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Abstract
In this paper, we investigate the question of whether the electrical flow routing is a good oblivious
routing scheme on an m-edge graph G = (V, E) that is a Φ-expander, i.e. where |∂S| ≥ Φ · vol(S)
for every S ⊆ V, vol(S) ≤ vol(V )/2. Beyond its simplicity and structural importance, this question
is well-motivated by the current state-of-the-art of fast algorithms for ℓ∞ oblivious routings that
reduce to the expander-case which is in turn solved by electrical flow routing.

Our main result proves that the electrical routing is an O(Φ−1 log m)-competitive oblivious
routing in the ℓ1- and ℓ∞-norms. We further observe that the oblivious routing is O(log2 m)-
competitive in the ℓ2-norm and, in fact, O(log m)-competitive if ℓ2-localization is O(log m) which is
widely believed.

Using these three upper bounds, we can smoothly interpolate to obtain upper bounds for every
p ∈ [2, ∞] and q given by 1/p + 1/q = 1. Assuming ℓ2-localization in O(log m), we obtain that in
ℓp and ℓq, the electrical oblivious routing is O(Φ−(1−2/p) log m) competitive. Using the currently
known result for ℓ2-localization, this ratio deteriorates by at most a sublogarithmic factor for every
p, q ̸= 2.

We complement our upper bounds with lower bounds that show that the electrical routing
for any such p and q is Ω(Φ−(1−2/p) log m)-competitive. This renders our results in ℓ1 and ℓ∞

unconditionally tight up to constants, and the result in any ℓp- and ℓq-norm to be tight in case of
ℓ2-localization in O(log m).
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1 Introduction

In this paper, we study flow-routing problems on connected, undirected (multi-)graphs
G = (V, E). A broad and well-studied class of single-commodity flow problems arises by
seeking a flow f ∈ RE that routes given demands χ ∈ RV , while minimizing a ℓp-norm of
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the flow. Denoting the graph edge-vertex incidence matrix by B ∈ RV ×E , we can write these
optimization problems as

min
Bf=χ

∥f∥p. (1)

The case p = ∞ is known as undirected maximum flow, while p = 2 is called electrical flow
and p = 1 is called transshipment. Here we focus for simplicity on the unweighted setting,
but all results in this paper and in related work can in fact be extended to work in weighted
graphs.

We can generalize these flow problems to the multi-commodity case by allowing a collection
of demands {χi} to be routed simultaneously by a collection of flows {f i}, while minimizing
a single objective on all of them.

min
Bf i=χi,∀i

∥
∑

i

|f i|∥p. (2)

For any p, solutions with (1 + 1/ poly(|E|))-multiplicative error to these problems can be
computed in polynomial time and for the single-commodity setting even in almost-linear time
[18, 7]. For the special cases of p = 1, 2, ∞, optimal solutions can be computed in polynomial
time via linear/convex programming.

However, in many settings, we may want to sacrifice optimality of our routing solutions
for simplicity of the routing algorithm. A particularly simple and popular approach is
oblivious routing, where a collection of routing paths are chosen in advance between every
pair of nodes, without knowing the demands that will be eventually routed. Historically,
oblivious routings were first studied on specific networks, specifically the hypercube [37, 38].
A deeply influential technique in this area is the work of Rackë [27]. An oblivious routing is
linear operator A ∈ RE×V that maps any valid1 demand vector χ ∈ RV to a flow f = Aχ

that routes χ. This extends to routing multiple demands in the multi-commodity setting,
{f i = Aχi}.

Conceptually, a highly attractive feature is that multiple demand vectors can be routed
simultaneously without knowing the other demands, and a single demand can be broken
down into multiple terms, e.g. source-sink demand pairs, and routings of each pair can be
again computed separately. These features make oblivious routings ideal for online routing
problems – which was the original motivation for their construction [27].

As mentioned above, using oblivious routing comes at the sacrifice of optimality. To
get a quantitative measure of the loss a routing scheme A might incur in the ℓp metric, we
define the competitive ratio of A, denoted by ρp(A), to be the maximal ratio between the
objective value achieved by an oblivious routing A and the optimal solution achieved by any
(multi-commodity) demand.

In a ground-breaking sequence of papers [27, 3, 9], Räcke, Azar, Cohen, Fiat, Kaplan,
and Englert showed that for all ℓp-norms, oblivious routings with competitive ratio Õ(1)
exist2. In fact, for the well-studied setting of p = ∞, [28] gave an optimal construction with
O(log m) competitive ratio in polynomial time, matching a Ω(log m) lower bound [4, 25].

Fast Algorithms and Applications for ℓ∞ Oblivious Routing

ℓ∞ oblivious routings are a fundamental tool in obtaining fast approximate maximum
flow algorithms in undirected graphs. Building on the techniques in [35, 24], [16, 33] give
algorithms that show that O(poly(α/ε)) applications of a α-competitive ℓ∞ oblivious routing

1 A demand χ can be routed on a connected graph iff
∑

v
χ(v) = 0.

2 We use Õ(·) to hide polylogarithmic factors in the graph size m.
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yield (1 + ε)-approximate maximum flow on undirected graphs by using gradient descent.
They then developed almost-linear time algorithms for mo(1)-competitive ℓ∞ oblivious routing.
As a result, they obtained approximate undirected maximum flow in time m1+o(1) poly(1/ε)
– one of the major recent breakthroughs in modern graph algorithms.

Later, [29] gave a reduction from computing Õ(1)-competitive ℓ∞ oblivious routings to
approximate maximum flows resulting in a m1+o(1) time algorithm. [26] then showed that
combining these approaches recursively yields a Õ(m) algorithm to compute Õ(1)-competitive
ℓ∞ oblivious routings and a Õ(m poly(1/ε)) algorithm for (1 + ε)-approximate undirected
maximum flow [26]. Recently, [12] presented an alternative, simple Õ(m) algorithm to obtain
(and maintain) ℓ∞ oblivious routings with subpolynomial competitive factor.

While recently the first exact maximum flow algorithm with runtime m1+o(1) was given
in [7], ℓ∞ oblivious routings and approximate undirected maximum flow remain important
tools with many algorithms crucially relying on them as subroutines to obtain runtime Õ(m).

We point out that above, for simplicity, we did not properly distinguish between ℓ∞
oblivious routings which are only constructed in [16], and their weaker counterparts congestion
approximators which are used in all other constructions. A congestion approximator is a
linear operator C that maps each demand χ to vector c = Cχ such that ∥c∥∞ approximates
the objective value of (2). Note, that c is not necessarily a flow.

ℓ∞ Oblivious Routing on Expanders and in General Graphs

Valiant’s trick [38], a popular scheme that routes demands from each source to a set of
randomly chosen intermediate nodes before routing them to the destination, establishes
the existence of O(Φ−1 log n)-competitive ℓ∞-oblivious routings in expanders. However,
implementing Valiant’s trick algorithmically requires computing multi-commodity flows,
which are expensive to compute.

To the best of our knowledge, the only fast algorithm that computes an ℓ∞ oblivious
routing on general graphs is given in [16]. In their approach, they first reduce the problem to
finding an ℓ∞ oblivious routing on a Φ-expander with unit-weights (in this case Φ = m−o(1)).
They then exploit a simple but striking statement, previously demonstrated by Kelner and
Maymounkov [15]: the electrical flow routing, henceforth denoted by AE , on a Φ-expander is
a O(Φ−2 log m)-competitive ℓ∞-routing. It was later observed by Schild-Rao-Srivastava [32]
that on unweighted graphs, the statement can be derived from Cheeger’s Inequality ([5, 1]).
Further, the electrical flow routing can be applied efficiently after Õ(m) preprocessing, due
to the breakthrough result by Spielman and Teng [35] and subsequent work [17, 8, 20, 14]3.
[16] then demonstrates that by assembling and combining these routings on expanders, one
obtains an ℓ∞ oblivious routing of the entire graph that can be evaluated efficiently.

As far as we know, no other fast algorithm is currently known to compute ℓ∞ oblivious
routing, and all fast algorithms that compute congestion approximators again reduce to
expanders on which cuts can be approximated by stars. Therefore, to the best of our
knowledge, every almost-linear time approach to constructing ℓ∞ oblivious routing reduces
to expanders, and on expanders the only known fast algorithm for obtaining an ℓ∞ oblivious
routing is to use the electrical flow routing.

3 Technically, only a high-accuracy solution is obtained which suffices for our application.
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Oblivious Routing for any ℓp

Analogous to the reduction of solving approximate undirected maximum flow via few applic-
ations of ℓ∞ oblivious routing, Sherman later showed in [34], that any ℓp-norm minimizing
flow on undirected graphs can be computed to an (1 + ε)-approximation by applying ℓp

oblivious routings with α competitive ratio Õ(poly(α/ε)) times via gradient descent.
While we are not aware of any article studying fast algorithms for the general ℓp-norm,

the ℓ1-norm has received considerable attention and Õ(m) time algorithms were given with
competitive ratio Õ(1) [23, 39, 30], and adapted to fully-dynamic graphs in [6].

Oblivious Routing for ℓ1 on Expanders

Further, at least in the unit-capacity setting, the result by Kelner and Maymounkov [15]
extends seamlessly to the ℓ1-norm, i.e. the electric flow routing AE has competitive ratio
O(Φ−2 log m). This follows since the electrical flow routing is given by AE = B⊤L+, where
B is the vertex-edge incidence matrix and L = BB⊤ is the Laplacian matrix of the graph
and then bounding the ℓ∞ competitive ratio of the oblivious routing for multicommodity
flow problems is equivalent to bounding the quantity ∥|AEB|∥∞→∞, where |·| denotes the
entrywise absolute value, while the ℓ1 competitive ratio equals ∥|AEB|∥1→1. The matrix
Π = AEB = B⊤L+B is a frequently-studied orthogonal projection matrix and it is a
symmetric matrix, since B⊤L+B = B⊤A⊤

E = (AEB)⊤ = (B⊤L+B)⊤ where we use that
L+ is symmetric. But it is further well-known that ∥X∥∞→∞ = ∥X⊤∥1→1 and thus we have
that ∥|Π|∥∞→∞ = ∥|Π|∥1→1, i.e. the competitive ratios achieved by AE in ℓ1- and ℓ∞-norm
are equal.

Beyond Oblivious Routing

The quantity ∥|Π|∥∞→1 is important in several other contexts: It captures the so-called
localization of electrical flow on the graph [32]. Localization measures the ℓ1-length of the
electrical flow corresponding to a demand placed at two endpoints of an edge, averaged over
all edges. The bound ρ1(AE) = O(Φ−2 log m) implies a stronger statement in expanders:
For every such edge-demand, the ℓ1-length is bounded by O(Φ−2 log m). It is known that
in general graphs, localization is bounded by O(log2 m) – but it is open whether O(log m)
holds (a lower bound of Ω(log m) is known) although it is widely believed. From [15], we see
that any graph with expansion 1/o(

√
log m) achieves localization o(log2 m).

Localization has been used in a number of contexts, including sampling random spanning
trees in almost-linear time [31], computing spectral subspace sparsification [22] of Laplacian
matrices, and building oblivious routings using Õ(

√
m) electrical flows [11].

An interesting message of our paper is that electrical flow on expanders simultaneously
is an excellent ℓ1 and ℓ∞ oblivious routing, i.e. it uses flow paths are are both short and
low congestion. A broad theory of expanders that simultaneously allow for short and low-
congestion paths has recently been developed in [10, 13], allowing for other possible trade-offs
between length and congestion than those obtained by conventional expanders.

1.1 Main Contributions
In this article, we study a simple but important question:

Given any p ∈ [1, ∞], what is the competitive ratio ρp(AE) of the electrical flow
routing AE on a Φ-expander?
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We first settle this question for the important cases when p ∈ {1, ∞} by proving the
following theorem that proves an upper bound that is tight up to constant factors.

▶ Theorem 1.1. For a Φ-expander multigraph G = (V, E) with edge-vertex incidence matrix
B and Laplacian L, the electrical routing AE = B⊤L+ has competitive ratios ρ∞ and ρ1
for multi-commodity ℓ∞ and ℓ1 routing both bounded by

ρ∞(AE), ρ1(AE) ≤ 3 · log(2m)
Φ

The Riesz-Thorin theorem then gives us a way to smoothly interpolate between the
upper bounds of any two ℓp1 - and ℓp2 -norm competitive ratios to obtain an upper bound on
the ℓp-norm competitive ratio ρp(AE) for any p1 < p < p2. Using a smooth interpolation
between our results for ℓ1- and ℓ∞-norm, we thus obtain the following more general result.

▶ Theorem 1.2. For a Φ-expander multigraph G = (V, E), and any p ∈ [1, ∞], we have that
the competitive ratio of AE is

ρp(AE) ≤ 3 · log(2m)
Φ .

It was proven in [32], that Π = B⊤L+B satisfies ∥|Π|∥2→2 ≤ O(log2 n) (where |·|
indicates entry-wise absolute value). We refer to this quantity ∥|Π|∥2→2 as ℓ2-localization.
It is widely believed that ∥|Π|∥2→2 ≤ O(log m). Implicit in earlier works, albeit perhaps
not widely observed, is that ρ2(AE) = ∥|Π|∥2→2 (see Lemma 4.1), i.e. the competitive ratio
of multi-commodity ℓ2 routing is exactly characterized by ℓ2-localization. By interpolating
with this norm bound and our bounds on ρ1(AE) and ρ∞(AE), we obtain potentially much
stonger bounds on the competitive ratio ρp(AE).

▶ Corollary 1.3 (implied by Riesz-Thorin). For a Φ-expander multigraph G = (V, E), and any
p ∈ [2, ∞] and q given by 1/p + 1/q = 1, we have that the competitive ratios of AE for the ℓp

and ℓq norms are

ρp(AE), ρq(AE) ≤ ∥|Π|∥2/p
2→2

(
3 · log(2m)

Φ

)1−2/p

.

We complement our upper bounds with strong, unconditional lower bounds. Remarkably,
if ∥|Π|∥2→2 ≤ O(log m), as widely believed, then our bounds are tight up to constants.
Even with the currently known fact ∥|Π|∥2→2 ≤ O(log2 n), our lower bounds still prove a
sublogarithmic gap in every constant p ̸= 2 and q and optimal Φ dependency.

▶ Theorem 1.4. For an infinite number of positive integers n and any Φ ∈ [1/ 3
√

n, 1], for
any p ∈ [2, ∞] and q given by 1/p + 1/q = 1, we have that

ρp(AE), ρq(AE) ≥ Ω
(

log m

Φ1−2/p

)
.

1.2 Oblivious Electric Routing in Weighted Graphs
We can extend Theorem 1.1 to weighted graphs in the following way: Consider a graph
G = (V, E) with positive integer edge capacities c ∈ RE and positive integer edge lengths
s ∈ RE . Letting C, S ∈ RE×E denote diagonal matrices with c and s on the diagonal
respectively, we are interested in the optimal weighted ℓ∞- and ℓ1-routings for given demands
D = {χ1, . . . , χk}

ICALP 2024
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Figure 1 An illustration of the result given in Corollary 1.3 of the different competitive ratios
achieved with respect to each ℓp-norm, where n and Φ are fixed and Φ ≪ 1/ log m. The red curve
shows the optimal ratios, achieved if localization is in O(log m), which is also obtained up to constant
factors by our lower bound in Theorem 1.4. The lilac curve shows the current trade-off where we use
the known result that localization is in O(log2 n). For Φ ≫ 1/ log m the upper bound of Theorem
1.2 achieves values between the two curves.

opt∞(D) = min
Bf i=χi,∀i

∥C−1
∑

i

|f i|∥∞ and opt1(D) = min
Bf i=χi,∀i

∥S
∑

i

|f i|∥1 (3)

Now consider defining an electrical routing by choosing resistances R = SC−1 and
defining the electrical routing AE = R−1B⊤(BR−1B⊤)+. Let Ĝ denote the multigraph
with edge e replaced by c(e) unit-weight paths of length s(e). Now, one can easily show that
the electrical routing in G according to AE is equal to the unit-weight electrical routing in
Ĝ, when mapping flows on a capacitated edge to a collection of flows on multi-edge paths.

▶ Corollary 1.5 ((Informal) Electrical Oblivious ℓ∞- and ℓ1-Routing on Weighted Expanders).
For (multi-)graph G = (V, E) with edge-vertex incidence matrix B and positive integer
edge weights and lengths given as diagonal matrices C, S ∈ RE×E, the electrical routing
AE = R−1B⊤(BR−1B⊤)+, where R = SC−1, has competitive ratios ρ∞ and ρ1 for
multicommodity ℓ∞ and ℓ1 routing both bounded by

ρ∞(AE), ρ1(AE) ≤ 3 ·
ln(2|EĜ|)

Φ(Ĝ)

where Ĝ denotes the multigraph with edge e replaced by a path of length S(e, e) with C(e, e)
unit-weight multi-edges across each hop of the path.

▶ Remark 1.6. When we take all edge lengths S(e, e) to be 1, the expansion of Ĝ equals the
usual definition of expansion in graph G with edge weight equal to capacity.

1.3 New Implications for Localization
From the connection to localization outlined earlier, we also immediately conclude that
localization of graphs with 1/o(log m) expansion improve over the general localization bound
of O(log2 m).

▶ Corollary 1.7 ((Informal) Localization of Electrical Flow). For a multigraph G = (V, E),
the average over multi-edges of the ℓ1-norm the electrical flow routing 1 unit of flow across
the multi-edge is bounded by O

(
min{Φ−1 log m, log2 n}

)
, and hence graphs with expansion

Φ = 1/o(log m) have localization o(log2 m).
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1.4 Roadmap

We next give a Preliminary section to set up the necessary notation for the article. We then
prove Theorem 3 in Section 3. We use this result together with the Riesz-Thorin theorem to
obtain Theorem 1.2 and Corollary 1.3 in Section 4. Finally, in Section 5, we give our lower
bounds as stated in Theorem 1.4.

2 Preliminaries

General Definitions

For any n ∈ N∗, we let [n] denote the set {1, 2, . . . , n}. We let 1 denote the all ones vector
and 1S denote the vector that has ones in the positions indexed by the elements of the set S

and zeros otherwise. For any A ∈ Rm×n, we let |A| denote the matrix where the absolute
value operator has been applied entrywise.

Graphs

Although our results in the contribution section are for unweighted graphs, we also prove
stronger statements in the article that also work on weighted graphs. Therefore, we define
various notions with respect to weighted graphs.

Given an input graph G = (V, E, w) with positive weights which we all assume to be
at least 1, we define n = |V | and m = |E|. We assume an arbitrary underlying direction
assigned to each edge of G. We define the edge-vertex incidence matrix B ∈ RV ×E of G as

B(w, e) =


−1, if e = (w, v)
1, if e = (v, w)
0, otherwise

.

We define the Laplacian L = BW B⊤ where W is the diagonal matrix given by the weights w

and denote by L+ the pseudo-inverse of the Laplacian. We call Π = B⊤L+B the unweighted
projection matrix of G.

Expanders

We say G is a Φ-expander if |∂S| ≥ Φ · vol(S) for every S ⊆ V, vol(S) ≤ vol(V )/2, where we
define |∂S| to be the weight of all edges with exactly one endpoint in S, and vol(S) to be
the sum of weighted degrees of vertices in S.

Flows and Congestion

We say χ ∈ RV is a demand vector if 1⊤χ = 0. We let χ(a,b) ∈ RV for every (a, b) ∈ E to
be the unitary demand on the edge (a, b), that is χ(a,b) = 1a − 1b. We say a vector f ∈ RE

is a flow that routes demand χ if Bf = χ. Given an arbitrary norm ∥·∥ on RE , we define
the congestion of a multi-set of flows {f1, . . . , fk} to be:

cong ({f1, . . . , fk}) =

∥∥∥∥∥W −1
k∑

i=1
|f i|

∥∥∥∥∥ .

ICALP 2024



65:8 Optimal Electrical Oblivious Routing on Expanders

Oblivious Routings

We define an oblivious routing on G to be a linear operator A ∈ RE×V such that BAχ = χ

for all demand vectors χ ∈ RV , i.e. to be a flow that routes the demand χ.
Given a multiset of demands D = {χ1, . . . , χk}, we define the optimal congestion

achievable by

opt(D) = min
{f i}i∈[k] multiset : Bf i=χi,∀i

cong({f i}i∈[k]).

This allows us to define the competitive ratio of an oblivious routing, which we define

ρ(A) = max
{χi}i∈[k] multiset : χi⊥1,∀i

cong
(
{Aχi}i∈[k]

)
opt

(
{χi}i∈[k]

) .

Note that whenever we use the subscript “p” for the competitive ratio ρ, we mean that the
norm used in defining the congestion in that special case is the ℓp-norm.

Electrical Flows and Voltages

In this article, we define the electric flow routing operator AE = W B⊤L+. Right-applying
the operator A to any demand χ yields the electric flow f = Aχ that routes the demand χ.
We define the electrical energy associated with the flow vector f by E(f) = f⊤W −1f .

We define the electric voltage vector v ∈ RV with respect to a demand χ by v = L+χ.
We define the electrical energy associated with the voltage vector v as E(v) = v⊤Lv. Note
in particular that the energy of voltages induced by a certain demand coincides with the
energy of the respective flow.

We introduce the notion of “fractional” volume at given a threshold t ∈ R with respect
to a given voltage vector v ∈ RV . We first define the fractional volume per edge and then
for the whole graph. For an edge (a, b) ∈ E:

vol≥t(a, b) =


2 · w(a, b), if v(a) > t

2 · w(a, b) · v(b)−t
v(b)−v(a) , if v(b) ≤ t

0, otherwise
.

For the whole graph G:

vol≥(t) =
∑

(a,b)∈E

vol≥t(a, b),

vol+≥(t) = vol≥(t) + 1.

Note that in our notation we omit specifying which voltage vector the “fractional” volume
function is tied to, as it will be clearly specified upon usage during the proofs.

We define St = {a ∈ V | v(a) ≥ t} as the set of vertices whose voltages are greater or
equal to the arbitrary threshold t ∈ R and the cut determined by the voltage threshold
t ∈ R to be Ct = (St, V \ St). For convenience, we let the weight of the cut Ct be
δ(t) = |∂Ct| =

∑
e∈Ct

w(e).

3 An Upper Bound on the Competitive Ratio of Electrical Flow
Routing for ℓ∞

In this section, we prove our main technical result, Theorem 1.1, by establishing a tight
upper bound on the competitive ratio when the congestion is defined in terms of ℓ∞ which
then by the symmetry of Π immediately gives the same competitive ratio in ℓ1.
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However, while Theorem 1.1 only claims a result for unweighted (multi-)graphs, we show
in this section that AE even has good competitive ratio in weighted graphs with respect to
ℓ∞. However, in the weighted setting, we cannot use the bound for ℓ∞ to derive a bound
on ℓ1, as the matrix-norms that exactly characterize the competitive ratio are not equal in
general. Nonetheless, the “multi-graph” trick from Corollary 1.5 can be used to transform
the weighted setting into an unweighted instance and derive bounds.

Intuition for our Proof

Kelner and Maymounkov showed that in order to bound the congestion of the electrical
routing, it suffices, via a duality (or transposition) argument, to bound the worst case ℓ1-norm
of the flow induced by routing 1 unit of flow electrically across any edge. We adopt the same
approach, but give a more precise analysis.

Suppose e = (x, y) is the edge such that routing one unit of flow between the endpoints
causes the highest overall congestion. We let v be the associated voltage vector that
induces the electrical flow routing one unit from x to y. The overall congestion then equals∑

(a,b)∈E w(a, b)|v(a) − v(b)|. We can express this by integrating with respect to voltage
along a voltage threshold cut with respect to v, where the function being integrated at point
t is exactly Yt =

∑
(a,b)∈Ct

w(a, b), where Ct is the cut at voltage threshold t. This ensures
that after integrating Yt over the entire voltage range, each edge (a, b) contributes exactly
w(a, b)|v(a) − v(b)|, as desired. Our proof proceeds by leveraging that the flow crossing the
cut Ct at threshold t is exactly

∑
(a,b)∈Ct

w(a, b)|v(a) − v(b)|.
As we are sending one unit of flow from x to y, and all electrical flow goes one way

across a voltage cut, this quantity is exactly 1. At each threshold t, this creates an “on
average” relationship between voltage difference |v(a) − v(b)| and weight w(a, b) for edges
being cut. This in turn allows us to establish a pointwise relationship at each threshold
voltage t between the growth in congestion and the change in volume at t. Armed with this
relationship, we can bound the accumulated congestion of the integrated cuts in terms of the
accumulated volume, and this yields our result.

Contrast with the Kelner-Maymounkov Proof

It is instructive to consider why the Kelner-Maymounkov congestion bound loses an additional
factor Φ compared to our bound. For concreteness, consider the graph given by a direct edge
from x to y and an additional k disjoint paths of length k from x to y. It can be shown that
in this example, the edge that governs the congestion bound in the strategy above is in fact
the direct (x, y) edge.

Kelner-Maymounkov upper bound the true competitive ratio ρ′ =
∑

(a,b)∈E w(a, b)|v(a)−
v(b)| by the quantity ρ′′ =

∑
a∈V d(a)|v(a) − c| for some constant c (see Equation (4.3)

in [15]). On this concrete graph, ρ′ can be explicitly evaluated and is Θ(k). As the graph has
expansion 1/k, we can think of this as a bound of Θ(1/Φ). But, ρ′′ is Θ(k2) i.e. Θ(1/Φ2).

However, Kelner and Maymoukov’s strategy makes it difficult to directly bound ρ′ as
they first measure changes in volume over a (discrete) sequence of threshold cuts, and then
changes in voltage over the same sequence of cuts. Their discrete sequence of cuts skips
entirely over some edges, i.e. there will be edges that are not crossing any of their cuts. This
makes it difficult to establish an estimate for each edge of the pointwise relation between
its contribution to volume growth versus voltage growth or congestion growth. Hence, they
work with summed bounds on voltage and compare these with summed bounds on volume,
which naturally yields bounds on ρ′′. But, as we have seen, a bound on ρ′′ must inherently
be loose as there is a gap between ρ′ and ρ′′.
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▶ Theorem 3.1 (ℓ∞ Competitive bound of electrical flows). For a weighted Φ-expander
multigraph G = (V, E, w), the following holds:

ρ∞(AE) ≤ 3 · ln(vol(V ))
Φ .

Proof. We first use that

ρ∞(AE) = max
e∈E

∥∥∥W B⊤L+χe

∥∥∥
1

. (4)

as shown in [16] as part of the proof of Lemma 26 (by using primarily Lemmas 10 and 11).
In order to prove the desired inequality, we then fix an e ∈ E such that the quantity in (4)
gets maximized, and let v = L+χe be the voltage induced by setting a unitary demand on
this edge. Thus, we equivalently aim to bound:

ρ∞(AE) =
∥∥∥W B⊤L+χe

∥∥∥
1

=
∥∥∥W B⊤v

∥∥∥
1

=
∑

(a,b)∈E

w(a, b) · |v(a) − v(b)|. (5)

Observe now that shifting all the values of v by the same constant does not change the
value expressed in (5), and therefore we can assume without loss of generality that the
voltages are centered around 0, that is we can assume vol ({i ∈ V | v(i) ≥ 0}) ≥ vol(V )/2
and vol ({i ∈ V | v(i) ≤ 0}) ≥ vol(V )/2.

Note that, by convention, the electrical flow fE = AEχe induces an orientation on the
edges in the set E. Henceforth, we assume without loss of generality that orientations of edges
in E align with the direction of the electrical flow fE , that is fE(a, b) = w(a, b)·(v(b)−v(a)) ≥
0 for any (a, b) ∈ E.

In the following, we will employ the definitions introduced in Section 2. These concepts
give rise to the notion of “fractional” volume, which will ultimately allow us to bound the
quantity of Equation (5).

It can easily be proven that vol≥ is continuous in R and differentiable at any threshold
level t ∈ R for which there does not exist a node a ∈ V such that v(a) = t. Furthermore,
if tmin = min {v(a) | a ∈ V } and tmax = max {v(a) | a ∈ V }, then vol≥(tmin) = vol(G) and
vol≥(tmax) = 0. We can even assume without loss of generality a more precise centering of
the voltages around 0, namely that vol≥(0) = vol(V )/2.

A voltage threshold level t ∈ R can be seen as naturally determining a cut Ct in G. Note
that the assumption about centering the voltages around 0 ensures that vol(St) ≤ vol(V )/2
for any t > 0, so it holds that min{vol(St), vol(V \ St)} = vol(St).

By taking the orientation of the edges into account, we can drop the absolute value
operator and rewrite Equation (5) as:∑

(a,b)∈E

w(a, b) · |v(a) − v(b)| =
∑

(a,b)∈E

w(a, b) · (v(b) − v(a))

=
∑

(a,b)∈E

w(a, b) ·
∫ tmax

tmin

1v(a)<t≤v(b) dt

=
∫ tmax

tmin

∑
(a,b)∈E

w(a, b) · 1v(a)<t≤v(b) dt

=
∫ tmax

tmin

δ(t) dt

=
∫ 0

tmin

δ(t) dt +
∫ tmax

0
δ(t) dt.

(6)
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We will bound the quantity in (6) by separately bounding each of the two terms in the last
equality. Only the proof for the integral over the non-negative values of t will be presented,
the one for the non-positive values proceeds in an analogous manner. Assume thus for the
rest of the proof that t ≥ 0 holds.

In order to obtain the bound on δ(t) for non-negative t, we will inspect the rate of change
of the “fractional” volume with respect to the voltage threshold of the fixed voltage vector v.
Intuitively, we grow an electrical threshold ball, and directly relate the change in volume to
the stretch accumulated at the current voltage threshold. In more precise terms, we compute
a bound on the derivative of vol+≥ with respect to t on the domain of differentiability as
follows:

− d

dt
vol+≥(t) = − d

dt
vol≥(t)

= − d

dt

 ∑
(a,b)∈E

vol≥t(a, b)


= − d

dt

 ∑
(a,b)∈Ct

vol≥t(a, b)


=

∑
(a,b)∈Ct

− d

dt
vol≥t(a, b)

=
∑

(a,b)∈Ct

2 w(a, b)
v(b) − v(a) .

(7)

By the construction based on the voltage levels, all edges of the cut Ct have their head in
the set St. Therefore, the flow carried by these edges has to be the unit flow, since this is
the demand of χe:

1 =
∑

(a,b)∈Ct

fE(a, b) =
∑

(a,b)∈Ct

w(a, b) · (v(b) − v(a)). (8)

Hereafter, we show that the negative volume change must exceed the square of the cut
size. Informally, the change in volume per edge is relatively large whenever the voltage gap
across the edge is small (volume change scales as inversely proportional to the gap compared
to the cut-value of the edge). But, a “typical” edge in the cut must have a fairly small voltage
gap, as we otherwise route too much flow across the gap. Formally, since the voltage drops
among the edges in the cut Ct are non-negative, we can use (8) and the definition of the
conductance of G to further bound (7) using the Cauchy–Bunyakovsky–Schwarz inequality:
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− d

dt
vol+≥(t) = 2

∑
(a,b)∈Ct

w(a, b)
v(b) − v(a)

= 2

 ∑
(a,b)∈Ct

w(a, b)
v(b) − v(a)

 · 1

= 2

 ∑
(a,b)∈Ct

w(a, b)
v(b) − v(a)

  ∑
(a,b)∈Ct

w(a, b) · (v(b) − v(a))


≥ 2

 ∑
(a,b)∈Ct

√
w(a, b)

v(b) − v(a) · w(a, b) · (v(b) − v(a))

2

≥ 2

 ∑
(a,b)∈Ct

w(a, b)

2

= 2 · δ(t)2

≥ 2 · δ(t) · Φ · vol(St).

(9)

Denote by volint(t) = vol(St) − δ(t) twice the weight of the edges that have both endpoints
in the set St. Recall that we assumed all of the edges to have weights at least 1, therefore it
holds that δ(t) ≥ 1. The definition of “fractional” volume implies vol≥(t) ≤ volint + 2δ(t),
which can be used to further bound (9):

− d

dt
vol+≥(t) ≥ 2 · δ(t) · Φ · vol(St)

= 2 · δ(t) · Φ · (volint(t) + δ(t))

= δ(t) · 2Φ
3 · (3volint(t) + 3δ(t))

≥ δ(t) · 2Φ
3 · (volint(t) + 2δ(t) + 1)

≥ δ(t) · 2Φ
3 · (vol≥(t) + 1)

= δ(t) · 2Φ
3 · vol+≥(t).

Observe that we can rewrite the inequality above to obtain a bound on δ(t):

δ(t) ≤ − 3
2Φ · 1

vol+≥(t)
· d

dt
vol+≥(t). (10)

We can now use equation (10) to bound the integral over the interval [0, tmax] in (6):∫ tmax

0
δ(t) dt ≤

∫ tmax

0
− 3

2Φ · 1
vol+≥(t)

· d

dt
vol+≥(t) dt.

The latter integral can easily be computed via the change of variable u = vol+≥(t), yielding the
integration bounds vol+≥(tmax) = vol≥(tmax)+1 = 1 and vol+≥(0) = vol≥(0)+1 = vol(V )/2+1:
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∫ tmax

0
δ(t) dt ≤

∫ tmax

0
− 3

2Φ · 1
vol+≥(t)

· d

dt
vol+≥(t) dt

=
∫ 0

tmax

3
2Φ · 1

vol+≥(t)
· d

dt
vol+≥(t) dt

= 3
2Φ

∫ vol(V )/2+1

1

1
u

du.

Since the graph has by assumption at least two nodes connected by an edge with weight at
least 1, it follows that vol(V ) ≥ 2 ⇐⇒ vol(V ) ≥ vol(V )/2 + 1. Coupled with the fact that
u > 0 for u ∈ [1, vol(V )], this gives us the final bound for the integral:∫ tmax

0
δ(t) dt ≤ 3

2Φ

∫ vol(V )/2+1

1

1
u

du

≤ 3
2Φ

∫ vol(V )

1

1
u

du

= 3
2Φ · ln(vol(V )).

As already mentioned, the same bound can be obtained for the other term in (6) in an
analogous manner.

Combining the aforementioned result with the relations given by (5) and (6) gives the
desired inequality:

ρ∞(AE) =
∫ 0

tmin

δ(t) dt +
∫ tmax

0
δ(t) dt ≤ 2 · 3 ln(vol(V ))

2Φ = 3 ln(vol(V ))
Φ . ◀

4 An Upper Bound on the Competitive Ratio of Electrical Flow
Routing for ℓp (for any p)

In this section, we prove two generalizations of Theorem 3.1. Previously, we gave a bound
on the competitive ratio when the congestion was defined in terms of the ℓ∞-norm. This
result can be extended to ℓp-norms for an arbitrary p ∈ [1, ∞] by using Theorem 3.1, and
instantiating a special case of the Riesz-Thorin theorem.

This establishes both the results in Theorem 1.2 and in Corollary 1.3. We stress that the
results obtained in this section crucially exploit the symmetry of Π and therefore only hold
for unweighted graphs.

A Toolbox for ℓp-Norms

We first use the following lemma. Its proof is fairly standard and follows the structure of the
proof of Lemma 24 in [16]. We include a full proof in an extended version of this paper on
arXiv.

▶ Lemma 4.1 (Competitive ratio of ℓp-norms). Let G = (V, E) be a multigraph. For any
p ∈ [1, ∞] and oblivious routing A, we have

ρp(A) = ∥|AB|∥p→p.

Our second tool is the Riesz-Thorin theorem. We explicitly state the two relevant special
cases of the theorem that we require in the next section for the convenience of the reader.
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▶ Theorem 4.2 (Special cases of the Riesz-Thorin theorem, see [36, Theorem 1.3]). Let
A ∈ Rm×n be a matrix with non-negative entries. For any p ∈ (1, ∞) it holds that:

∥A∥p→p ≤ ∥A∥
1
p

1→1 · ∥A∥1− 1
p

∞→∞.

Furthermore, for p ∈ (2, ∞),

∥A∥p→p ≤ ∥A∥
2
p

2→2 · ∥A∥1− 2
p

∞→∞.

Proof of Theorem 1.2

We have that the theorem already holds for ℓ1 and ℓ∞ since we have proven Theorem 1.1 in
the previous section. Consider therefore any p ∈ (1, ∞). Then, we have

ρp(AE) Lemma 4.1= ∥|AEB|∥p→p

Theorem 4.2
≤ ∥|AEB|∥

1
p

1→1 · ∥|AEB|∥1− 1
p

∞→∞

Lemma 4.1= (ρ1(AE))
1
p · (ρ∞(AE))1− 1

p

Theorem 1.1
≤

(
3 · ln(2m)

Φ

) 1
p

·
(

3 · ln(2m)
Φ

)1− 1
p

= 3 · ln(2m)
Φ .

Proof of Corollary 1.3

Consider next any p ∈ (1, ∞). Since we have again that for q given by 1/p + 1/q = 1, we
have ∥X∥p→p = ∥X⊤∥q→q, we can assume w.l.o.g. that p ≥ 2. Similarly to [21], we obtain

ρp(AE) Lemma 4.1= ∥|AEB|∥p→p

Theorem 4.2
≤ ∥|AEB|∥

2
p

2→2 · ∥|AEB|∥1− 2
p

∞→∞

Lemma 4.1= (ρ2(AE))
2
p · (ρ∞(AE))1− 2

p

Lemma 4.1, Theorem 1.1
≤ (∥|Π|∥2→2)

2
p ·

(
3 · ln(2m)

Φ

)1− 2
p

.

5 A Lower Bound for Competitive Ratio of Electric Flow Routing

Finally, in this section, we provide a strong lower bound on the competitive ratio of the
electrical routing scheme in any ℓp-norm.

▶ Theorem 5.1 (Restatement of Theorem 1.4). For an infinite number of positive integers n

and any Φ ∈ [1/ 3
√

n, 1], for any p ∈ [2, ∞] and q given by 1/p + 1/q = 1, we have that

ρp(AE), ρq(AE) ≥ Ω
(

log m

Φ1−2/p

)
.

In our proof, we use the following theorem given in [2]. We remind the reader that the
girth of a graph G is the weight of the smallest weight cycle of G.

▶ Theorem 5.2 ([2, Theorem 1.2]). There are infinitely many positive integer ∆ and n, for
which an n-vertex unweighted graph G∆,n = (V, E) exists such that G is Φconst-expander that
is ∆-regular with Φconst = Θ(1) such that G has girth Ω(log∆ n).
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In our proof, we use the existential result behind the statement to refine a proof technique
previously used by Englert and Räcke [9] to give a lower bound on the competitive ratio of
any ℓp oblivious routing scheme. Our refinement can also be used to strengthen their result
by a Θ(log log n) factor.

In our proof, we crucially exploit the following facts about effective resistance. Recall that
the effective resistance of a graph G for a pair (s, t) ∈ V 2 is the minimum energy required
to route one unit of demand from s to t in G, or alternatively the difference in voltages
of s and t induced by routing this unit of demand via an electrical flow which is given by
χ(s,t)L

+χ(s,t). The facts below can be derived straightforwardly from Cheeger’s Inequality,
mixing of random walks, and characterization of effective resistance by commute times (see
for example [19]).

▶ Fact 5.3. For G being a constant-degree Ω(1)-expander, we have that the effective resistance
of any pair (s, t) ∈ V is in Θ(1).

▶ Fact 5.4. Given two constant-degree graphs G and H over the same vertex set V . If the
effective resistance for a pair (s, t) ∈ V 2 is in Θ(1) in both G and H, then the electrical
flow routing one unit of demand from s to t on the union of graphs G ∪ H sends at least a
constant fraction of the flow over G and a constant fraction of the flow over H.

Let us now give a lower bound for any p ≥ 2 and any parameter Φ ∈ [1/n, 1] such that
1/Φ is integer. We start by considering the electrical routing AE for a large constant ∆
and any n and G∆,n of the multi-commodity demand that is given by routing for each
edge e = (u, v) in G∆,n one unit of a commodity from u to v, i.e. we consider the demand
χ =

{
χ(u,v)

}
e=(u,v)∈E(G∆,n)

. Towards understanding the electrical routing, we prove the
following simple claim.

▷ Claim 5.5. For any edge e in G∆,n where ∆ is a large constant, we have that the electrical
flow f = AEχ(u,v) routing the demand χ(u,v) has ∥f∥1 = Ω(log n).

Proof. The claim follows from showing that f(e) carries only (1 − ε) units of flow for some
constant ε > 0. This is because it implies that a constant fraction of the flow is not routed
via the edge e. But since each path between the endpoints of e that does not use the edge e

is of length Ω(log n) (by the girth bound in Theorem 5.2), we have that this ε-fraction adds
Ω(ε log n) = Ω(log n) units of flow to the network G∆,n.

To prove the claim, it suffices to observe that the graph G∆,n \ {e} is a Ω(1)-expander.
But to this end, it suffices to observe that since the conductance of G∆,n does not depend
on ∆ by Fact 5.3, by choosing ∆ sufficiently large (i.e. at least twice the inverse of the
conductance), we have that each cut contains at least 2 edges and thus the conductance of
G∆,n \ {e} is at least half of the conductance of G∆,n, and thus still constant.

Using that the trivial graph consisting only of the edge e is a constant-degree Ω(1)-
expander, we thus have that the effective resistance of the pair (u, v) in both the graph
G∆,n \ e and e is constant by Fact 5.3. Thus, by Fact 5.4, we have that a constant fraction
of the demand χ(u,v) is not routed into e, as desired. ◁

Using that multi-commodity flows do not cancel, we thus have that each edge in G∆,n

carries on average Ω(log n) units of flow. We next transform the graph G∆,n to then obtain
our final gadget on which we can prove the lower bound.

▶ Definition 5.6. Let GΦ
∆,n be the graph obtained from G∆,n by replacing each edge with

1/Φ vertex-disjoint paths of length 1/Φ between the endpoints of the vertices. Thus, GΦ
∆,n,

for ∆ being a constant, has Θ(n/Φ2) vertices.
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Next, we claim that the effective resistance of our demand pairs is the same up to a
constant in G∆,n and GΦ

∆,n.

▷ Claim 5.7. For each edge (u, v) ∈ E(G∆,n), the effective resistance of the pair (u, v) in
the graph GΦ

∆,n is Θ(1).

Proof. To show this result, we give an explicit mapping of the electrical flow routing χ(u,v)
in G∆,n to routing the flow in GΦ

∆,n whose energy is at most constant. Let f be this electrical
flow routing on G∆,n, then we map the flow on each edge e′ in G∆,n uniformly through the
1/Φ disjoint paths between the endpoints of e′ in GΦ

∆,n. Since each path now routes only a
Φ-fraction of the original flow on the edge e′, we have that the energy used to route through
each edge on the disjoint paths replacing e′

middle is (f(e′)Φ)2 = f(e′)2Φ2. We thus have that
the energy incurred by routing through the 1/Φ disjoint paths each consisting of 1/Φ edges
is 1/Φ2 · f(e′)2Φ2 = f(e′)2. Thus, the effective resistance of (u, v) in GΦ

∆,n is at most the
resistance in G∆,n which implies it is in O(1).

A lower bound of Ω(1) is observed by inversing this mapping to collect the amount of
flow pushed through the disjoint paths replacing edge e′ together and adding it to e′ in G∆,n.
The proof is straightforward and therefore omitted. ◁

Before we can carry out the proof of our lower bound, it remains to show for our lower
bound gadget which is the graph G = G∆,n ∪ GΦ

∆,n that it is a Θ(Φ)-expander.

▷ Claim 5.8. G is Θ(Φ)-expander with Θ(n/Φ2) edges.

Proof. The number of edges is straightforward from our construction of G. To see that G is
O(Φ)-expander, observe that we can take the internal vertices of any path in GΦ

∆,n replacing
an edge in G∆,n which has volume Ω(1/Φ) but only two edges leaving (the once to the
endpoints of the replaced edges). To observe that it is an Ω(Φ)-expander, it suffices to show
that each cut in S is maximized by assigning all internal vertices of each such path to one
side of the cut. It is then not hard to show from G∆,n being a Ω(1)-expander that the claim
follows. ◁

Let us now give the proof of the main result. We take the graph under consideration to be
G = G∆,n ∪ GΦ

∆,n. We take as demand, the vector χΦ = 1
Φ · χ = 1

Φ · {χ(u,v)}e=(u,v)∈E(G∆,n).
Let AE denote the electrical flow routing on this graph G. Let us look at each edge
e = (u, v) ∈ E(G∆,n). From Fact 5.3, Claim 5.7 and Fact 5.4, we have that the flow
fe = AE · 1

Φ χ(u,v) restricted to the edges in E(G∆,n) routes in total at least log n/φ units
of flow along all of these edges. By linearity of AE and the fact that flows do not cancel,
we have that when routing χΦ, an average edge in E(G∆,n) carries Ω(log n/Φ) units of flow.
Thus, the ℓp-norm of this flow is at least p

√
n · (log n/Φ)p = n1/p · log n · Φ. But observe

that we can route the flow with demand with congestion 1 in GΦ
∆,n by routing for each

demand χ(u,v) exactly 1 unit of flow through each of the disjoint paths corresponding to the
edge e′ = (u, v) in GΦ

∆,n. The ℓp-norm of this flow is Θ((n/Φ2)1/p) = Θ(n1/pΦ−2/p) (using
Claim 5.8). We thus have that ρp(AE) = Ω(log n · Φp/(p−2)).

To obtain the result for p < 2, we use that for q given by 1/p + 1/q = 1, we have
∥X∥p→p = ∥X⊤∥q→q, and for the electrical routing, AEB = (AEB)⊤ since L+ is symmetric.

We note that in the construction above the number of vertices in the final graph G might
be much larger than n. By considering all possible parameters for Φ in [1/n, 1] (i.e. all such
numbers were 1/Φ is integer), we obtain a family of n′-vertex graphs with conductances in
[1, 1/ 3

√
n′], as claimed. Since every Φ-expander is also a Φ′-expander for every Φ′ ≤ Φ, we do

further not need to restrict the domain of Φ′ further than in range. We point out that by
considering parameters Φ in our construction that are even smaller than 1/n, one can get up
to an arbitrarily small polynomial factor close to conductances as small as 1/

√
n′.
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