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Abstract
In the Directed Steiner Network problem, the input is a directed graph G, a set T ⊆ V (G) of k

terminals, and a demand graph D on T . The task is to find a subgraph H ⊆ G with the minimum
number of edges such that for every (s, t) ∈ E(D), the solution H contains a directed s → t path.
The goal of this paper is to investigate how the complexity of the problem depends on the demand
pattern in planar graphs. Formally, if D is a class of directed graphs, then the D-Steiner Network
(D-DSN) problem is the special case where the demand graph D is restricted to be from D. We
give a complete characterization of the behavior of every D-DSN problem on planar graphs. We
classify every class D closed under transitive equivalence and identification of vertices into three
cases: assuming ETH, either the problem is
1. solvable in time 2O(k) · nO(1), i.e., FPT parameterized by the number k of terminals, but not

solvable in time 2o(k) · nO(1),
2. solvable in time f(k) · nO(

√
k), but cannot be solved in time f(k) · no(

√
k), or

3. solvable in time f(k) · nO(k), but cannot be solved in time f(k) · no(k).
Our result is a far-reaching generalization and unification of earlier results on Directed Steiner
Tree, Directed Steiner Network, and Strongly Connected Steiner Subgraph on planar
graphs. As an important step of our lower bound proof, we discover a rare example of a genuinely
planar problem (i.e., described by a planar graph and two sets of vertices) that cannot be solved
in time f(k) · no(k): given two sets of terminals S and T with |S| + |T | = k, find a subgraph with
minimum number of edges such that every vertex of T is reachable from every vertex of S.
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1 Introduction

Finding Steiner trees and related network design problems were intensively studied in
undirected graphs, directed graphs, and planar graphs, from the viewpoint of approximation
and parameterized algorithms [1–3,5–8,11–14,17–19,22,23,25,27,29,31–33]. The simplest
problem of this type is Steiner Tree, where given an undirected graph G and set T ⊆ V (G)
of terminals, the task is to find a tree with smallest number of edges that contains every
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67:2 Subexponential Parameterized Directed Steiner Network

terminal. This problem models a network-design scenario where the terminals need to
be connected to each other with a network of minimum cost. Steiner Forest is the
generalization where we do not require connection between every pair of terminals, but have
to satisfy a given set of demands. Formally, the input of Steiner Forest is a graph G

with pairs of vertices (s1, t1), . . . , (sd, td), the task is to find a subgraph with the minimum
number of edges that satisfies every request, that is, si and ti are in the same component of
the solution for every i ∈ [d].

On directed graphs, Directed Steiner Tree (DST) is defined by specifying one of the
terminals in T to be the root and the task is to find a subgraph with the smallest number of
edges such that there is a path from the root to every terminal in the solution. This problem
models a scenario where we need to construct a network where the root can broadcast to
every other terminal. An equally natural network design problem on directed graphs is
the Strongly Connected Steiner Subgraph (SCSS) problem, where given a directed
graph G and a set T ⊆ V (G) of terminals, the task is to find a subgraph with the smallest
number of edges where T is in a single strongly connected component, or in other words, the
solution contains a path from every terminal to every other terminal. The directed variant
of Steiner Forest generalizes both of these problems: in Directed Steiner Network
(DSN), the input is a digraph G with pairs of vertices (s1, t1), . . . , (sd, td), and the task is
to find a subgraph with the minimum number of edges that has an si → ti path for every
i ∈ [d].

Planar graphs. A well-known phenomenon on planar graphs is that the running time
of parameterized algorithms for typical NP-hard problems have exponential dependence
on O(

√
k), where k is the parameter, and this dependence is best possible assuming the

Exponential-Time Hypothesis (ETH) [8–10,15,20,21,24,26–28,30]. All three of DST, SCSS,
and DSN remain NP-hard on planar graphs. However, they behave very differently from the
viewpoint of parameterized complexity: the dependence of the running time on the number
k of terminals is very different.

Our starting point

1. Planar DST can be solved in time 2k · nO(1) [4], but cannot be solved in time
2o(k) · nO(1) [27], assuming the ETH.

2. Planar SCSS can be solved in time 2O(k log k) · nO(
√

k) [8], but has no algorithm
with running time f(k) · no(

√
k) for any function f , assuming the ETH [8].

3. Planar DSN can be solved in time f(k) · nO(k) [12], but has no algorithm with
running time f(k) · no(k) for any function f , assuming the ETH [8].

Using the terminology of parameterized complexity, Planar DST is fixed-parameter
tractable (FPT) parameterized by the number k of terminals, but does not admit a subex-
ponential FPT algorithm, assuming the ETH. For Planar SCSS and Planar DSN, it is
already a highly nontrivial result to show that there is an algorithm that runs in polynomial
time for fixed values of k; such an algorithm is called an XP algorithm. Furthermore, Planar
SCSS admits a subexponential XP algorithm (i.e., the exponent of n is o(k)), while Planar
DSN has no such algorithm, assuming the ETH.

As these results show, there has been significant interest in parameterized directed
connectivity problems on planar graphs and in particular tight bounds were obtained for
the three problems Planar DST, Planar SCSS, Planar DSN. But what can we say
about other natural variants of connectivity requirements? For example, already with the
simple extension that the input contains two sets of terminals T1 and T2, we can define three
different natural connectivity requirements:
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(1) The solution has to contain a directed path from any t ∈ Ti to any t′ ∈ Ti.
(2) The solution has to contain a directed path from any t ∈ T1 to any t′ ∈ T1 ∪ T2.
(3) The solution has to contain a directed path from any t ∈ T1 to any t′ ∈ T2.

Do these problems behave similarly to one of the three problems listed above? The goal
of this paper is to answer such questions by putting the previous results into the context
of a wider landscape of directed network design problems. We systematically explore other
special cases of Planar DSN and determine their behavior on planar graphs. Our main
result is showing that every special case defined in a formal setting behaves similarly to one
of the three problems Planar DST, Planar SCSS, Planar DSN: assuming the ETH,
the best possible running time is of the form 2O(k) · nO(1), f(k) · nO(

√
k), or f(k) · nO(k).

Furthermore, we provide an exact combinatorial characterization of the problems belonging
to the three classes. In particular, we can use these results to show that variants (1) and (2)
behave similarly to Planar SCSS, while variant (3) behaves similarly to Planar DSN.
Therefore, (3) is a rare (perhaps first) example of a planar problem with k terminals where
the best possible running time is nO(k) and the input can be described in a purely planar
way (by the two sets T1 and T2) that does not contain any extra information violating the
planarity of the instance. This is in stark contrast with the general Planar DSN problem,
where the lower bound showing the optimality of the nO(k) running time requires that the
input contain an arbitary list of pairs of vertices, giving a highly nonplanar input.

Dichotomy for general graphs. We explore the different special cases of Directed Steiner
Network on planar graphs in a framework similar to how Feldmann and Marx [14] treated
the problem on general graphs. We can define various special cases of Directed Steiner
Network by looking at what kind of graph the connection demands define on the terminals:
it is an out-star for Directed Steiner Tree, a bidirected clique for Strongly Connected
Steiner Subgraph, and a matching for Directed Steiner Network. More generally,
for every class D of directed graphs, we investigate the problem where the pattern of demands
has to belong to the class D. Our goal is to understand how the graph-theoretic properties
of the members of D influence the resulting special case of Directed Steiner Network.

Formally, for every class D, Feldmann and Marx [14] defined the restriction of the problem
in the following way.

D-Steiner Network
Input: Digraph G, a set of k terminals T ⊆ V (G), and a demand digraph D ∈ D with
vertex set T .
Question: What is the minimum number of edges in a subgraph H of G where for each
(u, v) ∈ E(D) there is a u → v path in H?

One can define also the weighted version of the problem: the input contains weights on the
edges and the goal is to minimize the total weight of the subgraph H. Typically, the weighted
generalization does not make the problem harder (polynomially bounded integer weights can
be easily simulated by subdivided edges, but the algorithmic results in this paper and earlier
work allows integer weights in binary as well). Feldmann and Marx [14] characterized those
classes D where D-Steiner Network is fixed-parameter tractable (FPT) parameterized by
the number of terminals, that is, can be solved in time f(k) · nO(1). The characterization can
be stated in a clean way in terms of five hard families of patterns if we observe the following
closure properties of the problem. Observe first that only the transitive closure of D matters
for the problem: if D1 and D2 have the same transitive closure, then having D1 or D2 in the

ICALP 2024
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input results in exactly the same problem. Therefore, it makes sense to consider only classes
D that are closed under transitive equivalence, that is, if D1 and D2 have the same transitive
closure and D1 ∈ D, then D2 ∈ D as well. Moreover, we may assume that D is closed under
identifying vertices: that is, if G ∈ D and G′ is obtained by merging two vertices x, y ∈ V (G)
to a single vertex whose in- and out-neighbors are the union of the in- and out-neighbors of x

and y, respectively, then G′ is also in D. Feldmann and Marx [14, Lemma 5.2] showed that if
D-Steiner Network is FPT, then it is FPT also for the closure D′ of D under identifying
vertices, that is, adding further demand patterns obtained by identifying vertices does not
make the problem any harder. Intuitively, if D′ is obtained from D ∈ D by identifying x

and y to w, then an instance with demand pattern D′ can be simulated by an instance with
demand pattern D if we replace w with the two terminals x and y connected by 0-weight
edges in both direction (or something similar in case of unweighted graphs1).

These arguments show that it is sufficient to obtain a characterization for classes closed
under transitive equivalence and identifying vertices. Under these assumptions, Feldmann
and Marx [14] identified five graph classes that prevent the problem from being FPT. A
pure out-diamond is a complete bipartite graph K2,t directed from the 2-element side to the
t-element side. A flawed out-diamond has in addition a vertex v and edges going from v

to the 2-element side. The pure in-diamond and flawed in-diamond are defined similarly
by reversing edge orientations. Let us denote by A1, A2, . . . , A5 the class of all pure
out-diamonds, flawed out-diamonds, pure in-diamonds, flawed in-diamonds, and directed
cycles, respectively.

▶ Theorem 1 (Feldmann and Marx [14]). Let D be a class of graphs closed under transitive
equivalence and identifying vertices.
1. FPT: If Ai ̸⊆ D for any i ∈ [5], then D-Steiner Network can be solved in time

2O(k)nO(1), where k is the number of terminals.
2. Hard: If Ai ⊆ D for some i ∈ [5], then D-Steiner Network is W[1]-hard parameterized

by the number k of terminals.
The first part of Theorem 1 was proved by a combination of an algorithm that solves the
problem in time 2O(kw log w) · nO(w) if there is an optimum solution with treewidth w and a
combinatorial result showing that if D is not the superset of Ai for any i ∈ [5], then there is
a constant bound on the treewidth of optimum solutions. The second part follows from a
W[1]-hardness result for each of the five classes Ai.

Our result: trichotomy for planar graphs. Our main result classifies Planar D-Steiner
Network (the special case of the problem restricted to planar digraphs G) into three levels
of complexity: 2O(k) · nO(1), f(k) · nO(

√
k), or f(k) · nO(k) time. In light of Theorem 1 and

the earlier results on planar graphs, there are three natural questions that arise:
1. Are there cases that are FPT on planar graphs, but W[1]-hard on general graphs?
2. Are there subexponential FPT cases on planar graphs, that is, where the running time is

2o(k) · nO(1)?
3. Are there W[1]-hard cases where the optimal running time is neither f(k) · nO(

√
k) nor

f(k) · nO(k)? If not, where is the boundary line between these two cases?

1 As mentioned above, polynomially bounded integer weights can be simulated by subdivision of edges. If
there are C edges of weight 0, then let us consider every original weight-1 edge to have weight C + 1 (i.e.,
a path of length C + 1) and every weight-0 to have weight 1. Then the original instance has a solution
of weight at most x if and only if the new instance has a solution of weight at most x(C + 1) + C.
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We answer the first question negatively: the hard cases remain hard on planar graphs. The
answer to the second question is also negative: we show that every (nontrivial) case of
Planar D-DSN is at least as hard as Directed Steiner Tree, hence a known lower
bound [27] shows that there is no subexponential FPT algorithm, assuming the ETH.

The answer to the third question is positive, but arguably for the wrong reason. Consider
the following artificial case. Let D = {D1, D2, . . . } be defined the following way: Di consists
of the disjoint union of an out-star of i edges and a directed matching of ⌈log2 i⌉ edges. Using
the results of Feldmann and Marx [14, Theorems 1.4 and 1.5], it can be shown that Planar
D-DSN is solvable in time f(k)nO(log k), as the graph Di can be interpreted as a “1-caterpillar
with ⌈log2 i⌉ extra edges” (see the definition in [14]) and hence there is an optimum solution
of treewidth O(log k). On the other hand, a Planar DSN problem with ⌈log2 i⌉ terminal
pairs can be reduced to Planar D-DSN with pattern Di: we can effectively “ignore” the
terminals in the out-star by putting these terminals on a directed cycle of 0-weight edges.
Thus the lower bound ruling out f(k)no(k) algorithms for Planar DSN [8] translates into
a lower bound ruling out f(k)no(log k) algorithms for Planar D-DSN, assuming the ETH.
Therefore, the optimal exponent of n in the running time is O(log k). This is somewhat
counterintuitive: as there is a simple reduction from Planar DSN to Planar D-DSN,
it feels that the latter problem should be harder. Formally, however, this is not the case:
the reduction introduced a new, irrelevant, trivial part of the problem (the terminals on the
cycle of 0-weight edges), which increased the parameter significantly.

One could argue that such trivial features of the instance should not influence the way we
measure the complexity of the problem. Terminals that are in the same strongly connected
component of 0-weight edges can be effectively treated as a single terminal. Therefore, instead
of the parameter k being the number of terminals, one could consider the parameter to be
the number of strongly connected components of the 0-weight edges that contain terminals,
or in other words, the number of terminals after contracting every directed cycle of weight
0. With this parameterization, the reduction from Planar DSN increases the parameter
only by 1 and shows that Planar D-DSN has no f(k)no(k) time algorithm, satisfying the
expectation that the problem should be at least as hard as Planar DSN. Equivalently, we
can consider the closure D′ of D under identifying vertices: then D′ contains every directed
matching, hence the problem is clearly at least as hard as Planar SCSS. Assuming that the
pattern class D is closed under identifying vertices is a clean way of formalizing the intention
that we want to consider terminals in a strongly connected component of weight-0 edges as
a single terminal that contributes only 1 to the parameter. In order to obtain meaningful
classifications, we assume in the rest of the paper that the class of patterns has this closure
property. This way, we avoid pathological examples similar to the one described above.

Under the assumption that D is closed under transitive equivalence and identifying
vertices, we can answer the third question in the negative and map the boundary line between
the f(k) ·nO(

√
k) and the f(k) ·nO(k) cases. We define a finite number κ ≤ 300000 of classes Ci,

i ∈ [κ], and show that these are precisely the classes of patterns that prevent subexponential
f(k) · nO(

√
k) time algorithms. Note that for every i ∈ [κ], it is easy to show that arbitrary

large strongly connected graphs can be obtained from Ci by identifying vertices. That is, if D
is closed under transitive equivalence and identifying vertices, and Ci ⊆ D, then A5 ⊆ Ci ⊆ D,
i.e., D contains every directed cycle. Thus we have three different cases depending on whether
D contains (1) none of the Ai’s, (2) some Ai, but no Ci, or (3) some Ci.

ICALP 2024
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B

A

Figure 1 The 5-hard biclique patterns: each gray vertex may or may not be present.

Our main result

▶ Theorem 2. Let D be a class of directed graphs closed under transitive equivalence
and identifying vertices where the number of edges is not bounded.
1. FPT: If Ai ̸⊆ D for any i ∈ [5], then Planar D-Steiner Network

(i) can be solved in time 2O(k) · nO(1),
(ii) but has no 2o(k) · nO(1) time algorithm assuming the ETH.

2. Subexponential XP: If Ai ⊆ D for some i ∈ [5], but Ci ̸⊆ D for any i ∈ [κ], then
Planar D-Steiner Network
(iii) can be solved in time f(k) · nO(

√
k),

(iv) but has no f(k) · no(
√

k) time algorithm assuming the ETH.
3. Hard XP: If Ci ⊆ D for some i ∈ [κ], then Planar D-Steiner Network

(v) can be solved in time f(k) · nO(k),
(vi) but has no f(k) · no(k) time algorithm assuming the ETH.

We remark that the algorithms work also for weighted graphs, while the lower bounds
hold already for unweighted graphs.

Hard classes. Let us define now the graph classes Ci representing the hard-patterns. Given a
digraph G and a set X ⊆ V (G), an X-source is a vertex s ∈ V (G) \ X such that N+(s) = X.
Similarly, an X-sink is a vertex t ∈ V (G) \ X such that N−(t) = X. The first 4 classes C1,
. . . , C4 are defined by extending a biclique.

▶ Definition 3 (t-hard-biclique-pattern). A t-hard-biclique-pattern is an (acyclic) digraph D

constructed in the following way. We start with two disjoint sets A and B with |A| = |B| = t

and introduce every edge from A to B. Furthermore, we introduce into D any combination
of the following items (see Figure 1):
1. an A-source;
2. a B-sink.
In particular, there are 2 · 2 types of t-hard-biclique patterns: we let C1, . . . , C4 be the 4 classes
that each contain all the t-hard-biclique-patterns of a specific type for every t.

The following definition specifies the remaining classes.

▶ Definition 4 (t-hard-matching-pattern). A t-hard-matching-pattern is an (acyclic) digraph
D constructed the following way. We start with disjoint vertex sets W = {w1, . . . , wt},
X = {x1, . . . , xt}, Y = {y1, . . . , yt} and Z = {z1, . . . , zt} and introduce the edges wixi and
yizi for every i ∈ [t]. Furthermore, we introduce into D any combination of the following
items:
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Figure 2 The 4-hard matching patterns (without source, sink, rW Z , or rY X).

1. either the directed path w1 → w2 → . . . → wt → z1 → z2 → . . . → zt, or any of the
directed paths w1 → w2 → . . . → wt and z1 → z2 → . . . → zt;

2. either the directed path y1 → y2 → . . . → yt → x1 → x2 → . . . → xt, or any of the
directed paths x1 → x2 → . . . → xt and y1 → y2 → . . . → yt;

3. a vertex s such that for exactly one S ∈ {W, X, Y, Z, W ∪ Y, X ∪ Z, X ∪ Y, W ∪ Z},
N+(s) ∩ (W ∪ X ∪ Y ∪ Z) = S;

4. a vertex t such that for exactly one S ∈ {W, X, Y, Z, W ∪ Y, X ∪ Z, X ∪ Y, W ∪ Z},
N−(t) ∩ (W ∪ X ∪ Y ∪ Z) = S;

5. a vertex rW Z such that N−(rW Z) \ {s} = W and N+(rW Z) \ {t} = Z;
6. a vertex rY X such that N−(rY X) \ {s} = Y and N+(rY X) \ {t} = X;
7. arc s → rW Z if N+(s) ∩ W = ∅, or arc s → rY X if N+(s) ∩ Y = ∅, or both if

N+(s) ∩ (W ∪ Y ) = ∅;
8. arc rW Z → t if N−(t) ∩ Z = ∅, or arc rY X → t if N−(t) ∩ X = ∅, or both if N−(t) ∩

(Z ∪ X) = ∅
9. arc s → t if s cannot already reach t.
In particular, there are less than 5 · 5 · 9 · 9 · 2 · 2 · 4 · 4 · 2 types of t-hard matching patterns: we
let C5, . . . , Cκ , where κ ≤ 259200, be the classes that each contain all the t-hard-matching-
patterns of a specific type for every t.

Note that some of these classes are isomorphic. For example, adding the path x1 → xt or
the path z1 → zt lead to isomorphic graphs. If we just consider the graph classes where we
choose not to add a source, sink, vertex rW Z , or vertex rY X , then we have 15 non-isomorphic
classes, as shown in Figure 2. One could think of t-hard-matching-patterns as (the transitive
closure of) one of these graphs, potentially extended by appropriate sources, sinks, and
rW Z/rY X vertices.

Finally, we define a t-hard pattern as any of the patterns defined above.

▶ Definition 5 (t-hard-pattern). A t-hard-pattern is either a t-hard-biclique-pattern or t-
hard-matching-pattern, that is, a pattern that belongs to one of the κ classes C1, . . . , Cκ

defined in Definitions 3 and 4.

ICALP 2024
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1.1 Overview of our main result
Observe that Theorem 2 consists of six statements. Let us briefly discuss how these six
statements are proved. Note that some of these statements follow from known results, while
for others we need to do a substantial amount of new technical work. The proofs of statements
(iii) and (vi) form the main technical part of the paper (see Figure 4).

The main problem studied in this paper, obtaining tight upper and lower bounds for
different families of network design problems, is a genuine computer science question. Due to
the nature of the question we are asking, our results are at the intersection of computational
complexity, algorithms, and combinatorics (graph theory). The lower bounds are obtained
using the standard method of computational complexity: by reductions from problems for
which (conditional) lower bounds were already established. In particular, we are using the
known lower bounds for Planar DSN and Planar SCSS on planar graphs [8]. However,
the majority of the hardness proofs we present contain significant new ideas, new gadget
constructions, and use new non-obvious global structures when connecting the gadgets.

The upper bounds are obtained using an algorithm of Feldmann and Marx [14] (see
Theorem 7 below) solving the problem in time depending on the treewidth of an optimum
solution. Therefore, in this paper the main technical effort is spent on the combinatorial
question of bounding the treewidth of optimum solutions. Our proof uses planarity in a
geometric way (arguing about faces, invoking Sperner’s Lemma, etc.) and hence completely
different from earlier proofs that relied only on bidimensionality of planar graphs [8]. The
treewidth-based algorithm offers an abstraction that allows us to treat the upper bounds in
a clean, modular manner. Thus we can focus our efforts on understanding the patterns that
allow faster solutions, without having to develop details of algorithmic steps.

Furthermore, we have the purely combinatorial task of connecting the obstructions that
prevent the treewidth upper bound and the hard structures. In the full version [16], we
establish this connection with a heavy use of case analysis and Ramsey-theoretical arguments.
The type and amount of combinatorial effort is very different from what was needed in earlier
work on general graphs [14], where more elementary arguments were sufficient.

Statement (i): FPT algorithms
The FPT result (i) follows directly from Theorem 1 (here the surprising aspect is that, by
statement (iv), there are no further FPT cases).

Statement (ii): no subexponential FPT algorithms
The lower bound (ii) follows by observing that every relevant class contains either all in-stars
or all out-stars, hence the lower bound for Directed Steiner Tree [27] applies. To avoid
triviality, we need to assume that the class contains graphs with arbitrarily large number of
edges.

▶ Lemma 6. Let D be a class of graphs closed under identifying vertices and transitive
closure where the number of edges of the graphs is not bounded. Then one of the following
holds:

D contains every directed cycle,
D contains every out-star, or
D contains every in-star.

In statement (ii) of Theorem 2, we assume that Ai ̸⊆ D, and A5 is the class of all directed
cycles. Thus D contains either every out-star or every in-star.
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Statement (iii): f(k)nO(
√

k) algorithms
Our main technical result is proving statement (iii): the existence of an f(k) · nO(

√
k) time

algorithm if Ci ̸⊆ D for any i ∈ [κ] (in the following subsection, we give a more detailed
description of the proof). This algorithm is obtained by showing that the treewidth of the
optimal solution is always O(

√
k) under these conditions. Then we can use the following

result of Feldmann and Marx [14].

▶ Theorem 7 (Theorem 1.5 of [14]). If an instance (G, T, D) of Directed Steiner Net-
work has an optimum solution H of treewidth w, then it can be solved in 2O(kw log w) · nO(w)

time.

Note that this is a slightly weaker form of the statement, with a simplified bound on
the running time. With Theorem 7 at hand, our main goal is to prove that every optimum
solution of Planar D-DSN has treewidth O(

√
k) if Ci ̸⊆ D for any i ∈ [κ].

Towards proving this bound, we first translate the question to a problem on acyclic
graphs: it is sufficient to show that if the solution is acyclic, then the total degree of the
branch vertices (i.e., of degree > 2) is O(k). More formally, for a vertex v of a digraph, let
d∗(v) denote the branch degree of v, defined as

d∗(v) = max(d+(v) + d−(v) − 2, 0),

where d+(v) and d−(v) denotes the out- and in-degree of v, respectively. The total branch
degree of a graph G is the sum of all branch degrees of the vertices of G.

We say that a feasible solution H of (G, T, D) is edge-minimal if for all edges e ∈ E(H)
the graph H − e is not feasible. An edge e is essential for some demand edge (t, t′) ∈ E(D)
if there is no t → t′ path in H − e. Note that all edges of an edge-minimal graph H are
essential for some demand edge of D. We say that a pattern class D is c-acyclic-bounded for
some c = O(1) if for any instance (G, T, D) of Planar D-Steiner Network where G, D

are acyclic, and any edge-minimal solution H, the total branch degree of H is at most c|T |.
The next theorem moves the problem to the domain of acyclic digraphs: what we need

now is a linear bound on the total branch degree of acyclic solutions.

▶ Theorem 8. If the pattern class D is c-acyclic-bounded for some c = O(1), then for any
instance of Planar D-Steiner Network with |T | = k, the solution graph H has treewidth
O(

√
k).

Applying Theorem 7 implies that c-acyclic-bounded classes have the desired subexponen-
tial algorithm, but we still need to establish a link between non-c-acyclic-bounded classes and
t-hard-patterns. First, we argue that if the total branch degree is too large, then a grid-like
structure can be found in the solution. The grid-like structure appears in the solution to
satisfy a set of edges in the demand graph D, and this set of demands forms a certain hard
structure in the demand pattern that we call a t-tough-pair which we define informally here
(see Definition 14 for a formal definition). We say that two edges e1 and e2 are weakly
independent if there is no directed path from the head of one to the tail of the other. Edges
e1 and e2 are strongly independent if, in addition to being weakly independent, there is no
directed path containing the heads of both edges and there is no directed path containing
the tails of both edges. An edge e is minimal in a digraph D if there is no path from the tail
of e to the head of e avoiding e. Let E1 ∪ E2 be a vertex-disjoint set of minimal edges with
|E1| = |E2| = t. We say that (E1, E2) is a t-tough-pair if

any two edges e, e′ ∈ E1 are weakly independent,
any two edges e, e′ ∈ E2 are weakly independent, and
any two edges e1 ∈ E1 and e2 ∈ E2 are strongly independent.
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Observe that in particular the two matchings in a t-hard-matching-pattern form (vertical
edges in Figure 2) a t-tough-pair. Similarly, taking two vertex-disjoint matchings of size t

each in a 2t-hard-biclique-pattern is also a t-tough-pair.
Our main structure theorem connects the total branch degree to the existence of these

kind of hard structures.

▶ Theorem 9 (Structure Theorem). Let D be a class of graphs closed under identifying
vertices and transitive equivalence. Then either D has a pattern with a t-tough-pair for each
positive integer t, or it is c-acyclic-bounded for some constant c.

Theorems 8 and Theorem 9 show that the existence of arbitrarily large t-tough-pairs is the
canonical reason why the treewidth is not O(

√
k). The lower bounds ruling out f(k) · no(k)

time algorithms essentially rely on the existence of t-tough-pairs. However, the existence
of a t-tough-pair in a demand pattern D ∈ D is not sufficient for the lower bound: the
t-tough-pair could be only a small part of the pattern D, and hence the lower bounds may not
apply. We show, with heavy use of Ramsey’s Theorem and other combinatorial arguments,
that whenever a large t-tough-pair appears in a graph, then the graph can be “cleaned”:
we can identify vertices to obtain one of the t-hard-patterns. Therefore, if arbitrary large
t-tough-pairs appear in the members of a class D closed under identifying vertices, then the
class is a superset of one of the hard classes Ci.

▶ Theorem 10. Let D be a class of graphs closed under transitive equivalence and identifying
vertices. The following two are equivalent:
1. For every t, there is a D ∈ D that has a t-tough pair.
2. Ci ⊆ D for some i ∈ [κ].

We can conclude that if D is not the superset of Ci for any i ∈ [κ], then the treewidth
of the optimum solution is O(

√
k), implying that Planar D-DSN can be solved in time

f(k) · nO(
√

k).

Statement (iv): no f(k)no(
√

k) algorithms

If D contains A5 (directed cycles), then lower bounds ruling out f(k) · no(
√

k) time algorithms
follow from the known lower bound for Strongly Connected Steiner Subgraph [8].
When D contains one of A1, A2, A3, A4 (pure or flawed dimonds), the problem is known to be
W[1]-hard on general graphs [14]. We reprove the hardness of diamonds, this time restricted
to planar graphs, and observe that this W[1]-hardness proof actually rules out f(k) · no(

√
k)

time algorithms. Compared to the W[1]-hardness on general graphs, the proof for planar
graphs is more involved. As it is very usual for planar problems, we establish these lower
bounds by reducing from k × k-Grid Tiling, which cannot be solved in time f(k) · no(k),
assuming the ETH [9]. For statement (iv), we need to reduce from

√
k ×

√
k Grid Tiling

to a Planar D-DSN with O(k) terminals forming a pure/flawed in/out-diamond pattern,
ruling out f(k) · no(

√
k) algorithms for such patterns.

In all these reductions, we are reusing and extending the gadget constructions from earlier
work [8]. However, the high-level structure of the reduction is substantially different and
depends on the pattern class we are considering. In light of Theorem 7, we should first verify,
as a sanity check, that the treewidth of the solution can be sufficiently large, that is, it can
be Ω(

√
k) in case of diamonds. Typically, one can expect that examples with sufficiently

large treewidth shed some light on how the high-level structure of the hardness proof could
look like. Figure 3 shows that treewidth can be indeed sufficiently large: a

√
k ×

√
k grid

can be obtained from two “interlocking combs.”
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Statement (v): f(k)nO(k) algorithms
The upper bound f(k) · nO(k) (statement (v)) follows from the work of Eiben et al. [12], who
showed that Planar DSN with k terminals can always be solved within this running time.
Note that Feldman and Ruhl [13] presented a nO(p) time algorithm for DSN on general graphs
where p is the number of demands. However, as the number of demands on k terminals can
be Ω(k2), their algorithm does not give an f(k) · nO(k) algorithm where k is the number of
terminals.

Statement (vi): no f(k)no(k) algorithms
To prove statement (vi) ruling out f(k) · no(k) algorithms, we provide such a lower bound
for each class Ci for i ∈ [κ]. Analogously to statement (iv), the proof is by reduction from
k × k Grid Tiling to a Planar D-DSN instance with a k-hard-matching-pattern or a
k-hard-biclique-pattern, ruling out f(k) · no(k) algorithms. Again, let us verify that the
treewidth can be sufficiently large: Figure 3 shows how a k ×k grid can appear in the solution
to an instance with k terminals.

For t-hard-matching-patterns, the simplest case is when we have two induced matchings
of size t. Then a t × t grid can arise very easily in the solution if the terminals are on the
boundary of a grid. The crucial point here is that the t-hard-matching-pattern was defined in
a way that all the additional paths, sources etc. do not interfere with the grid, see the figure
for an example. For the t-hard-biclique-pattern, there is a non-obvious and highly delicate
way of constructing an instance with 2t terminals where a t × t grid appears. Combining
these constructions gives the lower bound.

▶ Theorem 11. Let D be a class of graphs closed under identifying vertices and transitive
equivalence. If Ci ⊆ D for some i ∈ [κ], then Planar D-Steiner Network has no
f(k) · no(k) time algorithm assuming the ETH.

Let us observe that if D consists of bicliques directed from one side to the other, then
Planar D-DSN corresponds to the following problem: given a planar digraph G with two
sets S, T ⊆ V (G) of terminals with |S| + |T | = k, find a subgraph with minimum number
of edges such that there is a path from every vertex of S to every vertex of T . Our result
shows that, assuming the ETH, this problem has no f(k) · no(k) time algorithm. This result
is surprising, as the problem can be considered to be genuinely planar in the sense that the
input is a planar graph with k terminals and a single bit of annotation at each terminal (and
there is no extra information, such as terminal pairs, that can disregard the planarity of the
instance). To our knowledge, this is the first example of a relatively natural planar problem
where f(k) · nO(k) is best possible and cannot be improved to f(k) · nO(

√
k).

1.2 Details of Statement (iii): the f(k) · nO(
√

k) algorithm
In this section, we give a more detailed overview of the technical steps of the proof of (iii)
sketched above.

From treewidth to total branch degree. Theorem 8 translates the question about the
treewidth of the solution in general graphs to a question about the total branch degree
of the solution in acyclic graphs. Suppose that we have an edge-minimal solution H in a
(not necessarily acyclic) graph G with k terminals. Let us contract the strongly connected
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diamond pattern. t-hard matching pattern. t-hard biclique pattern.

Ω(
√

t) × Ω(
√

t) grid
in the solution.

Ω(t) × Ω(t) grid
in the solution.

Ω(t) × Ω(t) grid
in the solution.

Figure 3 Pattern graphs (top row) and example minimal solution graphs with large grid patterns
and large treewidth (bottom row). The red/blue edges show how (some of the) demands are
connected in the solution.

Thm 10large t-tough pair large t-hard
pattern

Thm 11

Treewidth of the
solution

Statement (vi):
no f(k)no(k)

algorithm

total branch
degree ω(k)

Thm 9

Statement (iii):
2O(k)nO(

√
k)

algorithm

ω(
√

k)

O(
√

k)

Thm 8

Thm 7

Figure 4 The structure of the proofs of statements (iii) and (vi).

components of H in both G and H to obtain G′ and H ′, respectively. We can observe that
H ′ is an acyclic graph that is the optimum solution to an instance in G′ with at most k

terminals. Our goal is to show that if H ′ has total branch degree d, then H has treewidth
O(

√
d + k). Therefore, in the later steps of the proof, we bound the total branch degree of

H ′ by O(k), giving an O(
√

k) bound on the treewidth of H.
We say that a vertex of a strongly connected component of H is a portal if it is incident

to an edge connecting it to some other component. For simplicity of discussion, let us assume
here that every strongly connected component of H has at least 3 edges incident to the
portals, that is, every vertex of H ′ has at least 3 incident edges. (If a component has less
than 3 such edges and has no terminal, then it consists only of a single vertex and does not
affect treewidth anyway; if it has terminals, then it can be taken into account with additional
calculations.) By this assumption, the set P of portals has size at most 6d, where d is the
total branch degree of H ′.
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We want to bound the treewidth of H by showing that there is a set W of O(d + k)
vertices such that H − W has treewidth at most 2. It is known that if removing a set W

of vertices from a planar graph reduces treewidth to a constant, then the planar graph has
treewidth O(

√
|W |). Thus the treewidth bound O(

√
d + k) follows from the existence of

such a set W .
Let H[Vi] be a strongly connected component of H that has pi portals and contains ki

terminals. The key observation is that the only role of H[Vi] in the solution is to fully connect
the terminals and portals in H[Vi]. That is, we can assume that H[Vi] is an optimum solution
of a Strongly Connected Steiner Subgraph instance with pi + ki terminals. Chitnis
et al. [8] showed that we can remove a set Wi of O(pi + ki) vertices from such an optimum
solution to reduce its treewidth to 2. Therefore, taking the union of P and every Wi, we get
a set W of size O(d) + O(

∑
(pi + ki)) = O(d + k) whose removal reduces treewidth to 2 (as

removing P breaks the graph in a way that each component is a subset of some Vi, and the
removal of Wi breaks H[Vi] into components of treewidth at most 2).

Building a skeleton. Towards the proof of Theorem 9, our goal is to bound the total branch
degree by O(k) in an edge-minimal acyclic solution H. At some step of the proof, it will be
important to assume that H is a triangulated planar graph (every face has exactly three
vertices and edges), which is of course not true in general. Therefore, we introduce artificial
undirected edges in the graph H to make it triangulated. As these edges do not play any role
in the directed problem, it does not change the nature of the solution. Another simplification
step is that we assume that there is no vertex v ̸∈ T with d−(v) = d+(v) = 1. Such a vertex
has branch degree 0 and hence suppressing it (i.e., removing it and adding an edge from
its in-neighbor to its out-neighbor) has no effect on the total branch degree and on the
connectivity of the terminals.

We start by building a skeleton of the solution: a connected subgraph that contains
every terminal. The skeleton is composed from segments of two types. A long segment is a
directed path of H of length at least some constant L. A short segment is any path in the
undirected sense of length at most L, possibly containing both undirected or directed edges
of any orientation. Furthermore, we require that any two long segments in the skeleton are
distant, that is, have distance at least L in the undirected sense.

A skeleton tree consisting of O(k) segments and containing all the terminals can be built
the following way. Initially, we start with an edgeless subgraph R containing only the k

terminals. For simplicity of discussion, let us assume that the demand pattern is connected
(in the undirected sense). Then there has to be a demand titj such that ti and tj are in
two different components Ci and Cj of R, respectively. This means that H has a directed
path P connecting two different components of R. If P has length at most L, then we can
introduce it as short segment to reduce the number of components of R. Otherwise, we can
shorten P to P ′ such that every vertex of P ′ is at distance at least L from R and the two
endpoints are at distance exactly L from two different components C and C ′ of R. Then we
can reduce the number of components of R by introducing P ′ as a long segment and two
short segments connecting the endpoints of P ′ to C and C ′. By repeating these steps, we
can reduce the number of components to 1 by introducing O(k) segments in total.

Refining the faces. Our next goal is to further refine the skeleton such that every face of
the skeleton has at most 35 segments on its boundary, and it is still true that the skeleton
consists of O(k) segments. We achieve this goal by iteratively dividing a face into two by
introducing to the skeleton a new path consisting of at most 5 segments. We argue below
that if the division is not very skewed in a certain sense, then the bound O(k) on the number
of segments can be achieved even after iterative applications of this step.
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ug

ur ub
Pur

Pug

Pub

Figure 5 Finding a division that is not skewed.

Suppose that we have a face F where x ≥ 36 segments appear on the boundary. Let P

be a path between two segments of the boundary and assume that P consists of at most 5
segments. Introducing the path P into the skeleton creates two new faces F1 and F2 that
see some number x1 and x2 segments on the boundary of F , plus the 5 new segments of P .
We have x1 + x2 ≤ x + 2: if the endpoints of P are internal vertices of segments, then we
may have up to 2 segments that are now on the boundary of both F1 and F2.

For a face seeing x ≥ 13 segments of the skeleton, let us define x − 13 ≥ 0 to be the
potential of the face. If we chose the path P such that x1, x2 ≥ 13, then the potential of the
two new faces F1 and F2 are defined. Moreover, the total potential of the two faces is at
most

(x1 + 5 − 13) + (x2 + 5 − 13) ≤ x − 14,

strictly less than the potential of F . This means that if we start with a face F that sees x

segments of the skeleton, then repeated applications of this step can introduce only O(x)
new segments.

Finding a division that is not skewed. Next we show that if face F sees x ≥ 36 segments
of the skeleton, then we can find a division with x1, x2 ≥ 13. Then as we have seen above,
repeated applications of this step introduces O(x) segments and divide F into faces that see
at most 35 segments each.

Let us divide the boundary of F into three parts, red, green, and blue, each containing
at least 12 segments (see Figure 5). As every vertex v inside the face F is essential for the
solution, there is a directed path Pv from v to some vertex of the boundary; let us fix such a
Pv for each v. This defines a color of v according to which of the three parts of the boundary
contains the head of Pv. Then by Sperner’s Lemma and fact that the graph is triangulated,
there is a triangle ur, ug, ub inside F where the three vertices have three different colors.
From the assumptions that ur, ug, ub are on three different parts, and each part has length
at least 13, it follows that there are two vertices, say ur and ub, such that both subpaths of
the boundary between the heads of Pur and Pub

have at least 12 segments. Then putting
together Pur

and Pub
creates a path P that divides the face F in the required way. This

argument needs to be refined a bit further: as we said earlier, we want a skeleton where the
long segments are distant, i.e., are at distance at least L from each other. But this can be
easily achieved by appropriately shortening the long segments Pur

, Pub
, and then extending

them by three short segments.

Many edges incident to a long path. We assume now that the skeleton has O(k) faces,
each seeing at most 35 segments. If we can show that the total branch degree (of the orginal
solution H without the artificial edges) is a constant in each face, then we can bound by O(k)
the total branch degree of the solution. We can observe, using the acyclicity of the edges
inside the face, that we need to bound only the number of edges incident on the boundary.
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S2

e1 es

P1 Ps

f1

fs

Q1

Qs

e2

Figure 6 Finding a grid.

Let e be an edge inside the face incident to vertex v of the boundary. We say that e is
essential for demand titj if removing e breaks every path from ti to tj . Then we can define a
path Pe the following way: let us take any path P from ti to tj , and let Pe be the subpath
of P starting from e (which has to appear on P ) to the first vertex on the boundary of F .
Let us consider two edges e1, e2 starting from the same vertex v of the boundary. Let us
observe that Pe1 and Pe2 cannot intersect: then we could bypass e.g. e1 by starting on Pe2

and following it until intersection. By a similar argument, Pe1 and Pe2 cannot go to the
same long segment: then one of Pe1 and Pe2 could be avoided by using the other path and
part of the long segment. From these observations, it follows that the only way the boundary
can have many edges incident to it is that if there are edges e1, . . . , es incident to distinct
vertices of a long segment S1, with paths P1, . . . , Ps going to distinct vertices of some other
long segment S2 (see Figure 6).

Finding a grid and a t-tough pair. Now comes the point where we use the assumption
that long segments are distant. In particular, this means that the “middle path” Pes/2 is
long. The internal vertices of this path have no terminals (as all the terminals are on the
skeleton), hence it is not possible that d+(v) = d−(v) = 1 for any such internal vertex. Thus
either there are many vertices on this path that have an edge leaving the path, or many
vertices that have an edge entering the path. Assume without loss of generality the former,
let f1, . . . , fs be these edges. Again, each edge is essential for some demand, hence the path
satisfiying the demand has a subpath Qi starting with fi and going to the boundary. We
can observe again that these paths have to be disjoint. Therefore, we can obtain a grid-like
structure in the region surrounded by S1, Ps/2, S2, and Ps, see the region highlighted by
yellow in Figure 6. (There are some other cases to consider, which we ignore here. For
example, the paths Qi may go to S1 or S2.) This region has s/2 − 1 “vertical” paths Ps/2,
. . . , Ps−1, intersected by the s “horizontal paths” Q1, . . . , Qs.

We observe that if this grid has t horizontal and vertical paths, then we can use it to
discover a t-tough pair. Each edge ei is essential for some minimal demand; let E1 be the set
of these t demands. Similarly, we define E2 based on choosing a minimal demand for which
fi is essential. Then we can carefully verify that (E1, E2) is a t-tough-pair: if there is an edge
in the demand graph that is not allowed, then a careful analysis shows that there is a way of
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bypassing some ei or fi in the grid, contradicting the fact that it is essential. This concludes
the proof that if we have an upper bound on the size of the largest t-tough pair appearing in
the graphs of class D, then we can bound the treewidth of the solution by O(

√
k).

Cleaning. To prove Theorem 10, we need to show that if arbitrary large t-tough-pairs
appear in the graphs of D, then Ci ⊆ D for some i ∈ [κ]. The proof is a long combinatorial
argument to show that we can find t-tough-pairs that are canonical in some sense, and then
we use the assumption that D is closed under identifying vertices to contract the vertices
outside the t-tough-pair into a small constant number of well-behaved vertices.

Suppose that there is a t-tough-pair (E1, E2) in a digraph D. The minimality of the
edges in E1 and the fact that they do not appear in directed cycles (as they are weakly
independent to themselves) imply that for any two edges xiyi, xjyj ∈ E1, at least one of the
following holds:
1. exactly the edges xiyj , xjyi appear between {xi, yi} to {xj , yj},
2. there is no edge from {xi, yi} to {xj , yj}, or
3. there is no edge from {xj , yj} to {xi, yi}.
Let us consider a complete graph on t vertices w1, . . . , wt, and for every i < j, color the
edge wiwj according to which of the three statements hold for the edges xiyi and xjyj (if
more than one statement is true, we can choose arbitrarily). By Ramsey’s Theorem, there is
a large subset E′

1 ⊆ E1 where the same statement holds for any pair of edges. We can find a
similar subset E′

2 ⊆ E2. We consider two main cases. The first case is when Statement 1
holds either in E′

1 or E′
2. Then what we have is a matching xiyi of minimal edges that is

part of a complete bipartite graph, that is, every xi is adjacent to every yj (but note that
xiyj does not have to be a minimal edge). The second case is where we have Statement 2 or
3 in both E′

1 and E′
2. Then we can reorder E1 and E2 to have a further ordering property:

there is no edge from {xi, yi} to {xj , yj} for j < i. We handle the two cases separately. With
further Ramsey arguments and case distinctions, we show that identifications can be used
to find a t′-hard biclique pattern or a t′-hard matching pattern appearing in a graph in D,
where t′ is some unbounded function of t. It follows that if arbitrarily large t-tough pairs
appear in D, then D is a superclass of some Ci.

For full details and proofs, as well as a concluding discussion and open problems, please
see the full version of this article [16].

2 Formal definition of a t-tough-pair

In this section we give the formal definition of a t-tough-pair. Further definitions, that are
specific to the sections are defined in the beginning of the respective sections.

Given a digraph D and an edge e = (u, v) ∈ E(D), we say that e is a minimal edge of D

if D has no (u, v)-path of length strictly greater than 1 in D, where the length of the path is
the number of edges in it. We say that a digraph D is reachability-minimal if each edge of D

is minimal. For an edge e = (u, v) in a directed graph D, v is called the head of e and u is
called the tail of e. For any E′ ⊆ E(D), head(E′) (resp. tail(E′)) denotes the set of heads
(resp. tails) of the edges in E′. Next we define weak independence and strong independence
that are crucial to define the t-tough-pair formally.

▶ Definition 12 (Weakly independent edges). Given a digraph D and edges e1 = (u1, v1), e2 =
(u2, v2) ∈ E(D), we say that the pair of edges (e1, e2) is weakly independent in D, if
u1 ≠ v1 ̸= u2 ̸= v2, and D has neither a (v1, u2)-path nor a (v2, u1)-path. A set of edges
E′ ⊆ E(D) is weakly independent if every pair of distinct edges in E′ are pairwise weakly
independent and for each edge (ui, vi) ∈ E′, there is no (vi, ui)-path in D.



E. Galby, S. Kisfaludi-Bak, D. Marx, and R. Sharma 67:17

Informally, a pair of edges is weakly independent, if the head of one edge cannot reach
the tail of the other. Therefore, if a pair of edges is weakly independent, then they cannot lie
on a directed path.

▶ Definition 13 (Strongly independent edges). Given a digraph D and edges e1 = (u1, v1), e2 =
(u2, v2) ∈ E(D), we say that the pair of edges (e1, e2) is strongly independent in D, if they
are weakly independent in D, and additionally D has no (u1, u2)-path, no (u2, u1)-path, no
(v1, v2)-path and no (v2, v1)-path.

Informally, a pair of edges is strongly independent, if they are weakly independent, and
the head of one cannot reach the head of the other, and the tail of one cannot reach the tail of
the other. That is, the vertices of the heads (resp. vertices of tails) do not lie on any directed
path.

▶ Definition 14 (t-tough-pair). Given a digraph D, E1, E2 ⊆ E(D), we say that (E1, E2) is
a tough-pair in D if:
1. |E1| = |E2|,
2. each edge of E1 ∪ E2 is a minimal edge in D,
3. all edges in Ei are pairwise weakly independent in D, for both i ∈ {1, 2}, and
4. for each e1 ∈ E1 and e2 ∈ E2, (e1, e2) are strongly independent in D.

Further, for a positive integer t, we say that (E1, E2) is a t-tough-pair if |E1| = |E2| = t.
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