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Abstract
We consider the well-studied Robust (k, z)-Clustering problem, which generalizes the classic
k-Median, k-Means, and k-Center problems and arises in the domains of robust optimization
[Anthony, Goyal, Gupta, Nagarajan, Math. Oper. Res. 2010] and in algorithmic fairness [Abbasi,
Bhaskara, Venkatasubramanian, 2021 & Ghadiri, Samadi, Vempala, 2022]. Given a constant z ≥ 1,
the input to Robust (k, z)-Clustering is a set P of n points in a metric space (M, δ), a weight
function w : P → R≥0 and a positive integer k. Further, each point belongs to one (or more) of
the m many different groups S1, S2, . . . , Sm ⊆ P . Our goal is to find a set X of k centers such that
maxi∈[m]

∑
p∈Si

w(p)δ(p, X)z is minimized.
Complementing recent work on this problem, we give a comprehensive understanding of the

parameterized approximability of the problem in geometric spaces where the parameter is the
number k of centers. We prove the following results:

(i) For a universal constant η0 > 0.0006, we devise a 3z(1−η0)-factor FPT approximation algorithm
for Robust (k, z)-Clustering in discrete high-dimensional Euclidean spaces where the set of
potential centers is finite. This shows that the lower bound of 3z for general metrics [Goyal,
Jaiswal, Inf. Proc. Letters, 2023] no longer holds when the metric has geometric structure.

(ii) We show that Robust (k, z)-Clustering in discrete Euclidean spaces is (
√

3/2−o(1))-hard to
approximate for FPT algorithms, even if we consider the special case k-Center in logarithmic
dimensions. This rules out a (1 + ϵ)-approximation algorithm running in time f(k, ϵ)poly(m, n)
(also called efficient parameterized approximation scheme or EPAS), giving a striking contrast
with the recent EPAS for the continuous setting where centers can be placed anywhere in the
space [Abbasi et al., FOCS’23].

(iii) However, we obtain an EPAS for Robust (k, z)-Clustering in discrete Euclidean spaces
when the dimension is sublogarithmic (for the discrete problem, earlier work [Abbasi et al.,
FOCS’23] provides an EPAS only in dimension o(log log n)). Our EPAS works also for metrics
of sub-logarithmic doubling dimension.
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1 Introduction

Clustering is a crucial method in the analysis of massive datasets and has widespread
applications in operations research and machine learning. As a consequence, optimization
problems related to clustering have received significant attention from the theoretical computer
science community over the years. Within the framework of center-based clustering, k-
Center, k-Means, and k-Median [25, 26, 10, 4, 27] are widely regarded as the most
fundamental problems.

A general notion that captures various classic clustering problems is referred to as (k, z)-
Clustering in the literature, where z ≥ 1 is a constant. In this type of problem, the input
is a set P of data points (clients), a set F of centers (facilities), a metric δ on P ∪ F , and a
positive integer k. The goal is to find a set C ⊆ F of k facilities that minimizes the following
cost function:

cost(C) =
∑
p∈P

cost(p, C)

where cost(p, C) = δ(p, C)z and δ(p, C) = minc∈C δ(p, c). Note that (k, z)-Clustering
encapsulates the classical k-Median, and k-Means for z = 1 and z = 2, respectively .

Center-based clustering has cemented its place as an unsupervised learning method that
has proven effective in modeling a variety of real-world problem. In most of the practical
machine learning applications however, it is observed that the input data is rarely of high
quality.

To tackle this challenge, we study a robust version of (k, z)-Clustering in this paper
which can handle uncertainty in the input: Consider a situation where we do not have
complete knowledge about the clients that will be served. In order to perform well despite
this uncertainty, Anthony et al. [5] defined a concept of robustness for the k-Median problem,
in which each possible scenario is represented by a group of clients and the goal is to
find a solution that performs best possible even in the worst scenario. In this paper, we
address the following robust version of the (k, z)-Clustering problem (called Robust
(k, z)-Clustering):

Robust (k, z)-Clustering
Input: Instance (P, F, δ) with δ being a metric on P ∪ F , positive integer k, a weight
function w : P → R+, and m groups S1, . . . , Sm such that Si ⊆ P, P = ∪i∈[m]Si.
Output: A k-element subset X ⊆ F that minimizes maxi∈[m]

∑
p∈Si

w(p)δ(p, X)z.

Let n = |P |. We remark that, in addition to generalizing k-Median and k-Means, the
Robust (k, z)-Clustering problem encapsulates k-Center, when each group contains a
distinct singleton. A similar objective has been studied in the context of fairness, in which
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we aim to create a solution that will be appropriate for each of the specified groups of people.
This problem is known in the literature as Socially Fair k-Median, recently introduced
independently by Abbasi et al. [3] and Ghadiri et al. [20]. Notice that Abbasi et al. [3]
introduce fair clustering with client weights being inversely proportional to the group size
as a normalization. On the other hand, Anthony et al. [5] introduce robust clustering with
unweighted clients. Since our definition allows arbitrary client weights, we capture both of
these settings.

While k-Means, k-Median, and k-Center admit constant-factor approximations, it
is not very surprising that Robust (k, z)-Clustering is harder due to its generality:
Makarychev and Vakilian [29] design a polynomial-time O (log m/ log log m)-approximation
algorithm, which is tight under a plausible complexity assumption [8]1. As this precludes the
existence of efficient constant-factor approximation algorithms, recent works have focused
on designing constant factor parameterized (FPT) approximation algorithms2. Along these
lines, an FPT time (3z + ϵ)-approximation algorithm has been proposed and shown to
be tight under the Gap Exponential-Time Hypothesis (Gap-ETH) [22]. When allowing
a parameterization on the number of groups m (instead of k), Ghadiri et al. designed a
(5 + 2

√
6 + ϵ)z-approximation algorithm in nO(m2) time [21].

Motivated by the tight lower bounds for general discrete metrics, we focus on geometric
spaces. Geometric spaces have a particular importance in real-world applications because
data can often be represented via a (potentially large) collection of numerical attributes,
that is, by vectors in a (possibly high-dimensional) geometric space. For example, in the
bag-of-words model a document is represented by a vector where each coordinate specifies
the frequency of a given word in that document. Such representations naturally lead to very
high-dimensional data. A setting of particular interest is the high-dimensional Euclidean
space where the metric is simply the Euclidean metric δ(x, y) = ||x − y||2.

The study of clustering problems in high-dimensional Euclidean space is an important
line of research that has received significant attention in the algorithms community. It may
seem intuitive to believe that it should generally (for almost any problem) be possible to
algorithmically leverage the geometric structure to separate high-dimensional Euclidean
from general metrics. For clustering, however, this turns out to be either false or highly
non-trivial in many cases. For example, it is a long-standing open question [19] whether
k-Center admits a polynomial time (2 − ϵ)-approximation algorithm even in R2, improving
the tight bound of 2 in general metrics. Interestingly enough, for the more general Euclidean
k-Supplier problem, Nagarajan et al. [30] obtain an improvement over the tight bound of 3 in
general metrics. The improved bounds for Euclidean k-Median and k-Means by Ahmadian
et al. [4], Grandoni et al. [23], and recently by Cohen-Addad et al. [11] were breakthroughs.
Concerning the more general Robust (k, z)-Clustering, the tight inapproximability bound
of Ω(log m/ log log m) in general metric continues to hold even in the line metric [8].

Similarly, the regime of FPT approximation algorithms for Euclidean clustering prob-
lems has received significant attention. Classic works design an Efficient Parameterized
Approximation Scheme (EPAS), that is, a (1 + ϵ)-approximation in f(k, ϵ)poly(n) time, for
k-Center [6] as well as for k-Median and k-Means [28]. Recent research focuses on the
design of so-called coresets [31, 16] whose existence implies an EPAS if their size only depends
on k and the error parameter ϵ.

1 Note that they proved this factor for Robust k-Median, and the hardness result holds even in the line
metric, unless NP ⊆ ∩δ>0DTIME(2nδ

).
2 Throughout the paper, parameterization refers to the natural parameter k.
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In the real space Rd, it is important to distinguish between the discrete and the continuous
settings. In the discrete setting, both the point set P and the candidate center set F are
finite subsets of Rd while in the continuous setting, centers can be chosen anywhere in the
metric space, that is, F = Rd. A separate line of research has studied the contrast between
continuous and discrete versions. For example, while discrete clustering variants are clearly
polynomial-time solvable for constant k by trivial enumeration, the continuous versions of
k-Center and k-Median are known to be NP-hard even for k = 2 [18] in high-dimensional
Euclidean space. Also in terms of polynomial-time approximability, stronger lower bounds
were shown by Cohen-Addad et al. [14] for the continuous versions. Indeed, there have been
systematic research efforts in understanding these geometric clustering problems [15, 13, 14].
A recent result [2] implies an EPAS for Robust (k, z)-Clustering in continuous Euclidean
spaces (of any dimension), as well as in discrete Euclidean spaces in “relatively low” dimension,
that is, dimension o(log log n).

The main goal of this paper is to develop comprehensive understanding for Robust
(k, z)-Clustering in high-dimensional discrete Euclidean spaces, in particular, when the
dimension is at least Ω(log log n).

1.1 Our contributions
First, motivated by a factor-(3z − o(1)) hardness of FPT approximation for Robust (k, z)-
Clustering in general metrics [22], a natural question is whether the structures of Euclidean
spaces can be leveraged to obtain better results in high dimensions. While it is intuitive to
believe that such an improvement should generally (for almost any problem) be possible
in geometric spaces, we note that this is sometimes not the case: The polynomial time
inapproximability of Robust (k, z)-Clustering remains Ω(log m/ log log m) even in the
line metric [8].

Our first result gives an affirmative answer to this question.

▶ Theorem 1.1 (High-Dimensional Euclidean Space). There exists a universal constant
η0 > 0.0006 such that for any constant positive integer z, there is a factor 3z(1 − η0) FPT
approximation algorithm for Robust (k, z)-Clustering in discrete Euclidean space Rd that
runs in time 2O(k log k)poly(m, n, d).

We remark that, first, our running time has only a polynomial dependency on d. Secondly,
the key take-home message for Theorem 1.1 is not about a concrete approximation factor,
but rather a “proof of concept” that the factor of 3z can be improved. Conceptually, this
result shows that geometric spaces are indeed easier for Robust (k, z)-Clustering than
general metric spaces in the FPT world, in contrast to the polynomial-time world, where
they seem to be equally hard [8]. The proof of this theorem relies on a new geometric insight
that leverages the properties of Euclidean spaces (that do not hold in general metric spaces).
The analysis of our algorithms “reduces” the global analysis of approximation factor to a
“local” geometric instance, in which it suffices to merely analyze the behavior of three points
in the Euclidean spaces.

Next, we focus on obtaining a complete characterization of the existence of EPAS in
discrete Euclidean spaces. Recall that an EPAS exists in continuous Euclidean spaces of any
dimensions and in discrete Euclidean spaces of dimension o(log log n) [2], so to complete the
landscape, we need to understand the discrete Euclidean spaces of dimension Ω(log log n).

In the next theorem, we prove that even the special case of k-Center does not admit
an EPAS. This hardness holds for any ℓq metric and even in dimension O(k log n). More
formally, we prove the following theorem.
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▶ Theorem 1.2 (Hardness in Discrete Euclidean Space). For any constant positive integer q

and any positive constant η > 0, there exists a function d(k, n) = O(k log n) such that there
is no factor-(3/2 − η)1/q FPT approximation algorithm for the discrete k-Center problem
in Rd(k,n) under the ℓq metric unless W[1]= FPT. Moreover, for the ℓ2 metric this hardness
holds even for some dimension O(log n), that is, independently of k.

Our result therefore highlights the interesting contrast between the discrete and continuous
settings in high-dimensional Euclidean spaces, which has been systematically studied in
recent years [15, 13, 14]. As mentioned, the continuous setting admits an EPAS [2], so our
hardness result implies that the discrete setting is harder than the continuous counterpart.
This is contrast to the results Cohen-Addad et al. [14] mentioned earlier showing that
continuous variants of k-Median and k-Means in geometric spaces are apparently harder to
approximate (in polynomial time) than their discrete part as well as the different complexity
status of continuous and discrete clustering in high-dimensional spaces even for k = 2 [18].
This shows a rather mysterious behavior of clustering problems in geometric spaces.

Our next theorem completes the FPT-approximability landscape by designing an EPAS for
the problem in doubling metrics of dimension d = ok(log n)3. We remark that the doubling
dimension of the d-dimensional discrete Euclidean metric is Θ(d), that is, we obtain an EPAS
for discrete Euclidean ok(log n)-dimensional spaces in particular.

▶ Theorem 1.3 (EPAS for Doubling Metric of Sub-Logarithmic Dimension). There is an
algorithm that computes (1 + ϵ)-approximate solution, for every ϵ > 0, for Robust (k, z)-
Clustering in the metric of doubling dimension d in time f(k, d, ϵ, z)poly(m, n), where

f(k, d, ϵ, z) =
(( 2z

ϵ

)d
k log k

)O(k)
.

Note that the above theorem yields an EPAS for Robust (k, z)-Clustering when
d = ok(log n). Together with Theorem 1.2, this theorem gives (almost) a dichotomy result
for the existence of EPAS: An EPAS exists for Robust (k, z)-Clustering in ok(log n)
dimension, while obtaining an EPAS is W[1]-hard in Ωk(log n) dimension. This leads to
an almost complete understanding on the existence of EPAS in continuous and discrete
Euclidean spaces.

2 Overview of Techniques

Improved FPT Approximation in High-Dimensional Discrete Euclidean Space

Our algorithm underlying Theorem 1.1 is a slight modification of the factor-(3z + ϵ) FPT
approximation algorithm for general metrics by Goyal and Jaiswal [22]. Our main technical
contribution lies in the improved analysis. A key component of the analysis by Goyal and
Jaiswal is a simple projection property of metric spaces (see Lemma 2.1 below). We argue
that under minor additional assumptions, this property can be strengthened in Euclidean
space. The resulting assigment lemma (see Lemma 3.1) is at the heart of our analysis and
its proof relies on several new ideas and technically involved ingredients.

We briefly review the algorithm by Goyal and Jaiswal [22]. Their algorithm consists of
two main steps. First, they compute a (κ, λ)-bicriteria solution B ⊆ F , that is, the cost of B

is bounded by κOPT and the cardinality of B is bounded by λk. Specifically, they obtain
guarantees κ = 1 + ϵ and λ = O

(
log2 n/ϵ2)

for sufficiently small ϵ > 0. In the second step,
they extract a feasible solution from the (infeasible) bi-criteria solution B by enumerating all
k-subsets of B and outputting the one of minimum cost.

3 We use notation ok(·) to hide multiplicative factors depending only on k.

ICALP 2024



6:6 Parameterized Approximation for Robust Clustering in Discrete Geometric Spaces

Their analysis is based on proving the existence of a k-subset of B whose cost is at most
(3z−1(κ + 2))OPT, which can be bounded by (3z + ϵ)OPT assuming z being constant. Since
the algorithm enumerates all k-subsets, this provides an upper bound on the cost of the
algorithm. The key component of their existential argument is the following simple property
of metric spaces, which we call projection lemma. It is convenient to think of O as an optimal
solution and B as a bicriteria solution with |B| > |O| but the lemma holds for any sets B, O.

▶ Lemma 2.1 (Projection Lemma). Let (Y, δ) be a metric space, and B ⊆ Y . Then for any
set O ⊆ Y , there exists an assignment σ : O → B such that, for all o ∈ O and y ∈ Y , we
have

δ(y, σ(o)) ≤ 2δ(y, o) + δ(y, B) . (1)

Intuitively, their lemma allows them to “project” the optimal solution O onto a k-subset
σ(O) ⊆ B of the bicriteria solution so that for any client y ∈ Y , the distance δ(y, σ(O)) can
be charged to δ(y, O) and δ(y, B). If fact, the number 3 in the approximation factor 3z + ϵ

corresponds to the sum (2 + 1) of the coefficients in front of δ(y, o) and δ(y, B).
In this paper, we study the setting where Y is a discrete Euclidean metric (P, F, δ), that

is, where P, F are finite subsets of Rd and δ is the Euclidean distance. A natural attempt to
improve the approximation factor in the Euclidean setting is to reduce the coefficients in front
of the terms δ(y, o) and δ(y, B) in the projection lemma. Unfortunately, this straightforward
approach fails: The projection lemma is tight even on the line metric; see Figure 1.

b o p b′

Figure 1 This example shows that the projection lemma is tight even for the 1-dimensional
Euclidean space. Let o = 0 be the optimum facility located at the origin and serving client p = 1/2.
Let b′ = 1 be the facility in B that serves p and let b = σ(o) = −1 be the facility in B nearest to o. We
have OPT = 1/2, which also equals the cost of B. However δ(p, σ(o)) = 3/2 = 2×δ(p, o)+1×δ(p, b′).
Combining multiple such examples in orthogonal directions and sharing facility b shows that the
approximation ratio of the algorithm of Goyal and Jaiswal [22] approaches 3 in the discrete Euclidean
space.

It turns out that slightly enlarging the projection space is already sufficient to bypass
this obstacle. More specifically, we project onto the midpoint closure

cl(B) = B ∪
{

πF

(
b + b′

2

)
: b, b′ ∈ B

}
, (2)

of the bicriteria solution where πF (p) represents the closest facility in F to point p. This
step exploits that the metric space is embedded into Rd (so that the midpoints exist).

While on the algorithmic side a slight modification of the original algorithm is sufficient for
the improvement, the analysis requires several new ideas and technically involved ingredients.
To prove a strengthened version of the projection lemma (called assignment lemma) we set up
a factor-revealing geometric optimization problem in the plane; see (3) in Definition 3.2 below.
We call the optimum objective γβ of this problem displacement ratio. Roughly speaking, this
ratio corresponds to the maximum ratio between the left-hand and the right-hand side of (1)
in Lemma 2.1. However, we project to cl(B) rather than B and impose some additional minor
restrictions. By a careful and technically involved analysis of this optimization problem we
can upper bound the displacement ratio in the Euclidean setting by 1 − ϵ0 for some universal
constant ϵ0 > 0 as long as two obstructions are avoided. The first obstruction occurs in any
configuration similar to the one in Figure 1 above where the bi-criteria solution contains two
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facilities b, b′ so that o is near to the mid-point of b and b′. However, in such a configuration
facility o certifies that b′′ = πF ((b + b′)/2) must be close to o allowing us to assign o to b′′

contained in the mid-point closure. The second obstruction arises if p is β-near, that is,
within a small distance β from o (but there is no facility in B such as b′ as in the first
obstruction). For β approaching 0, the displacement ratio of β-near points can approach
1 even if when projecting to the mid-point closure of B. To account for β-near points, we
therefore cannot resort to the assignment lemma. However, the overall contribution of β-near
points to the cost of the projected solution can be shown to be very small. More details of
the algorithm and its analysis are provided in Section 3.1. The full proof of the assignment
lemma is technically more involved and can be found in the full version [1].

Hardness of Discrete k-Center

Our proof constructs an instance of the discrete k-Center from an instance of Multi-
Colored Independent Set problem, which is known to be W [1]-hard. In Multi-Colored
Independent Set, we are given a k-partite graph G with a k-partition of the vertices
V1, . . . , Vk, and the goal is to determine if there is an independent set that contains precisely
one node from each set Vi, i ∈ [k]. The gadget in our construction is a set of nearly
equidistant binary code words. Such code words with relative Hamming distance roughly
1/2 and logarithmic length are known to exist (see Ta-Shma [32]). The high level idea is as
follows. We associate each vertex of G with a unique code word of suitable length t. Then,
we generate a data point in P for each vertex and edge of G by using code word(s) associated
with the corresponding vertices. The construction guarantees the following crucial properties:
(i) The Hamming distance between the data points of vertices is roughly t. (ii) The Hamming
distance between a data point of vertex v ∈ Vi and a data point of an edge e is roughly t if e

is incident on Vi \ {v} and is roughly 3t/2 otherwise. (iii) The Hamming distance between
the data points of edges is at least (close to) 3t/2. Thus, the construction forces us to pick
data points of vertices as centers in our solution and guarantees that the optimum cost of the
k-Center instance is roughly t if and only if there is an independent set in G. As a result,
approximating the cost of the k-Center instance better than a (roughly) (3/2)1/q factor
would imply W [1] = FPT. That is because the cost of a k-Center instance is the maximum
ℓq distance between a data point and its closest selected center, and hence, approximating
this cost better than the mentioned factor allows us to distinguish between Yes and No
cases of an arbitrary instance of Multi-Colored Independent Set.

Approximation Scheme for Metrics of Sub-Logarithmic Doubling Dimension

Our algorithm comprises two main components, both based on standard techniques from the
literature: instance compression and decomposition of the doubling metric into smaller balls.
However, it becomes evident that a natural construction based on these standard techniques
for Robust (k, z)-Clustering faces serious information-theoretic limitations, as explained
below. One natural idea for compressing a Robust (k, z)-Clustering instance is to reduce
the number of groups, as each group can be further compressed using a (k, z)-Clustering
coreset (such coresets exist [16]). This reduction yields a significantly smaller instance. If we
could reduce the number of groups to m′ ≪ m while approximately preserving the cost for
every solution, we could obtain an EPAS as follows. First, apply a (k, z)-Clustering coreset
to every group of the compressed instance to obtain another Robust (k, z)-Clustering
instance with m′ groups, each containing g(k, ϵ) points, where g is some function that
represents the size of (k, z)-Clustering coreset. It is essential to note that this compression

ICALP 2024



6:8 Parameterized Approximation for Robust Clustering in Discrete Geometric Spaces

is acceptable for obtaining an EPAS since the coreset of a group approximately preserves the
(k, z)-Clustering cost of the group. Next, enumerate all k-partitions of the points within
each group to find potential solutions. Finally, return the solution that has the minimum
Robust (k, z)-Clustering cost. Unfortunately, because Robust (k, z)-Clustering
captures k-Center (and consequently faces a coreset lower bound of 2Ω(d) in Euclidean
space of dimension d [9]), the number of new groups must satisfy m′ ≥ 2Ω(d). Consequently,
the running time of this algorithm is k2Ω(d)poly(n, m), which is doubly exponential in d. It
is worth noting that this algorithm matches the running time of [2] and does not yield an
EPAS for sub-logarithmic dimension.

Furthermore, if we explore an alternative approach and utilize the coreset of k-Center,
it is not immediately clear how to extend the coreset of k-Center to reduce the number
of groups in an instance of Robust (k, z)-Clustering. This is because, firstly, we would
require a mapping between the old groups and the new groups, and secondly, this mapping
should ideally approximately preserve the Robust (k, z)-Clustering cost for every solution.

Another potential method for compressing the instance involves reducing the number of
points in set P , rather than altering the groups, with the hope of designing an EPAS that
can exploit the smaller P (without concern for the number of groups). However, for this
approach to succeed, it is essential to establish a bijection between the old and new groups.
Yet, it remains uncertain whether such a bijection exists. In typical coreset constructions,
each point in the coreset P ′ of P has a weight that is the sum of the weights of the points in
its local neighborhood in P which it is supposed to represent in P ′. However, these points
in P could potentially belong to different groups, making it challenging to establish the
mapping between groups.

The core idea of our approach is to work with an alternative and more general definition
of groups that permits a point to participate in different groups with varying weights. In
this revised definition, instead of viewing groups as subsets of points, we treat each group
as a weight function that assigns non-negative real values to points. This flexibility allows
different weights to be assigned to the same point by different groups, which can, in fact, be
of practical interest. Utilizing this new definition, we can devise an approach for compressing
the points such that each point in the compressed instance can have a weight for group g

that represents the sum of the weights of nearby points in g that were filtered out during
compression. Essentially, this enables us to approximately preserve the group costs. With
this approach and additional technical work that leverages the standard ball decomposition
technique for doubling metrics, we derive a coreset for Robust (k, z)-Clustering that can
be employed to construct an EPAS for doubling metrics with sub-logarithmic dimension.
▶ Remark 2.2. Due to lack of space, we move some of the proofs to the full version [1]. The
proofs of the Theorems and Lemmas with corresponding (⋆) marked are provided in the full
version [1].

3 High-Dimensional Discrete Euclidean Space

3.1 FPT Approximation Algorithm for Robust (k, z)-Clustering
In this section, we exploit non-trivial properties of the Euclidean metric to prove the following
result that breaches the barrier of 3z-approximation for Robust (k, z)-Clustering in general
metrics.

▶ Theorem 1.1 (High-Dimensional Euclidean Space). There exists a universal constant
η0 > 0.0006 such that for any constant positive integer z, there is a factor 3z(1 − η0) FPT
approximation algorithm for Robust (k, z)-Clustering in discrete Euclidean space Rd that
runs in time 2O(k log k)poly(m, n, d).
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Recall from Section 2 that our approach begins with computing a (κ, λ)-bicriteria solu-
tion B to the Robust (k, z)-Clustering instance employing the algorithm proposed by
Goyal-Jaiswal [22]. As we argued, it is sufficient to prove the existence of a k-subset of B

whose cost is within a constant factor of optimal. The result by Goyal and Jaiswal [22] is
based on the following simple projection lemma for general metrics whose proof we state
here for the sake of later reference.

▶ Lemma 2.1 (Projection Lemma). Let (Y, δ) be a metric space, and B ⊆ Y . Then for any
set O ⊆ Y , there exists an assignment σ : O → B such that, for all o ∈ O and y ∈ Y , we
have

δ(y, σ(o)) ≤ 2δ(y, o) + δ(y, B) . (1)

Proof. For each o ∈ O, define σ(o) as πB(o), the point in B closest in distance to o.
Notice that for any o ∈ O, y ∈ Y , we have δ(y, σ(o)) ≤ δ(y, o) + δ(o, σ(o)) by triangle
inequality. The lemma follows by combining this with δ(o, σ(o)) = δ(o, B) ≤ δ(o, πB(y)) ≤
δ(y, o) + δ(y, B). ◀

This lemma itself is tight even in 1-dimensional Euclidean space (as we showed in Figure 1).
In order to get around this issue, we make use of the property of our geometric space. Given
the instance (P, F, δ) embedded into the Euclidean space and the bicriteria solution B, we
project to the mid-point closure cl(B) as defined in (2).

Notice that |cl(B)| = O
(
|B|2

)
. Let O be the optimal solution. For β > 0 we say that

client p ∈ P is β-far (from O w.r.t. B) if δ(p, O) ≥ β · δ(p, B), and we say that client p is
β-near otherwise. The key of our analysis is the following strengthening of the projection
lemma for Euclidean space, which we call assignment lemma.

▶ Lemma 3.1 (Assignment Lemma) (⋆). Let β0 = 0.05 and let B ⊆ Rd. Then, for any
O ⊆ Rd, there exists an assignment σ : O → cl(B) such that, for all β0-far points p ∈ Rd, we
have δ(p, σ(O)) ≤ (1 − ϵ0)(2δ(p, O) + δ(p, B)) where ϵ0 > 0.002.

Proof Sketch. We start with defining the assignment function σ. Take any facility o ∈ O

and let b = πB(o). We assume w.l.o.g. that the instance is rotated so that p, b, and o lie in
the plane spanned by the first two coordinates. For the sake of easier notation, we identify
p, b, o by points in R2. Further, by translation and scaling, we assume that o coincides with
the origin and that b = (−1, 0). Let q = (0, 1) be the mirror image of b. Let α be a parameter
to be fixed (we later set it to 0.6). We define σ(o) based on the position of o relative to an
α-ball. Specifically, σ(o) = b if the α-ball centered at a point q contains no facility from B;
otherwise, σ(o) is the projection πcl(B)(o) of o onto the mid-point closure of B.

Our goal is to analyze the displacement of a client p under the assignment rule σ. Recall
from the proof of Lemma 2.1 that if σ(o) is simply the projection onto B, then a client p,
when served by facilities o and b′ in sets O and B respectively, incurs a cost of at most
2||p − o|| + ||p − b′||. We wish to show that the assignment cost in our algorithm is strictly
smaller than this upper bound (under certain assumptions). We prove this by bounding the
ratio of these two quantities.

▶ Definition 3.2 (Displacement Ratio). For a given small constant β > 0, let the displacement
ratio be defined as

γβ = max
p∈Rd\ball(o,β),

b′∈Rd\ball(o,1)

{
||p − σ(o)||

2||p − o|| + ||p − b′||

}
. (3)
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Let S be the plane spanned by b, p, and o. After the appropriate rotations and translations
we mentioned earlier, S would coincide with the x-y plane. In what follows, we also restrict b′

to lie in R2 as well. We omit the argument why this assumption is without loss of generality
from this sketch, and defer it to [1].

To show the lemma, we demonstrate that γβ can be upper-bounded by 1 − f(α, β) for
some f(α, β) > 0, where f(·) is a function dependent on α, β and the geometry of O and B.
We distinguish two cases. First, suppose that B contains a facility b′′ lying inside the α-ball
around q. Recall that in this case σ(o) = πcl(B)(o). Hence σ(o) is no farther from o than
the facility πF ((b + b′′)/2) nearest to the midpoint of b and b′′. This allows us to bound the
displacement ratio γβ by 1 − 1−α

2 . See Figure 2 for an illustration. Notice that the optimal
center o certifies the existence of a point in F nearby the mid-point of b and b′′.

o

b′′

≤ α
2

πF ( b+b′′

2 )

q

α
b

Figure 2 The midpoint of b and b′′ is shown by red dot, ||(b + b′′)/2 − o|| ≤ α
2 and thus

||σ(o)− o|| ≤ α.

In the second case, where the α-ball does not contain a facility from B, we argue that
the points o, σ(o) = b, and b′ are far enough from a co-linear position. This allows us to
argue that the triangle inequality in the proof of Lemma 2.1 is not tight. Towards this, we
divide the space into four regions R1, R2, R3 and R4 that could contain client p, we assume
that p lies in the half plane above the x-axis (The case where p lies below the x-axis is
symmetric.). Let q1 be the intersection point of the surfaces of ball(o, 1) and ball(q, α) above
the x-axis. Let q3 be the midpoint of q and q1, the region H is defined as the area above the
lines passing through (q3, o) and (o, b), we define R1 = H\ball(o, β). Next, consider (1 − ω)
and (1 + ω) balls around o, H ′ is defined as the area below the line passing through (o, q3)
and above the line passing through (o, q), we define R2 = (ball(o, 1 − ω)\ball(o, β)) ∩ H ′,
R3 = (ball(o, 1 + ω)\ball(o, 1 − ω)) ∩ H ′, and R4 = H ′\ball(o, 1 + ω), the regions are indicated
in Figure 3. Below, we provide full proof for one of these regions.

Assume that client p lies in region R1 (see Figure 4). Let b′′ be the closest point to p not
in the interior of ball(o, 1), and let p′ be the point on the boundary of ball(o, β) that is closet
to p. Let p′′ be the point where the segment (o, q3) intersects the boundary of ball(o, β), that
is, p′′ = (β cos θ, β sin θ) where θ = ∠q3oq1. Notice that cos θ = 1 − α2

4 . First, we assume p

is inside ball(o, 1 + 2β) in the region of R1.

▶ Observation 3.3. For any ϵ1, ϵ2, X, Y ≥ 0 :

X − ϵ1 + Y

X + Y
≤ X − ϵ1 + Y + ϵ2

X + Y + ϵ2

Consider assigning p via p′ to b. We bound the displacement cost as follows:
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o

β q

q1

αb

q3q3

R1

R2 R4

R3

Figure 3 The dashed black circle depicts ball(o, 1), while the dashed gray circles represent
ball(o, 1− ω) and ball(o, 1 + ω). Regions R1, R2, R3, and R4 are outlined with green, yellow, purple,
and blue borders respectively.

o

q1

q2

β

p′′
q

q3

α
b

p

Figure 4 The dashed circle depicts ball(o, 1), α-ball around q and β-ball around o are shown in
blue. The region R1 is specified by green borders. The red dashed area represents the potential
location of point p′.

γβ = ||σ(o) − p||
2||p − o|| + ||p − b′||

≤ ||b − p′|| + ||p − p′||
2||p′ − o|| + ||p′ − b′′|| + ||p − p′||

≤ ||b − p′′|| + ||p − p′||
2β + 1 − β + ||p − p′||

≤
√

(β cos(θ) + 1)2 + (β sin(θ))2 + ||p − p′||
1 + β + ||p − p′||

=
√

β2 + 2β cos θ + 1 + ||p − p′||
1 + β + ||p − p′||

=

√
(1 + β)2 − βα2

2 + ||p − p′||
1 + β + ||p − p′||
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We assume ||p − p′|| ≤ 1 + β, and by observation 3.3, we obtain:

γβ ≤
(1 + β)(1 +

√
(1 − βα2

2 )
2(1 + β) ≤ 1

2 +

√
12 − 2βα2

4 + β2α4

16

2 ≤ 1
2 +

1 − βα2

4
2

= 1 − 4 + βα2

8

Second, let’s assume that the client p is distant from o and positioned within region R1
outside ball(o, 1 + 2β), we can bound γβ as follows:

γβ ≤ 1 + ||o − p||
2||o − p||

≤ 1 + 1 + 2β

2(1 + 2β) = 1 + β

1 + 2β
= 1 − β

1 + 2β

Therefore, by examining the position of p in the regions, we establish that γβ is upper-
bounded by 1−f(α, β). Consequently, Lemma 3.1 is substantiated by showing the existence of
an α0 ≤ 0.6 and a sufficiently small β0 ≤ 0.05 such that γβ0 ≤ 1−f(α0, β0) = 1−ϵ0 ≤ 0.9978.
The proofs for the other regions as well as the full details of the rest of the argument are
provided in the full version [1]. ◀

In the proof of Theorem 1.1, we show that this new assignment property is enough to
derive an improved FPT approximation for Robust (k, z)-Clustering in Euclidean space.
Since the assignment σ maps every facility in O uniquely to a facility in cl(B), this implies
that σ(O) is a feasible solution of cost at most (3z · (1 − η0))OPT. This certifies the existence
of a feasible solution being a subset of cl(B) with the desired approximation factor. Hence,
we can find such a solution in FPT time by enumeration. The complete proof of Theorem 1.1
is provided in the full version [1].

3.2 Hardness of Discrete k-Center
For this section, we use the following explicit construction of the so-called η-balanced error-
correcting codes from a recent result of Ta-Shma [32] which we rephrase for our purposes as
follows:

▶ Theorem 3.1. Let η ∈ (0, 1/2) be a positive constant. Then there is an algorithm that
computes, for any given number s ∈ N, an s-element set B ⊆ {0, 1}t of binary vectors of
dimension t = O(log s/η2+o(1)) such that for any b ∈ B, its Hamming weight ||b||1 and for
any b′ ∈ B \{b}, the Hamming distance ||b−b′||1 both lie in the interval [(1/2−η)t, (1/2+η)t].
The running time of the algorithm is O(st).

Proof. Ta-Shma [32] gives an explicit construction of a t × ⌈log2 s⌉ binary matrix gen-
erating a linear, binary, error-correcting code of message length ⌈log2 s⌉, block length
t = O(log s/η2+o(1)), and pairwise Hamming distance between (1/2 − η)t and (1/2 + η)t.
Since the code is linear, it contains the zero code word. Hence each code word has Hamming
weight in [(1/2 − η)t, (1/2 + η)t]. The time for constructing the matrix is polynomial in log s

and t. Using the generating matrix, at least s many non-zero code words can be enumerated
in time O(st), which dominates the time for computing the matrix. ◀

We leverage balanced error correcting codes as gadget in our hardness proof for discrete
k-Center. For any binary vector b ∈ {0, 1}t, we denote by b̄ the binary vector obtained by
flipping each coordinate in b.
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▶ Theorem 1.2 (Hardness in Discrete Euclidean Space). For any constant positive integer q

and any positive constant η > 0, there exists a function d(k, n) = O(k log n) such that there
is no factor-(3/2 − η)1/q FPT approximation algorithm for the discrete k-Center problem
in Rd(k,n) under the ℓq metric unless W[1]= FPT. Moreover, for the ℓ2 metric this hardness
holds even for some dimension O(log n), that is, independently of k.

Proof. We show a reduction from Multi-Colored Independent Set, which is known to
be W [1]-hard [17]. The input is a k-partite graph G = (V, E) with k-partition V1, . . . , Vk.
The question is if there is an independent set that is multi-colored, that is, it has precisely
one node from each set Vi, i ∈ [k]. W.l.o.g. we assume that each Vi contains at least one
node that is adjacent to all nodes V \ Vi. Adding such nodes, we can additionally assume
that |Vi| = n/k for each i ∈ [k] where n = |V |.

Fix some constant η ∈ (0, 1/2). Using Theorem 3.1, we construct a set B ⊆ {0, 1}t of n

nearly equidistant code words of dimension t = O(log n/η2+o(1)). We map each node u ∈ V

uniquely to some non-zero code word b(u) ∈ B. We construct a k-Center instance in Rk·t

as follows. We subdivide the coordinates of each point in Rk·t into k blocks each containing
t consecutive coordinates. In our set P of data points, we introduce for each node vi ∈ Vi,
i ∈ [k], the point p(vi) ∈ P in which the ith block equals b(vi) and all other coordinates
are zero. For each edge (vi, vj) ∈ E, vi ∈ Vi, vj ∈ Vj for distinct i, j ∈ [k] we create a point
p(vi, vj) ∈ P in which the ith block equals b(vi), the jth block equals b(vj), and all other
coordinates are zero. No further points are added to P . We set the number of centers to be
k completing the construction of the k-Center instance.

Let i ∈ [k] and vi, v′
i ∈ Vi be distinct vertices. We have that ||p(vi) − p(v′

i)||qq ≤
||b(vi) − b(v′

i)||1 ≤ (1/2 + η)t by Theorem 3.1. Let vj ∈ Vj , j ∈ [k] such that (vi, vj) ∈ E. By
Theorem 3.1, we have that

||p(v′
i) − p(vi, vj)||qq ≤ ||b(v′

i) − b(vi)||1 + ||b(vj)||1
≤ (t − ||b(v′

i) − b(vi)||1) + (t − (1/2 − η)t)
≤ (t − (1/2 − η)t) + (1/2 + η)t
≤ (1 + 2η)t .

Hence if there is a multi-colored independent set I for G then X = { p(u) | u ∈ I } is a
k-element set such that δ(p, X)q ≤ (1 + 2η)t for any p ∈ P under the ℓq metric, which gives
an upper bound of (1 + 2η)t on the k-Center objective in the completeness case.

For analyzing the soundness case, assume that there is no multi-colored independent set
for G. Consider an arbitrary k-element set X ⊆ V . We say that x ∈ X covers p ∈ P if
δ(p, x)q < (3/2 − 3η)t. We claim that there is some p ∈ P not covered by any center in X.
The correctness of this claim implies that any parameterized approximation algorithm with
approximation ratio strictly better than ((3/2 − 3η)/(1 + 2η))1/q implies that W [1] = FPT
and thus the theorem.

In order to prove this claim, we assume for the sake of contradiction, that all p ∈ P are
covered by some center in X. First, we argue that w.l.o.g. X contains no point of the form
p(vi, vj) where (vi, vj) ∈ E. In fact, for any g /∈ {i, j}, we have that

||p(v′
g) − p(vi, vj)||qq ≥ ||b(v′

g)||1 + ||b(vi)||1 + ||b(vj)||1
≥ (1/2 − η)t + 2(t − (1/2 + η)t)
= (3/2 − 3η)t . (4)

Hence p(vi, vj) can cover p(v′
g) only if g = i or g = j. Similarly, p(vi, vj) can cover p(v′

g, v′
h)

only if i = g and j = h. But then these points would be covered by p(vi) as well and hence
we could replace p(vi, vj) with p(vi). We therefore assume that X contains only points of
the form p(vi).
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We claim that X is multi-colored. Otherwise, there would be some Vi that contains no
point from X. By our initial assumption, Vi contains some point vi that is adjacent to all
points V \ Vi. Assuming k ≥ 3 there exists at least one Vj , j ̸= i that contains at most one
node from X. If Vj intersects X then let vj ∈ Vj ∩ X , and otherwise let vj be an arbitrary
node in Vj . By our assumption (vi, vj) ∈ E. If vj ∈ X then

||p(vj , vi) − p(vj)||qq ≥ ||b(vj) − b(vj)||1 + ||b(vi)||1
≥ t + (t − (1/2 + η)t)
= (3/2 − η)t (5)

as the jth block of p(vj) equals b(vj) and the ith block of p(vj , vi) equals b(vj). If vj /∈ X then
for any itvh ∈ X we have h /∈ {i, j}. Thus ||p(vi, vj) − p(vh)||qq ≥ (3/2 − 3η)t, which follows
as in (4). Hence p(vi, vj) would not be covered showing that X is multi-colored. Since X is
multi-colored it can not be an independent set. Hence there exists some edge (vi, vj) such
that vi, vj ∈ X but then ||p(vi) − p(vi, vj)||qq ≥ (3/2 − η)t, ||p(vj) − p(vi, vj)||qq ≥ (3/2 − η)t,
and ||p(vh) − p(vi, vj)||qq ≥ (3/2 − 3η)t for any vh ∈ X, h /∈ {i, j}, which follows as in (5)
and (4), respectively. Hence δ(p(vi, vj), X) ≥ (3/2−3η)t, implies that p(vi, vj) is not covered.

We complete the proof by noting that the dimension of the instance can be reduced to
O(log n) for Euclidean metrics by using the Johnson-Lindenstrauss transform with sufficiently
small (constant) error parameter. ◀

4 EPAS for Metrics of Sub-Logarithmic Doubling Dimension

In this section, we show an EPAS for Robust (k, z)-Clustering in metrics of sub-logarithmic
doubling dimension. This result complements the hardness result of Section 3 (Theorem 1.2).
Towards our goal, we prove the following result.

▶ Theorem 1.3 (EPAS for Doubling Metric of Sub-Logarithmic Dimension). There is an
algorithm that computes (1 + ϵ)-approximate solution, for every ϵ > 0, for Robust (k, z)-
Clustering in the metric of doubling dimension d in time f(k, d, ϵ, z)poly(m, n), where

f(k, d, ϵ, z) =
(( 2z

ϵ

)d
k log k

)O(k)
.

Note that the above algorithm runs in FPT time for d = o(log n). We also remark that
the above result can be extended to the continuous Rd. Throughout this section, we assume
that the weight aspect ratio maxp∈P w(p)

minp′∈P w(p′) and the distance aspect ratio maxp,p′∈P δ(p,p′)
minp ̸=p′∈P δ(p,p′) are

bounded by poly(n), some polynomial in n. For p ∈ P and any number r ≥ 0, denote by
ball(p, r) to be the closed ball centered at p of radius r. We prove the theorem in two steps:
first, in Section 4.1 we show an algorithm to obtain a coreset for the problem, and then, in
Section 4.2 we show how to use this coreset to get the algorithm of Theorem 1.3.

4.1 Coreset for Robust (k, z)-Clustering
The key idea for constructing coresets for Robust (k, z)-Clustering crucially relies on
the following alternate but equivalent definition of the problem. In this definition, we are
given I = (F, P ⊂ M, W), where either F = M or F ⊆ M, where M is doubling metric of
dimension d, defined by the metric function δ. A group is a weight vector w ∈ W such that
w : P → R≥0. Given X ⊆ F , the distance vector δP (X) is defined as δP (X)[p] = δ(p, X)z,
for each p ∈ P . The cost of X for a group w ∈ W is defined as c(w, X) = w · δP (X).
For a Robust (k, z)-Clustering instance I = (F, P, W), the cost of X is defined as
cost(I, X) = maxw∈W cost(w, X). The cost of the instance I = (F, P, W) is
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OPT(I) = min
X⊆F,|X|=k

max
w∈W

cost(w, X)

Whenever the instance I is clear from context, we will just write OPT. Notice that, in the
original Robust (k, z)-Clustering, a group is given by S ⊆ P , and this can be captured
by weight vector w[p] = 0 for p ̸∈ S and w(p) otherwise. We prove the following coreset
exists for Robust (k, z)-Clustering.

▶ Theorem 4.1 (Coreset for Robust (k, z)-Clustering) (⋆). Given an instance I =
(F, P, W) of Robust (k, z)-Clustering in doubling metric of dimension d and 0 < ϵ ≤ 1,
there is an algorithm that, in time

( 2z

ϵ

)O(d) poly(n, m), computes another instance I ′ =
(F, P ′, W ′) of Robust (k, z)-Clustering with P ′ ⊆ P : |P ′| =

( 2z

ϵ

)O(d)
kz log n such that

for any X ⊆ F with |X| = k,

(1 − ϵ)cost(I, X) ≤ cost(I ′, X) ≤ (1 + ϵ)cost(I, X).

We remark that the above theorem yields a coreset of clients, and not of groups, and
hence, the total size of coreset is comparable to the original instance. However, we will
show later that such coreset is sufficient to get a parameterized approximation scheme with
parameters k and d. We would also like to point out that the exponential dependency on d

on the point set size of the coreset is inevitable since Robust (k, z)-Clustering captures
k-Center, for which such a lower bound is known [9, 7]. To see that our notion of coreset
for Robust (k, z)-Clustering coincides with the regular notion of coreset for k-Center,
note that in this setting each group contains a single distinct point.

In the next section, we describe the algorithm of Theorem 4.1. Due to space constraints,
we defer the analysis of our algorithm to the full version [1].

The Algorithm

Our algorithm is inspired by the grid construction approach of [24] that yields coresets for
k-Median and k-Means. Given an instance I = (F, P, W) of Robust (k, z)-Clustering,
the first step is to start with an (α, β)-bicriteria solution B = {bi}i∈[βk] that opens at most
βk facilities with the guarantee that cost(I, B) ≤ α · OPT, for some constants α, β ≥ 1.
Let R = z

√
cost(I,B)

ατ , where τ := maxw∈W ||w||1. Let ∆ = maxp∈P,w∈W w[p]
minp∈P,w∈W w[p] be the weight

aspect ratio of I. Then, for each bi ∈ B, consider the balls Bj
i := ball(bi, 2jR), for j ∈

{0, · · · , ⌈2 log(αn∆)⌉}. Note that, for w ∈ W and p ∈ P with w[p] > 0, it holds that
δ(p, B) ≤ R z

√
αnτ , since δ(p, B) ≤ z

√
cost(I,B)

w[p] ≤ z

√
ατ

w[p] R ≤ R
z
√

αn∆. Hence, we have that

every point p ∈ P is contained in some ball Bj
i . For bi ∈ B, let Qj

i = Bj
i − Bj−1

i , for
j = {1, · · · , ⌈2 log(α∆)⌉}, be the ring between Bj

i and Bj−1
i , with Q0

i = B0
i . Decompose

every ball Bj
i into smaller balls each of radius ϵ

40α R2j using the fact that the metric is a
doubling metric. These balls can intersect, so we assign every point p ∈ P to exactly one ball
(for example, by associating p to the smallest ball containing p, breaking ties arbitrarily).
For every ball Bj

i and every smaller ball t of Bj
i with |t ∩ Qj

i | ≠ ∅, pick an arbitrary point
p′ ∈ t ∩ Qj

i as the representative of (the points in) t ∩ Qj
i , and add p′ to the coreset P ′

with group weight vectors as follows. Corresponding to every group vector w ∈ W, create a
new group vector w′ ∈ W ′. Then,w′[p′] :=

∑
p∈t∩Qj

i
w(p). Intuitively, w′[p′] captures the

total weight of points of w in t ∩ Qj
i . This concludes the coreset construction. For detailed

pseudocode of the algorithm, please refer to the full version of the paper [1].
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The high-level idea above is to decompose each ball Bj
i into smaller balls and pick a

distinct point as the representative of points in the non-empty decomposed ball. Additionally,
such representative p′ participates in the group w′ with weight which is sum of the weights
of points in w that are represented by p′. However, we want to decompose the ball Bj

i into
smaller balls in a way that the total number of balls remains the same, irrespective of the
radius of the ball. This is necessary as for higher values of j, this number would depend
on n, if we are not careful. While this does not seem to help much, as the radius of the
decomposed balls is much larger for higher values j, it actually does the trick: since the
points in these balls are far from bi, and hence their connection cost to bi is also large. This
allows us to represent the radii of larger balls in terms of the connection cost of its points to
B, thus bounding the error in terms of the cost of B, which in turn is bounded by αOPT,
which gives us the desired guarantee.

4.2 EPAS for Robust (k, z)-Clustering

In this section, we show how to use the coreset obtained from Theorem 4.1 to get a (1 + ϵ)-
approximate solution to the Robust (k, z)-Clustering problem and provide an EPAS with
respect to k and d, when |P | is small. By scaling the distances in the instance of Robust
(k, z)-Clustering, we assume that the distances are between 1 and ∆′, for some number ∆′.
Our algorithm (see Algorithm 1) uses the leader guessing idea of [12]. In the leader guessing
approach, we guess the leader of every partition of a fixed optimal solution, where the leader
of a partition is a closest point (client) in P to the corresponding optimal center. However,
each point can participate in multiple groups, resulting in the total number of points being
dependent on the number of groups, |W|. In the full version [1], we show that guessing the
leaders from P without considering the groups in W is, in fact, sufficient. Further, to get a
(1 + ϵ)-approximate solution, we use a standard ball decomposition lemma (for e.g., see the
full version [1]).

▶ Theorem 4.2. For any 0 < ϵ ≤ 1, Algorithm 1, on input I = (F, P, W), computes X ⊆
F : |X| ≤ k such that cost(I, X) ≤ (1 + ϵ)OPT(I) in time

(
( z

ϵ )d log n
)O(k) |P |kpoly(n, m).

We conclude this section by proving the main claim of this section (Theorem 1.3) by
using the results of Theorem 4.1 and Theorem 4.2 as follows.

Proof of Theorem 1.3. Given an instance I = (F, P, W) of Robust (k, z)-Clustering,
and the accuracy parameter ϵ > 0, we invoke Theorem 4.1 on I with parameter ϵ/10 to
obtain an coreset (P ′, W ′) such that P ′ ⊆ P : |P ′| =

( 2z

ϵ

)O(d)
kz log n. Let I ′ = (F, P ′, W ′)

be the resulting instance. Then, we invoke Theorem 4.2 on I ′ with parameter ϵ/10 to obtain
X ⊆ F : |X| ≤ k such that cost(I ′, X) ≤ (1 + ϵ/10)OPT(I ′).

First, we analyze the overall running time. With |P ′| =
( 2z

ϵ

)O(d)
kz log n, Theorem 4.2

runs in time
(( 2z

ϵ

)d
kz log n

)O(k)
poly(n, m), leading to

(( 2z

ϵ

)d
zk log k

)O(k)
poly(n, m) as

the overall running time as desired. For correctness, consider

cost(I, X) ≤ (1 + ϵ/10)cost(I ′, X) by the coreset property
≤ (1 + ϵ/10)2OPT(I ′) by Algorithm 1
≤ (1 + ϵ/10)3OPT(I) by the coreset property
≤ (1 + ϵ)OPT(I). ◀
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Algorithm 1 (1 + ϵ)-approximation algorithm for Robust (k, z)-Clustering.
Data: Instance I = (F, P,W) of Robust (k, z)-Clustering
Result: (1 + ϵ)-approximate solution X ⊆ F

1 Let X ← ∅;
2 forall k-tuples (ℓ1, · · · , ℓk) of P do
3 forall k-tuples (λ1, · · · , λk) radii of (ℓ1, · · · , ℓk) that are power of (1 + ϵ/10z) do
4 for i ∈ [k] do
5 Bi ← { ϵ

20z -ball decomposition of ball(ℓi, λi)};
6 end
7 Ti ← {f ∈ F | f is an arbitrary facility in ball b ∈ Bi} a ;
8 forall k-tuples (t1, · · · , tk) of T1 × · · · × Tk do
9 if cost(I, {t1, · · · , tk}) < cost(I, X) then

10 X ← {t1, · · · , tk}
11 end
12 end
13 end
14 end
15 return X

a If F = Rd then Ti ← {xb ∈ F | xb is the center of ball b ∈ Bi}
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