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Abstract

We provide new tradeoffs between approximation and running time for the decremental all-pairs
shortest paths (APSP) problem. For undirected graphs with m edges and n nodes undergoing edge
deletions, we provide four new approximate decremental APSP algorithms, two for weighted and
two for unweighted graphs. Our first result is (2 + ϵ)-APSP with total update time Õ(m1/2n3/2)
(when m = n1+c for any constant 0 < c < 1). Prior to our work the fastest algorithm for weighted
graphs with approximation at most 3 had total Õ(mn) update time for (1 + ϵ)-APSP [Bernstein,
SICOMP 2016]. Our second result is (2 + ϵ, Wu,v)-APSP with total update time Õ(nm3/4), where
the second term is an additive stretch with respect to Wu,v, the maximum weight on the shortest
path from u to v.

Our third result is (2 + ϵ)-APSP for unweighted graphs in Õ(m7/4) update time, which for sparse
graphs (m = o(n8/7)) is the first subquadratic (2 + ϵ)-approximation. Our last result for unweighted
graphs is (1 + ϵ, 2(k − 1))-APSP, for k ≥ 2, with Õ(n2−1/km1/k) total update time (when m = n1+c

for any constant c > 0). For comparison, in the special case of (1+ ϵ, 2)-approximation, this improves
over the state-of-the-art algorithm by [Henzinger, Krinninger, Nanongkai, SICOMP 2016] with total
update time of Õ(n2.5). All of our results are randomized, work against an oblivious adversary, and
have constant query time.
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1 Introduction

The dynamic algorithms paradigm is becoming increasingly popular for studying algorithmic
questions in the presence of gradually changing inputs. A natural goal in this area is to design
algorithms that process each change to the input as fast as possible to adapt the algorithm’s
output (or a data structure for querying the output) to the current state of the input. The
time spent after an update to perform these computations is called the update time of the
algorithm. In many cases, bounds on the update time are obtained in an amortized sense
as an average over a long enough sequence of updates. Among dynamic graph problems,
the question of maintaining exact or approximate shortest paths has received considerable
attention in the past two decades. The main focus usually lies on maintaining a distance
oracle that answers queries for the distance between a pair of nodes. For this problem, we
call an algorithm fully dynamic if it supports both insertions and deletions of edges, and
partially dynamic if it supports only one type of updates; in particular we call it decremental
if it only supports edge deletions (which is the focus of this paper), and incremental if it
only supports edge insertions.

The running times of partially dynamic algorithms are usually characterized by their
bounds on the total update time, which is the accumulated time for processing all updates in
a sequence of at most m deletions (where m is the maximum number of edges ever contained
the graph). A typical design choice, which we also impose in this paper, is small (say
polylogarithmic) query time. In particular, our algorithms will have constant query time.
While fully dynamic algorithms are more general, the restriction to only one type of updates
in partially dynamic algorithms often admits much faster update times. In particular, some
partially dynamic algorithms have a total update time that almost matches the running time
of the fastest static algorithm, i.e., computing all updates does not take significantly more
time than processing the graph once.

Decremental shortest paths

For the decremental single-source shortest paths problem, conditional lower bounds [58, 48]
suggest that exact decremental algorithms have an Ω(mn) bottleneck in their total update
time (up to subpolynomial factors). On the other hand, this problem admits a (1 + ϵ)-
approximation (also called stretch) with total update time m1+o(1) in weighted, undirected
graphs [22, 47, 20, 19, 21], which exceeds the running time of the state-of-the art static
algorithm by only a subpolynomial factor. Hence for the single-source shortest paths problem
on undirected graphs we can fully characterize for which multiplicative stretches the total
update time of the fastest decremental algorithm matches (up to subpolynomial factors) the
running time of the fastest static algorithm.

Obtaining a similar characterization for the decremental all-pairs shortest paths (APSP)
problem is an intriguing open question. Conditional lower bounds [32, 48] suggest an Ω(mn)
bottleneck in the total update time of decremental APSP algorithms with (a) any finite
stretch on directed graphs and (b) with any stretch guarantee with a multiplicative term of
α ≥ 1 and an additive term of β ≥ 0 with 2α + β < 4 on undirected graphs. This motivates
the study of decremental (α, β)-approximate APSP algorithms such that 2α + β ≥ 4, i.e.,
with multiplicative stretch α ≥ 2 or additive stretch β ≥ 2.

Apart from two notable exceptions [46, 5], all known decremental APSP algorithms fall
into one of two categories. They either (a) maintain exact distances or have a relatively small
multiplicative stretch of (1 + ϵ) or (b) they have a stretch of at least 3. The space in between
is largely unexplored in the decremental setting. This stands in sharp contrast to the static
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setting where for undirected graphs approximations guarantees different from multiplicative
(1 + ϵ) or “3 and above” have been the focus of a large body of works [7, 32, 28, 14, 16, 51,
11, 55, 61, 52, 8, 9]. The aforementioned exceptions in dynamic algorithms [46, 5], concern
unweighted undirected graphs and maintain (1 + ϵ, 2)-approximations that simultaneously
have a multiplicative error of 1 + ϵ and an additive error of 2, which implies a purely
multiplicative (2 + ϵ)-approximation. The algorithms run in Õ(n5/2)1 and n5/2+o(1) total
update time respectively. In the next section, we will detail how our algorithms improve over
this total update time and generalize to weighted graphs.

Concerning the fully dynamic setting, Bernstein [17] provided an algorithm for (2 + ϵ)-
APSP which takes m1+o(1) time per update. Although we are not aware of any lower bounds,
it seems to be hard to beat this: no improvements have been made since. The lack of progress
in the fully-dynamic setting motivates the study in a partially dynamic setting, where we
obtain improvements for the decremental case.

1.1 Our Results
In this paper, we provide novel decremental APSP algorithms with approximation guarantees
that previously were mostly unexplored in the decremental setting. Our algorithms are
randomized and we assume an oblivious adversary. For each pair of nodes, we can not only
provide the distance estimate, but we can also report a shortest path π of this length in
Õ(|π|) time using standard techniques, see e.g. [43].

(2 + ϵ)-APSP for weighted graphs

Our first contribution is an algorithm for maintaining a (2 + ϵ)-approximation in weighted,
undirected graphs.

▶ Theorem 1. Given a weighted graph G and a constant 0 < ϵ < 1, there is a decremental
data structure that maintains a (2 + ϵ)-approximation of APSP. The algorithm has constant
query time and the total update time is w.h.p.

Õ(m1/2n3/2 log2(nW )) if m = n1+Ω(1) and m ≤ n2−ρ for an arbitrary small constant ρ,
Õ(m1/2n3/2+ρ log2(nW )) if m ≥ n2−ρ for any constant ρ,
Õ(m1/2n3/2+o(1) log2(nW )) otherwise,

where W is the ratio between the maximum and minimum weight.

The fastest known algorithm with an approximation ratio at least as good as ours is
the (1 + ϵ)-approximate decremental APSP algorithm by Bernstein [18] with total update
time Õ(mn). With our (2 + ϵ)-approximation, we improve upon this total update time
when m = n1+η, for any η > 0. Furthermore, the fastest known algorithm with a larger
approximation ratio than our algorithm is the (3+ϵ)-approximate decremental distance oracle
by Łącki and Nazari [53] with total update time Õ(m

√
n). Our result also has to be compared

to the fully dynamic algorithm of Bernstein [17] for maintaining a (2 + ϵ)-approximation
that takes amortized time m1+o(1) per update. Note that in unweighted graphs, (2 + ϵ)-
approximate decremental APSP algorithm can be maintained with total update time Õ(n2.5)
(which is implied by the results of Abraham and Chechik [5] and Henzinger, Krinninger, and
Nanongkai [46]). Our approach improves upon this bound for most densities, and matches it
for m = n2.

1 In the introduction, we make two simplifying assumptions: (a) ϵ is a constant and (b) the ratio W
between the maximum and minimum weight is polynomial in n. Unless otherwise noted, the cited
algorithms have constant or polylogarithmic query time. Throughout we use Õ(·) notation to omit
factors that are polylogarithmic in n.
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(2 + ϵ, 1)-APSP for unweighted and (2 + ϵ, Wu,v)-APSP for weighted graphs

Our second contribution is a faster algorithm with an additional additive error term of 1 for
unweighted graphs, which in turn can be used to obtain our unweighted (2 + ϵ)-APSP result.
The corresponding generalization to weighted graphs can be formulated as follows.

▶ Theorem 2. Given a weighted graph G and a constant 0 < ϵ < 1, there is a decremental data
structure that maintains a (2+ϵ, Wu,v)-approximation for APSP, where Wu,v is the maximum
weight on a shortest path from u to v. The algorithm has constant query time and the total
update time is w.h.p. Õ(nm3/4 log2(nW )) if m = n1+Ω(1), and Õ(n1+o(1)m3/4 log2(nW ))
otherwise, where W is the ratio between the maximum and minimum weight.

(2 + ϵ)-APSP for unweighted graphs

We obtain this result by a general reduction from mixed approximations to purely multiplic-
ative approximations, which might be of independent interest beyond the dynamic setting.
See Theorem 5 for the statement. We can then combine this with Theorem 2 to obtain a
fast algorithm for non-dense unweighted graphs.

▶ Theorem 3. Given an undirected unweighted graph G, there is a decremental data structure
that maintains a (2 + ϵ)-approximation for APSP with constant query time. W.h.p. the total
update time is bounded by Õ(m7/4) if m = n1+Ω(1), and Õ(m7/4+o(1)) otherwise.

Note that for m = o(n8/7) this gives the first subquadratic decremental (2+ϵ)-approximate
APSP algorithm. For m ≤ n6/5, this approach is faster than our weighted result, Theorem 1,
which was already beating the unweighted state-of-the-art [5, 46].

(1 + ϵ, 2(k − 1))-APSP for unweighted graphs

Our fourth contribution is an algorithm for unweighted, undirected graphs that maintains, for
any k ≥ 2, a (1 + ϵ,2(k − 1))-approximation, i.e., a distance estimate that has a multiplicative
error of 1 + ϵ and an additive error of 2(k − 1).

▶ Theorem 4. Given an undirected unweighted graph G, a constant 0 < ϵ < 1 and an
integer 2 ≤ k ≤ log n, there is a decremental data structure that maintains (1 + ϵ, 2(k − 1))-
approximation for APSP with constant query time. The expected total update time is bounded
by min{O(n2−1/k+o(1)m1/k), Õ((n2−1/km1/k)O(1/ϵ)k/ρ)} where m = n1+ρ.

Note that for small values of k and if m = n1+ρ for a constant ρ > 0, we get total update
time of Õ(n2−1/km1/k), and otherwise we have an extra no(1) factor. In addition, in the
special case of k = log n, we get a near-quadratic update time of O(n2+o(1)). The state-of-the-
art for a purely multiplicative (1 + ϵ)-approximation is the algorithm of Roditty and Zwick
with total update time Õ(mn).2 It was shown independently by Abraham and Chechik [5]
and by Henzinger, Krinninger, and Nanongkai [46] how to improve upon this total update
time bound at the cost of an additional small additive error term: a (1 + ϵ, 2)-approximation
can be maintained with total update time Õ(n2.5). This has been generalized by Henzinger,
Krinninger, and Nanongkai [45] to an additive error term of 2(1 + 2

ϵ )k−2 and total update
time Õ(n2+1/kO( 1

ϵ )k−1). We improve upon this tradeoff in two ways: (1) our additive term
is independent of 1/ϵ and linear in k and (2) our algorithm profits from graphs being sparse.

2 Note that the algorithms of Roditty and Zwick [59] for unweighted, undirected graphs precedes the
more general algorithm of Bernstein [18] for weighted, directed graphs.
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Static follow-up work

Interestingly, our techniques inspired a new algorithm for a static 2-approximate distance
oracle [33], giving the first such distance oracle algorithm with subquadratic construction
time for sparse graphs. Moreover, for m = n they match conditional lower bounds [56, 3].

1.2 Related Work
Static algorithms

The baseline for the static APSP problem are the exact textbook algorithms with running
times of O(n3) and Õ(mn), respectively. There are several works obtaining improvements
upon these running times by either shaving subpolynomial factors or by employing fast matrix
multiplication, which sometimes comes at the cost of a (1 + ϵ)-approximation instead of an
exact result. See [67] and [66], and the references therein, for details on these approaches.
For the regime of stretch 3 and more in undirected graphs, a multitude of algorithms has
been developed with the distance oracle of Thorup and Zwick [64] arguably being the most
well-known constructions. In the following, we focus on summarizing the state of affairs for
approximate APSP with stretch between 1 + ϵ and 3.

In weighted, undirected graphs, Cohen and Zwick [28] obtained a 2-approximation with
running time Õ(m1/2n3/2). This running time has been improved to Õ(m

√
n+n2) by Baswana

and Kavitha [14] and, employing fast matrix multiplication, to Õ(n2.25) by Kavitha [51].
For (2 + ϵ)-APSP, Dory et al. [33] provide two algorithms, for dense graphs: O(n2.214) and
sparse graphs: Õ(mn2/3). In addition, efficient approximation algorithms for stretches of
7
3 [28] and 5

2 [51] have been obtained. These results have recently been generalized by
Akav and Roditty [9] who presented an algorithm with stretch 2 + k−2

k and running time
Õ(m2/kn2−3/k + n2) for any k ≥ 2.

In unweighted, undirected graphs, a (1, 2)-approximation algorithm with running time
Õ(n2.5) has been presented by Aingworth, Chekuri, Indyk and Motwani [7]. This has been
improved by Dor, Halperin, and Zwick [32] that showed a (1, 2)-approximation with running
time Õ(min{n3/2m1/2, n7/3}). They also show a generalized version of the algorithm that
gives stretch (1, k) and running time Õ(min{n2−2/(k+2)m2/(k+2), n2+2/(3k−2)}) for every even
k > 2. Recently faster (1, 2)-approximation algorithms based on fast matrix multiplication
techniques were developed [31, 36], the fastest of them runs in O(n2.260) time [36]. This
was extended to a (1 + ϵ, 2)-approximation in O(n2.152) [33]. In addition, recently Roditty
[57] extended the approach of [32] to obtain a combinatorial (2, 0)-approximation for APSP
in Õ(n2.25) time in unweighted undirected graphs. Using fast matrix multiplication, this
running time was improved to O(n2.032) [33, 60].

Berman and Kasiviswanathan [16] showed how to compute a (2, 1)-approximation in time
Õ(n2). Subsequent works [11, 14, 55, 61, 52] have improved the polylogarithmic factors in
the running time and the space requirements for such nearly 2-approximations. Recently,
slightly subquadratic algorithms have been given: an algorithm with stretch (2(1 + ϵ), 5) by
Akav and Roditty [8], and an algorithm with stretch (2, 3) by Chechik and Zang [25].

Decremental algorithms

The fastest algorithms for maintaining exact APSP under edge deletions have total update
time Õ(n3) [30, 13, 39]. There are several algorithms that are more efficient at the cost
of returning only an approximate solution. In particular, a (1 + ϵ)-approximation can be
maintained in total time Õ(mn) [59, 18, 49]. If additionally, an additive error of 2 is tolerable,

ICALP 2024
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then a (1 + ϵ, 2)-approximation can be maintained in total time Õ(n2.5) in unweighted,
undirected graphs [46, 5]. Note that such a (1 + ϵ, 2)-approximation directly implies a
(2+ϵ)-approximation because the only paths of length 1 are edges between neighboring nodes.
All of these decremental approximation algorithms are randomized and assume an oblivious
adversary. Deterministic algorithms with stretch 1 + ϵ exist for unweighted, undirected
graphs with running time Õ(mn) [46], for weighted, undirected graphs with running time
Õ(mn1+o(1)) [21] and for weighted, directed graphs with running time Õ(n3) [50].

Decremental approximate APSP algorithms of larger stretch, namely at least 3, have first
been studied by Baswana, Hariharan, and Sen [12]. After a series of improvements [59, 22, 6,
47], the state-of-the-art algorithms of [24, 53] maintain (2k − 1)(1 + ϵ)-approximate all-pairs
shortest paths for any integer k ≥ 2 and 0 < ϵ ≤ 1 in total update time Õ((m + n1+o(1))n1/k)
with query time O(log log(nW )) and O(k) respectively. All of these “larger stretch” algorithms
are randomized and assume an oblivious adversary.

Recently, deterministic algorithms have been developed by Chuzhoy and Saranurak [27]
and by Chuzhoy [26]. One tradeoff in the algorithm of Chuzhoy [26] for example provides
total update time Õ(m1+µ) for any constant µ and polylogarithmic stretch. As observed
by Mądry [54], decremental approximate APSP algorithms that are deterministic – or
more generally work against an adaptive adversary – can lead to fast static approximation
algorithms for the maximum multicommodity flow problem via the Garg-Könemann-Fleischer
framework [44, 41]. The above upper bounds for decremental APSP have recently been
contrasted by conditional lower bounds [4] stating that constant stretch cannot be achieved
with subpolynomial update and query time under certain hardness assumptions on 3SUM or
(static) APSP.

Fully dynamic algorithms

The reference point in fully dynamic APSP with subpolynomial query time is the exact
algorithm of Demetrescu and Italiano [29] with update time Õ(n2) (with log-factor improve-
ments by Thorup [62]). For undirected graphs, several fully dynamic distance oracles have
been developed. In particular, Bernstein [17] developed a distance oracle of stretch 2 + ϵ

(for any given constant 0 < ϵ ≤ 1) and update time O(m1+o(1)). In the regime of stretch
at least 3, tradeoffs between stretch and update time have been developed by Abraham,
Chechik, and Talwar [6], and by Forster, Goranci, and Henzinger [42]. Finally, most fully
dynamic algorithm with update time sensitive to the edge density can be combined with a
fully dynamic spanner algorithm leading to faster update time at the cost of a multiplicative
increase in the stretch, see [15] for the seminal work on fully dynamic spanners.

2 High-Level Overview

In this section we provide a high-level overview of our algorithms, for the complete algorithms
and their proof we refer to the full version. First we describe our (2 + ϵ)-APSP algorithms for
weighted graphs, by giving a simpler static version first. Then we describe our (2 + ϵ, Wu,v)-
APSP algorithm, where we introduce a notion of bunch overlap threshold to overcome the
challenge of dynamically maintaining a well-known static adaptive sampling technique [63]
(see Section 2.2). We give a reduction from mixed approximations to purely multiplicative
approximations, which together with the previous result gives our (2 + ϵ)-APSP algorithm
for unweighted graphs. Finally, we describe our (1 + ϵ, 2(k − 1))-APSP algorithm for any
k ≥ 2 in unweighted graphs.
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2.1 (2 + ϵ)-APSP for Weighted Graphs
We first present a warm-up static algorithm, that we later turn into a dynamic algorithm.

2.1.1 Static 2-APSP
We start by reviewing the concepts of bunch and cluster as defined in the seminal distance
oracle construction of [64].

Let 0 < p < 1 be a parameter and A a set of nodes sampled with probability p. For each
node u, the pivot p(u) is the closest node in A to u. The bunch B(v) of a node v is the
set B(v) := {u ∈ V : d(u, v) < d(v, p(v))} and the clusters are C(u) := {v ∈ V : d(u, v) <

d(v, p(v))} = {v ∈ V : u ∈ B(v)}. Hence bunches and clusters are reverse of each other:
u ∈ B(v) if any only if v ∈ C(u).

These structures have been widely used in various settings, including the decremental
model (e.g. [46, 58, 53, 24]). We can use these existing decremental algorithms to maintain
bunches and clusters, but will need to develop new decremental tools to get our desired
tradeoffs that we will describe in Section 2.1.2.

Using the well-known distance oracles of [64], we know that by storing the clusters and
bunches and the corresponding distances inside them, we can query 3-approximate distances
for any pair. At a high-level, for querying distance between a pair u, v we either have u ∈ B(v)
or v ∈ B(u) and so we explicitly have stored their distance, or we can get a 3-approximate
estimate by computing min{d(u, p(u) + d(p(u), v), d(v, p(v)) + d(p(v), u)}. In the following
we explain that in some special cases we can use these estimates to a obtain 2-approximation
for a pair u, v, and in other cases by storing more information depending on how B(u) and
B(v) overlap we can also obtain a 2-approximation to d(u, v).

Let us assume that for all nodes v we have computed B(v) and have access to all the
distances from v to each node u ∈ B(v). Also assume that we have computed the distances
from the set A to all nodes. We now describe how using this information we can get a
2-approximate estimate of any pair of nodes u, v in one case. In another case we will discuss
what other estimates we need to precompute. Let π be the shortest path between u and
v. We consider two cases depending on how the bunches B(u) and B(v) interact with
π. A similar case analysis was used in [23, 35] in distributed approximate shortest paths
algorithms.
1. There exists w ∈ π such that w ̸∈ B(u) ∪ B(v) (left case in Figure 1): Since w is on

the shortest path, we either have d(w, u) ≤ d(u, v)/2 or d(v, w) ≤ d(u, v)/2. Suppose
d(w, u) ≤ d(u, v)/2. We observe that by definition d(u, p(u)) ≤ d(u, w), hence we obtain
d(u, p(u))+d(p(u), v) ≤ d(u, p(u))+d(u, p(u))+d(u, v) ≤ 2d(u, v). The case that d(v, w) ≤
d(u, v)/2 is analogous, and hence by computing min{d(u, p(u)) + d(p(u), v), d(v, p(v)) +
d(p(v), u)} we get a 2-approximation.

2. There exists no w ∈ π such that w ̸∈ B(u) ∪ B(v). In other words, B(u) ∩ B(v) ∩ π = ∅
and there exists at least one edge {u′, v′} on π where u′ ∈ B(u) and v′ ∈ B(v) (right case
in Figure 13): in this case we can find the minimum over estimates obtained through all
such pairs u′, v′, i.e. by computing d(u, u′) + w(u′, v′) + d(v′, v).

If we had access to all the above distances for the bunches and the pivots, we could then
use them to query 2-approximate distances between any pair u, v ∈ V . As we will see, in our
algorithms we only have approximate bunches and pivots which lead to (2 + ϵ)-approximate
queries.

3 Although the picture implies B(u) and B(v) are disjoint, this also includes the case where they overlap,
or even where u ∈ B(v) or v ∈ B(u).

ICALP 2024
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Figure 1 Possible scenarios for the overlap between the bunches B(u), B(v) and the shortest path π
from u to v.

Running time

We can compute bunches and clusters in Õ( m
p ) time [64]. We need to compute shortest paths

from A for the estimates in Case 1. This takes O(|A|m) = Õ(pnm) time using Dijkstra’s
algorithm. Finally, we consider Case 2. A straight-forward approach is to consider each pair
of vertices u, v, and all u′ ∈ B(u) and v′ ∈ B(v). This takes O( n2

p2 ) time.
We use a sophisticated intermediate step that computes the distance between u′ and

v if there is an edge {u′, v′} ∈ E such that v′ ∈ B(v). For each node v ∈ V , we consider
all v′ ∈ B(v), for which we consider all neighbors u′ ∈ N(v′) and compute the estimate
w(u′, v′) + d(v′, v) (and replace current u′ − v minimum if it is smaller). Since |B(v)| = Õ( 1

p ),
we can compute these estimates for d(u′, v) in Õ( n2

p ) time.
Next, for each pair u, v ∈ V , we take the minimum over the distances d(u, u′) + d(u′, v)

for all u′ in the bunch B(u) using the precomputed distances from the previous step in
time Õ(n2/p), by iterating over all pairs u, v ∈ V , and all u′ ∈ B(u). So in total the
adjacent case takes time Õ(n2

p ). Hence the total running time of the algorithm will be
Õ(pnm + m/p + n2/p) = Õ(pnm + n2/p). By setting p =

√
n
m we obtain the total update

time Õ(m1/2n3/2) as stated in Theorem 1.
There are several subtleties that make it more difficult to maintain these estimates in

decremental settings since the bunches and which bunches are adjacent keep on changing
over the updates. We next discuss how these can be handled. We obtain a total update time
that matches the stated static running time (up to subpolynomial factors).

2.1.2 Dynamic Challenges
Maintaining bunches and pivots

First, we need to dynamically maintain bunches efficiently as nodes may join and leave a
bunch throughout the updates using an adaptation of prior work. One option would be
maintaining the clusters and bunches using the [59] framework, however using this directly is
slow for our purposes. Hence we maintain approximate clusters and bunches using hopsets of
[53]. This algorithm also maintains approximate pivots, i.e. pivots that are within (1 + ϵ)-
approximate distance of the true closest sampled node. These estimates let us handle the first
case (up to (1 + ϵ) approximation). One subtlety is that the type of approximate bunches
used in [53] is slightly different with the type of approximate bunches we need for other
parts of our algorithm. Specifically we need to bound the number of times nodes in a bunch
can change. Roughly speaking, we can show this since the graph is decremental and the
estimates obtained from the algorithm of [53] are monotone. Hence we perform lazy bunch
updates, where we only let a bunch grow if the distance to the pivot grows by at least a
factor 1 + ϵ. This means a bunch grows at most O(log1+ϵ(nW )) times. In addition, these
approximate bunches need to be taken into account into our stretch analysis.
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We note that (1 + ϵ)-approximate decremental SSSP takes Õ(m1+o(1)) total update time.
However, we use the multi-source shortest path result from [53], where the no(1)-term vanishes
when applied with polynomially many sources, giving us a total update time of Õ(|A|m).

Maintaining estimates for Case 2

When we are in Case 2, we need more tools to keep track of estimates going through these
nodes since both the bunches and the distances involved are changing. In particular, we
explain how by using heaps in different parts of our algorithm we get efficient update and
query times. Moreover, note that we have an additional complication: there are two data
structures in this step, where one impacts the other. We need to ensure that an update in
the original graph does not lead to many changes in the first data structure, which all need
to be processed for the second data structure.

To be precise, we need intermediate data structures Qu′,v that store approximate distances
for u′ and v of the form w(u′, v′) + δ(v′, v) for each v′ ∈ B(v) such that {u′, v′} ∈ E, as
explained for the static algorithm4. As opposed to the static algorithm, we do not only keep
the minimum, but instead maintain a min-heap, from which the minimum is easily extracted.

However, this approach has a problem: δ(v′, v) might change many times, and for each
such change we need to update at most |N(v′)| ≤ n heaps. To overcome this problem, we
use another notion of lazy distance update: we only update a bunch if the estimate of a node
changes by at least a factor 1 + ϵ. Combining this with the fact that, due to the lazy bunch
update, nodes only join a cluster at most O(log1+ϵ(nW )) times, and thus there is only an
O(log1+ϵ(nW ) log(nW )) overhead in maintaining these min-heaps Qu′,v dynamically due to
bunch updates.

Similarly, w(u′, v′) might change many times, which has an impact for every v ∈ C(v′).
Since this can be many nodes, we need to use an additional trick so an adversary cannot
increase our update time to mn. Again the solution is a lazy update scheme: instead of
w(u′, v′) we use w̃(u′, v′) = (1 + ϵ)⌈log1+ϵ w(u′,v′)⌉, which can only change log1+ϵ W times.
This comes at the cost of a (1 + ϵ) approximation factor.

We note that our bunches are approximate bunches in three different ways. We have one
notion of approximation due to the fact that we are using hopsets (that implicitly maintain
bunches on scaled graphs). We have a second notion of approximation due to our lazy bunch
update, which only lets nodes join a bunch a bounded number of times. We have a third
notion of approximation due to the lazy distance update, which only propagates distance
changes O(log(nW )) times. We need to carefully consider how these different notions of
approximate bunch interact with each other and with the stretch of the algorithm.

Next, we want to use the min-heaps Qu′,v to maintain the distance estimates for u, v ∈ V

(see again the right case in Figure 1). We construct min-heaps Q′
u,v, with for each pair u, v

entries δ(u, u′) + δ(u′, v) for u′ ∈ B(u). Here δ(u′, v) is the minimum from the intermediate
data structure Qu′,v.

An entry δ(u, u′) + δ(u′, v) in Q′
u,v has to be updated when either δ(u, u′) or δ(u′, v)

change. We have to make sure we do not have to update these entries too often. For the first
part of each entry, we bound updates to the distance estimates δ(u, u′) by the lazy distance
updates. One challenge here is that when the distance estimates in a bunch change we need
to update all the impacted heaps i.e. if δ(u, u′) inside a bunch B(u) changes, we must update
all the heaps Q′

u,v such that there exists {u′, v′} ∈ E with v′ ∈ B(v). For this purpose one

4 In this section, δ(·, ·) denotes (1 + ϵ)-approximate distances in our dynamic data structures.
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approach is the following: for each u ∈ V, u′ ∈ B(u) we keep an additional data structure
Setu,u′ that stores for which v ∈ V we have v′ ∈ B(v) with {u′, v′} ∈ E. This means that
given a change in δ(u, u′), we can update each of the heaps in logarithmic time.

For the second part of the entry, which is the distance estimate δ(u′, v) from the first data
structure, this is more complicated. Another subtlety for our decremental data structures is
the fact that δ(u′, v) may also decrease due to a new node being added to B(v). However, our
lazy bunch update ensures that δ(u′, v) can only decrease O(log1+ϵ(nW )) times. Further, we
use lazy distance increases in between such decreases. Hence in total we propagate changes
to δ(u′, v) at most O(log1+ϵ(nW ) log(nW )) times, and thus our decremental algorithm has
Õ(log1+ϵ(nW ) log(nW )) overhead compared to the static algorithm.

2.2 (2 + ϵ, Wu,v)-APSP for Weighted Graphs
For a moment, let us go back to the first static algorithm. It turns out, that if instead
of computing an estimate for two “adjacent” bunches, we keep an estimate for bunches
that overlap in at least one node, we obtain a (2, Wu,v)-approximation, where Wu,v is the
maximum weight on the shortest path from u to v.

Figure 2 Possible scenarios for the overlap between the bunches B(u) and B(v) and the shortest
path π from u to v.

The stretch analysis comes down to the following cases:
There exists no w ∈ π ∩ B(u) ∩ B(v) (the left and right case in Figure 2).
There exists w ∈ π such that w ∈ B(u) ∩ B(v) (the middle case in Figure 2).

The crucial observation here is that the distance estimate via the pivot (Case 1 in the
previous section) already gives a (2, Wu,v)-approximation for the adjacent case (the right
case in Figure 2). So if we maintain an estimate for d(u, v) if there exists w ∈ π such that
w ∈ B(u) ∩ B(v) (the “overlap case”), then we obtain a (2, Wu,v)-approximation in total.

Here we need to create a min-heap for the overlap case, later we show we can maintain in
Õ(nCmax/p) time. First we focus on the challenge of bounding Cmax.

Efficiency challenge

While the bunches are small, there is no bound on the size of the clusters. To overcome
this issue in the static case, Thorup and Zwick developed an alternative way to build the
bunches and clusters, that guarantees that the clusters are also small [63]. At a high-level,
their approach is to adaptively change (grow) A by sampling big clusters into smaller clusters
using a sampling rate proportional to the cluster size and adding these nodes to the set of
pivots A. In total, in Õ(m/p) time we obtain bunches and clusters, both of size Õ(1/p). This
idea was developed in the context of obtaining compact routing schemes, and later found
numerous applications in static algorithms for approximating shortest paths and distances
(see e.g., [14, 8, 10, 9]).
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Using this trick, the static algorithm has running time Õ( m
p + pnm + n

p2 ) = Õ(nm3/4 +
m4/3), for p = m−1/3 or Õ(mn1/2 + n2) for p = n−1/2.

However, the adaptive sampling procedure does not seem to be well-suited to a dynamic
setting. The reason is that the sampling procedure is adaptive in such a way that when the
bunches/clusters change, the set of sampled nodes can also change. Although (a dynamic
adaptation of) the algorithm can guarantee that the set of sampled nodes is small at any
particular moment, there is no guarantee on the monotonicity of the set A of sources that
we need to maintain distances from. This would add a significant amount of computation
necessary to propagate these changes to other parts of the algorithm. A possible solution is
to enforce monotonicity by never letting nodes leave A. This would require us to bound the
total number of nodes that would ever be sampled, which seems impossible with the current
approach. To overcome this, we next suggest a new approach that gives us the monotonicity
needed for our dynamic algorithm. For simplicity, we first present this in a static setting.

Introducing bunch overlap thresholds

Our proposed approach is to divide the nodes into two types depending on the number of
bunches they appear in. In particular, we consider a threshold parameter τ and we define a
node to be a heavy node if it is in more than τ bunches (equivalently its cluster contains more
than τ nodes), and otherwise we call it a light node. In other words, for the set of light nodes
we have Cmax ≤ τ . This threshold introduces a second type of pivot for each node u, which
we denote by q(u) that is defined to be the closest heavy node to u. In particular, instead of
computing all distance estimates going through nodes w ∈ B(u)∩B(v), we only compute them
for the case that w is light, and otherwise it is enough to compute the minimum estimates
going through the heavy pivots, i.e. min{d(u, q(u)) + d(q(u), v), d(v, q(v)) + d(q(v), u)}. We
emphasize that these heavy pivots are not a subset of our original pivots p(v), v ∈ V , and
they have a different behavior in bounding the running time than the bunch pivots. As we
will see later, introducing these thresholds is crucial in efficiently obtaining the estimates
required for Case 2.2 as we can handle the light and heavy case separately.

Stretch of the algorithm with bunch overlap thresholds

As discussed above, the stretch analysis was divided into two cases. In the new variant of
the algorithm we add a third case, where we look at the distance estimates going through
heavy pivots, i.e. min{d(u, q(u)) + d(q(u), v), d(v, q(v)) + d(q(v), u)}. The main idea is that
now we only need to consider the difficult case, Case 2.2, if the relevant node is light, which
allows us to implement the algorithm efficiently.

If the relevant node w ∈ B(u) ∩ B(v) in Case 2 is heavy, we obtain a 2-approximation
through the heavy pivot: we get that the min{d(u, w), d(v, w)} ≤ d(u, v)/2, since d(u, v) =
d(u, w) + d(w, v). W.l.o.g. say d(u, w) ≤ d(u, v)/2. Then d(u, q(u)) ≤ d(u, w) ≤ d(u, v)/2,
hence d(u, q(u)) + d(q(u), v) ≤ d(u, q(u)) + d(q(u), u) + d(u, v) ≤ 2d(u, v).

Maintaining estimates through heavy nodes

For the stretch analysis above, we need to maintain a shortest path tree from each heavy
node. We ensure a bunch grows at most O(log1+ϵ(nW )) times. Hence by a total load
argument we get that the total number of nodes in all bunches over all updates is at most
O( n

p log1+ϵ(nW )). This implies there cannot be too many heavy nodes in total, hence we can
enforce monotonicity by keeping in Vheavy all nodes that were once heavy. As a consequence,
we can maintain multi-source approximate distances from all heavy nodes efficiently: we can
compute shortest paths from this set to all other nodes in O(|Vheavy|m) = O( nm

pτ ) time.
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Running time of the algorithm with bunch overlap thresholds

Summarizing, we compute bunches and clusters in O(m/p) time, compute distances from
A to V in O(|A|m) = Õ(pnm) time, and we can compute shortest paths from ththe heavy
nodes in O(|Vheavy|m) = O( nm

pτ ) time.
Finally, we consider Case 2.2. For each node u ∈ V , we consider every light node

w ∈ B(u), and then all nodes v ∈ C(W ). Since w is light, we have |C(w)| ≤ τ , so this takes
time Õ(n · 1

p · τ).
Hence, in the total update time, we obtain Õ((pnm + nm

pτ + nτ/p) log2(nW )). Setting
p = m−1/4 and τ = m1/2 gives a total update time of Õ(nm3/4 log(nW )).

Again for a decremental algorithm, we need to combine this new idea with the subtleties
we had in the previous section: the bunches, their overlaps, and the heavy nodes keep on
changing over the updates. We obtain a total update time that matches the stated static
running time (up to subpolynomial factors) for the algorithm using bunch overlap thresholds.

2.2.1 (2 + ϵ)-APSP for Unweighted Graphs
We observe that in unweighted graphs mixed approximation can always be turned into a
multiplicative approximation – at the cost of a blow-up in the number of vertices. More
precisely, we prove the following reduction.

▶ Theorem 5. Let A be an algorithm that provides a (a + ϵ, k)-approximation for APSP in
τA(n′, m′) time, for any unweighted n′-node m′-edge graph G′, and any constants a, k ∈ N≥1
and ϵ ∈ [0, 1). Given an unweighted graph G = (V, E) on n nodes and m vertices, we can
compute (a + (k + 2)ϵ, 0)-APSP in τA(n + km, (k + 1)m) time.

If A is a dynamic algorithm, then each update takes (k + 1) · [update time of A] time.
The query time remains the same (up to a constant factor).

The result is obtained by splitting every edge into k edges, by introducing new nodes on
the edge. Now a path corresponding to a +k approximation cannot take a non-trivial detour.

We combine this result with Theorem 2 to obtain a (2 + ϵ)-approximation for unweighted
graphs in Õ(m7/4) total update time.

2.3 (1 + ϵ, 2(k − 1))-APSP for Unweighted Graphs
In this section, we describe our near-additive APSP algorithm. Our work is inspired by
a classic result of Dor, Halperin, and Zwick [32], that presented a static algorithm that
computes purely additive +2(k − 1) approximation for APSP in Õ(n2−1/km1/k) time in
unweighted graphs. Our goal is to obtain similar results dynamically. More concretely, we
obtain decremental (1 + ϵ, 2(k − 1))-approximate APSP in O(n2−1/k+o(1)m1/k) total update
time in unweighted graphs.

2.3.1 (1 + ϵ, 2)-APSP
To explain the high-level idea of the algorithm, we first focus on the special case that k = 2,
and that we only want to approximate the distances between pairs of nodes at distance at most
d from each other, for a parameter d. In this case, we obtain a +2-additive approximation in
Õ(n3/2m1/2d) time. This case already allows to present many of the high-level ideas of the
algorithm. Later we explain how to extend the results to the more general case. We start by
describing the static algorithm from [32], and then explain the dynamic version. The static
version of the data structure is as follows:
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Let s1 = (m
n )1/2. Let V1 be the set of dense nodes: V1 := {v ∈ V : deg(v) ≥ s1}. Also

let E2 be the set of sparse edges, i.e. edges with at least one endpoint with degree less
than s1.
Node set D1. Construct a hitting set D1 of nodes in V1. This means that every node
v ∈ V1 has a neighbor in D1. The size of D1 is O(n log n/s1).
Edge set E∗. Let E∗ be a set of size O(n) such that for each v ∈ V1, there exists
u ∈ D1 ∩ N(v) such that {u, v} ∈ E∗.
Computing distances from D1. Store distances D1 × V by running a BFS from each
u ∈ D1 on the input graph G.
Computing distances from V \ D1. For each u ∈ V \ D1 store a shortest path tree,
denoted by Tu rooted at u by running Dijkstra on (V, E2 ∪ E∗ ∪ ED1

u ), where ED1
u is the

set of weighted edges corresponding to distances in ({u} × D1) computed in the previous
step.

Dynamic data structure

The static algorithm computes distances in two steps. First, it computes distances from
D1 by computing BFS trees in the graph G. This step can be maintained dynamically by
using Even-Shiloach trees (ES-trees) [40], a data structure that maintains distances in a
decremental graph. Maintaining the distances up to distance O(d) takes O(|D1|md) time.
The more challenging part is computing distances from V \ D1. Here the static algorithm
computes distances in the graphs Hu = (V, E2 ∪ E∗ ∪ ED1

u ). Note that the graphs Hu change
dynamically in several ways. First, in the static algorithm, the set E2 is the set of light
edges. To keep the correctness of the dynamic algorithm, every time that a node v no longer
has a neighbor in D1, we should add all its adjacent edges to E2. Second, when an edge
in E∗ is deleted from G, we should replace it by an alternative edge if such an edge exists.
Finally, the weights of the edges in ED1

u can change over time, when the estimates change.
This means that other than deletions of edges, we can also add new edges to the graphs Hu

or change the weights of their edges. Because of these edge insertions we can no longer use
the standard ES-tree data structure to maintain the distances, because that only works in a
decremental setting.

To overcome this, we use monotone ES-trees, a generalization of ES-trees proposed by
[46, 45]. In this data structure, to keep the algorithm efficient, when new edges are inserted,
the distance estimates do not change. In particular, when edges are inserted, some distances
may decrease, however, in such cases the data structure keeps an old larger estimate of the
distance. The main challenge in using this data structure is to show that the stretch analysis
still holds. In particular, in our case, the stretch analysis of the static algorithm was based
on the fact the distances from the nodes V \ D1 are computed in the graphs Hu, where in
the dynamic setting, we do not have this guarantee anymore.

Stretch analysis

The high-level idea of the stretch analysis uses the special structure of the graphs Hu. To
prove that the distance estimate between u and v is at most d(u, v) + 2, we distinguish
between two cases. First, we maintain the property that as long as v has a neighbor x ∈ D1,
then an edge of the form {v, x} is in E∗ for x ∈ D1 ∩ N(v), and since we maintain correctly
the distances from D1, we can prove that we get an additive stretch of at most 2 in this case.
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In the second case, all the edges adjacent to v are in E2 ⊆ Hu, and here we can use an
inductive argument on the length of the path to prove that we get an additive stretch of at
most 2. Note that the estimate that we get can be larger compared to the distance between
u and v in the graph Hu, but we can still show that the additive approximation is at most 2
as needed.

Update time

Our update time depends on the size of the graphs Hu. While in the static setting it is easy to
bound the number of edges in E2 and E∗, in the decremental setting, as new edges are added
to these sets, we need a more careful analysis. For example, in the static setting |E∗| = O(n),
as any node only adds one adjacent edge to the set E∗, where in the decremental setting,
we may need to add many different edges to this set because the previous ones got deleted.
However, we can still prove that even if a node needs to add to E∗ edges to all its adjacent
neighbors in D1 during the algorithm, the size of Hu is small enough as needed. In the full
version we show that the total update time is Õ(m1/2n3/2d) in expectation, this matches the
static complexity up to the factor d.

Handling large distances

The algorithm described above is efficient if d is small, to obtain an efficient algorithm for the
general case, we combine our approach with a decremental near-additive APSP algorithm.
More concretely, we use an algorithm from [45] that allows to compute (1+ϵ, β)-approximation
for APSP in O(n2+o(1)) total update time, for β = no(1). Now we set d = Θ(β/ϵ), and
distinguish between two cases. For pairs of nodes at distance at most d from each other, we
get a +2-additive approximation as discussed above, in O(m1/2n3/2+o(1)) time. For pairs
of nodes at distance larger than d, the near-additive approximation is already a (1 + O(ϵ))-
approximation by the choice of the parameter d. For such pairs, the additive β term becomes
negligible, as their distance is Ω(β/ϵ). Overall, we get a (1 + ϵ, 2)-approximation for APSP in
O(m1/2n3/2+o(1)) time. In fact, if the graph is dense enough (m = n1+Ω(1)), the no(1) term
is replaced by a poly-logarithmic term.

2.3.2 General k

We can extend the algorithm to obtain a (1 + ϵ, 2(k − 1))-approximate APSP in
O(n2−1/k+o(1)m1/k) total update time, by adapting the general algorithm of [32] to the
dynamic setting. At a high-level, instead of having one hitting set D1, we have a series
of hitting sets D1, D2, ..., Dk, such that the set Di hits nodes of degree si. We compute
distances from Di in appropriate graphs Hi

u, that are sparser when the set Di is larger.
Balancing the parameters of the algorithm leads to the desired total update time.

2.3.3 Limitations of previous approaches
We next explain why approaches used in previous decremental algorithms cannot be general-
ized to obtain our near-additive results. First, the unweighted (1 + ϵ, 2)-approximate APSP
algorithm that takes Õ(n5/2/ϵ) time [46], is inspired by static algorithms for +2-additive
emulators, sparse graphs that preserve the distances up to a +2-additive stretch. The main
idea is to maintain a sparse emulator of size Õ(n3/2), and exploit its sparsity to obtain a fast
algorithm. This construction however is specific for the +2 case, and cannot be generalized to
a general k. Note that the update time of the algorithm crucially depends on the size of the
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emulator, and to obtain a better algorithm for a general k, we need to be able to construct
a sparser emulator for a general k. However, a beautiful lower bound result by Abboud
and Bodwin [1] shows that for any constant k, a purely additive +k emulator should have
Ω(n4/3−ϵ) edges. This implies that dynamic algorithms that are based on purely additive
emulators seem to require Ω(n7/3−ϵ) time, and we cannot get running time arbitrarily close
to O(n2). An alternative approach is to build a near-additive emulator. This is done in [45],
where the authors show a (1 + ϵ, 2(1 + 2/ϵ)k−2)-approximation algorithm for decremental
APSP with expected total update time of Õ(n2+1/k(37/ϵ)k−1). Here the running time indeed
gets closer to O(n2), but this comes at a price of a much worse additive term of 2(1 + 2/ϵ)k−2.
While in the static setting there are also other bounds obtained for near-additive emulators,
such as O(1 + ϵ, O(k/ϵ)k−1) emulators of size O(kn

1+ 1
2k+1−1 ) [38, 65, 2, 37], in all of the

constructions the additive term depends on ϵ, and the dependence on ϵ is known to be nearly
tight for small k by lower bounds from [2]. Hence this approach cannot lead to small constant
additive terms that do not depend on ϵ.
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