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Abstract
In this paper, we consider the problem of maintaining a (1 − ε)-approximate maximum weight
matching in a dynamic graph G, while the adversary makes changes to the edges of the graph.
In the fully dynamic setting, where both edge insertions and deletions are allowed, Gupta and
Peng [20] gave an algorithm for this problem with an update time of Õε(

√
m). We study a natural

relaxation of this problem, namely the decremental model, where the adversary is only allowed to
delete edges. For the unweighted version of this problem in general (possibly, non-bipartite) graphs,
[3] gave a decremental algorithm with update time Oε(poly(log n)). However, beating Õε(

√
m)

update time remained an open problem for the weighted version in general graphs. In this paper,
we bridge the gap between unweighted and weighted general graphs for the decremental setting.
We give a Oε(poly(log n)) update time algorithm that maintains a (1 − ε) approximate maximum
weight matching under adversarial deletions. Like the decremental algorithm of [3], our algorithm
is randomized, but works against an adaptive adversary. It also matches the time bound for the
unweighted version upto dependencies on ε and a log R factor, where R is the ratio between the
maximum and minimum edge weight in G.
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1 Introduction

In a dynamic graph G with vertex set V , an adversary makes updates to the edge set E

of the graph, and the algorithm is required to adjust to these changes and maintain a key
property of the graph. An algorithm is called decremental if it can only cope with edge
deletions, incremental if it can only cope with edge insertions, and fully dynamic if it can
cope with both edge insertions and deletions. Typically, the algorithm has to optimize the
update time, which is the time taken to adapt to a single edge update. For incremental
(respectively, decremental) algorithms, one seeks to optimize the amortized update time,
which is the average time taken over m edge insertions (respectively, deletions).

In this paper, we consider the problem of maintaining a (1− ε)-approximate matching in
a dynamic graph. For the general fully dynamic setting, where we have an unweighted graph
undergoing updates, the best known algorithms for this problem due to Bhattacharya, Kiss,
Saranurak [11] and Assadi, Behnezhad, Khanna, Li [2] have update times of O(m0.5−Ωε(1))
and O(n/log∗ n), respectively. Improving these bounds to Oε(poly(log n)) is a fundamental
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59:2 Decremental Matching in General Weighted Graphs

Table 1 A Comparison of Weighted and Unweighted Dynamic Matching in General Graphs.

Setting Approximation Time (Unweighted) Time (Weighted)
Fully Dynamic (1 − ε) O(m0.5−Ωε(1)) [11] Õε(

√
m) [20]

Fully Dynamic (2 −
√

2) Õε(1) [5] Õε(
√

m) [20]
Fully Dynamic 0.609 Õ(min

{
∆1/3, m

1/6
}

) [7] Õε(
√

m) [20]
Incremental (1 − ε) Oε(1) [18] Õε(

√
m) [20]

Decremental (1 − ε) Õε(1) [3] Õε(1) (new)

open problem, and conditional lower bounds of Ω(
√

m) (see [21] and [23]) for the exact case,
seem to suggest that this problem is quite challenging. This has motivated the study of
more relaxed versions of this problem. For example, one line of research has focussed on
obtaining considerably faster update times, but at the cost of worse approximation ratios
[6, 12]. Another research direction has been to study this problem in partially dynamic
settings. In the incremental setting, there has been steady progress over the years. Several
results [19, 18, 11, 14] culminated in a Oε(1) update time algorithm for maintaining (1− ε)-
approximate matching in incremental graphs. On the decremental side, [9] and [22] gave
Oε(poly(log n)) update time algorithms for maintaining (1 − ε)-approximate matching in
bipartite graphs. Subsequently, [3] extended these results to the case of general graphs by
giving a Oε(poly(log n)) update time algorithm for the same approximation ratio.

For the case of weighted graphs, the picture is less clear. A general reduction of Stubbs
and Williams [25] shows that any α-approximation unweighted matching algorithm can be
converted to a (0.5 − ε) · α-approximation weighted matching algorithm with nearly the
same update time. Subsequently, [8] showed that one can avoid this factor 2 loss in the
approximation ratio for the specific case of bipartite graphs. However, for the case of general
graphs (possibly, non-bipartite), there is a significant gap between the best known weighted
and unweighted dynamic algorithms, as illustrated in Table 1. The main contribution of our
paper is to close this gap between weighted and unweighted matching for general graphs in
the decremental setting:

▶ Result 1 (Formalized in Theorem 4). Given a decremental weighted graph G, there is a
randomized algorithm that with high probability maintains a (1 − ε)-approximation to the
maximum weight matching in G in total time Õε(m).

Concurrent Work. Independent of this work, Chen, Sidford, and Tu also [15] gave a
Oε(poly(log n)) update time algorithm for maintaining (1− ε)-maximum weight matching
in decremental graphs. Their techniques are very different from ours, and extend the
entropy regularization approach of [22], who originally gave this framework for bipartite
unweighted graphs. Both approaches are of independent interest, since they use vastly
different technical frameworks: [15] use insights from concave optimization, whereas our
approach is combinatorial. Our approach also has a better dependence on log n1, and
additionally uses simple algorithmic paradigms such as independent sampling or the static
approximate matching algorithms of [16]. In contrast, their approach has better dependence
on ε (in particular, their update time has a dependence of (1/ε)O(1/ε)), but uses more involved
algorithmic subroutines such as computing k-partial Gomory-Hu trees.

1 while they don’t state it explicitly, we determined that their algorithm has an update time of Oε(log11 n).
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2 High-Level Overview

Our high-level approach is to follow the congestion balancing framework of [9], who maintain
a fractional matching that is robust to deletions. In order to do this, they hope to compute a
fractional matching which “spreads out” its flow. Therefore, they impose a capacity function
on the edges. These capacities are initially small, and are increased gradually. In particular,
they repeatedly invoke a subroutine M-or-E*() that does one of the following in Oε(m · log n)
time (here µ(G) refers to the size of the maximum cardinality matching):
1. Either output a fractional matching x⃗, with x(e) ⩽ κ(e) for all e ∈ E, and

∑
e∈E x(e) ⩾

(1− ε) · µ(G), or,
2. Output a set of bottleneck edges E∗, along which we can increase capacities:

a. We have, κ(E∗) = O(µ(G) · log n).
b. Every large matching M has at least ε · µ(G) edges in E∗.

Property 2 ensures that we increase capacities carefully: Property 2a ensures the capacity
increase is small, and Property 2b ensures that we only increase capacity along important
edges. The subroutine M-or-E*() can be used as a black-box to get a decremental matching
algorithm: if M-or-E*() outputs a fractional matching, then we can round it to an integral
matching (see [26, 10, 13]). Otherwise, the capacity obeying maximum fractional matching
is too small, and the algorithm outputs a set of bottleneck edges E∗. Thus, we increase
capacity along it. Property 2 ensures the matching obtained is “robust” to deletions since it
ensures the capacities are small on average.

The authors of [9] also use an outer subroutine which repeatedly invokes M-or-E*() to
get a decremental matching algorithm. Similar to the case of [3], this subroutine carries over
with some impediments for the case of general weighted graphs as well. But, M-or-E*()
is far more challenging to implement, and this will be the focus of this extended abstract.

2.1 M-or-E*() for General Weighted Graphs
We first explicate what the impediments for implementing M-or-E*() in general graphs is.
For bipartite graphs, M-or-E*() is much easier to implement, since approximate fractional
matchings obeying capacity constraints can be computed using approximate max flows.
Similarly, the set of bottleneck edges E∗ correspond to the minimum cut. However, in
general graphs, we don’t have such a natural correspondence to max-flow/min-cut due to the
integrality gap. More specifically, we mean that not every fractional matching has a large
integral matching in its support. On the other hand, while fractional matchings which satisfy
odd set constraints do have large integral matchings in their support, this characterization
doesn’t seem computationally useful at first. [3], in the context of unweighted graphs defined
a fractional matching that is both computationally easy to compute, and also avoids the
integrality gap. In particular, their candidate fractional matching either puts flow 1 on an
edge or a flow of at most ε. By a folklore lemma, one can show that such fractional matchings
satisfy small odd set constraints, and therefore have an integrality gap of 1 − ε. This is
sufficient for us, since we focus on only approximation algorithms.

In this work on weighted decremental graphs, we also focus on finding the fractional
matchings mentioned above, since even in weighted graphs they are known to have a small
integrality gap. Towards this, we show the following structural lemmas. We note that [3]
also prove unweighted versions of these structural lemmas, but as we will state later, their
proofs are tailored towards unweighted graphs. Consequently, to prove these lemmas for
weighted graphs, we come up with significantly different proof strategies. In what follows,
we will use mwm(G) to denote the maximum weight matching of G.

ICALP 2024



59:4 Decremental Matching in General Weighted Graphs

1. First, given a weighted graph G with capacities κ on the edges of the graph, we want to
check if the maximum weight fractional matching obeying odd set constraints (denoted
mwm(G, κ)) is at least (1− ε) ·mwm(G). As mentioned before, we can’t use approximate
min-cost flow to find such a fractional matching. First, such an algorithm is computation-
ally expensive. Secondly, the fractional matching returned by it may not obey odd set
constraints. Therefore, akin to [3] we prove a sampling theorem: sample every edge e of
G independently, with a probability p(e) ∝ κ(e) to construct an uncapacitated graph Gs.
Then, we show, with high probability, mwm(Gs) ⩾ mwm(G, κ)− ε · n. Thus, we can now
use Gs as a substitute for (G, κ): more concretely, we can compute (1 − ε) ·mwm(Gs)
using efficient algorithms such as the one by [16], and thus, get an estimate on mwm(G, κ).
The authors in [3] proved the unweighted version of this lemma. However, their proof
strategy was to use the Tutte-Berge theorem. The Tutte-Berge theorem is the non-
bipartite counterpart of the Hall’s theorem. In Hall’s theorem, deficiency is defined as
maxT ⊆L {|T | − |N(T )|}, where L is the left vertex set and is equal to n− µ(G). In the
Tutte-Berge theorem, deficiency is analogously defined. The authors in [3] showed that in
Gs, with high probability, the deficiency is at most n− (µ(G, κ) + ε ·n), and consequently,
µ(Gs) ⩾ µ(G, κ)− ε · n. However, since Tutte-Berge theorem is specific to unweighted
graphs, our proof deviates from this.

2. Suppose the sampling procedure tells us that mwm(G, κ) ⩾ (1 − ε) · mwm(G). In this
case, we would like to compute a fractional matching x⃗ such that

∑
e∈E w(e) · x(e) ⩾

mwm(G, κ). Akin to [3], we consider any M such that w(M) ⩾ (1 − ε) · mwm(Gs),
and we split up M into two parts MH ⊆ M , which are edges with high capacity, and
ML ⊆M which are edges with low capacity, and VH = V (MH) and VL = V (ML). Let
EL be the low capacity edges of G. Then, we can show that with high probability,
|MH |+ mwm(G[VL] ∩ EL, κ) ⩾ mwm(Gs)− ε · n. Since congestion balancing allows us
to round capacities of MH to 1, we only need to compute (1 − ε)-approximation to
mwm(G[VL] ∩EL, κ), and we would have the required fractional matching. There are a
few impediments to showing this theorem, and to computing mwm(G[VL] ∩ EL, κ).
a. First, the unweighted analog of this theorem by [3], showed the opposite of the

structural theorem in 1: it shows that deficiency of Gs can not reduce by too much
either. To do this, they consider the bipartite double cover of Gs and (G, κ) and use
Hall’s theorem to derive this conclusion. As mentioned before, for weighted graphs,
we don’t have this tool at our disposal, and therefore, have to make other arguments.
We look at the dual linear programs of Gs and (G, κ), and use facts about these to
draw our conclusions. We believe our arguments can be seen as a generalization of the
approach of [3]. Looking at the proof in this light also simplifies the proof considerably.

b. The second challenge is the computational aspect. We would like to compute a
(1− ε)-approximate maximum weight fractional matching in G[VL] ∩EL that obeys
κ. The authors in [3] observe that since G[VL] ∩ EL only consists of low capacity
edges, we can transform this into a bipartite graph, and then use an approximate
flow algorithm. However, for us that would mean computing an approximate min-cost
flow, which is computationally expensive. Another way to do this is to use LP-solvers
(see [1]). However, these incur additional log n factors, which we believe in the context
of dynamic graph algorithms can be huge. Therefore, we give a simple scaling based
algorithm that repeatedly uses maximal flow as a subroutine to obtain a (1 − ε)
approximation to mwm(G[VL] ∩ EL, κ), while avoiding these log n factors.

There are other peripheral challenges as well, such as computing the set E∗. [9] showed that
these edges E∗ corresponded to the min-cut, and [3] showed that one can use the duals of
Gs to determine these edges. We extend the proof of [3] to weighted graphs. Secondly, the
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congestion balancing framework, as shown in [3] and [9] only applies to unweighted graphs,
we are able to show that it extends to weighted graphs as well. Finally, the known rounding
schemes of [26, 10, 13] as stated only apply to unweighted graphs. We extend [26] to handle
the weighted fractional matching we construct.
▶ Remark 2. The structural theorems stated in Item 1 and Item 2a incur an additive error
of ε · n. In order to account for this, we use the vertex sparsification technique of [4], which
allows us to construct O(R · log n) multigraphs Hi such that |V (Hi)| ⩽ O(R·mwm(G)/ε) and
each matching of G is preserved in one of the Hi. Here, R is the ratio of the max-weight
edge and min-weight edge in G. As is evident, this reduction will cause our algorithms to
have a large dependence on R. However, we can reduce this dependence by using a reduction
of [20] (see Lemma 3), which has been used similarly in other prior works (see [8, 15]). We
refer the reader to Appendix C of [8] for a proof.

▶ Lemma 3 ([20]). Let G be a weighted graph with arbitrary weights with R being the ratio
between maximum and minimum edge weights. Let ε ∈ (0, 0.5) and let γε = (1/ε)O(1/ε). If
there is an algorithm A that maintains an α-approximate maximum weight matching in a
graph whose weights are {1, 2, 3, · · · , W} with update time T (n, m, α, W ), then there is an
algorithm A′ that maintains a (1− ε) · α-approximate maximum weight matching in G in
update time O(T (n, m, α, γε) · log R).

In the rest of the paper we will assume that mwm(G) = Ω(log n). This is because the
graph is undergoing deletions, and soon as mwm(G) drops below this value, we can switch
to a different decremental algorithm which we describe in the full version of our paper.
Additionally, from Remark 2 we can also assume that mwm(G) = Ω(ε·n/W). Finally, from
Lemma 3 we can assume that our graphs are integer-weighted with weights in {1, 2, · · · , W}.
All our structural theorems will be proven using these assumptions in mind. We will justify
these assumption in the full version of this paper.

3 Preliminaries

Throughout the paper, we will use G to refer to the current version of the graph, and let V

and E be the vertex set and edge set of G, respectively. The graphs we deal with are weighted,
and we use R to denote the ratio between the max-weight and min-weight edge. Additionally
use mwm(G) to denote the weight of the maximum weight matching of G. During the course
of the algorithm, we will maintain a fractional matching, which corresponds to a non-negative
vector x⃗ ∈ [0, 1]m satisfying the following constraints :

∑
v∋e x(e) ⩽ 1. For a set S ⊆ E, we let

x(S) =
∑

e∈S x(e). Given a capacity function κ on the edges of the graph, we say that x⃗ obeys
κ if x(e) ⩽ κ(e) for all e ∈ E. For a vector x⃗, we use supp(x⃗) to denote the set of edges that
are in the support of x⃗. For a fractional matching x⃗, we say that it satisfies odd set constraints
if for all odd-sized sets B ⊆ V , we have,

∑
e∈G[B] x(e) ⩽ |B|−1

2 . We use mwm(G, κ) to denote
the size of the maximum weight fractional matching obeying the odd set constraints and
the capacity function κ. Additionally, we will use γε = (1/ε)O(1/ε), αε = 2W 2/ε3 · log n and
ρε = 2W 2/ε2 · log n. We also use Vodd to denote the set of all odd-sized subsets B ⊆ V . Our
main result is a decremental algorithm for maintaining (1− ε)-approximate maximum weight
matching in general graphs. In particular, we formally state our main theorem.

▶ Theorem 4. Let G be a weighted graph with weight function w on the edges of the graph and
let ε ∈ (0, 1/2). There is a decremental algorithm with total update time Oε(m · log7 n · log R)
(amortized Õε(1)) that maintains an integral matching M with w(M) ⩾ (1− ε) ·mwm(G),
with high probability, where G refers to the current version of the graph. The algorithm is
randomized but works against an adaptive adversary. The dependence on ε is 2(1/ε)O(1/ε) .

ICALP 2024



59:6 Decremental Matching in General Weighted Graphs

Roadmap for Extended Abstract. As mentioned in the overview, our main contribution
is to give an algorithm M-or-E*() for weighted general graphs (we call this subroutine
WeightedM-or-E*()). Thus, rest of this paper is dedicated to setting this up. We
postpone the proof of Theorem 4 to the full version of this paper.

4 Properties of WeightedM-or-E*()

As mentioned in the overview, we will focus our attention on implementing M-or-E*() in
general weighted graphs. We will call this subroutine WeightedM-or-E*() We additionally
mentioned that we will be working with multigraphs, so this will motivate some definitions.
After giving these definitions, we state the properties of WeightedM-or-E*() that we need.
Finally, we show that we are indeed able to implement WeightedM-or-E*(). Recall, that
is sufficient to design WeightedM-or-E*() for the case of graph that have integer weights
in {1, 2, · · · , W} by Section 2.1.

▶ Definition 5. Let G be a multigraph. For a pair of vertices u, v ∈ V , we define Di(u, v)
to be the edges e between u and v that have weight i. Additionally, we also have D(u, v) =
∪W

i=1Di(u, v). Since we assume integral weights, these sets are well-defined. If e is an edge
between u, v ∈ V , then Di(e) := Di(u, v) and D(e) := D(u, v).

▶ Definition 6. Let G be a weighted multigraph, with n vertices and m edges. Let κ be
the capacity function on the edges of the graph, and let x⃗ be a fractional matching. We
define x⃗C to be a vector, with support size min

{
W ·

(
n
2
)
, m
}

, where for vertices u, v ∈ V ,
xC

i (u, v) =
∑

e∈Di(u,v) x(e). That is, x⃗C is obtained by “collapsing” all edges of the same
weight between a pair of vertices together. We now describe the opposite operation: the
“distribution” operation. Similarly, suppose y⃗ is a vector with |supp(y⃗)| ⩽

(
n
2
)
·W , where,

yi(u, v) is the entry corresponding to the edge of weight i between u and v. Then, we
define y⃗D to be an m length vector such that for every e ∈ E between u, v with w(e) = i,
yD(e) := yi(u,v)·κ(e)

κ(Di(u,v)) . Intuitively, y⃗D is a multigraph obtained by distributing the yi(u, v)
among all edges of the same weight.

We will next, state two folklore observations (proved in the full version of the paper), which
motivates the main lemma which we want to prove.

▶ Observation 7. Let f⃗ be a fractional matching on a multigraph, that puts flow 1 or, at
most ε between every pair of vertices u, v ∈ V . Then, f⃗ satisfies odd set constraints of sets
of size at most 1/ε.

▶ Observation 8. Suppose x⃗ is a fractional matching that satisfies odd set constraints for all
odd sets of size smaller than 3/ε + 1, then the fractional matching z⃗ = x⃗

(1+ε) satisfies odd set
constraints for all odd sets, and therefore, mwm(supp(x⃗)) ⩾ (1− ε) ·

∑
e∈E w(e) · x(e).

We now state the main lemma, which we focus on proving in the extended abstract.

▶ Lemma 9. Let G be a multigraph with edge weights in {1, 2, · · · , W}. Then, there is
an algorithm WeightedM-or-E*() that takes as input G, κ, ε ∈ (0, 0.5), and a parameter
µ ⩾ mwm(G) · (1− ε), and in time O(m·W ·log n/ε) returns one of the following.
1. A fractional matching x⃗ such that

∑
e∈E w(e)·x(e) ⩾ (1−2ε)·mwm(G), with the following

properties.
a. Let e ∈ Di(u, v) such that e ∈ supp(x⃗), with κ(Di(u, v)) ⩾ 1/α2

ε, then x(Di(u, v)) = 1,
and we have, x(e) = κ(e)

κ(Di(u,v)) . Moreover, since x⃗ is a fractional matching, we have
x(Dj(u, v)) = 0 for all j ̸= i.
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b. Consider any e ∈ Di(u, v) such that e ∈ supp(x⃗), with κ(Di(u, v)) ⩽ 1/α2
ε, then

x(Di(u, v)) ⩽ κ(Di(u, v)) · αε, and x(e) ⩽ κ(e) · αε. Moreover, for any e ∈ Dj(u, v)
with κ(Dj(u, v)) > 1/α2

ε, we have x(e) = 0.
2. A set of edges E∗ such that

∑
e∈E∗ w(e) · κ(e) = O(mwm(G) · log n), and for any integral

matching M with w(M) ⩾ (1 − 2ε) · mwm(G), we have w(M ∩ E∗) ⩾ ε · mwm(G).
Additionally, for all e ∈ E∗, we have κ(e) < 1.

We give some intuition about why x⃗ avoids the integrality gap. Consider the situation in
which the algorithm WeightedM-or-E*() returns a fractional matching x⃗. For any pair
of vertices u, v consider

∑W
i=1 xC

i (u, v), then this is either 1 or at most ε by Lemma 9(1).
Thus, it satisfies odd set constraints for all odd sets of size at most 1/ε by Observation 7. By
Observation 8 , we can then argue that x⃗ contains an integral matching of weight at least
(1 + ε)−1 ·

∑
u̸=v

∑W
i=1 xC

i (u, v) · i in its support.

We will use WeightedM-or-E*() as a subroutine in our decremental matching algorithm,
and we will get a matching x⃗ with the following properties. We mention these properties
since they will help us visualize the fractional matching better. These properties are evident
once we state the algorithm WeightedM-or-E*().

▶ Property 10. The set E∗ returned WeightedM-or-E*() has the following properties.
1. Each time WeightedM-or-E*() returns E∗, we will increase capacity along E∗ by

multiplying existing capacities by the same factor.
2. Consider u, v ∈ V , and let e, e′ be two edges between u and v such that w(e) = w(e′), then

κ(e) = κ(e′) at all times during the run of the algorithm.

The next property follows directly as a consequence of Lemma 9(1).

▶ Property 11. Let x⃗ be a matching output by Lemma 9, then x(e) ⩽ κ(e) · α2
ε for all e ∈ E.

This is evident from Lemma 9(1).

▶ Definition 12. Let G be a multigraph, and let x⃗ be a fractional matching of G. Then,
we split supp(x⃗) into two parts: x⃗i and x⃗f , where, x⃗ = x⃗i + x⃗f , and supp(x⃗i) =
{e | x(Dj(e)) > 1/α2

ε and w(e) = j} and supp(x⃗f ) = {e | x(Dj(e)) ⩽ 1/α2
ε and w(e) = j}.

When x⃗ is the output of WeightedM-or-E*(), then these correspond to the integral and
fractional parts of x⃗.

▶ Property 13. Let G be any multigraph, and let x⃗ be a fractional matching of G that is
returned by WeightedM-or-E*(). Then, for any pair of vertices, u, v, we have the following
properties, which are a consequence of Lemma 9(1a) and Lemma 9(1b):
1. Either D(u, v) ∩ supp(x⃗i) ̸= ∅ or D(u, v) ∩ supp(x⃗f ) ̸= ∅, but not both.
2. For any u, v, j such that Dj(u, v) ∩ supp(x⃗) ̸= ∅, we have Dj(u, v) ⊆ supp(x⃗).

Thus, the supports of x⃗i and x⃗f are vertex disjoint.

▶ Property 14. Let x⃗ be a fractional matching returned by WeightedM-or-E*(), consider
z⃗ = x⃗i. Then, z⃗C is an integral matching. This is implied by Lemma 9(1).

5 Building Blocks for WeightedM-or-E*()

In this section, we focus on stating the building blocks we need for Lemma 9. The algorithm
WeightedM-or-E*() will proceed in phases. In Phase 1, we would like to determine if
a given graph G, with weight function w and capacity function κ on the edges, has the

ICALP 2024



59:8 Decremental Matching in General Weighted Graphs

property that mwm(G, κ) ⩾ (1 − ε) ·mwm(G). We give the structural theorem related to
this in Section 5.1. If it is indeed the case that mwm(G, κ) ⩾ (1 − ε) · mwm(G), then the
algorithm proceeds to Phase 2, and in this phase we want to find such a fractional matching.
We describe the main structural theorem of this phase in Section 5.2. In Phase 2, there is an
additional computational question, that of finding a (1− ε)-approximate maximum weight
fractional matching efficiently. We give an algorithm for this in Section 5.4. Finally, if in
Phase 1 we know that mwm(G, κ) < (1 − ε) · mwm(G), then we increase capacities along
E∗. In Section 5.3, we give a characterization of these edges. We start with stating some
probabilistic tools that we will need, for example the Chernoff Bound:

▶ Lemma 15 ([17]). Let X1, X2, · · · , Xk be k negatively associated random variables with
0 ⩽ |Xi| ⩽ M , and let X =

∑k
i=1 Xi. Suppose µ = E [X], and µmin ⩽ µ ⩽ µmax. Then, we

have, for δ > 0,

Pr (X ⩾ (1 + δ) · µmax) ⩽
(

eδ

(1 + δ)(1+δ)

)µmax
M

Pr (X < (1− δ) · µmin) ⩽ exp
(
− δ2 · µmin

(2 + δ) ·M

)
Additionally, we will also need Bernstein’s inequality.

▶ Lemma 16. Let X be the sum of negatively associated random variables X1, · · · , Xk with
Xi ∈ [0, M ] for each i ∈ [k]. Then, for σ2 =

∑k
i=1 Var [Xi] and all a > 0,

Pr (X > E [X] + a) ⩽ exp
(

−a2

2 (σ2 + a·M/3)

)

5.1 Phase 1 of WeightedM-or-E*()
Recall that we used mwm(G, κ) to denote the weight of the maximum weight fractional
matching of G obeying κ as well as the odd set constraints. As in the congestion balancing step,
we want to estimate mwm(G, κ). In the bipartite case, because of the correspondence between
flows and fractional matchings, one could do this relatively easily. But in non-bipartite
graphs, we don’t have this correspondence.

In this section, we show the following structural lemma: if in a weighted graph G, we
sample every edge with probability p(e) = min {1, κ(e) · ρε} to create a graph Gs, then
mwm(Gs) ⩾ mwm(G, κ) − ε · mwm(G). Thus, now we can estimate mwm(Gs) (and con-
sequently, mwm(G, κ)) by using existing results (such [16]). We remark that [3] proved the
unweighted version of this lemma, but their proof strategy relied on showing that with high
probability, Gs does not contain a Tutte set causing a high deficiency (see Lemma 28 in [3]).

▶ Lemma 17. Let G be an integer weighted multigraph with weights in {1, 2, · · · , W}, and
with mwm(G) ⩾ max {ε·n/16·W , log n/ε4}, where ε ∈ (0, 1/2). Let κ be a capacity function on
the edges of the graph, and let Gs be obtained by sampling every edge e independently with
probability p(e) = min {1, κ(e) · ρε}. Then, with high probability, mwm(Gs) ⩾ mwm(G, κ)−
ε ·mwm(G).

Proof. Let x⃗ denote the fractional matching that realizes mwm(G, κ). In order to prove the
statement, we will construct a vector z⃗ in the support of Gs. This vector z⃗ will have the
following properties: it will satisfy the fractional matching constraints and small blossom
constraints with high probability. It will also have the property that

∑
e∈E) w(e) · z(e) ⩾

(1− ε) ·
∑

e∈E w(e) · x(e) ⩾ mwm(G, κ)− ε ·mwm(G) with high probability as well.
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Since with high probability Gs, contains a fractional matching z⃗ satisfying the above
properties, there is an integral matching M in support of Gs with w(M) ⩾ (1−ε)·

∑
e∈E w(e)·

z(e) ⩾ mwm(G, κ)− ε ·mwm(G) (see Observation 8).
Let Xe denote the indicator random variable of the event e ∈ Gs. We define z⃗ as follows:

z(e) = Xe ·
x(e)

min {1, κ(e) · ρε}
· (1− ε)

Note that {z(e)}e∈E are independent random variables, and, E
[∑

e∈E z(e) · w(e)
]

= (1 −
ε) ·
∑

e∈E w(e) · x(e). Further, consider any e with κ(e) ⩾ 1
ρε

, then w(e) · z(e) = w(e) · x(e)
always. Thus, we focus on e with κ(e) < 1/ρε. We first have the following observation.

▶ Observation 18. Note that,
∑

e∈E:κ(e)<1/ρε
w(e)·x(e) ⩾ ε·mwm(G). Otherwise,

∑
e∈E z(e)·

w(e) ⩾ (1− ε) ·
∑

e∈E x(e) · w(e)− ε ·mwm(G) with probability 1.

Using Chernoff bound with M = W
ρε

and µmin = ε ·mwm(G) (see Lemma 15), we have,

Pr

 ∑
e∈E:κ(e)<1/ρε

z(e) · w(e) ⩽
∑

e∈E:κ(e)<1/ρε

w(e) · x(e)− 2 · ε2 ·mwm(G)


= exp

(
−ε4 ·mwm(G) · ρε

2 ·W

)
By assumption, mwm(G) ⩾ 100·log n/ε4, we have that the above claim holds with probability
at least 1 − O(1/n

1/ε). We will now show that it obeys fractional matching constraints
with high probability as well. Consider an edge e with κ(e) > 1/ρε, we know that e ∈ Gs.
Consequently, we have Var [z(e)] = 0 for such an edge, since z(e) = x(e) always. For any edge
with κ(e) < 1/ρe, we have, Var [z(e)] ⩽ (1 − 2ε) · x(e)

ρε
. Since z(e) are independent random

variables, we have Var
[∑

v∋e z(e)
]

=
∑

v∋e Var [z(e)] ⩽ (1− 2ε) · ρ−1
ε . Moreover, we know

that E
[∑

e∋v z(e)
]
⩽ (1− ε). Thus, we want to compute the probability of the event that∑

e∋v z(e) ⩾ 1. Note that, in order to do this, it is sufficient to consider the edges e for which
κ(e) < ρ−1

ε , since for edges other than this, z(e) = x(e). Thus, by Lemma 16, with a = ε,
M = ρ−1

ε , Pr
(∑

e∋v z(e) > 1
)

= O
(

1
n1/ε

)
. ◀

Taking a union bound over all vertices in the graph, we have our claim. Next, we want
to compute the probability that z⃗ also satisfies small odd set constraints. To see this,
consider any odd set B such that |B| ⩽ 1/ε. We know that by definition of x⃗, we have,
E
[∑

e∈G[B] z(e)
]
⩽ (1 − ε) · |B|−1

2 . We can bound variance as well, Var
[∑

e∈G[B] z(e)
]
⩽

(1− ε) · |B|−1
2 · 1

ρε
. Consider the following subclaim.

▶ Observation 19. Let B be any odd set with 3 ⩽ |B| ⩽ 1/ε. Then, |B|−1
2 ⩾ (1−ε) · |B|−1

2 +ε.

Let EB be the event that
∑

e∈G[B] z(e) ⩾ |B|−1
2 , then from the above observation, and

Lemma 16, Pr (EB) = O
(

1
n1/ε2

)
. The second equality follows from the fact that we are

considering small blossoms, that is, |B| ⩽ 1/ε. Taking a union bound over all small blossoms,
we have our claim.

5.2 Phase 2 of WeightedM-or-E*()
The algorithm WeightedM-or-E*() proceeds to Phase 2 only if in Phase 1, if mwm(G, κ) ⩾
(1 − ε) · mwm(G) (Lemma 17). In Phase 2, we now want to construct a good fractional
matching: it should be close to mwm(G, κ) and also satisfy odd set constraints. The fractional
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matching will be inspired by Observation 7 and is constructed as follows: Suppose M is
a matching in Gs with weight at least (1 − ε) · mwm(Gs). Then, we will split up M into
high-capacity part, MH , and low capacity part ML. We can introduce some slack in the
congestion balancing framework, and round up the capacities of MH . We will then compute
a (1− ε)-approximate maximum weight fractional matching f⃗ on the low-capacity edges of
G[V (ML)]. Since these capacities are small, we can accomplish by computing a fractional
matching in the bipartite double cover of G[V (ML)]. For now, in this section, we will show
that: w(MH) +

∑
e∈E f(e) · w(e) ⩾ mwm(Gs)− ε ·mwm(G).

▶ Definition 20. Let G be a multigraph, we define EL = {e ∈ E | e ∈ Di(u, v), κ(Di(u, v)) ⩽
1/α2

ε}. Intuitively, these correspond to the low capacity edges. Similarly, we define κ+(e) =
κ(e) · αε.

[3] proved an unweighted version of this lemma, but their proof strategy was based on
considering the bipartite double cover of Gs an (G, κ), and analysing the size of the Hall set
in Gs. We take a different approach based on the dual programs of mwm(Gs) and mwm(G, κ).
We believe our proof is arguably simpler.

▶ Lemma 21. Let G be a weighted multigraph with maximum edge weight W . Suppose
mwm(G) ⩾ max {ε·n/16·W , log n/ε4} Then, with high probability, for all X ⊆ V , we have

mwm(Gs[X]) ⩽ mwm(G[X] ∩ EL, κ+) + ε ·mwm(G)

Proof. Consider a fixed X, and from now on, we use H := G[X]∩EL and Hs := Gs[X]∩EL.
To prove this, we will make use of a primal-dual argument. We state the linear program for
mwm(H, κ+), and its dual.

maximize
∑

e∈E(H)

w(e) · x(e)

subject to∑
e∋v,e∈E(H)

x(e) ⩽ 1 ∀v ∈ X∑
e∈G[B]∩E(H)

x(e) ⩽ |B|−1
2 ∀B ∈ Xodd

x(e) ⩽ κ+(e) ∀e ∈ E(H)

The corresponding dual program is,

minimize f(y, z, r) =
∑
u∈V

y(u) +
∑

B⊆Xodd

r(B) ·
(
|B| − 1

2

)
+

∑
e∈E(H)

z(e) · κ+(e)

subject to
y(u) + y(v) + z(e) +

∑
B∈Xodd:(u,v)∈G[B]

r(B) ⩾ w(e)

∀e ∈ E(H) between u, v, ∀u, v ∈ X

By strong duality, we know that mwm(H, κ+) = f(y, z, r) for optimal y⃗, z⃗, r⃗. Similarly, for
the uncapacitated graph Hs we have the same primal and dual programs, except we don’t
have the third constraint in the primal program, and in the dual program we omit the z

variables.
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maximize
∑

e∈E(Hs)

w(e) · x′(e)

subject to∑
e∋v,e∈Hs

x′(e) ⩽ 1 ∀v ∈ X∑
e∈G[B]∩E(Hs)

x′(e) ⩽ |B|−1
2 ∀B ∈ Xodd

The corresponding dual program is as follows:

minimize
∑
u∈V

y′(u) +
∑

B⊆Xodd

r′(B) ·
(
|B| − 1

2

)
subject to
y′(u) + y′(v)+

∑
B∈Xodd:(u,v)∈G[B]

r′(B) ⩾ w(e) ∀e ∈ E(Hs) between u, v, ∀u, v ∈ X

Let g(y′, r′) denote the optimal for dual program corresponding to Hs. Note that this is
a random variable, since Hs is a random graph. We will show that with high probability,

g(y′, r′) ⩽ f(y, r, z) + ε ·mwm(G)

By duality, we have, mwm(Hs) ⩽ g(y′, r′), and f(y, z, r) = mwm(H, κ+). This will show our
claim for a fixed H, and then we take a union bound over all H.

We will use
{
{y(u)}u∈X , {r(B)}B∈Xodd

}
to get a solution for the dual program for Hs.

We will refer to this set of dual variables as an attempted cover. Let E′ = {e | z(e) > 0}.
Observe that the edges left uncovered by attempted cover of Hs are precisely a subset of E′.
We now modify the cover as follows.

∆y(u) =
∑

e∋v,e∈Hs

z(e), and, y′(u) = y(u) + ∆y(u)

Note that
{
{y′(u)}u∈X , {r(B)}B∈Xodd

}
is a valid cover of Hs. To see this, consider edge

e ∈ Hs and let u, v be the endpoints of Hs. Suppose e /∈ E′, then, w(e) ⩽ y′(u) + y′(v) +∑
e∈G[B] r(B). Similarly, for an edge e ∈ E′, we have, w(e) ⩽ y′(u) + y′(v) +

∑
e∈G[B] r(B).

Moreover, g(y′, r′) = f(y, r, z)+
∑

u∈X ∆y(u). Thus, it is sufficient to bound
∑

u∈X ∆y(u) =
2 ·
∑

e∈E′ z(e) · Xe, where Xe is the indicator variable that takes value 1 if e ∈ Hs, and
0 otherwise. Note that E

[∑
e∈E′ z(e) ·Xe

]
⩽ mwm(H, κ+) · 2−W 2/ε3 . Using Chernoff and

choosing δ = ε·mwm(G)·2W 2
/ε3

mwm(H,κ+) and noting that M = W , we have,

Pr
(∑

e∈E′

z(e) ·Xe ⩾ 2 · ε ·mwm(G)
)

⩽ exp
(
−ε ·mwm(G) · W

ε2

)

By assumption, n ⩽ mwm(G)·W
ε , thus taking a union bound over all subsets, we have our

theorem. ◀
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5.3 Phase 3: Finding Set E*
The algorithm WeightedM-or-E*() proceeds to Phase 3, if mwm(G, κ) is not large enough
(see Lemma 17). At this point we have to increase capacity along some edges in the graph.
Recall Lemma 9(2), the properties required of such edges. Phase 3 finds such edges E∗, and
makes sure it has that this set has the property that

∑
e∈E∗ w(e) · κ(e) = O(mwm(G) log n),

and moreover, every good matching in G has significant weight going through E∗.
Similar to the case of [3], we will use the dual variables of Gs to describe E∗. We will

first start with describing the dual program corresponding to the general matching LP:

minimize
∑
u∈V

y(u) +
∑

B⊆Vodd

r(B) ·
(
|B| − 1

2

)
subject to y(u) + y(v) +

∑
B:(u,v)∈G[B]

r(B) ⩾ w(u, v) ∀(u, v) ∈ E

Additionally, we define yr(e) to be the dual constraint corresponding to the edge e, andf(y, r)
to be the value of the objective function. We now describe some properties of Static-
Weighted-Match(H, ε). This is the algorithm whose properties we use to describe E∗. We
state these properties without proof for now and postpone the proof to the full version.

▶ Lemma 22 ([16]). There is an O(m/ε · log 1/ε) time algorithm Static-Weighted-Match()
that takes as input, a weighted graph G, and a parameter ε > 0, and outputs an integral
matching M , and dual vectors y⃗ and r⃗ with the following properties.
1. It returns an integral matching M such that w(M) ⩾ (1− ε) ·mwm(G)
2. A set Ω of laminar odd-sized sets such that {B ∈ Vodd | r(B) > 0} ⊆ Ω.
3. For all odd-sized sets B such that |B| ⩾ 1/ε + 1, r(B) = 0.
4. For all v ∈ V , y(v) is an integral multiple of ε, and for all B ∈ Vodd, r(B) is an integral

multiple of ε.
5. For each edge e ∈ E, we have yr(e) ⩾ (1− ε) · w(e), that is e is approximately covered

by y⃗ and r⃗.
6. The value of the dual objective, f(y, r) is at most (1 + ε) ·mwm(G).

We now state our first claim, which in Section 6 will help us show that when mwm(G, κ) <

(1− 2ε) ·mwm(G), then every large matching in G has a lot of weight in E∗.

▷ Claim 23. Suppose H ⊆ G, and y⃗, r⃗ are the dual vectors returned by Static-Weighted-
Match(H, ε). Let EH = {e ∈ E | yr(e) ⩾ (1− ε) · w(e)}. Let M be any matching of G,
then w(M ∩ E \ EH) ⩾ w(M)− (1 + ε)2 ·mwm(H).

Proof. Observe that if we scale up the dual variables y⃗ and r⃗ by (1 + ε), then y⃗ and r⃗ is a
feasible solution for the dual matching problem for the graph EH . Thus, by weak duality
and Lemma 22(6), we have mwm(EH) ⩽ (1 + ε) · f(y, r) ⩽ (1 + ε)2 · mwm(H). Thus, we
have: w(M) ⩽ (1 + ε)2 ·mwm(H) + w(M ∩ E \ EH). ◁

We now describe the set E∗, and show that w(κ(E∗)) = O(mwm(G) · log n) with high
probability.

▶ Lemma 24. Let G be a multigraph such that mwm(G) ⩾ εn/W , and let κ be the capacity
function on the edges of the graph. Suppose Gs is the graph obtained by sampling edge e with
probability p(e) = min {1, ρε · κ(e)}. Let y⃗, r⃗ be the duals returned by Static-Weighted-
Match(Gs, ε). Let E∗ = {e | yr(e) < (1− ε) · w(e)}, then with high probability, w(κ(E∗)) =
O(mwm(G) · log n).
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Proof. We consider the set D of duals y⃗, r⃗ that satisfy the following properties.
1. For all v ∈ V , y(v) is a multiple of ε, and for all B ∈ Vodd, r(B) is a multiple of ε.
2. Let Ω = {B | r(B) > 0}, then Ω is laminar.
3. If r(B) > 0 for some B, then |B| ⩽ 1/ε.
Observe that D contains all possible duals that could be returned by Static-Weighted-
Match(). Now, we bound |D|.

|D| ⩽
2n∑

i=0

(
n1/ε

i

)
·
(

W

ε

)n

·
(

W

ε

)2n

⩽ 210/ε3·n·log W ⩽ 210/ε3· mwm(G)
W ·log W

This follows from the following argument. Since Ω is laminar (due to 2), there are at most
2n sets contained in Ω, and from 3, we can conclude that these laminar sets are chosen from
among n1/ε sets. Similarly, 1 suggests that each y(v) and chosen r(B) can be assigned W/ε

values, thus for a given choice of Ω, there are at most
(

W
ε

)n ·
(

W
ε

)2n choices for y⃗ and r⃗.
We can derive the last set of equations by the premise of our lemma: that mwm(G) ⩾ εn/W .
Additionally, observe that D includes the set of duals that can be returned by G, and therefore
|D| is an upper bound on the set of possible duals returned by Static-Weighted-Match().

Now, consider any y⃗, r⃗ ∈ D and let Ey,r = {e | yr(e) < (1− ε) · w(e)}. Observe that for
all e ∈ Ey,r, we have κ(e) < 1/ρε, since otherwise κ(e) = 1, and e would be included in Gs with
probability 1 and be approximately covered by y⃗, r⃗ (by Lemma 22(5)). Thus, for all e ∈ Ey,r,
we have κ(e) < 1/ρε. Now, y⃗, r⃗ are such that w(κ(Ey,r)) > mwm(G) · log n, then none of the
edges in Ey,r were sampled. Note that in this case, κ(Ey,r) ⩾ mwm(G) · log n ·W −1. Let
Ey,r denote the event that y⃗, r⃗ is returned by Static-Weighted-Match(Gs, ε) and E2 be
the event that Ey,r is not sampled into Gs. Then, observe that in this case,

Pr (Ey,r) ⩽ Pr (E2) ⩽
∏

e∈Ey,r

(1 − p(e)) ⩽ exp

−
∑

e∈Ey,r

κ(e) · ρε

 ⩽ exp
(

−mwm(G)
W

· ρε

)
Now, we want to upper bound the probability that Static-Weighted-Match(Gs, ε) out-

puts y⃗, r⃗ such that w(κ(Ey,r)) ⩾ mwm(G) · log n. To do this, we take a union bound
over all |D| many possible duals. From the previous discussion we know that |D| ⩽
exp

(
10
ε2 · mwm(G)

W · log W
)

. This concludes the proof. ◀

5.4 Weighted Fractional Matching in Bipartite Graphs
The final ingredient we need for WeightedM-or-E*() is the following lemma, which
computes a fractional matching on low capacity edges in bipartite graphs. We will show in
Section 6 how to use this as a subroutine to do the same in general graphs.

▶ Lemma 25. Consider a weighted bipartite multigraph G with the following property: for
any u, v ∈ V with e ̸= e′ between u, v, then w(e) ̸= w(e′). Suppose κ is the capacity function
on the edges of the graph, and suppose the edge weights are in {1, 2, · · · , W}. There is an
algorithm that in O(m ·W · log n · 1/ε) time finds a fractional matching x⃗ obeying the capacity
function κ such that

∑
e∈E w(e) · x(e) ⩾ (1− ε) ·mwm(G, κ).

Note that there are algorithms in the literature, which can compute weighted fractional
matchings in bipartite graphs: such the one by [1]. However, like many LP solvers, one
incurs additional log n factors in the time bound. In contrast, our algorithm incurs a W

factor, but since we use Lemma 3, in the final algorithm, we will only incur a log W factor
for the entire decremental algorithm. In contrast, using LP solvers, we will incur additional
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log n factors for implementing WeightedM-or-E*() alone. In order to come up with the
algorithm for Lemma 25, we first recall the maximum weight capacitated fractional matching
linear program for bipartite graphs, and its corresponding dual.

maximize
∑
e∈E

w(e) · x(e)

subject to
x(e) ⩽ κ(e) ∀e ∈ E∑

e∋v

x(e) ⩽ 1 ∀v ∈ V

minimize
∑
v∈L

y(v) +
∑
u∈R

y(u) +
∑
e∈E

z(e) · κ(e)

subject to
y(u) + y(v) + z(e) ⩾ w(e) ∀e ∈ E

Here, yz(e) = y(u) + y(v) + z(e), where u, v are the two endpoints of e.
Our algorithm will be a scaling algorithm, which essentially reduces the problem of finding

(1− ε)-approximate maximum weight fractional matching to the problem of finding a
maximal fractional matching, which can be easily accomplished using known subroutines
(see [24, 9, 3]). Before stating our algorithm, we give some definitions.

▶ Definition 26 (Residual Graph). Given a bipartite graph G = (L, R, E), with a capacity
function κ on the edges of the graph. Let x⃗ be a fractional matching obeying κ. We define
Gx to be the residual graph with respect to x⃗. In particular, this is a directed graph, where
corresponding to each undirected edge e ∈ G, there are two directed edges, ef (forward edges,
directed from L to R), and eb (backward edge, directed from R to L). Moreover, ef has a
residual capacity of κ(e)−x(e), and eb has a capacity of x(e). Thus, if an edge e is saturated,
that is x(e) = κ(e), then ef is not in Gx. Similarly, if x(e) = 0, then eb is not in Gx.

▶ Definition 27 (Free Vertices). Given a graph G, and a fractional matching x⃗, we say that
a vertex v is free with respect to x⃗ if

∑
e∋v x(e) < 1.

▶ Definition 28. An augmenting path in Gx, will refer to a path starting and ending in a
free vertex, and all the intermediate vertices on this path will be saturated.

Before stating our algorithm, we will state the invariants that the algorithm will maintain.
Subsequently, we will show that maintaining these invariants throughout implies that the
algorithm will output a matching satisfying the approximation guarantees of Lemma 25 and
in the desired runtime.
▶ Remark 29. We round down ε so that 1/ε is an integer.

▶ Property 30. Our algorithm will at all times maintain, a fractional matching x⃗, and the
dual variables y(u) for all u ∈ V , and z(e), for all e ∈ E with the following properties.
1. Granularity: At all times, y(u) for all u ∈ V , and z(e) for all e ∈ E, are integral

multiples of ε.
2. Domination: For all directed edges ef and eb in Gx, we have yz(e) ⩾ w(e)− ε.
3. Tightness: For all backward edges eb ∈ Gx, we additionally have the property that

yz(e) ⩽ w(e) + ε.
4. Free Duals: The y(u) for free vertices u ∈ L are equal, and are at most y(v) for v ∈ L\Z.

The free vertex duals in R are always 0. The algorithm terminates when the free vertex
duals in L are all 0.

5. Complementary Slackness: If z(e) > 0 for some e ∈ E, then x(e) = κ(e).

▶ Definition 31 (Eligible Edges). Let x⃗ be the current fractional matching maintained by the
graph, and let Gx denote the residual graph with respect to x⃗. A forward edge ef is eligible if
yz(e) = w(e)− ε, and backward edge eb is said to be eligible if yz(e) = w(e) + ε. We use Gt

x

to denote the eligible subgraph of Gx.
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▶ Lemma 32. The fractional matching x⃗ returned by the algorithm mentioned in Property 30
has

∑
e∈E w(e) · x(e) ⩾ (1− ε) ·mwm(G).

Proof. In order to see this, consider the dual variables returned by the algorithm. Note that
if we increase each of the duals by a factor of (1 + ε), then the dual solutions y⃗, z⃗ maintained
by the algorithm are feasible dual solutions to the dual program (this is by Property 30(2)).
Thus, by weak duality, we have,

∑
u∈V y(u) +

∑
e∈E z(e) · κ(e) ⩾ (1 − ε) · mwm(G). Due

to complementary slackness, (Property 30(5)), we have,
∑

u∈V y(u) +
∑

e∈E x(e) · z(e) ⩾
(1− ε) ·mwm(G). Due to the fact that free vertex duals, at the end of the algorithm are zero
(Property 30(4)), we have,

∑
u∈V

∑
e∋u x(e) · y(u) +

∑
e∈E z(e) · x(e) ⩾ (1 − ε) · mwm(G).

Simplifying the above expression, and using Property 30(3), that is, tightness, we have,∑
e∈E(1 + 4ε) · w(e) · x(e) ⩾ (1− ε) ·mwm(G).This shows the claim. ◀

The precise algorithm is stated in Algorithm 2. We now show that Algorithm 2 proves
Property 30. Later, we will show runtime guarantees of Algorithm 2. Towards this, we start
with the following observation.

▶ Observation 33. Let e ∈ E(G), then ef and eb cannot simultaneously appear in Gt
x.

▶ Definition 34. Let H and G be directed, capacitated graphs with capacity functions ch and
cg respectively. Then, we say E(H) ⊆c E(G) if e ∈ H implies e ∈ G, and ch(e) ⩽ cg(e).

▷ Claim 35. After Line 13, there are no augmenting paths in the graph Gt
x.

Proof. Let y⃗ denote the fractional matching after the augmentation step. Then, in order
to show the claim, it is sufficient to show E(Gt

y) ⊆c E(Gt
x). Consider any forward edge

ef ∈ E(Gt
x), observe that eb /∈ E(Gt

x) due to Observation 33. Since we don’t change the
duals, eb /∈ E(Gt

y) as well. Finally, ef can either be augmented along or not, in either case,
we have, κ(e)− x(e) ⩾ κ(e)− y(e). Such an argument applies for any edge eb as well. From
this, we can conclude that any augmenting path that is present in Gt

y is in Gt
x as well, and

this contradicts the fact that we found a maximal set of augmenting paths P . The subsequent
claims follow from induction, and we prove them in the full version. ◁

▷ Claim 36 (Granularity). Throughout the algorithm, Property 30(1) holds.

▷ Claim 37 (Domination). Throughout the algorithm, Property 30(2) holds.

▷ Claim 38 (Tightness). Throughout the algorithm, Property 30(3) property holds.

▷ Claim 39 (Free Duals). Throughout the algorithm, Property 30(4) holds.

▷ Claim 40 (Complementary Slackness). Throughout the algorithm, Property 30(5) holds.

5.5 Runtime
Before proving the runtime of Algorithm 2, we start with the following structural lemma.

▶ Observation 41. In Gt
x, after dual adjustment step, there are only forward edges between

L∩Z and R \Z, and backward edges between R∩Z and L \Z i.e. all directed edges between
Z and V \ Z go from Z to V \ Z.

Proof. Suppose there is a backward edge eb between L∩Z and R\Z after the dual adjustment
step. This implies, that after the dual adjustment step, yz(eb) = w(e) + ε. Thus, prior to the
dual adjustment step, we had that yz(eb) = w(e) + 2ε. However, this would contradict the
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tightness property (see Property 30(3)). Similarly, suppose there is a forward edge ef between
R ∩ Z and L \ Z after the dual adjustment step. This would imply that yz(ef ) = w(e)− ε

after the dual adjustment step. Thus, before the dual adjustment step, yz(ef ) = w(e)− 2ε,
which would contradict the domination property (see Property 30(2)). ◀

▶ Lemma 42. The graph Gt
x that is fed into Augmentation procedure is acyclic.

Proof. We will show this by induction. Observe that at the beginning of the algorithm, there
are no back edges, so the graph is acyclic. We now show that if no cycles are present in the
graph, then dual adjustment and augmentation procedures cannot create cycles.
1. First consider 8, observe that if eb ∈ Gt

x is subjected to this, then x(e) = κ(e) due to
complementary slackness. Thus ef does not exist, and cannot be added to Gt

x due to
this modification. Moreover, Line 8 does not affect any other e. Thus, if the graph Gt

x

was acyclic before, then it remains acyclic after Line 8.
2. Let y⃗ be the fractional matching after augmentation step. As we saw in Claim 35,

E(Gt
y) ⊆c E(Gt

x). Thus, if Gt
x is acyclic, then Gt

y is acyclic as well.
3. Now consider Line 17. By induction hypothesis, there are no cycles in Gt

x before Line
17 was executed. Suppose a cycle C exists in Gt

x after this step, then C contains either
ef or eb, where e is an edge subjected to Line 17. However, for eb, κ(e) = x(e), and
therefore, ef cannot exist in Gt

x. Moreover, eb /∈ Gt
x since before the dual modification

yz(e) = w(e)− ε, and after dual adjustment, yz(e) = w(e).
4. By induction hypothesis, there are no cycles in Gt

x before Line 18 and Line 19. These
steps preserve eligibility and ineligibility status of any edge between L∩Z and R∩Z and
those between L \Z and R \Z. Thus, if a new cycle is created after Line 18 and Line 19,
then it must contain a directed edge from Z to V \ Z, and from V \ Z to Z. However,
Observation 41 suggests that after this step, the latter are not in Gt

x. ◀

▶ Observation 43. Property 30(4) holds. By Line 18, at the end of each iteration of the
while loop, the free duals in L ∩Z drops by ε. Therefore, total number of iterations is O( W

ε ).

▶ Lemma 44 ([24]). For Gt
x acyclic, maximal augmenting paths can be found in time

O(m log n).

▶ Lemma 45. The total runtime of the algorithm is O(m/ε ·W · log n).

Proof. In a particular iteration of a while loop, we see how each of the steps contribute to
the runtime. Consider step Line 8, this takes time O(m) and similarly, the subsequent step
of updating Gt

x takes time O(m) as well. Since Gt
x is acyclic (by Lemma 42), we can use

Lemma 44 to find the maximal set of augmenting paths in time O(m · log n). Finally, the
dual adjustment steps can also be accomplished in time O(m). From Observation 43 implies
the total runtime is O(m/ε ·W · log n). ◀

6 Algorithm WeightedM-or-E*()

In this section, we now put everything together and describe the algorithm WeightedM-or-
E*(). Then, we describe how to use Weighted-Frac-Match() to get fractional matchings
obeying capacity, and odd set constraints in general graphs.

▶ Definition 46. Given a matching M , define EM
L (G, κ) = EL(G, κ) ∩M , and V M

L to be
the set of vertices that are the endpoints of EM

L (G, κ).
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▶ Definition 47. Given a multigraph G with weight function w and capacity function κ

on the edges of G, we define the bipartite double cover of G, denoted bc(G), with capacity
function κbc and weight function wbc as follows:
1. For every vertex v ∈ V (G), make two copies v and v′ in V (bc(G)).
2. If e is an edge between u, v, then we add an edge e′ between u and v′ and an edge e′′

between u′ and v. Moreover, wbc(e′) = wbc(e′′) = w(e) and κbc(e′) = κbc(e′′) = κ(e).

▶ Observation 48. For weighted graph G, with capacity κ, mwm(bc(G), κbc) ⩾ 2·mwm(G, κ).

▶ Lemma 49. Given a weighted multigraph G (possibly non-bipartite) with capacity function
κ, ε ∈ (0, 1), with edge weights from {1, 2, · · · , W}, and with the property that for all i ∈ [W ],
and for all vertices u, v ∈ V we have, κ(Di((u, v))) ⩽ 1/αε, then there is an algorithm
Weighted-Frac-Match-General() that takes as input G, κ, w, ε and outputs a fractional
matching x⃗ such that

∑
e∈E w(e) · x(e) ⩾ (1 − ε) · mwm(G, κ), and further x⃗ obeys the

capacities and the odd set constraints.

Proof. In the previous section, we saw the algorithm Weighted-Frac-Match() that
solved this problem for bipartite graphs. For the case of general graphs, we proceed
as follows. We collapse edges of bc(G) as in Definition 6, and run Weighted-Frac-
Match(bc(G), κbc, wbc, ε), and obtain a fractional matching y⃗. We let z⃗ = y⃗C . To translate
this into a valid fractional matching x⃗ in G, do the following: for each e ∈ G, consider
e′, e′′ ∈ bc(G), and let x(e) = z(e′)+z(e′′)

2 . Note that z⃗ is a fractional matching, since x⃗ is
and moreover since x⃗ satisfies capacity constraints since z⃗ does. Applying Observation 48,
we know that

∑
e∈E w(e) · x(e) ⩾ (1 − ε) ·mwm(G, κ). Moreover, x⃗

1+ε satisfies all odd set
constraints since it satisfies the premise of Observation 8. ◀

We show how Algorithm 1 satisfies the conditions of Lemma 9.

Proof. (Lemma 9) We first show the runtime of the algorithm. First note that Gs can be
computed in O(m) time since this only involves sampling edges independently. Moreover, by
Lemma 22, we know that the runtime of Static-Weighted-Match(G, ε) is O(m/ε · log 1/ε).
Additionally, from Lemma 24, we can conclude that we can obtain set E∗ using the output
of Static-Weighted-Match(Gs, ε) and the time taken to do this is O(m). Finally, from
Lemma 49, we can conclude that we can run Line 7 in time O(m/ε · log 1/ε ·W · log n).

Now, we turn to show Lemma 9(1). In this case, first note that V M
L and V (MI) are disjoint.

This follows from Algorithm 1 and Definition 46. Thus, since y⃗, x⃗ are fractional matchings,
we can conclude that z⃗ is also a fractional matching. Note that we land in Lemma 9(1) if
w(M) ⩾ (1−ε) ·mwm(G). From Lemma 21 we can conclude that for H = EL(G, κ)∩G[V M

L ]
and Hs = EL(G, κ) ∩Gs[V M

L ], we have that mwm(Hs) ⩽ mwm(H, κ+) + ε ·mwm(G). Thus,
we have,

∑
e∈E y(e) · w(e) +

∑
e∈E x(e) · w(e) ⩾ (1− ε) ·mwm(G)− 2ε ·mwm(G).

We now proceed to proof Lemma 9(1a) and (1b). Consider any edge e ∈ supp(z⃗) with
w(e) = i and κ(Di(e)) ⩽ 1/α2

ε. Thus, we know that e ∈ supp(x⃗), and so by Lemma 49,
we have that z(e) = x(e) ⩽ κ+(e) ⩽ κ(e) · αε and z(Di(e)) = x(Di(e)) ⩽ κ+(Di(e)) ⩽
κ(Di(e)) · αε. Similarly, for any e ∈ supp(z⃗) with w(e) = i, and κ(Di(e)) > 1/α2

ε. We
know that e ∈ supp(y⃗). By definition of y⃗, we have z(e) = y(e) = κ(e)/κ(Di(e)), and
z(Di(e)) = 1. Finally, we prove Lemma 9(2). First consider Lemma 24, this lemma
implies that

∑
e∈E∗ κ(e) · w(e) = O(mwm(G) · log n). Finally, by Claim 23, we have,∑

e∈M∩E∗ w(e) ⩾ w(M)−(1+ε)2 ·mwm(Gs), thus, for any M with w(M) ⩾ (1−ε)·mwm(G),
we have

∑
e∈M∩E∗ w(e) ⩾ ε ·mwm(G). This is implied by the fact that the algorithm returns

E∗ when mwm(Gs) ⩽ (1− 5ε) ·mwm(G). Finally, for all edges in E∗, κ(e) < 1, otherwise
they’d be sampled into Gs. ◀
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A Subroutines

Algorithm 1 WeightedM-or-E*(G, κ, ε, µ, w).

1: Include each edge e ∈ E(G) independently with probability p(e) = κ(e) · ρε in Gs.
2: Let M, y⃗, r⃗ be the output of Static-Weighted-Match(Gs, ε). ▷ Phase 1.
3: if w(M) ⩽ (1− 6ε) ·mwm(G) then
4: Return E∗ = {e | yr(e) < (1− ε) · w(e)}. ▷ Phase 3
5: else ▷ Phase 2
6: MI ←M \ EL(G, κ), y⃗ ←MD

I ▷ Convert MI into a matching on multigraph
7: x⃗←Weighted-Frac-Match-General(G[V M

L ] ∩ EL(G, κ), κ+, ε, w)
8: end if
9: Return z⃗ ← y⃗ + x⃗.
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Algorithm 2 Weighted-Frac-Matching(G, κ, ε).
Ensure: A fractional matching x⃗ with

∑
e∈E w(e) · x(e) ⩾ (1− ε) ·mwm(G, κ)

1: procedure Initialization:
2: x(e)← 0 for all e ∈ E

3: y(u)←W − ε for all u ∈ L, y(u)← 0 for all u ∈ R ▷ Initializing vertex duals.
4: z(e)← 0 for all e ∈ E ▷ Initializing edge duals.
5: end procedure
6: while y-values of free left vertices are greater than 0 do
7: for eb ∈ Gt

x with z(e) > 0 do
8: z(e)← z(e)−min {z(e), yz(e)− w(e) + ε}.
9: end for

10: Update Gt
x

11: procedure Augmentation:
12: Find the maximal set P of augmenting paths in Gt

x.
13: Augment along P. Update x⃗ and Gt

x.
14: end procedure
15: procedure Dual Adjustment:
16: Let Z be the set of vertices reachable from free left vertices in Gt

x.
17: For all ineligible eb from R \Z to L∩Z, with yz(e) = w(e)− ε, z(e)← z(e) + ε.
18: For all u ∈ L ∩ Z, y(u)← y(u)− ε.
19: For all u ∈ R ∩ Z, y(u)← y(u) + ε.
20: end procedure
21: end while
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