entries of the obtained solution will be larger than Ω

(
1

N ·µ

)
and there will be no fractional
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entries larger than 1
2 . Thus, we update through the algorithm another primal solution z;

we update an entry zp(j) to be the value of 2 · xp(j) whenever the difference xp(j)− zp(j)
becomes larger than Ω

(
1

N ·µ

)
. Moreover, we increase zp(j) immediately to 1 once xp(j)

reaches 1
2 . The pseudocode of the algorithm is given in Algorithm 2.

3.2 Analysis of Algorithm 2

We now analyze the competitive ratio of the fractional algorithm. We start by claiming the
feasibility of the solutions obtained throughout the execution of the algorithm.

▶ Lemma 15. The primal solution x defined by Algorithm 2 is feasible for the LP (6).

▶ Lemma 16. The solution z returned by Algorithm 2 is feasible for (6).

▶ Lemma 17. Algorithm 2 returns a feasible dual solution to the LP (6).

It remains to prove that the algorithm is O(log(µ))-competitive. To do so, we bound the
increase in the primal x by a O(log µ) factor of the dual increase, at any time.

▶ Lemma 18. The cost of x is bounded by O(log(µ)) times the value of the dual y.

Proof. Consider an infinitesimal increase in the value of the dual solution y. Specifically,
assume that the algorithm chooses a minimal set Q in Algorithm 2 for time step t and that
the dual variable yt(P \Q) increases infinitesimally by dyt(P \Q). Let dx and dy denote the
infinitesimal change in the objective value of x and y, respectively. We bound the increase
dx in x as a function of the increase dy.

dx =
∑

p∈P−pt

dxp(r(p, t)) · c(p)

=
∑

p∈(P−pt)\Q

dxp(r(p, t)) · c(p) · dyt(P \Q)
dyt(P \Q)

=
∑

p∈(P−pt)\Q

ln (µ + 1) ·
(

xp(r(p, t)) + 1
µ

)
· dyt(P \Q).

(9)

The first equality holds since the increase in yt(P \Q) induces an increase only on the primal
variables corresponding to pages in (P − pt) \Q by (6). The last equality follows from the
growth rate of a variable xp(r(p, t)), for some p ∈ (P − pt) \Q, as a result of the growth in
yt(P \Q). We separately analyze two of the expressions in (9). First, since y changes as a
result of the increase in the variable yt(P \Q), by Algorithm 2 it implies that∑

p∈(P−pt)\Q

xp(r(p, t)) · gQ(p) ≤
∑

p∈P−pt

xp(r(p, t)) · gQ(p) < N − g(Q). (10)

For the second expression, let S′ ∈ (P − pt) \Q such that (i) gQ(S′) ≥ N − g(Q) and (ii)
S′ is of minimum cardinality of all such sets. Clearly, there is such S′ as S′′ = (P − pt) \Q

satisfies the first condition (pt is feasible alone in cache). Since S′ satisfies the cover constraints
it holds that f(P \ (S′ ∪Q) ≤ k; thus, by the definition of µ it holds that |P \ (S′ ∪Q| ≤ µ.
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Therefore,∑
p∈(P−pt)\Q

1
µ

= |(P − pt) \Q| − 1
µ

= |S
′|+ |P \ (S′ ∪Q)| − 1

µ

≤ N − g(Q) + µ− 1
µ

≤ N − g(Q) + 1 ≤ 2 · (N − g(Q)) .

(11)

The first inequality holds since |S′| ≤ N − g(Q), as S′ is the minimum cardinality set that
covers the demand of N − g(Q); thus, the marginal contribution of any page in S′ to the
cover is at least 1 implying the inequality. The first inequality also uses |P \ (S′ ∪Q| ≤ µ

as explained above. For the last inequality, note that N − g(Q) ≥ 1 since we assume that
yt(P \Q) increases at this time, implying that the corresponding constraint of t and S is not
trivially satisfied. Therefore, by (9), (10), and (11),

dx ≤ ln (µ + 1) · dyt(P \Q) ·

 ∑
p∈(P−pt)\Q

xp(r(p, t)) +
∑

p∈(P−pt)\Q

1
µ


= ln (µ + 1) · dyt(P \Q) · 3 · (N − g(Q))
= O(log(µ)) · dy.

(12)

Thus, by (12), every increase in y incurs an increase of at most a factor O(log(µ)) in x.
Finally, note that if xp(j) ≥ 1

2 then we immediately increase xp(j) to 1; this increase the
total cost of x by a factor of 2 w.r.t. the value of y. ◀

To conclude, by Algorithm 2 and Algorithm 2 we can trivially bound the cost of z by a
constant factor of the cost of x.

▶ Observation 19. The cost of z is bounded by 4 times the cost of x.

Finally, using the above we summarize the properties of z.

▶ Lemma 20. Algorithm 2 returns a feasible primal solution z to (6) such that the following
holds.
1. For all p ∈ P and j ∈ [np] it holds that either zp(j) ∈ {0, 1} or that zp(j) ∈

[
1

4·N ·µ , 1
2

]
.

2. The cost of z is bounded by O(log(µ)) times the cost of OPT.

3.3 Randomized Rounding
In this section, we construct a randomized algorithm for supermodular paging based on an
online rounding scheme of the solution z to the LP (6) obtained by Algorithm 2. Let

C = max
p,q∈P

c(p)
c(q)

be the maximum ratio of costs taken over all pairs pages; we assume without the loss of
generality that all costs are strictly positive. As a scaling factor for our algorithm, let
α = log

(
4 · C ·N2 · µ2)

and let z′ be the solution obtained by augmenting z by a factor of
α. That is, for all p ∈ P and j ∈ [np] define z′

p(j) = min (1, α · zp).
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Our algorithm computes z′ in an online fashion. At every time t, after updating z′, the
algorithm evicts each page p ∈ P from the cache with probability chosen carefully so that
the total probability that p is missing from cache after this moment is exactly z′

p(r(p, t)).
If the cache is not feasible after this randomized rounding procedure, we evict pages that
increase the total cover until we reach feasibility. The pseudocode of the algorithm is given
in Algorithm 3.

Algorithm 3 Randomized Rounding.

1 for t ∈ T do
2 If pt is missing from cache: fetch pt.
3 Initialize ∆pt

← 0.
4 Update the solution z according to Algorithm 2.
5 Define z′

p(r(p, t))← min (1, α · zp) for all p ∈ P.
6 for p ∈ P do
7 Evict p from cache with probability z′

p(r(p,t))−∆p

1−∆p
.

8 Update ∆p = z′
p(r(p, t)).

9 end
10 Let F be the pages outside of the cache (part of the cover).
11 while g(F) < N do
12 Evict a page p ∈ P \ F such that gF (p) > 0.
13 end
14 end
15 Return the integral solution.

Observe that we evict a page p at time t with probability z′
p(r(p,t))−∆p

∆p
, conditioned on

the event that p is still in the cache. Thus, the probability that p belongs to the cache at the
beginning of time t is ∆p, and is z′

p(r(p, t)) after Algorithm 3. Thus, we have the following
observation.

▶ Observation 21. For all p ∈ P and t ∈ T the probability that p is missing from the cache
at time t is at least z′

p(r(p, t)).

To analyze the performance of the algorithm, we use the following lemma. The proof
follows from Lemma 2.5 in [20] combined with Observation 21.

▶ Lemma 22. Let F be the set of pages outside cache at Algorithm 3 at time t. Then,

E [g(F)] ≥ N − e−α ·N ≥ N − 1
2 · µ2 · C ·N

.

Using Lemma 22, we bound the expected cost of the algorithm.

▶ Lemma 23. Algorithm 3 returns a feasible integral solution for supermodular paging with
expected cost O (log(µ) · α) ·OPT = O

(
log2(µ) · log (C ·N)

)
·OPT.

The proof of Theorem 6 follows from Lemma 23. Moreover, the proof of Theorem 9
follows using the “round-or-separate” approach of [20].
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