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Abstract
We give the first O(1)-approximation for the weighted Nash Social Welfare problem with additive
valuations. The approximation ratio we obtain is e1/e + ϵ ≈ 1.445 + ϵ, which matches the best known
approximation ratio for the unweighted case [3].

Both our algorithm and analysis are simple. We solve a natural configuration LP for the problem,
and obtain the allocation of items to agents using a randomized version of the Shmoys-Tardos
rounding algorithm developed for unrelated machine scheduling problems [30]. In the analysis, we
show that the approximation ratio of the algorithm is at most the worst gap between the Nash social
welfare of the optimum allocation and that of an EF1 allocation, for an unweighted Nash Social
Welfare instance with identical additive valuations. This was shown to be at most e1/e ≈ 1.445 by
Barman et al. [3], leading to our approximation ratio.
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1 Introduction

In the weighted (or asymmetric) Nash Social Welfare problem with additive valuations, we
are given a set A of n agents, and a set G of m indivisible items. Every agent i ∈ A has
a weight wi ≥ 0 such that

∑
i∈A wi = 1. There is a value vij ∈ R≥0 for every i ∈ A and

j ∈ G. The goal of the problem is to find an allocation σ : G → A of items to agents so as to
maximize the following weighted Nash social welfare of σ:

∏
i∈A

 ∑
j∈σ−1(i)

vij

wi

.

In the case where all wi’s are equal to 1
n , we call the problem the unweighted (or symmetric)

Nash Social Welfare problem.
Allocating resources in a fair and efficient manner among multiple agents is a fundamental

problem in computer science, game theory, and economics, with applications across diverse
domains [19, 33, 4, 28, 25, 2, 29, 5]. The weighted Nash social welfare function is a notable
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objective that balances efficiency and fairness. The unweighted (or symmetric) objective
was independently proposed by different communities [26, 20, 32], and later the study has
been extended to the weighted case [16, 18]. Since then it has been used in a wide range of
applications, including bargaining theory [21, 7, 31], water allocation [17, 10], and climate
agreements [34].

The unweighted Nash Social Welfare problem with additive valuations is proved to be NP-
hard by Nguyen et al. [27], and APX-hard by Lee [22]. Later the hardness of approximation
was improved to

√
8/7 ≈ 1.069 by Garg et al. [12], via a reduction from Max-E3-Lin-2.

On the positive side, Cole and Gkatzelis [9] gave a (2e1/e + ϵ ≈ 2.889 + ϵ)-approximation
using a market equilibrium with some spending restrictions. The ratio was improved by Cole
et al. [8] to 2 using a tight analysis, and by Anari et al. [1] to e via a connection of the problem
to real stable polynomials. Both papers formulated some convex program (CP) relaxations
for the problem. In particular, [8] showed that the optimum solution to their CP corresponds
to the spending-restricted market equilibrium defined in [9]. The state-of-the-art result for
the problem is a combinatorial (e1/e + ϵ ≈ 1.45 + ϵ)-approximation algorithm due to Barman
et al.[3]. They showed that when all the valuations of agents are identical, any allocation
that is envy-free up to one item (EF1) is e1/e-approximate. Their approximation result then
follows from a connection between the non-identical and identical valuation settings they
established.

All the results discussed above are for the unweighted case. For the weighted case with
agent weights w ∈ [0, 1]A, |w|1 = 1, Brown et al. [6] presented a 5 · exp(2 · DKL

(
w|| 1⃗

n )
)

=
5 · exp(2 log n + 2

∑
i∈A wi log wi) approximation algorithm, where DKL denotes the KL

divergence of two distributions. This is the first work that studies the weighted version for
the additive valuation case. Prior to this work, there is an O(nwmax) = O(n maxi∈A wi)-
approximation for the more general submodular valuation case [13], which we discuss soon.
Brown et al. [6] showed that the two CPs from [8] and [1] are equivalent, and their result is
based on the CP from [8], generalized to the weighted setting.

The additive valuation setting is a special case of the submodular valuation setting, which
is another important setting studied in the literature. In this setting, instead of a vij value
for every ij pair, we are given a monotone submodular function vi : 2G → R≥0 for every agent
i ∈ A. Our goal is to find an allocation σ : G → A so as to maximize

∏
i∈A

(
vi(σ−1(i))

)wi

.
A bulk of the previous work has focused on the unweighted case; that is, wi = 1

n for all i ∈ A.
For this case, Garg et al. [15] proved a hardness of e/(e − 1) ≈ 1.5819 using a reduction from
Max-3-Coloring; this is better than the 1.069 hardness for the additive valuation case.

On the positive side, Li and Vondrak [24] extended the techniques of Anari et al. [1],
to obtain an e3/(e − 1)2-approximation algorithm for the unweighted Nash Social Welfare
problem for a large family of submodular valuations, including coverage functions and linear
combinations of matroid rank functions. Later, Garg et al. [14] considered a family of
submodular functions called Rado functions, and gave an O(1)-approximation for this family
using the matching theory and convex program techniques. Li and Vondrak [23] developped
the first O(1)-approximation for general submodular functions, with an approximation ratio
of 380. Recently, Garg et al. [13] presented an elegant 4-approximation local search algorithm
for the problem, which is the current best approximation result for the problem. All the
results discussed above are for the unweighted case. For the weighted case, Garg et al. [13]
gave an O(nwmax)-approximation, where nmax = maxi∈A wi. Whether the weighted Nash
Social Welfare problem with submodular valuations admits a constant approximation is a
big open problem.
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Recently, the problem has been studied in an even more general setting, namely, the
subadditive valuation setting. Dobzinski et al. [11] gives an O(1)-approximation for the
unweighted Nash Social Welfare problem in this setting under the demand oracle model.

1.1 Our Result and Techniques
In this note, we give the first O(1)-approximation algorithm for the weighted Nash Social
Welfare problem with additive valuations:

▶ Theorem 1. For any ϵ > 0, there is a randomized (e1/e + ϵ ≈ 1.445 + ϵ)-approximation
algorithm for the weighted Nash Social Welfare problem with additive valuations, with running
time polynomial in the size of the input and 1

ϵ .

Our approximation ratio of e1/e + ϵ matches the best ratio for the unweighted case due
to Barman et al. [3]. In contrast, the ratio given by Brown et al. [6] is 5 · exp(2 · DKL(w|| 1⃗

n )),
which could be polynomial in n.

Our algorithm is based on a natural configuration LP for the problem, which has not
been studied before to the best of our knowledge. The configuration LP contains a yi,S

variable for every agent i and subset S of items, indicating if the set of items i gets is S or
not. We show that the configuration LP can be solved in polynomial time to any precision,
despite having exponential number of variables. Once we obtain the LP solution, we define
xij for every i ∈ A and j ∈ G to be the fraction of j assigned to i.

We use a randomized version of the Shmoys-Tardos rounding algorithm [30] developed
for unrelated machine scheduling problems, to round x into an integral solution. For every
agent i, we break the fractional items assigned to i into groups from the most valuable to
the least, each containing 1 fractional item. The rounding algorithm maintains marginal
probabilities, and the requirement that i gets exactly one item from each group (except
for the last one, from which i gets at most one item). In the analysis for each agent i, we
construct an instance of the unweighted Nash Social Welfare problem with identical additive
valuations, that involves many copies of the agent i, along with two alloations S and S ′

to the instance. S corresponds to the LP solution, and S ′ corresponds to the randomized
solution given by the rounding algorithm. Thanks to the condition that every group contains
one item, the solution S ′ is envy-free up to one item (EF1). Using the result of [3] about
EF1 allocations, we show that the Nash social welfare of S ′ is at least e−1/e times that of S,
which eventually leads to our (e1/e + ϵ)-approximation.

We believe the configuration LP could be used in many other settings. We leave as an
immediate open problem whether it can give an O(1)-approximation for the weighted Nash
Social Welfare problem with submodular valuations.

2 (e1/e + ϵ)-Approximation Using Configuration LP

We describe the configuration LP in Section 2.1 and the rounding algorithm in Section 2.2.
The analysis is given in Section 2.3.

2.1 The Configuration LP
For convenience, for any value function v : G → R≥0, we define v(S) :=

∑
j∈S vj for every

S ⊆ G to be the total value of items in S according to the value funciton v. In the integer
program correspondent to the configuration LP, for every i ∈ A and S ⊆ G, we have a
variable yi,S ∈ {0, 1} indicating if the set of items assigned to i is S or not. We relax the
integer constraint to obtain the following configuration LP:

ICALP 2024
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max
∑

i∈A,S⊆G

wi · yi,S · ln vi(S) s.t. (Conf-LP)

∑
i∈A,S∋j

yi,S ≤ 1 ∀j ∈ G (1)

∑
S⊆G

yi,S = 1 ∀i ∈ A (2)

yi,S ≥ 0 ∀i ∈ A, S ⊆ G (3)

It is convenient for us to consider the natural logarithm of the Nash social welfare function
as the objective, which is

∑
i∈A wi · ln vi(σ−1(i)). This leads to the objective in (Conf-LP).

(1) requires that every item j is assigned to at most one agent, and (2) requires that every
agent i is assigned one set of items.

The configuration LP has exponential number of variables, but it can be solved within
an additive error of ln(1 + ϵ) for any ϵ > 0, in time polynomial in the size of the instance
and 1

ϵ . We defer the details to Appendix A. Notice that we are considering the logarithm of
Nash social welfare, and the typical (1 + ϵ)-multiplicative factor becomes an additive error of
ln(1 + ϵ).

2.2 The Rounding Algorithm
From now on, we assume we have obtained a vector y from solving the LP, described using a
list of non-zero coordinates; the value of y to (Conf-LP) is at least the optimum value minus
ln(1 + ϵ). We can assume (1) holds with equalities:

∑
i∈A,S∋j yi,S = 1 for every j ∈ G. Then

we let xij =
∑

S∋j yi,S for every i ∈ A and j ∈ G. So
∑

i∈A xij = 1 for every j ∈ G.
In this paragraph, we fix an agent i and break the fractional items assigned to i into a set

Gi of groups, each containing 1 fractional item. They are created in non-increasing order of
values, as in the Shmoys-Tardos algorithm for unrelated machine scheduling problems. That
is, the first group contains the 1 fractional most valuable items assigned to i, the second group
contains the 1 fractional most valuable items assigned to i after removing the first group, and
so on. Formally, we sort the items in G in non-increasing order of vij values, breaking ties
arbitrarily. Let pi = ⌈

∑
j∈G xij⌉. Then we can find vectors g1, g2, · · · , gpi ∈ [0, 1]G satisfying

the following properties:
(P1) For every t ∈ [1, pi−1], we have |gt|1 = 1; for t = pi, we have |gt|1 =

∑
j∈G xij−(pi−1) ∈

(0, 1].
(P2)

∑pi

t=1 gt
j = xij for every j ∈ G.

(P3) For every 1 ≤ t < t′ ≤ pi, and two items j, j′ such that j appears before j′ in the
ordering, it can not happen that gt

j′ > 0 and gt′

j > 0.
It is easy to see that g1, g2, · · · , gpi are uniquely decided by the three conditions. We say
each gt is a group. Let Gi = {g1, g2, · · · , gpi} be the set of all groups constructed for this
agent i.

Now we take all agents i into consideration and let G = ⊎i∈AGi be the set of all groups
constructed.1 The representations of groups give a fractional matching between the groups
G and items G: an item j is matched to a group g ∈ [0, 1]G with a fraction of gj . Then each
item is matched to an extent of 1, and every group g is matched to an extent of |g|1. So

1 It is possible that two groups from different sets Gi and Gi′ have the same vector representation. So we
treat G as a multiset and we assume we know which set Gi each group g ∈ G belongs to.
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a group is matched to an extent of 1 if it is not the last group for an agent, and at most 1
otherwise. Therefore, we can efficiently output a randomized (partial-)matching between the
groups G and items G so that the marginal probabilities are maintained:
(⋆) For every group g ∈ G and item j ∈ G, we have Pr[j is matched to g] = gj .

(⋆) implies that an item j ∈ G is matched with probability 1. If a group g has |g|1 = 1,
then it is matched with probability 1.

The matching naturally gives us an allocation of items to agents: If an item j ∈ G is
matched to some group g ∈ Gi, then we assign j to i. By (⋆) we know that the probability
that j is assigned to i is precisely xij . Let Si be the set of items assigned to i in the algorithm;
notice that it is random. This finishes the description of the randomized rounding algorithm.

2.3 The Analysis
To analyze our rounding algorithm, we first formally define an EF1 allocation.

▶ Definition 2. Given an instance of the unweighted Nash Social Welfare problem with
agents A, items G, and identical additive valuation v : G → R≥0 for all agents, an allocation
σ : G → A is said to be envy-free up to one item (EF1), if for every two distinct agents i, i′

with σ−1(i′) ̸= ∅, there exists some j ∈ σ−1(i′), such that v(σ−1(i′) \ j) ≤ v(σ−1(i)).

We use the following result from [3]:

▶ Theorem 3 ([3]). For the unweighted Nash Social Welfare problem with identical additive
valuations, any EF1-allocation is an e1/e-approximate solution.

With the theorem, we prove the following key lemma:

▶ Lemma 4. For every i ∈ A, we have

E
[

ln vi(Si)
]

≥
∑
S⊆G

yi,S · ln vi(S) − 1
e

.

Proof. Throughout the proof, we fix the agent i. Let ∆ > 0 be an integer, so that every yi,S

is an integer multiply of 1/∆, and the probability that Si = S for any S is also an integer
multiply of 1/∆.2 We consider an instance of the unweighted Nash Social Welfare problem
with identical additive valuations. In the instance, there are ∆ copies of the agent i, and
∆xij copies of every item j ∈ G; so all the agents are identical. The y = (yi,S)S⊆G vector
gives us an allocation S to the instance: For every S ⊆ G, there are exactly ∆yi,S agents
who get a copy of S. Notice that this is a valid solution, as

∑
S yi,S = 1 and

∑
S∋j yi,S = xij

for every item j.
The Nash Social Welfare of the allocation S is ∏

S⊆G

vi(S)∆yi,S

1/∆

=
∏

S⊆G

vi(S)yi,S .

The distribution for Si also corresponds to an allocation S ′ of items to agents: For every
S ⊆ G, there are ∆ · Pr[Si = S] agents who get a copy of S. Again, this is a valid solution as∑

S Pr[Si = S] = 1 and
∑

S∋j Pr[Si = S] = E[Si ∋ j] = xij .

2 We can assume all yi,S values are rational numbers. Under this condition, it is easy to guarantee that
the probabilities are rational numbers.

ICALP 2024
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The Nash Social Welfare of the allocation S ′ is ∏
S⊆G

vi(S)∆ Pr[Si=S]

1/∆

=
∏

S⊆G

vi(S)Pr[Si=S].

A crucial property for the solution S ′ is that it is EF1. Indeed, if Pr[Si = S] > 0 for some
S, then S contains exactly one item from each group in Gi except for the last one, from
which S contains at most one item. Also, the items in the groups Gi are sorted by (P3). So
if there are two sets S and S′ in the support of the distribution for Si, and we remove the
most valuable item from S′, then S beats S′ item by item.

Therefore, by Theorem 3, we know that the Nash Social Welfare of S ′ is at least e−1/e

times that of the optimum allocation for the instance, which is at least that of S. That is,∏
S⊆G

vi(S)Pr[Si=S] ≥ e−1/e ·
∏

S⊆G

vi(S)yi,S .

Taking logarithm on both sides gives the lemma. ◀

Applying the lemma for every i ∈ A and using linearity of expectation, we have

E

[∑
i∈A

wi · ln vi(Si)
]

≥
∑

i∈S,S⊆G

wi · yi,S · ln vi(S) − 1
e

.

We used that
∑

i∈A wi = 1.
By the convexity of exponential function, we have

E

[∏
i∈A

vi(Si)wi

]
≥ e−1/e · exp

 ∑
i∈S,S⊆G

wi · yi,S · ln vi(Si)

 ≥ e−1/e · opt
1 + ϵ

,

where opt is the Nash Social Welfare of the optimum allocation, and the second inequality
used that the value of our solution y to (Conf-LP) is at least its optimum value minus
ln(1 + ϵ). By scaling ϵ down by an absolute constant at the beginning, we can make the right
side to be at least opt

e1/e+ϵ
. This finishes the proof of Theorem 1.

Finally, we briefly discuss how to derandomize the rounding algorithm. We round the
solution to the configuration LP in iterations, maintaining a fractional assignment x̄ of items
to agents; x̄ = x initially. Let ∆ be a large enough integer so that every yi,S is an integer
multiply of 1/∆. Focus on a fixed agent i ∈ A and consider the Nash Social Welfare instance
containing ∆ copies of i, and ∆x̄ij copies of each item j ∈ G. Group the items as follows:
the ∆ most valuable items belong to the first group, the next ∆ most valuable items belong
to the second group, and so on. We define Φi to be the logarithm of the Nash Social Welfare
of the worst allocation satisfying the following condition: every agent gets at most one item
from each group. Fortunately, the worst allocation can be defined naturally: the first agent
takes the most valuable item from each group, and the second agent takes the second most
valuable item from each group, and so on. Thus Φi can be computed efficiently. We define
Φ =

∑
i wiΦi to be the overall potential function. In the randomized version of the algorithm,

one can define the rotation operation over the fractional matching between groups G and
items G. In expectation the operation does not decrease Φ. To derandomize the algorithm,
we can perform the operation deterministically so that Φ does not decrease. The potential
value Φ at the end of the algorithm is at least that at the beginning, which is at least the
value of the configuration LP minus 1/e. On the other hand, the logarithm of the Nash
Social Welfare of the integral solution is exactly the final Φ. Therefore, the Nash Social
Welfare is at least e−1/e times the exponential of the value of the configuration LP.
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A Solving Configuration LP within an Additive Error of ln(1 + ϵ)

Let ϵ > 0 be upper bounded by a sufficiently small constant (we allow ϵ to be a sub-constant).
By only allowing every agent to get one item, we can obtain an m-approximation for the our
Nash Social Welfare instance. Then, by making O

(
log m

ϵ

)
guesses, we can assume we are

given a number o such that the value of (Conf-LP) is in (o, o + ϵ/3].
We consider the dual of (Conf-LP), with the objective replaced by a constraint.∑
j∈G

αj +
∑
i∈A

βi ≤ o (4)

∑
j∈S

αj + βi ≥ wi · ln vi(S) ∀i ∈ A, S ⊆ G (5)

αj ≥ 0 ∀j ∈ G (6)

Since (Conf-LP) has value strictly larger than o, the dual LP (4-6) is infeasible. We
design an approximate separation oracle for the LP. Given some α ∈ RG

≥0 and β ∈ RA that
does not satisfy (5), we can find some i ∈ A and S ⊆ G such that∑

j∈S

αj + βi < wi ln
(
(1 + ϵ/2)vi(S)

)
.

The running time of the oracle is polynomial in the input size and 1
ϵ . This can be achieved

using the standard dynamic programming technique: For a fixed i ∈ A, to find the S, we
guess the item j∗ ∈ S with the largest vij∗ , coarsen the vij values based on the guess, and
run a dynamic programming to find the S.

So, using the ellipsoid method with the approximate separation oracle, we can find
polynomially many half spaces of the form

∑
j∈S αj + βi ≥ wi ln

(
(1 + ϵ/2)vi(S)

)
, whose

intersection is empty. Then, we consider the Nash Social Welfare instance where all vij

values are scaled up by 1 + ϵ/2, and (Conf-LP) to the instance. By solving the LP restricted
to the variables yi,S correspondent to the half spaces (that is, we let all other variables be 0),
we obtain a solution y whose value is at least o w.r.t the scaled instance. So, the value of the
solution y to (Conf-LP) w.r.t the original instance is at least o−

∑
i∈A,S⊆G yi,Swi ln(1+ϵ/2) =

o −
∑

i wi ln(1 + ϵ/2) = o − ln(1 + ϵ/2).
As the value of (Conf-LP) is at most o + ϵ/3, we solved the LP up to an additive error of

ϵ/3 + ln(1 + ϵ/2). For a small enough ϵ, this is at most ln(1 + ϵ).
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