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Abstract
We study the problem of testing Ck-freeness (k-cycle-freeness) for fixed constant k > 3 in graphs
with bounded arboricity (but unbounded degrees). In particular, we are interested in one-sided error
algorithms, so that they must detect a copy of Ck with high constant probability when the graph is
ϵ-far from Ck-free.

We next state our results for constant arboricity and constant ϵ with a focus on the dependence
on the number of graph vertices, n. The query complexity of all our algorithms grows polynomially
with 1/ϵ.
1. As opposed to the case of k = 3, where the complexity of testing C3-freeness grows with the

arboricity of the graph but not with the size of the graph (Levi, ICALP 2021 )1 this is no longer
the case already for k = 4. We show that Ω(n1/4) queries are necessary for testing C4-freeness,
and that Õ(n1/4) are sufficient. The same bounds hold for C5.

2. For every fixed k ≥ 6, any one-sided error algorithm for testing Ck-freeness must perform Ω(n1/3)
queries.

3. For k = 6 we give a testing algorithm whose query complexity is Õ(n1/2).
4. For any fixed k, the query complexity of testing Ck-freeness is upper bounded by O(n1−1/⌊k/2⌋).

The last upper bound builds on another result in which we show that for any fixed subgraph
F , the query complexity of testing F -freeness is upper bounded by O(n1−1/ℓ(F )), where ℓ(F ) is a
parameter of F that is always upper bounded by the number of vertices in F (and in particular is
k/2 in Ck for even k).

We extend some of our results to bounded (non-constant) arboricity, where in particular, we
obtain sublinear upper bounds for all k.

Our Ω(n1/4) lower bound for testing C4-freeness in constant arboricity graphs provides a negative
answer to an open problem posed by (Goldreich, 2021).
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60:2 Testing Ck-Freeness in Bounded-Arboricity Graphs

1 Introduction

Detecting small subgraphs with specific structures (referred to as finding network motifs)
is a basic algorithmic task, with a variety of applications in biology, sociology and network
science (see e.g. [21, 8, 31, 11, 7, 28, 5, 18, 6, 32, 23]). Of special interest is the natural case
of subgraphs that are cycles of a fixed size k, which we denote by Ck. When the algorithm
receives the entire graph as input, then by the well known result of Alon, Yuster and Zwick [4],
this task can be solved in time Õ(nω) where n is the number of graph vertices and ω is
the exponent of matrix multiplication.2 But what if we seek a sublinear-time (randomized)
algorithm that does not read the entire graph? Namely, the algorithm is given query access
to the graph3 and should find a Ck when the graph is not Ck-free. This is clearly not possible
if the graph contains only a single copy of Ck. However, is it possible to detect such a copy
in sublinear-time when the graph is relatively far from being Ck-free? By “relatively far” we
mean that it is necessary to remove a non-negligible fraction, denoted ϵ, of its edges in order
to obtain an Ck-free graph. A closely related formulation of the question is whether we can
design a one-sided error algorithm for testing Ck-freeness.4

If the maximum degree in the graph is upper bounded by a parameter dmax, then the
Ck-freeness testing problem can easily be solved by performing a number of queries that grows
polynomially with dmax and exponentially with Θ(k) [20]. In particular, when dmax = O(1),
then there is no dependence on the size of the graph G. We are however interested in
considering graphs with varying degrees, so that, in particular, the maximum degree may be
much larger than the average degree, and possibly as large as Θ(n).

For the special and interesting case where k = 3, i.e., the cycle is a triangle, Alon, Kaufman,
Krivelevich and Ron [3] gave several upper and lower bounds on the query complexity of
testing triangle-freeness as a function of the average degree d of the graph (in addition to the
dependence on n and ϵ). While the upper and lower bounds are not tight in general, they
are tight for d = O(1), where the complexity is Θ(

√
n) (for constant ϵ). The lower bound in

this case is essentially based on “hiding” a small clique.
Since the aforementioned lower bound relies on the existence of a small dense subgraph,

a natural question, studied by Levi [26], is whether it is possible to obtain improved (and
possibly tight) results when the arboricity of the graph, denoted arb(G), is bounded.5
Focusing on the result under the assumption that m ≥ n (i.e., d = Ω(1)) Levi showed
that Õ(arb(G)) queries are sufficient for testing triangle-freeness (the dependence on 1/ϵ

is polynomial), and that Ω(arb(G)) queries are necessary.6 In particular, when arb(G) is a
constant, the complexity is polynomial in 1/ϵ and does not depend on the size of the graph.

In this work we seek to understand the complexity of testing Ck-freeness, in particular
with one-sided error, for fixed k > 3. Our main focus is on constant arboricity graphs and
some of our results extend to bounded arboricity graphs, as well as to F -freeness for any

2 The dependence on k is exponential, but k is considered a constant.
3 The types of queries typically considered are neighbor queries (“what is the ith neighbor of a vertex

v?”), degree queries (“what is the degree of a vertex v?”), and pair queries (“is there an edge between a
pair of vertices v and u?”).

4 The problems are equivalent if the algorithm is not given access to degree queries, otherwise the algorithm
might find evidence to the existence of a Ck without actually detecting one. We note that all our
algorithms do detect copies of Ck when they reject.

5 The arboricity of a graph G is the minimum number of forests required to cover its edges, and is equal
(up to a factor of 2) to the maximum average degree of any subgraph of G.

6 To be precise, this lower bound holds for m ≥ (arb(G))3 – if m < (arg(G))3 then the lower bound is
Ω(m1/3). See also Footnote 1 regarding the upper bound.
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general subgraph F (of constant size). We note that the problem of testing cycle-freeness
without requiring the cycle to be of specific length, is different from our problem. We further
discuss this in Section 1.3. In the next subsection we state our findings.

1.1 Our results
Since our main focus is on graphs with constant arboricity, we first state our results in this
setting, and later discuss our extensions to graphs with non-constant arboricity. Throughout
this paper we assume that m = Ω(n) since even obtaining a single edge in the graph requires
Ω(n/m) queries. Our algorithms use degree and neighbor queries and our lower bounds also
allow pair queries (see Footnote 3). For simplicity, we state our results for constant ϵ. All
our algorithms have a polynomial dependence on 1/ϵ.

Our first finding is that, as opposed to the case of k = 3, where the complexity of testing
C3-freeness grows with the arboricity of the graph but not with the size of the graph,7 this
is no longer the case for k = 4 (and larger k). In particular:

▶ Theorem 1. The query complexity of one-sided error testing of C4-freeness in constant-
arboricity graphs over n vertices is Θ̃(n1/4). The same bound holds for testing C5-freeness.

Theorem 1 (together with the upper bound in [20]) answers negatively the following open
problem raised by Goldreich.
Open problem (number 3.2 in [19]): From bounded degree to bounded arboricity.
Suppose that property Π is testable within complexity Q(n, ϵ) in the bounded-degree graph
model. Provide an upper bound on the complexity of testing Π in the general graph model
under the promise that the tested graph has constant arboricity. For example, can the latter
complexity be linear in Q(n, ϵ) while permitting extra poly(logn) or 1/ϵ factors?

The Ω(n1/4) lower bound for testing C4-freeness, answers this question negatively. Indeed,
testing C4-freeness in d-bounded degree graphs can be done with poly(d, ϵ) queries [20], while
our lower bound suggest that even in constant arboricity graphs, a polynomial dependence
on n is necessary.

When k ≥ 6, we show that it is no longer possible to obtain a complexity of Õ(n1/4) as
is the case for k = 4, 5.

▶ Theorem 2. Let k ≥ 6. Any one-sided error tester for the property of Ck-freeness in
graphs of constant arboricity over n vertices must perform Ω(n1/3) queries.

While for C6 we were not able to match the lower bound of Ω(n1/3), we were able to
obtain a sublinear-time algorithm, as stated next.

▶ Theorem 3. There exists a one-sided error algorithm for testing C6-freeness in graphs of
constant arboricity over n vertices whose query complexity is Õ(n1/2).

For general (fixed) k we prove the following upper bound.

▶ Theorem 4. There exists a one-sided error algorithm for testing Ck-freeness in graphs of
constant arboricity over n vertices whose query complexity is O(n1−1/⌊k/2⌋).

We also prove a more general result for testing F -freeness for any constant size subgraph
F . Below, ℓ(F ) is as defined in Definition 10, and is always upper bounded by the number
of vertices in F .

7 We note that this is true also for other k-cliques for k > 3.

ICALP 2024



60:4 Testing Ck-Freeness in Bounded-Arboricity Graphs

▶ Theorem 5. There exists a one-sided error algorithm for testing F -freeness in graphs of
constant arboricity over n vertices whose query complexity is O(n1−1/ℓ(F )).

1.1.1 Extensions for general arboricity

We state our results for general arboricity graphs assuming that the algorithm is given an
upper bound α on the arboricity of the graph (in the lower bounds the algorithm may be
assumed to know the arboricity). Alternatively, if the algorithm receives as an input the
number of edges, m, (as in previous results for Ck-freeness [3, 26]) instead of an upper bound
on the arboricity, then we can estimate a notion known [26] as the “effective arboricity” of
the graph, and depend on it instead of α. This is potentially beneficial since the effective
arboricity can be much smaller than the actual arboricity of the graph, and it does not
affect the asymptotic running times of our algorithms in terms of the dependence on the size
of the graph and α. For further details see Section 2.

For C4-freeness we give both an upper bound and a lower bound for general arboricity
graphs. In particular, we show that a linear dependence on α is sufficient and a

√
α-dependence

is necessary (both for one-sided error algorithms) as stated next.

▶ Theorem 6. There exists a one-sided error algorithm for testing C4-freeness in graphs of
arboricity at most α over n vertices whose query complexity is Õ

(
min{n1/4α, α + n3/4}

)
.8

▶ Theorem 7. Testing C4-freeness with one-sided error in graphs over n vertices with
arboricity c1 log n < α < n1/2/c′

1 for sufficiently large constants c1 and c′
1 requires Ω(n1/4α1/2)

queries.9

For general constant size subgraphs F (and in particular Ck) our upper bound also has
at most a linear dependence on α (recall that ℓ(F ) is defined in Definition 10).

▶ Theorem 8. There exists a one-sided error tester for F -freeness whose query complexity
is O

(
k2+1/ℓ(F ) · m1−1/ℓ(F ) · α1/ℓ(F )) .

▶ Corollary 9. There exists a one-sided error tester for Ck-freeness whose query complexity for
even k is O

(
k2+(2/k)) · m1−2/k · α2/k

)
, and for odd k is O

(
k2+2/(k+1) · m1−2/(k+1) · α2/(k+1)).

We comment that our lower bound of Ω(n1/3) for one-sided error algorithms, k ≥ 6 and
constant arboricity (stated in Theorem 2) also applies to graphs with non-constant arboricity
(by adding a Ck-free subgraph with higher arboricity).10

We also note that it is possible to extend our algorithms for C5 and C6 freeness so as
to get a polynomial (but not linear) dependence on α. However, these extensions do not
introduce new techniques (and are most probably not optimal), so we do not present them
here.

8 More precisely, for values α < log n, the complexity is O(n1/4α1/2 log1/2 n/ϵ3), for values log n < α <√
n, the complexity is O(n1/4α/ϵ3), and for values α > n1/2, it is O((α + n3/4)/ϵ3).

9 Note that the two-sided error lower bound of Ω(n1/4) for constant arboricity graphs (as stated in
Theorem 1) also holds for graphs with higher arboricity α, and in particular, α = O(log n). This is
the case since we can simply add a small subgraph with arboricity α and no C4s to the lower bound
construction.

10 For an odd k, it suffices to add a dense bipartite graph, and for even k, by the Erdős girth conjecture [16],
one can add a subgraph with arboricity n2/k.
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1.2 A high-level discussion of our algorithms and lower bounds

Before discussing each of our results in more detail, we highlight some common themes. The
starting point of all our algorithms is that if a graph is ϵ-far from being Ck-free (for a constant
k), then it contains Ω(ϵm) edge-disjoint cycles.11 We next use the bounded arboricity of the
graph. Specifically, if a graph has arboricity at most α, then the number of edges between
pairs of vertices that both have degree greater than θ0 = Θ(α/ϵ), is at most O(ϵm).

Hence, there is a set of edge-disjoint Cks, which we denote by C, such that |C| = Ω(ϵm),
and no Ck in C contains any edge between two vertices with degree greater than θ0. In other
words, for every k-cycle ρ in C, and for every vertex v with degree greater than θ0 in ρ, the
two neighbors of v in ρ have degree at most θ0. In particular, when α is a constant, the two
neighbors have degree O(1/ϵ).

At this point our algorithms diverge, but there are two common aspects when k = 4, 5, 6,
which we would like to highlight. The first is that for the sake of “catching” one of the Cks
in C, it will be useful to consider a subset, C′, in which every vertex v that participates in
one of the edge-disjoint Cks in C′ actually participate in Ω(ϵ · d(v)) Cks in C′. The existence
of such a subset follows by applying (as a mental experiment) a simple iterative process that
removes Cks with vertices that do not obey this constraint.

To illustrate why it is useful to have such a set C′, consider the case of k = 4, and assume
that a relatively large fraction of the C4s in C′ contain, in addition to the two vertices of
degree at most θ0 = O(α/ϵ), at least one other vertex that has degree at most θ1 = O(n1/2/ϵ).
In this case we can obtain such a vertex v with high probability (as discussed below), and then
sample roughly

√
d(v)/ϵ = O(

√
θ1/ϵ) = O(n1/4/ϵ) of its neighbors, so that the following

holds. By (a slight variant of) the birthday paradox, with high constant probability we hit
two of its neighbors, u and u′, that reside on the same C4 in C′ (and hence have degree at
most θ0). By querying all the neighbors of u and u′, we obtain this C4.

However, what if for most of the C4’s in C′ there are two vertices with degree significantly
larger than

√
n (that are “one opposite the other” on the C4s)? Roughly speaking, in this

case we exploit the fact that the number of such high-degree vertices is bounded, and we
show how to detect a C4 by performing random walks of length 2. A related issue arises in
the case of k = 6, when there are three very high degree vertices on most C6s in C′. In this
case we show how to essentially reduce the problem to testing triangle-freeness in a certain
auxiliary graph. More precisely, the auxiliary graph is a multi-graph to which we have access
only to certain types of queries, so that we cannot apply the algorithm of [3]. However, we
can still show how to obtain a triangle in this graph, and hence a C6 in the original graph.
Interestingly, our general lower bound of Ω(n1/3) for Ck-freeness, k ≥ 6 builds on the lower
bound for testing triangle-freeness of [3].

In the following subsections we assume for the sake of the exposition that ϵ is a constant.

1.2.1 The results for C4-freeness (and C5-freeness)

We discuss our results for C4-freeness in graphs with general arboricity. The results for
C5-freeness in constant arboricity graphs are obtained using very similar techniques.

11 To verify this, let G be a graph that is ϵ-far from being Ck-free for a fixed constant k. Consider any
maximal set S of edge-disjoint k-cycles. Since by removing all k · |S| edges on these cycles, the graph
can be made cycle-free, |S| ≥ ϵm/k = Ω(ϵm).

ICALP 2024



60:6 Testing Ck-Freeness in Bounded-Arboricity Graphs

The algorithm

Our algorithm for testing C4-freeness, Test-C4-freeness, which has query complexity Õ(n1/4α),
is governed by two thresholds: θ0 = Θ(α), and θ1 = Θ(n1/2). For the sake of the current
high-level presentation, we assume that12 α ≤ n1/2, so that θ0 ≤ θ1.

The algorithm first samples O(1) edges approximately uniformly by invoking a procedure
Select-an-Edge,13 and then randomly selects one of their endpoints. For each vertex v

selected, it queries its degree, d(v). If d(v) ≤ θ1, then the algorithm selects O(
√

d(v))
random neighbors of v, and for each selected neighbor u such that d(u) ≤ θ0, it queries all
the neighbors of u. If d(v) > θ1, then the algorithm performs Õ(n1/4α1/2) random walks of
length two from v. If a C4 is observed in any one of these steps, then the algorithm rejects,
otherwise it accepts.

The analysis of the algorithm

By the above description, the algorithm will only reject a graph if it detects a C4, implying
that it never errs on C4-free graphs. Hence, consider a graph G that is far from being C4-free.
As discussed at the start of Section 1.2, the setting of θ0 = Θ(α) (together with the fact that
G is Ω(1)-far from being C4-free) implies the following. There exists a set, denoted C, of
Ω(m) edge-disjoint C4s in G, such that no C4 in C contains an edge between two vertices
that both have degree greater than θ0. Thus, for each C4 in C, there are at most two vertices
with degree greater than θ0, and they do not neighbor each other.

Considering the second aforementioned degree threshold θ1 (and recalling that θ1 ≥ θ0),
we partition C into two subsets. The first, C1, consists of those C4s in C that contain at most
one vertex with degree greater than θ1, and the second, C2, of the remaining C4s in C, which
contain exactly two vertices with degree greater than θ1. Since C = C1 ∪· C2, at least one of
these subsets is of size Ω(m).

C4s with at most one high-degree vertex. Suppose first that |C1| = Ω(m). Observe that
since each 4-cycle ρ ∈ C1 contains at least two vertices with degree at most θ0 and at most
one vertex with degree greater than θ1, it must contain at least one vertex, with degree at
most θ1 whose neighbors on the C4 both have degree at most θ0. For an illustration, see the
LHS of Figure 1. Furthermore, we show that there exists a subset of C1, which we denote
by C′

1, such that |C′
1| = Ω(m), and every vertex v that participates in one of the C4s in C′

1,
actually participates in Ω(d(v)) edges-disjoint C4s in C1. It follows that in this case, when
the algorithm selects a random edge (almost uniformly), with high constant probability it
will obtain an edge with (at least) one endpoint v having the above properties. Conditioned
on the selection of such a vertex v, the algorithm selects Θ(

√
d(v)) random neighbors of v.

By the birthday paradox, with high constant probability, among these neighbors there will
be a pair of vertices that reside, together with v, on a common C4 in C′

1. Once their (at most
θ0) neighbors are queried, this C4 is revealed.

C4s with two high-degree vertex. We now turn to the case in which |C2| = Ω(m). Here
too we can show that there exists a subset of C2, denoted C′

2, such that |C′
2| = Ω(m), and

every vertex v that participates in one of the C4s in C′
2 actually participates in Ω(d(v))

edges-disjoint C4s in C2.

12 Indeed, graphs with arboricity greater than n1/2 necessarily contain at least one C4, but since we are
interested in a one-sided error algorithm, and α is only known to be an upper bound on α, the algorithm
cannot reject if it is provided with α > n1/2.

13 This is a fairly standard and simple procedure, where we use the fact that graph has bounded arboricity,
so that most of its edges have at least one endpoint with degree θ0.
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Figure 1 An illustration for some of the cases considered in the analysis of the algorithm for
C4-freeness. On the left side are two examples in which there is a single vertex v′ with degree greater
than θ1, so that there is a vertex v with degree at most θ1 with two neighbors whose degree is at
most θ0. On the right is an illustration when there are two such vertices with degree greater than θ1.

Recall that by the definitions of C and C2 and since C′
2 ⊆ C2 ⊆ C, the following holds. For

each 4-cycle ρ in C′
2, since it is in C2, there are two vertices whose degree is greater than θ1.

Therefore, by the definition of C, they are both adjacent on ρ to two vertices whose degree is
at most θ0. Hence, if we consider the subgraph induced by the vertices and edges of the C4s
in C′

2, it is a bipartite graph, where on one side, denoted L, all vertices have degree at most
θ0, and on the other side, denoted R, all vertices have degree greater than θ1. Furthermore,
by the definition of C′

2, for each vertex in R, a constant fraction of its neighbors (in the
original graph G) belong to L, and for each vertex in L, a constant fraction of its neighbors
belong to R. For an illustration, see the RHS of Figure 1.

Hence, if we select an edge almost uniformly and pick one of its endpoints with equal
probability, with high constant probability we obtain a vertex v ∈ R. Conditioned on this
event, since d(v) > θ1, the algorithm will perform Õ(n1/4α1/2) random walks of length two
from v, and with high constant probability, a constant fraction of these walks will be of
the form (v, u, v′) where u ∈ L and v′ ∈ R. If for some v′ we get two walks, (v, u, v′) and
(v, u′, v′) for u ̸= u′, then a C4 is detected.

Observe that since all vertices in R have degree greater than θ1 = Θ(n1/2), we have that
|R| ≤ 2m/θ1 = O(n1/2α). This can be used to show that the expected number of pairs of
walks that induce a C4 is greater than 1. In order to show that we actually get such a pair
with high constant probability, we perform a more careful analysis to bound the variance.

A (two-sided error) lower bound for testing C4-freeness in constant arboricity graphs

To obtain this lower bound of Ω(n1/4), we define two distributions over graphs. In the
support of the first distribution, D0, all graphs are C4-free, and in the support of the second
distribution, D1, all graphs are Ω(1)-far from being C4-free. Furthermore, D0 is uniform over
all graphs isomorphic to a specific graph G0, and D1 is uniform over all graphs isomorphic
to a specific graph G1.

We next describe a slightly simplified version of the two graphs (which cannot be used
to prove the lower bound, but gives the essence of the proof). Both graphs are bipartite
graphs, where one side, Y , contains Θ(

√
n) vertices, and the other side, X, contains Θ(n)

vertices, In G0, each vertex in X has a unique pair of neighbors in Y (so there are no C4s).
On the other hand, in G1, each vertex x in X has a “twin”, x′, where x and x′ have the same
pair of neighbors in Y (thus creating Ω(n) edge-disjoint C4. See Figure 2. Observe that the
arboricity of both graphs is 2 as for any subset of vertices S, the number of edges within S

is at most |S ∩ X| · 2 so the average degree in the subgraph induced by S is at most 2.

ICALP 2024



60:8 Testing Ck-Freeness in Bounded-Arboricity Graphs

In order to prove that no (possibly adaptive) algorithm can distinguish between a graph
selected according to D0 and a graph selected according to D1, we define two processes,
P0 and P1, which answer the queries of a testing algorithm while selecting a graph from
D0 (respectively, D1) “on the fly”. The lower bound of Ω(n1/4) follows from the fact that
when performing fewer than n1/4/c queries (where c is a sufficiently large constant), for
both distributions, with high constant probability, each new neighbor query is answered by a
uniformly selected vertex id.

Figure 2 An illustration for the lower bound construction. The graph on the left is C4-free while
the graph on the right contains Ω(m) edge-disjoint C4s and is hence Ω(1)-far from being C4-free.

A one-sided error lower bound for testing C4-freeness in graphs with arboricity α

We next discuss the lower bound of Ω(n1/4α1/2) for graphs with arboricity α = Ω(log n) and
one-sided error algorithms.

Here we define a single distribution D which is uniform over a family of graphs with
arboricity α such that almost all graphs in this family are Ω(1)-far from C4-free.

Roughly speaking, the graphs in the support of D are random bipartite graphs, where
one side, Y , is of size Θ(

√
nα) and the other side, X, is of size Θ(n). Every vertex in X has

α neighbors in Y , and every vertex in Y has Θ(
√

n) neighbors in X. We need to show that if
we select such a graph randomly, then on one hand it will be Ω(1)-far from C4-free, and on
the other hand, in order to detect a C4, any algorithm must perform Ω(n1/4α1/2) queries.

We next discuss the high-level idea as to why the resulting graphs are (with high constant
probability) far from being C4-free. Consider a fixed edge (x, y) in the bipartite graph, where
x ∈ X, y ∈ Y . The number of C4s this edge participates in is determined by the number of
edges between the sets of neighbors of x and y, respectively Γ(x) and Γ(y). Recall that x

has Θ(α) neighbors and y has Θ(
√

n) neighbors. Since overall there are |X| · |Y | = Θ(n3/2α)
potential pairs in the bipartite graph, and Θ(nα) edges, each pair in X × Y is an edge
with probability Θ(1/

√
n). Hence, the expected number of edges between Γ(x) and Γ(y)

is |Γ(x)| · |Γ(y)| · (1/
√

n) = Θ(α). By analyzing the variance between pairs of edges, we
furthermore show that with high constant probability, most edges do not participate in too
many C4s. Combining the two insights, it follows that with high constant probability, the
graph is indeed far form being C4-free.

In order to prove that any algorithm that performs at most n1/4α1/2/c queries (for a
sufficiently large constant c), will not detect a C4 with high constant probability, we actually
prove that it will not detect any cycle. Roughly speaking, we show that by the randomness
of the construction, since |Y | = Θ(

√
nα), and the algorithm performs O(

√
|Y |) queries, each

new neighbor query is answered by a uniformly distributed vertex that has not yet been
observed. Therefore, the algorithm essentially views a forest.
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A central challenge that we need to overcome is that we do not want to allow parallel
edges, where the above construction might lead to their existence. One possibility is to first
define the distribution over graphs with parallel edges and then to remove them. The benefit
is that due to the higher degree of independence in the construction, it is somewhat easier
to formally prove that the graphs obtained (with parallel edges) are with high probability
Ω(1)-far from C4-free, and this remains the case when we remove parallel edges.

However, this creates a difficulty when we turn to argue that no (one-sided error) algorithm
can detect a C4 unless it makes Ω(n1/4α1/2) queries. The difficulty is due to the fact that
in the formal proof we need to deal with dependencies that arise due to varying degrees
(which occur because parallel edges are removed). While intuitively, varying degree should
not actually “help” the algorithm, this intuition is difficult to formalize. Hence, we have
chosen to define the distribution, from the start, over graphs that do not have parallel edges.
This choice creates some technical challenges of its own (in particular in the argument that
the graphs obtained are Ω(1)-far from C4-free), but we are able to overcome them. For more
details see the full version.

1.2.2 The algorithm for C6-freeness

Recall that for C6 we have a (one-sided error) testing algorithm whose query complexity is
Õ(n1/2). In addition to assuming (for the sake of the exposition) that ϵ is a constant, we also
ignore polylogarithmic factors in n. Similarly to the algorithm for testing C4-freeness, the
algorithm for testing C6-freeness in constant arboricity graphs is governed by two thresholds.
The first, θ0, is of the order of the arboricity, so that it is a constant (recall that we assume
that ϵ is a constant). The second, θ2, is of the order of

√
n.

The algorithm repeats the following process several times. It selects a vertex v uniformly
at random, and if d(v) ≤ θ0, it performs a restricted BFS starting from v to depth 4.
Specifically:
1. Whenever a vertex u is reached such that d(u) ≤ θ0, all its neighbors are queried.
2. Whenever a vertex u is reached such that d(u) > θ0 and u is reached from a vertex u′

such that d(u′) ≤ θ0, there are two sub-cases. If d(u) ≤ θ1, then all of u’s neighbors are
queried. Otherwise, θ1 neighbors of u are selected uniformly at random.

3. Whenever a vertex u is reached from a vertex u′ such that both d(u) > θ0 and d(u′) > θ0,
the BFS does not continue from u.

The algorithm rejects if and only if it observes a C6.
Consider a graph that is far from being C6-free, so that it contains a set of Ω(m) = Ω(n)

edge-disjoint C6s. Furthermore, it contains such a set, denoted C for which every C6 in C
contains at most three vertices with degree greater than θ0, and furthermore, these vertices
are not adjacent on the C6. We partition C into three subsets: C1, C2, and C3, depending on
the number of vertices with degree greater than θ0 that it contains.

If either |C1| = Ω(m), or |C2| = Ω(m), then it is not hard to show that the algorithm
will detect a C6 with high constant probability. The more interesting part of the proof is
handling the case in which only |C3| = Ω(m).

In this case we define an auxiliary multi-graph, denoted G′, over the set of vertices that
participate in C6s belonging to C3, and have degree greater than θ0 (in G). We denote this
set of vertices by M , and the set of vertices with degree at most θ0 that participate in these
C6s, by L.
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Assume for simplicity that each vertex in L has degree exactly 2 (i.e., it participates in a
single C6). For each pair of vertices in M , we put in G′ a set of parallel edges, whose size
equals the number of length-2 paths between them in G that pass through vertices in L.
Hence, for each C6 in C, we have a triangle in G′, where these triangles are edge-disjoint,
and we denote their set by T . See Figure 3.

Figure 3 An illustration of the auxiliary (multi-)graph G′ in the C6-freeness testing algorithm.
The dashed lines represent edges in G′, each one corresponding to a length-2 path in G that passes
through a vertex with degree at most θ0.

Observe that selecting a vertex uniformly at random from L and querying its two neighbors
in M corresponds to selecting an edge uniformly at random in G′. If we add an additional
simplifying assumption by which (in G), vertices belonging to M only neighbor vertices
belonging to L, then our algorithm on G essentially translates to picking a random edge in
G′. Then depending on the degree of the endpoints, either querying all their neighbors in G′

or θ1 random neighbors.
Let H denote the subset of vertices in M whose degree in G is greater than θ1. If relatively

many triangles in T contain at most one vertex in H, then we are done, since these triangles
contain an edge for which both endpoints have degree at most θ1. Hence, it remains to
address the case in which almost all triangles in T have two or three vertices in H.

Roughly speaking, in this case we show that the existence of many edge-disjoint, but not
vertex-disjoint, triangles in G′ that contain such high-degree vertices implies the existence of
“many more” triangles that may be caught by our algorithm. As an illustrative extreme (but
easy) special case, assume that in G′ there are only three vertices. Then the existence of
some number t of edge-disjoint triangles between them, actually implies the existence of t3

(non edge-disjoint) triangles.

1.2.3 The general lower bound for Ck-freeness, k ≥ 6
We establish our general lower bound of Ω(n1/3) for one-sided error testing of Ck-freeness
when k ≥ 6 by building on a lower bound for testing triangle-freeness that appears in [3,
Lemma 2]. This lower bound for testing triangle-freeness is based on the difficulty of detecting
a triangle in graphs selected uniformly from a family Gn′ of graphs in which almost all graphs
are Ω(1)-far from being triangle-free. All graphs in the family are d-regular tri-partite graphs
over n′ vertices and the lower bound on the number of queries necessary to detect a triangle
(with constant probability), is Ω(min{d, n′/d}). By setting d =

√
n′, the lower bound is

Ω(
√

n′).
We show that, for any constant k ≥ 6, if we had a one-sided error testing algorithm A for

Ck-freeness of graphs with n vertices and constant arboricity using at most n1/3/c queries
(for a constant c), then we would be able to detect triangles in graphs selected uniformly
from Gn′ using at most

√
n′/c′ queries (for a constant c′).
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To this end we define an algorithm A that, given query access to a graph G′ ∈ Gn′ ,
implicitly defines a graph G for which the following holds. First, the number of vertices in G

is n = Θ((n′)3/2), and the number of edges is m = Θ(m′), where m′ is the number of edges
in G′ (so that m′ = Θ((n′)3/2)). Second, G has arboricity 2. Third, the distance of G to
Ck-freeness is of the same order as the distance of G′ to triangle-freeness. Fourth, there is a
one-to-one correspondence between triangles in G′ and Cks in G. The basic idea is to replace
edges in the tri-partite graph G′ with paths of length k/3. See Figure 4

Figure 4 An illustration for the lower bound construction for Ck-freeness in constant arboricity
graphs when k = 9. The three circles in the middle and the dashed lines represent a graph G′ ∈ Gn′ .
The outer circles represent the additional vertices in G. Since k = 9 in this example, each edge in
G′ is replaced by a path of length 3 in G.

Assuming there existed a testing algorithm A as stated above, the algorithm A′ would
use it to try and find a Ck in G (and hence a triangle in G′). In order to be able to run A on
G, the algorithm A′ must be able to answer queries of A to G by performing queries to G′.
We show how this can be done with a constant multiplicative overhead. Hence, the lower
bound of Ω(

√
n′) for testing triangle-freeness (when the degree is Θ(

√
n′)) translated into a

lower bound of Ω(n1/3) for testing Ck-freeness.

1.2.4 The general upper bound for Ck-freeness
Recall that our starting point is that if G is Ω(1)-far from being Ck-free, then it contains a
set C of Ω(m) edge-disjoint Ck’s that do not contain any edge between vertices that both
have degree greater than θ0 = Θ(α). We refer to vertices with degree at most θ0 as light
vertices, and to those with degree greater than θ0 as heavy. Hence, each Ck in C has at least
⌈k/2⌉ light vertices, and each heavy vertex on it neighbors two light vertices.

We present two different algorithms, where each of them is suitable for a different setting.
The basic idea of both algorithms is to take a large enough sample of vertices and edges so
that the subgraph determined by the sampled light vertices and their incident edges, as well
as the sampled edges, contains a copy of Ck. The query complexity of each algorithm is
stated following its high-level description.

The first algorithm

Our first algorithm simply samples vertices uniformly, independently at random, and then
performs queries that reveal the neighbors of all light vertices in the sample. To analyze
what is the sufficient sample size for this algorithm, consider the following generalization of
the birthday paradox for k-way collisions. Assume we sample elements under the uniform
distribution over [n]. Then we obtain a k-way collision after taking Θ(n1−1/k) samples.
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Similarly, suppose we sample vertices uniformly from a graph that is composed only of n/k

vertex-disjoint copies of Ck. Then, after sampling Θ(n1−1/k) vertices, we will hit all the
vertices of at least one of the copies (with high constant probability). Conditioned on this
event, if we reveal the neighborhood of all the vertices in the sample, then we obtain a Ck.

The next observation is that, in fact, we only need to hit a vertex cover of a copy of a Ck

(as opposed to all its vertices). In particular we would like to hit such a cover that contains
only light vertices, which we refer to as a light vertex cover. For constant α, this yields an
improved dependence on k in the exponent, i.e., O(n1−1/⌊k/2⌋) sampled vertices suffice.

When taking into account the dependence on α (so that it is not necessarily true that
m = O(n)) and incorporating this in the analysis, we prove that the query complexity is
upper bounded by O(m · (α/m)2/k) for even k and O(m · (α/m)2/(k+1)) for odd k (up to a
polynomial dependence on k). Since α ≤

√
m it follows that the above bounds are at most

O(m1−1/k) and O(m1−1/(k+1)), respectively.

The second algorithm

Our second algorithm is designed for the case in which k is odd and m = Ω(α(k+3)/2). In
particular it is preferable when α is constant. We observe that when k is odd, for each Ck in
C, there is an edge in which both endpoints are light vertices. Therefore, if we sample edges
(almost) uniformly from the graph (using a variant of the procedure Select-an-Edge), then we
are likely to hit one of these edges. This additional step reduces the number of vertices we
need to hit in each copy by 2, which results in improved complexity for some range of the
parameters. In particular, the query complexity of this algorithm is O(m · (α2/m)2/(k−1)).
Specifically, when α is a constant, the query complexity of this algorithm (which works for
odd k) is O(m1−2/(k−1)) (instead of O(m1−2/(k+1))).

General subgraph F

Our first algorithm also works for any constant-size subgraph, F , where the upper bound
on the sample size is of the form m1−1/ℓ(F ) where ℓ(F ) depends on the structure of F , as
defined next.

▶ Definition 10. For a graph F = (VF , EF ) let VC(F ) denote the set of all vertex covers of
F . For a vertex cover Z of F we denote by VC′(Z) the set of vertex covers of F that are
subsets of Z. We define ℓ(F ) = maxZ∈VC(F )

{
minB∈VC′(Z) (|B|)

}
.

Observe that by Definition 10, we have that ℓ(F ) is lower bounded by the size of a minimum
vertex cover of F and is upper bounded by k = |VF |.

The high-level idea is that if we want to find a copy of F , it suffices to hit a light vertex
cover of this copy and then query all neighbors of the sampled light vertices.

1.3 Related work
In this subsection we shortly discuss several related works, in addition to the two aforemen-
tioned works regarding testing C3-freeness [3, 26].

Testing subgraph-freeness for fixed, constant size subgraphs in the dense-graphs model
can be done using a number of queries that depends only on 1/ϵ (where the dependence is a
tower of height poly(1/ϵ)), as shown by Alon, Fischer, Krivelevich and Szegedy [2]. Alon [1]
proved that a super polynomial dependence on 1/ϵ is necessary, unless the subgraph F is
bipartite. Goldreich and Ron addressed the problem in the bounded-degree model [20], and
gave a simple algorithm that depends polynomially on 1/ϵ and the maximum degree in the
graph, and exponentially on the diameter of F .
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A special case of graphs that have bounded arboricity is the family of graphs that exclude
a fixed minor (a.k.a. minor-free graphs). Newman and Sohler [29] showed that for this family
of graphs, in the bounded-degree model, all properties can be tested with no dependence on
the size of the graph G. Moreover, it was recently shown [25, 27] that any property which is
monotone and additive14 (and in particular F -freeness where F is a connected graph) can be
tested using a number of queries that is only polynomial in 1/ϵ and d, where d is the degree
bound (and O(dρ(ϵ)) in general (ϵ, ρ(ϵ))-hyperfinite graphs15). For minor-free graphs with
unbounded degrees, Czumaj and Sohler [10] showed that a property is testable with one sided
error and a number of queries that does not depend on the size of the graph if and only if it
can be reduced to testing for a finite family of finite forbidden subgraphs.16 The correctness
of their algorithm relies on the fact that the arboricity of minor-free graphs remains constant
even after contractions of edges (which is not the case for general constant-arboricity graphs).

In general graphs, it was shown that k-path freeness [22] and more generally T -freeness
where T is a tree of order k [17], can be tested with time and query complexity that depend
only on k, assuming the edges of the graph can be accessed uniformly at random. Testing
cycle-freeness (where a no instance is a graph that is far from being a forest) was studied
in the bounded-degree model in [20], where a two-sided error algorithm was given whose
query complexity is polynomial in 1/ϵ and the degree bound. Czumaj et. al [9] showed that
the complexity of this problem for one-sided error algorithms in the bounded-degree model
is Θ̃(

√
n) (for constant ϵ – their algorithm has a polynomial dependence on 1/ϵ), and the

algorithm can be adapted to the general-graphs model.
Other sublinear-time graph algorithms for counting and sampling (rather than detecting)

subgraphs that give improved results when the graph G has bounded arboricity include [14,
12, 15, 13].

1.4 Organization
We start in Section 2 with some preliminaries. In Section 3 we give the upper bound for
testing C4-freeness. All missing details and proofs appear in the full version of the paper.

2 Preliminaries

Unless stated explicitly otherwise, the graphs we consider are simple, so that in particular
they do not contain any parallel edges. We denote the number of vertices in the graph by n

and the number of edges by m. Every vertex v in the graph has a unique id, denoted id(v),
and its degree is denoted by d(v).

We work in what is known as the general graph model [30, 24]. In particular, under this
model, the distance of a graph G to Ck-freeness, denoted dist(G, Ck-free), is the minimum
fraction of edges that should be removed from G in order to obtain a Ck-free graph. As for
the allowed queries, a neighbor query to the ith neighbor of a vertex v is denoted by nbr(v, i),
and to its degree by deg(v). A pair query between two vertices v1 and v2 is denoted by
pair(v1, v2). Given query access to a graph G and a parameter ϵ, a one-sided error testing

14 A property is monotone if it closed under removal of edges and vertices. A property is additive if it is
closed under the disjoint union of graphs.

15 Let ρ be a function from R+ to R+. A graph G = (V, E) is (ϵ, ρ(ϵ))-hyperfinite if for every ϵ > 0 it is
possible to remove ϵ|V | edges of the graph such that the remaining graph has connected components of
size at most ρ(ϵ).

16 They consider a model in which they can perform only random neighbor queries.
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algorithm for Ck-freeness should accept G if it is Ck-free, and should reject G with probability
at least 2/3 if dist(G, Ck-free) > ϵ. If the algorithm may also reject Ck-free graphs with
probability at most 1/3, then it has two-sided error.

As noted in the introduction, we assume our algorithms for graphs whose arboricity is not
promised to be constant, are given an upper bound α on the arboricity arb(G) of the tested
graph G, and their complexity depends on this upper bound. Alternatively, if the algorithm
is provided with the number of edges, m, then it may run a procedure from [26] to obtain a
value α∗ that with high constant probability satisfies the following: (1) α∗ ≤ 2arb(G); (2)
The number of edges between vertices whose degree is at least α∗/(cϵ) for a constant c is at
most (1 − ϵ/c′)m (for another, sufficiently large, constant c′). Up to polylogarithmic factors
in n, the query complexity and running time of the procedure are O(arb(G)/ϵ3) with high
probability (assuming the average degree is Ω(1)).

Throughout this work we assume, whenever needed, that ϵ is upper bounded by some
sufficiently small constant (or else it can be set to that constant).

We also make use of the following claim – whose proof is given in the full version.

▷ Claim 11. For an integer s let {χi,j}(i,j)∈Φ(s) be Bernoulli random variables where
Pr[χi,j = 1] = µ for every (i, j) ∈ Φ(s). Suppose that the following conditions hold for some
c1 > 0 and c2 > 4.
1. For every (i1, j1) ∈ Φ(s) and (i2, j2) ∈ Φ(s) such that the four indices are distinct, χi1,j1

and χi2,j2 are independent.
2. For every (i1, j1) ∈ Φ(s) and (i2, j2) ∈ Φ(s) such that exactly two of the four indices are

the same, Pr[χi1,j1 = χi2,j2 = 1] ≤ c1 · µ3/2.
3. s ≥ c2/

√
µ .

Then Pr
[∑

(i,j)∈Φ(s) χi,j = 0
]

≤ 1+c1
c2

.

3 An upper bound of Õ(n1/4α) for testing C4-freeness

In this section we prove the more general (arboricity-dependent) form of the upper bound
for testing C4-freeness which is stated as Theorem 6 in the introduction.

Recall that the assumption on α is that it is an upper bound on the arboricity arb(G).
While it is known that for graphs with arb(G) >

√
n there exists a C4, we cannot simply

reject if we get α > n1/2 since it might be that arb(G) <
√

n (and we want one-sided error).
However, in the case that α > n1/2, the n1/4α term is replaced by n3/4 (and the additive α

term is due to the edge sampling).
The algorithm referred to in Theorem 6 is described next.

Algorithm 1 Test-C4-freeness(n, ϵ, α).

1. Let θ0 = 4α/ϵ, θ1 = c1 ·
√

n/ϵ (where c1 will be determined subsequently) and θmin = min{θ0, θ1}
(it is useful to read the algorithm while having in mind that θ0 ≤ θ1 (i.e., α = O(

√
n)) so that

θmin = θ0).
2. Repeat the following t = Θ(1/ϵ) times:

a. Select an edge e by calling the procedure Select-an-Edge(α, ϵ), which appears below. If it does
not return an edge, then continue to the next iteration.

b. Select an endpoint v of e by flipping a fair coin.
c. If d(v) ≤ θ1, then select s1 = Θ(

√
d(v)/ϵ) (= O(n1/4/ϵ)) random neighbors of v, and for

each neighbor u such that d(u) ≤ θmin query all the neighbors of u.
d. Otherwise (d(v) > θ1), perform s2 = Θ(

√
(nα/θ1) log n/ϵ2) (= Õ(n1/4α1/2/ϵ2)) random

walks of length 2 starting from v.
e. If a C4 is detected, then return it, “Reject” and terminate.

3. Return “Accept”.
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We note that the algorithm can be unified/simplified so that it only performs random
walks of length-2, where the number of walks is Θ(n1/4α/ϵ2), but then the analysis becomes
slightly more complicated.

Algorithm 2 Select-an-edge(ϵ, α).

1. Repeat the following Θ(α/ϵ) times:
a. Select a vertex u uniformly at random.
b. If d(u) ≤ θ0 for θ0 = 4α/ϵ, then with probability d(u)/θ0 select an edge incident to u uniformly

at random and return it.
2. If no edge was selected, then return “Fail”.

We start by stating a claim concerning the procedure Select-an-Edge where its proof is
deferred to the full version.We then state and prove two additional claims that will be used
in the proof of Theorem 6.

▷ Claim 12. With probability at least 2/3 the procedure Select-an-Edge returns an edge.
Conditioned on it returning an edge, each edge incident to a vertex with degree at most θ0
is returned with probability at least 1/(2m′) and at most 1/m′, where m′ is the number of
edges incident to vertices with degree at most θ0.

▷ Claim 13. Let v be a vertex and let C(v, θmin) be a set of edge-disjoint C4’s containing
v such that the neighbors of v on these C4s all have degree at most θmin, where θmin is as
defined in the algorithm.17 Suppose that |C(v, θmin)| ≥ 1 and let ϵ′ = |C(v, θmin)|/d(v). If
we select s = 16

√
d(v)/ϵ′ random neighbors of v, and for each selected neighbor u such that

d(u) ≤ θmin we query all the neighbors of u, then the probability that we obtain a C4 is at
least 9/10.

Proof. Let E′(v) denote the set of edges incident to v that participate in the set C(v, θmin).
By the premise of the claim, |E′(v)|/d(v) = 2|C(v, θmin)|/d(v) = 2ϵ′. Let s′ be the number
of neighbors of v that are incident to edges in E′(v) among the s selected random neighbors
of v. It holds that E[s′] = 2ϵ′ · s, and by the multiplicative Chernoff bound, s′ ≥ ϵ′ · s with
probability at least 1−e−ϵ′·s/4. We first show that this probability is at least 19/20, and then
condition on this event. By the setting of s = 16

√
d(v)/ϵ′, it holds that ϵ′ · s = 16

√
ϵ′ · d(v),

and by the setting of ϵ′ = |C(v, θ)|/d(v), we get ϵ′ · s ≥ 16
√

|C(v, θmin)| ≥ 16. Therefore,
with probability at least 19/20, s′ > ϵ′ · s = 16

√
ϵ′ · d(v). We condition on this event and

consider only those s′ selected neighbors of v that are endpoints of E′(v).
For each 4-cycle ρ ∈ C(v, θmin), let u1(ρ) and u2(ρ) be the two neighbors of v on this

C4 (so that they are endpoints of edges in E′(v)). Since the C4s in C(v, θmin) are edge-
disjoint, these vertices are distinct. Observe that the s′ selected neighbors of v are uniformly
distributed in

⋃
ρ∈C(v,θmin){u1(ρ), u2(ρ)}, and that s′ ≥ 16 ·

√
|C(v, θmin)|. Hence, by the

“birthday paradox”, with high constant probability, the sample of neighbors of v contains
two vertices, u1(ρ), and u2(ρ) for some ρ ∈ C(v, θmin). Conditioned on this event, once the
(at most θmin) neighbors of u1(ρ) and u2(ρ) are queried, the four-cycle ρ is observed. ◁

▷ Claim 14. Let G be a graph over n vertices and m edges, and let θ1, ϵ′, ϵ′′ be parameters.
Suppose that G contains a bipartite subgraph G′ = (L, R, E(G′)) such that every vertex
in R has degree at least θ1 in G. Let v be a vertex in R such that v has at least ϵ′ · d(v)

17 Actually, we do not rely on the setting of θmin, so this claim holds for any threshold value.
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neighbors in L where each of these neighbors, u, has at least ϵ′′ · max{d(u), m
n } neighbors

in R. If θ1 ≥ 2
√

n/(ϵ′ · ϵ′′) and we take s2 ≥ 32
ϵ′·ϵ′′ ·

√
2 log n · |R| random walks of length 2

from v for a sufficiently large constant c′, then with probability at least 9/10 we shall detect
a C4 in G.

Proof. For a pair of vertices v and v′ ̸= v in R, let ℓ2(v, v′) be the number of length-2 paths
between v and v′, and let ℓ2(v, R) =

∑
v′∈R ℓ2(v, v′). Consider taking two random length-2

walks from v, and let E1 be the event that both of them end at vertices in R. Let E2 be the
event that these two paths are distinct and end at the same vertex. Then for each single
vertex v′ ∈ R, conditioned on E1, the probability that the two walks end at v′ is exactly
ℓ2(v,v′)
ℓ2(v,R) · ℓ2(v,v′)−1

ℓ2(v,R) . Therefore,

Pr[E2 | E1] =
∑

v′∈R

ℓ2(v, v′)
ℓ2(v, R) · ℓ2(v, v′) − 1

ℓ2(v, R) = 1
(ℓ2(v, R))2 ·

∑
v′∈R

(ℓ2(v, v′))2 − 1
ℓ2(v, R) . (1)

We would like to lower bound the above probability. For the first term on the right-hand-side,
by applying the Cauchy-Schwartz inequality we get that

1
(ℓ2(v, R))2 ·

∑
v′∈R

(ℓ2(v, v′))2 ≥ 1
(ℓ2(v, R))2 · |R| ·

(
ℓ2(v, R))

|R|

)2
= 1

|R|
. (2)

By combining Equations (1) and (2) we get that Pr[E2 | E1] ≥ 1
|R| − 1

ℓ2(v,R) . Since each vertex
in R has degree at least θ1, we have that |R| ≤ 2m

θ1
. By the premise of the claim regarding

v and its neighbors, v has ϵ′d(v) ≥ ϵ′ · θ1 neighbors in L, and each of them has at least
ϵ′′ · (m/n) neighbors in R. Therefore,

ℓ2(v, R) ≥ ϵ′ · θ1 · ϵ′′ · m

n
≥ ϵ′ · ϵ′′ · θ2

1 · |R|
2n

≥ 2|R|, (3)

where the last inequality is by the premise θ1 ≥ 2
√

n/(ϵ′ · ϵ′′). Therefore, Pr[E2 | E1] ≥ 1
2|R| .

So far we have shown that when taking two distinct random walks from v, and conditioned
on them both ending at R (the event E1), the two paths collide on the end vertex (and hence
result in a C4) with probability at least 1/2|R|. We shall now prove, that when taking s

length-2 random walks from v, sufficiently many of them indeed end at R, and that with
high probability, at least two of them collide, resulting in a C4.

Consider first the event E1. By the premise of the claim, v has at least ϵ′ · d(v) neighbors
in L, and each u of them has at least ϵ′′ max{d(u), m/n} ≥ ϵ′′d(u) neighbors in R. Therefore,
the probability that a single random walk from v ends at R is at least ϵ′ · ϵ′′. Hence, if we
take s ≥ 32

ϵ′·ϵ′′

√
2 log n · |R| length-2 random walks from v, and let s′ denote the number

of walks that end at a vertex in R, we have that E[s′] = 32 ·
√

2 log n · |R|, and that with
probability at least 9/10, we have s′ ≥ 16 ·

√
2 log n · |R|. We henceforth condition on this

event.
Let χ′

i,j denote the event that the ith and jth random walks among the ones that end at
R collide on the ending vertex (and thus result in a C4). By the above discussion, we have
that for a specific pair i ̸= j, Pr[χ′

i,j = 1] ≥ 1/2|R|. We now lower bound the probability
that at least one pair of random walks from the s′ that end in R detects a C4, i.e. lower
bound

∑
i,j∈[s′] χi,j , using Claim 11. For that end we also need to upper bound the variance

of the sum.
Partition the vertices in R according to ℓ2(v, v′), where Rx(v) = {v′ : 2x−1 < ℓ2(v, v′) ≤

2x} for x = 0, . . . log L ≤ log n. Since
∑

v′∈R
ℓ2(v,v′)
ℓ2(v,R) · ℓ2(v,v′)−1

ℓ2(v,R) > 1
2|R| , there exists at least

one setting of x for which
∑

v′∈Rx

ℓ2(v,v′)
ℓ2(v,R) · ℓ2(v,v′)−1

ℓ2(v,R) ≥ 1
2|R| log n . We denote this setting by

x∗ and observe that x∗ > 0 (since for every v′ ∈ R0, ℓ2(v, v′) − 1 = 0).
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For every i, j ∈ [s′], i < j, we define a Bernoulli random variable χi,j that is 1 if and
only if the ith and the jth random walks from v (among the s′ considered) end at the
same v′ ∈ Rx∗ and pass through a different vertex in L. We next show that we can apply
Claim 11 (with s in that claim set to s′) to get an upper bound on the probability that∑

i,j∈[s′],i<j χi,j = 0 (which is an upper bound on the probability that we do not detect a
C4).

By the definition of the random variables, for every i1 ̸= i2, j1 ≠ j2, it holds that
χi1,j1 , χi2,j2 are independent, so that the first condition in Claim 11 is satisfied. Next, for
any pair i, j ∈ [s′], i < j we have that

µ = Pr[χi,j = 1] =
∑

v′∈Rx∗

ℓ2(v, v′)
ℓ2(v, R) · ℓ2(v, v′) − 1

ℓ2(v, R) ≥ 1
2|R| log n

. (4)

Therefore, we have that s′ ≥ 16 ·
√

2|R| log n = 16/
√

µ, and so the third condition in Claim 11
is satisfied (for c2 = 16, where s′ serves as the parameter s in the claim).

It remains to verify that the second condition holds. For any four indices i1, j1, i2, j2 ∈ [s′],
i1 < j1, i2 < j2 such that exactly two of the four indices are the same,

Pr[χi1,j1 = χi2,j2 = 1] =
∑

v′∈Rx∗

ℓ2(v, v′)
ℓ2(v, R) ·

(
ℓ2(v, v′) − 1

ℓ2(v, R)

)2
≤ µ · 2x∗ − 1

ℓ2(v, R) . (5)

Since by Equation (4), µ =
∑

v′∈Rx∗
ℓ2(v,v′)
ℓ2(v,R) · ℓ2(v,v′)−1

ℓ2(v,R) ≥ 22(x∗−1)

2(ℓ2(v,R))2 (as ℓ2(v, v′) ≥ 2x∗−1 for
every v′ ∈ Rx∗ and ℓ2(v, v′) − 1 ≥ ℓ2(v, v′)/2), we get that Pr[χi1,j1 = χi2,j2 = 1] <

√
2 · µ3/2,

and so the second condition in Claim 11 holds as well (for c1 =
√

2). Thus, the current claim
follows. ◁

We are now ready to prove Theorem 6.

Proof of Theorem 6. Since the algorithm only rejects a graph G if it detects a C4, it will
always accept graphs that are C4-free. Hence, we focus on the case that G is ϵ-far from being
C4-free.

Recall that θ0 = 4α/ϵ and let E>θ0 be the subset of edges in G where both endpoints
have degree greater than θ0. Since the arboricity of G is at most α, there are at most 2m/θ0
vertices with degree greater than θ0, so that |E>θ0 | ≤ (2m/θ0) · α = ϵm/2 edges.

Since G is ϵ-far from C4-free, if we remove all edges in E>θ0 , then we get a graph that is
at least (ϵ/2)-far from C4-free. It follows that there exists a set of edge-disjoint C4s, denoted
C, such that no C4 in C contains an edge in E>θ0 , and |C| ≥ ϵm/8.

We next partition C into two disjoint subsets: C1 contains those C4s that have at most
one vertex with degree at least θ1 in them, and C2 contains those that have at least two
such vertices (where in the case θ0 ≤ θ1 there will be exactly two). Since C = C1 ∪ C2, either
|C1| ≥ ϵm/16 or |C2| ≥ ϵm/16 (possibly both).

The case |C1| ≥ ϵm/16. Consider first the case that |C1| ≥ ϵm/16. In order to analyze
this case, we apply a process of “coloring” vertices and edges. Initially, all vertices and edges
that participate in C4s that belong to C1 are colored green, and all other vertices and edges
are colored red. We next apply the following iterative process. As long as there is a green
vertex v whose number of incident green edges is less than ϵd(v)/64, color v and its green
incident edges by red. Observe that the total number of edges colored red by this process is
at most ϵm/32. Furthermore, at the end of this process, every green vertex v has at least
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ϵd(v)/64 incident green edges (and if a vertex is red, then all its incident edges are red). Let
C′

1 be the subset of C1 that consists of those C4s in C1 whose edges all remain green after the
process (and hence they are green), so that |C′

1| ≥ ϵm/32.
By the definition of C1, and hence also C′

1, in each C4 in C′
1 there is at most one

vertex with degree greater than θ1, and no edges such that both endpoints have degree
greater than θ0. Assume without loss of generality that for each four-cycle ρ ∈ C′

1, where
ρ = (v0(ρ), v1(ρ), v2(ρ), v3(ρ)), v2(ρ) is the highest degree vertex (where d(v2(ρ)) could be
any value between 1 to n). Let V0(C′

1) =
⋃

ρ∈C′
1
{v0(ρ)} denote this set of vertices (i.e., the

ones that are across from the highest degree vertex in a (green) four-cycle in C′
1).

Observation. For every ρ ∈ C′
1,

1. d(v0(ρ)) ≤ θ1, and
2. v1(ρ) and v3(ρ) are of degree at most θmin = min{θ0, θ1}.

To verify this observation, note that by the definition of C′
1, for every ρ ∈ C′

1, there is at
most one vertex with degree greater than θ1, and since v2(ρ) is the highest degree vertex in
ρ, it follows that all three other vertices in ρ are of degree at most θ1.

We now show that d(v1(ρ)) ≤ θ0, and the proof for v3(ρ) is identical. If d(v2(ρ)) > θ0,
then it must be the case that d(v1(ρ)) < θ0, as otherwise both have degree greater than
θ0 and so they cannot be connected, which is a contradiction to them both being incident
on the four-cycle ρ. If d(v2(ρ)) ≤ θ0, then since v2(ρ) is the highest degree vertex in ρ,
d(v1(ρ)) ≤ d(v2(ρ)) ≤ θ0.

Therefore, for every v ∈ V0(C′
1), it has at least ϵd(v)/64 neighbors u such that (v, u) is

green and d(u) ≤ θmin. Hence, overall in the graph, the set of vertices V0(C′
1) has at least

ϵm/32 green edges that are incident to it and their second endpoint is of degree at most
θmin ≤ θ0. It follows that conditioned on an edge being returned by procedure Select-an-
Edge, by Claim 12, it returns an edge incident to a vertex v ∈ V0(C′

1) with probability at
least (ϵm/32)/2m′ > ϵ/128 (since m′ > 1

2 m). So the probability that in some iteration of
Test-C4-freeness a vertex v0 ∈ V0(C′

1) is selected, is at least 1 − (1 − ϵ
128 )t > 9/10 (recall that

t = Θ(1/ϵ) so that it suffices to set t = 500/ϵ).
Conditioning on this event, we apply Claim 13. Specifically:
θ0 = 4α/ϵ (as defined in Step 1 in Algorithm Test-C4-freeness);
C(v0, θmin) is the set of C4s in C′

1 that are incident to v0;
ϵ′ = |C(v0, θmin)|/d(v) ≥ ϵ/128 (since v0 has at least ϵd(v)/64 incident green edges,
and they can be partitioned into pairs such that each pair belongs to exactly one C4 in
C(v0, θmin));
d(v0) ≤ θ1 (by the above observation);

In order to apply the claim, we must ensure that s > 16
√

d(v0)/ϵ′. By the above, it is
sufficient to set s1 in Step 2c, to be s1 = 512

√
d(v0)/ϵ.

Hence, by Claim 13, if Step 2c is applied to v0, then a C4 is observed with probability at
least 9/10.

The analysis for the case that |C2| ≥ ϵm/16 is similar, and due to space constraints, it is
deferred to the full version.

We next turn to analyze the query complexity. By the settings of θ0, θ1, t, s1 and s2 in
the algorithm, the query complexity of the algorithm is upper bounded as follows.

O

(
1
ϵ

·
(α

ϵ
+ max{s1, s2}

))
= O

(
1
ϵ

(
α

ϵ
+ max

{√
θ1

ϵ
· θmin,

1
ϵ2 ·

√
nα

θ1
· log n

}))
(6)
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For the case that α ≤ (c1/4)
√

n, we have that θmin = θ0 = Θ(α/ϵ) and that θ1 = Θ(
√

n/ϵ),
and so we get a complexity of

O
(

ϵ−3 · n1/4α1/2 · max{α1/2, log1/2 n}
)

= O(ϵ−3 · n1/4α) , (7)

where the last inequality is for α > log n, and otherwise the complexity is O(ϵ−3 ·
n1/4α1/2 log1/2 n).

For the case that α > (c1/4)
√

n, we have that θmin = θ1 = Θ(
√

n/ϵ). Therefore, the
complexity is

O(ϵ−3 · (α + n3/4)) . (8)

Thus, the proof is complete. ◀
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