
A Tight Subexponential-Time Algorithm for
Two-Page Book Embedding
Robert Ganian #

Algorithms and Complexity Group, TU Wien, Austria

Haiko Müller #

School of Computing, University of Leeds, UK

Sebastian Ordyniak #

School of Computing, University of Leeds, UK

Giacomo Paesani #

School of Computing, University of Leeds, UK

Mateusz Rychlicki #

School of Computing, University of Leeds, UK

Abstract
A book embedding of a graph is a drawing that maps vertices onto a line and edges to simple pairwise
non-crossing curves drawn into “pages”, which are half-planes bounded by that line. Two-page
book embeddings, i.e., book embeddings into 2 pages, are of special importance as they are both
NP-hard to compute and have specific applications. We obtain a 2O(

√
n) algorithm for computing a

book embedding of an n-vertex graph on two pages – a result which is asymptotically tight under
the Exponential Time Hypothesis. As a key tool in our approach, we obtain a single-exponential
fixed-parameter algorithm for the same problem when parameterized by the treewidth of the input
graph. We conclude by establishing the fixed-parameter tractability of computing minimum-page
book embeddings when parameterized by the feedback edge number, settling an open question
arising from previous work on the problem.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases book embedding, page number, subexponential algorithms, subhamiltonicity,
feedback edge number

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.68

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2404.14087 [24]

Funding Robert Ganian: Project No. Y1329 of the Austrian Science Fund (FWF), Project No.
ICT22-029 of the Vienna Science Foundation (WWTF).
Sebastian Ordyniak: Project EP/V00252X/1, EPSRC.

1 Introduction

Book embeddings of graphs are drawings centered around a line, called the spine, and half-
planes bounded by the spine, called pages. In particular, a k-page book embedding of a graph
G is a drawing which maps vertices to distinct points on the spine and edges to simple curves
on one of the k pages such that no two edges on the same page cross [6]. These embeddings
have been the focus of extensive study to date [16, 20, 21, 22, 25, 38, 47], among others due
to their classical applications in VLSI, bio-informatics, and parallel computing [11, 20, 31].

Every n-vertex graph is known to admit an ⌈ n
2 ⌉-page book embedding [6, 11, 30], but

in many cases it is possible to obtain book embeddings with much fewer pages. Particular
attention has been paid to two-page embeddings, which have specifically been used, e.g.,

EA
T

C
S

© Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and
Mateusz Rychlicki;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 68; pp. 68:1–68:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rganian@gmail.com
https://orcid.org/0000-0002-7762-8045
mailto:h.muller@leeds.ac.uk
https://orcid.org/0000-0002-1123-1774
mailto:sordyniak@gmail.com
https://orcid.org/0000-0003-1935-651X
mailto:g.paesani@leeds.ac.uk
https://orcid.org/0000-0002-2383-1339
mailto:mkrychlicki@gmail.com
https://orcid.org/0000-0002-8318-2588
https://doi.org/10.4230/LIPIcs.ICALP.2024.68
https://arxiv.org/abs/2404.14087
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

68:2 A Tight Subexponential Algorithm for Two-Page Book Embedding

to represent RNA pseudoknots [31, 42]. The class of graphs that can be embedded on two
pages was studied by Di Giacomo and Liotta [27], Heath [32] as well as by other authors [1],
and was shown to be a superclass of planar graphs with maximum degree at most 4 [5].

While two-page book embeddings are a special class of planar embeddings, they are
not polynomial-time computable unless P = NP. Indeed, a graph admits a two-page book
embedding if and only if it is subhamiltonian (i.e., is a subgraph of a planar Hamiltonian
graph) [6] and testing subhamiltonicity is an NP-hard problem [11]. On the other hand,
the aforementioned problem of constructing a two-page book embedding (or determining
that none exists) – which we hereinafter call Two-Page Book Embedding – becomes
linear-time solvable if one is provided with a specific ordering of the n vertices of the input
graph along the spine [31]. While Two-Page Book Embedding can be seen to admit a
trivial brute-force 2O(n·log n) algorithm, it has also been shown to be solvable in 2O(n) time –
in particular, one can branch to determine the allocation of edges into the two pages and
then solve the problem via dynamic programming on SPQR trees [2, 33, 34].

Contribution. As our main contribution, we break the single-exponential barrier for Two-
Page Book Embedding by providing an algorithm that solves the problem in 2O(

√
n) time.

Our algorithm is exact and deterministic, and avoids the single-exponential overhead of
branching over edge allocations to pages by instead attacking the equivalent subhamiltonicity
testing formulation of the problem. It is also asymptotically optimal under the Exponential
Time Hypothesis [35]: there is a well-known quadratic reduction that excludes any 2o(

√
n)

algorithm for Hamiltonian Cycle on cubic planar graphs [26], and a linear reduction from
that problem (under the same restrictions) to subhamiltonicity testing [46] then excludes
any 2o(

√
n) algorithm for our problem of interest.

The central component of our result is a non-trivial dynamic programming procedure
that solves Two-Page Book Embedding in time 2O(tw) · n, where tw is the treewidth of
the input graph. The desired subexponential algorithm then follows by the well-known fact
that n-vertex planar graphs have treewidth at most O(

√
n) [28, 39, 44]. But in addition

to that, we believe our single-exponential treewidth-based algorithm to be of independent
interest also in the context of parameterized algorithmics [13, 19].

Indeed, while Two-Page Book Embedding was already shown to be fixed-parameter
tractable w.r.t. treewidth (i.e., to admit an algorithm running in time f(tw) ·n) by Bannister
and Eppstein [3], that result crucially relied on Courcelle’s Theorem [12]. More specifically,
they showed that the required property can be encoded via a constant-size sentence in Monadic
Second Order logic, which suffices for fixed-parameter tractability – but unfortunately not for
a single-exponential algorithm, and a direct dynamic programming algorithm based on the
characterization employed there seems to necessitate a parameter dependency that is more
than single-exponential. Moreover, it is not at all obvious how one could employ convolution-
based tools – which have successfully led to 2O(tw) · n algorithms for, e.g., Hamiltonian
Cycle [10, 14, 15] – for our problem of interest here.

Instead, we obtain our results by employing dynamic programming along a sphere-cut
decomposition – a type of branch decomposition specifically designed for planar graphs of small
treewidth [18]. However, unlike in previous applications of sphere-cut decompositions [36, 40],
our algorithm requires the nooses delimiting the bags in the sphere-cut decomposition to
admit a fixed drawing since our arguments rely on constructing a hypothetical solution (a
subhamiltonian curve) that is “well-behaved” w.r.t. a fixed set of curves. While this would
typically lead to extensive case analysis to compute the records of a parent noose from the
records of the children, we introduce a generic framework that allows us to transfer records

R. Ganian, H. Müller, S. Ordyniak, G. Paesani, and M. Rychlicki 68:3

from child to parent nooses via XOR operations. We believe that this technique may be of
broader interest, specifically when working with problems which require one to enhance the
embedding or drawing of an input graph.

In the final part of the article, we turn our attention to the parameterized complexity
of computing book embeddings. While Two-Page Book Embedding is fixed-parameter
tractable when parameterized by the treewidth of the input graph, the only graph parameter
which has been shown to yield fixed-parameter algorithms for computing ℓ-page book
embeddings for ℓ > 2 is the vertex cover number1 [7]. Whether this tractability result also
holds for other structural graph parameters such as treewidth, treedepth [41] or the feedback
edge number [45] has been stated as an open question in the field2. We conclude by providing
a novel fixed-parameter algorithm for computing ℓ-page book embeddings (or determining
that one does not exist) under the third parameterization mentioned above – the feedback
edge number, i.e., the edge deletion distance to acyclicity. This result is complementary to the
known vertex-cover based fixed-parameter algorithm, and can be seen as a necessary stepping
stone towards eventually settling the complexity of computing ℓ-page book embeddings
parameterized by treewidth. Moreover, since the obtained kernel is linear in the case of
ℓ = 2, the obtained kernel allows us to generalize our main algorithmic result to a run-time
of 2O(

√
k) · nO(1) where k is the feedback edge number of the input graph.

2 Preliminaries

Basic Notions. We use basic terminology for graphs and multi-graphs [17], and assume
familiarity with the basic notions of parameterized complexity and fixed-parameter tractabil-
ity [13, 19]. The feedback edge number of G, denoted by fen(G), is the minimum size of any
feedback edge set of G, i.e., a set F ⊆ E(G) such that G− F = (V (G), E(G) \ F) is acyclic.

For a face f of a plane graph, we use σ(f) to denote the cyclic sequence of the vertices
obtained by traversing the closed curve representing the border of f in a clock-wise manner.

Book Embeddings and Subhamiltonicity. An ℓ-page book embedding of a multi-graph
G = (V,E) will be denoted by a pair ⟨≺, σ⟩, where ≺ is a linear order of V , and σ : E → [ℓ]
is a function that maps each edge of E to one of ℓ pages [ℓ] = {1, 2, . . . , ℓ}. In an ℓ-page book
embedding ⟨≺, σ⟩ it is required that for no pair of edges uv,wx ∈ E with σ(uv) = σ(wx) the
vertices are ordered as u ≺ w ≺ v ≺ x, i.e., each page must be crossing-free. The page number
of a graph G is the minimum number ℓ such that G admits an ℓ-page book embedding. The
general problem of computing the page number of an input graph is thus:

Book Thickness
Instance: A multi-graph G with n vertices and a positive integer ℓ.
Question: Does G admit a ℓ-page book embedding?

It is known that a multi-graph admits a 2-page book embedding if and only if it is
subhamiltonian, i.e., if it has a planar Hamiltonian supergraph on the same vertex set [6]; an
illustration is provided in Figure 1. Hence, the problem of deciding whether a multi-graph
has page number 2 can be equivalently stated as:

1 The vertex cover number is the minimum size of a vertex cover, and represents a much stronger restriction
on the structure of the input graphs than, e.g., treewidth.

2 E.g., at Advances in Parameterized Graph Algorithms (Spain, May 2–7 2022) and also at
Dagstuhl seminar 21293 Parameterized Complexity in Graph Drawing [23].

ICALP 2024

68:4 A Tight Subexponential Algorithm for Two-Page Book Embedding

A

S

R P

Q

E

F

O

B

D C

G
I

M

L

K
J

N

H

A

S

R

P

Q

E

F

O

B

D

C

G

I

M

L

K

J

N

H

Figure 1 A drawing of a subhamiltonian graph G, made of the full-edges, which is completed by
the dashed edges to one of its Hamiltonian supergraphs GH (left) and the same graph drawn as a
two-page book embedding (right). In both drawings the Hamiltonian cycle H is colored in blue and
the edges belonging to page 1 and 2 are colored with green and red, respectively.

Subhamiltonicity (SUBHAM)
Instance: A multi-graph G with n vertices.
Question: Is G subhamiltonian?

Since the transformation between 2-page book embeddings and Hamiltonian cycles of
supergraphs is constructive in both directions, a constructive algorithm for SUBHAM (such
as the one presented here) allows us to also output a 2-page book embedding for the graph.

Let G be subhamiltonian. For a Hamiltonian cycle H on V (G) (where H is not necessarily
a subgraph of G), we denote by GH the graph obtained from G after adding the edges of
H and say that H is a witness for G if GH is planar. A drawing D of G respects H if D
can be completed to a planar drawing of GH by only adding the edges of H. We extend
the notion of “witness” to include all the information defining the solution as follows: a
tuple (D,DH , GH , H) is a witness for G if GH is a planar supergraph of G containing the
Hamiltonian cycle H, DH is a planar drawing of GH , and D is the restriction of DH to G;
note that DH witnesses that D respects H.

SPQR-Trees. We assume familiarity with the SPQR-tree data structure for biconnected
multi-graphs which decomposes a graph into (S)eries, (P)arallel, (R)igid and (Q) nodes (leaf
nodes and root node), following the formalism used by Gutwenger et al. [29], see also [4, 8, 9].
For a node b in an SPQR-tree, we use Sk(b) and Pe(B) to denote the skeleton and pertinent
graph of b, respectively. SPQR-trees can be computed in linear time, and an illustration of
the data structure is provided in Figure 2.

R. Ganian, H. Müller, S. Ordyniak, G. Paesani, and M. Rychlicki 68:5

(a)

Q

Q Q Q Q Q Q

P

Q S R

b

b′

(b)

e

(c) (d)

Figure 2 (a) shows a biconnected multi-graph G. (b) shows the SPQR-tree B of G. (c) shows
the skeleton of b, Sk(b), where the edge e that corresponds to the child (with pertinent node) b′ is
in bold and the dashed edge represents the reference edge. Finally, (d) shows Pe(b′).

Sphere-Cut Decompositions. A branch decomposition ⟨T, λ⟩ of a graph G consists of an
unrooted ternary tree T (meaning that each node of T has degree one or three) and of
a bijection λ : L(T) ↔ E(G) from the leaf set L(T) of T to the edge set E(G) of G; to
distinguish E(T) from E(G), we call the elements of the former arcs (as was also done in
previous work [18]). For each arc a of T , let T1 and T2 be the two connected components of
T−a, and, for i = 1, 2, let Gi be the subgraph of G that consists of the edges corresponding to
the leaves of Ti, i.e., the edge set {λ(µ) : µ ∈ L(T) ∩ V (Ti)}. The middle set mid(a) ⊆ V (G)
is the intersection of the vertex sets of G1 and G2, i.e., mid(a) := V (G1) ∩ V (G2). The
width β(⟨T, λ⟩) of ⟨T, λ⟩ is the maximum size of the middle sets over all arcs of T , i.e.,
β(⟨T, λ⟩) := max{|mid(a)| : a ∈ E(T)}. An optimal branch decomposition of G is a branch
decomposition with minimum width; this width is called the branchwidth β(G) of G. We
will need the following well-known relation between treewidth and branchwidth.

▶ Lemma 1 ([43, Theorem 5.1]). Let G be a graph. Then, bw(G) − 1 ≤ tw(G) ≤ 3
2 bw(G) − 1,

where bw(G) is the branchwidth and tw(G) is the treewidth of G.

Let D be a plane drawing of a connected planar graph G. A noose of D is a closed simple
curve that (i) intersects D only at vertices and (ii) traverses each face at most once, i.e., its
intersection with the region of each face forms a connected curve. The length of a noose is
the number of vertices it intersects, and every noose O separates the plane into two regions
δ1 and δ2. A sphere-cut decomposition ⟨T, λ,Π = {πa | a ∈ E(T) }⟩ of (G,D) is a branch
decomposition⟨T, λ⟩ of G together with a set Π of circular orders πa of mid(a) – one for
each arc a of T – such that there exists a noose Oa whose closed discs δ1 and δ2 enclose the
drawing of G1 and of G2, respectively. Observe that Oa intersect G exactly at mid(a) and
its length is |mid(a)|. Note that the fact that G is connected together with Conditions (i)
and (ii) of the definition of a noose implies that the graphs G1 and G2 are both connected
and that the set of nooses forms a laminar set family, that is, any two nooses are either
disjoint or nested. A clockwise traversal of Oa in the drawing of G defines the cyclic ordering
πa of mid(a). We always assume that the vertices of every middle set mid(a) are enumerated
according to πa. A sphere-cut decomposition of a given planar graph with n vertices can be
constructed in O(n3) time [18].

ICALP 2024

68:6 A Tight Subexponential Algorithm for Two-Page Book Embedding

We say that a biconnected planar multi-graph G equipped with an SPQR-tree B is
associated with a set T of sphere-cut decompositions if T contains a sphere-cut decomposition
of Sk(b) for every R-node and every S-node b of B.

▶ Lemma 2. Let G be biconnected planar multi-graph with planar drawing D and SPQR-
tree B of G together with the associated set T of sphere-cut decompositions. Then, D can
be extended to a planar drawing D′ of G together with all nooses in {Oa | a ∈ E(Tb) ∧
⟨Tb, λb,Πb⟩ ∈ T } as well as a noose Nb for every node b of B satisfying:

Nb intersects with D only at sb and tb.
Nb separates Pe(b) from G \ Pe(b) in D.

Moreover, if any of the subcurves of the nooses Oa and the nooses Nb connect the same two
vertices in the same face of D, then the two subcurves are identical in D′.

Non-Crossing Matchings. Let Kn be the complete graph on vertices {1, . . . , n} and let <
be a cyclic ordering of the elements in {1, . . . , n}. A non-crossing matching is a matching
M in the graph Kn such that for every two edges {a, b}, {c, d} ∈ M it is not the case that
a < c < b < d.

3 Solution Normal Form

Our first order of business is to show that we can assume that the solution (Hamiltonian
cycle) to the SUBHAM problem interacts with the drawing in a restricted manner. In
particular, we aim to show that every subhamiltonian graph G has a witness (D,DH , GH , H)
in normal form, i.e., with the following property: it is possible to draw a curve in DH between
any two vertices occurring in a common face of D such that this curve only crosses the
Hamiltonian cycle at most twice. Note that this property will allow us to bound the number
of possible interactions of the Hamiltonian cycle with any subgraph corresponding to either
a node in the SQPR-tree or an arc in a sphere-cut decomposition and is crucial to bound the
number of types in our dynamic programming algorithm. The following lemma is the main
technical lemma behind our normal form. An illustration of the main ideas behind the proof
is provided in Figure 3.

▶ Lemma 3. Let G be a subhamiltonian graph with witness (D,DH , GH , H), let f be a face
of D and let c be a curve drawn inside f between two vertices u, v ∈ V (f). Then, there is a
witness (D,DH′ , GH′ , H ′) for G such that:
(1) DH′ and DH differ only inside f .
(2) c crosses at most two curves corresponding to the edges of H ′.
(3) c crosses each curve corresponding to an edge of H ′ at most once.
We are now ready to define our normal form for the Hamiltonian cycle. Essentially, we show
that if there is a Hamiltonian cycle, then there is one which crosses each subcurve that is
either part of the border of a node in the SPQR-tree or that is a subcurve of some noose in
a sphere-cut decomposition of an R-node or an S-node at most twice.

Let G be a biconnected subhamiltonian multi-graph with SPQR-tree B and the associated
set T of sphere-cut decompositions ⟨Tb, λb,Πb⟩ of Sk(b) for every R-node and S-node b of B.
We say that a witness W = (D,DH , GH , H) for G respects the sphere-cut decompositions
in T , if there is a planar drawing of all nooses in the sphere-cut decompositions of T into
D such that every subcurve c in

⋃
a∈E(Tb) Oa crosses the curves corresponding to the edges

of H at most twice in DH . We say that the witness W for G respects B if it respects the
sphere-cut decompositions in T and for every node b of B with reference edge (sb, tb), it
holds that there is a noose Nb that can be drawn into DH such that:

R. Ganian, H. Müller, S. Ordyniak, G. Paesani, and M. Rychlicki 68:7

u1

u2

u3

p1 p2 p3

v1

v2

v3

u v

P1

P2

P3

Figure 3 The cycle H = (u2, P1, u1, v1, P2, u3, v3, P3, v2, u2) represents a Hamiltonian cycle that
crosses the uv-curve at least three times (in p1, p2 and p3). Thanks to Lemma 3, we obtain a
Hamiltonian cycle H ′ = (u2, P1, u1, v3, P3, v2, v1, P2, u3, u2) that differs from H only inside the face
f = (u, u1, u2, u3, v, v3, v2, v1) and crosses the uv-curve two fewer times than H does. Finally, note
that the vertices u and v are part of either P1, P2, or P3.

Nb touches D only at sb and tb.
Nb separates Pe(b) from G \ Pe(b) in D.
Each of the two subcurves Lb and Rb obtained from Nb by splitting Nb at sb and tb
crosses the curves corresponding to the edges of H at most twice.
Moreover, if any of the subcurves of the nooses Oa and the nooses Nb connect the same
two vertices in the same face of D, then the two subcurves are identical.

The following lemma allows us to assume our normal form and follows easily from a repeated
application of Lemma 3.

▶ Lemma 4. Let G be a biconnected subhamiltonian multi-graph with SPQR-tree B and the
associated set T of sphere-cut decompositions. Then, there is a witness W = (D,DH , GH , H)
for G that respects B.

4 Setting Up the Framework

In this section we provide the foundations for our algorithm. That is, in Subsection 4.1,
we show that it suffices to consider biconnected graphs allowing us to employ SPQR-trees.
We then define the types for nodes in the SPQR-tree, which we compute in our dynamic
programming algorithm on SPQR-trees, in Subsection 4.2. Finally, in Subsection 4.3
we introduce our general framework for simplifying dynamic programming algorithms on
sphere-cut decompositions and introduce the types for nodes of a sphere-cut decomposition.

4.1 Reducing to the Biconnected Case
We begin by showing that any instance of SUBHAM can be easily reduced to solving the
same problem on the biconnected components of the same instance. It is well-known that
SUBHAM can be solved independently on each connected component of the input graph,
the following theorem now also shows that the same holds for the biconnected components
of the graph and allows us to employ SPQR-trees for our algorithm.

ICALP 2024

68:8 A Tight Subexponential Algorithm for Two-Page Book Embedding

▶ Theorem 5. Let G be a graph and let C ⊆ V (G) such that N(C) = {n}, where N(C) =
{ v ∈ V (G) \ C | ∃c ∈ C {v, c} ∈ E(G) } is the set of neighbors of any vertex of C in
V (G) \C. Then G is subhamiltonian if and only if both G− = G−C and GC = G[C ∪ {n}]
are subhamiltonian.

4.2 Defining the Types for Nodes in the SPQR-tree
Here, we define the types for nodes in the SPQR-tree that we will later compute using
dynamic programming. In the following, we assume that G is a biconnected multi-graph
with SPQR-tree B and the associated set T of sphere-cut decompositions. Let b be a node of
B with pertinent graph Pe(b) and reference edge e = (s, t). A type of b is a triple (ψ,M, S)
such that (please refer also to Figure 4 for an illustration of some types):

ψ is a function from {L,R} to subsets of {l, l′, r, r′} such that ψ(L) ∈ {∅, {l}, {l, l′}} and
ψ(R) ∈ {∅, {r}, {r, r′}}. We denote by V (ψ) the set ψ(L) ∪ ψ(R). Informally, ψ captures
how many times the Hamiltonian cycle enters and exits the graph Pe(b) from the left (L)
and from the right (R).
M ⊆ { {u, v} | u, v ∈ {s, t} ∪ V (ψ) ∧ u ≠ v } and M is a non-crossing matching w.r.t. the
circular ordering (s, r, r′, t, l′, l) that matches all vertices in V (ψ) (i.e. V (ψ) ⊆ V (M)),
where V (M) =

⋃
e∈M e. Informally, M captures the maximal path segments of the

Hamiltonian cycle inside Pe(b) ∪ V (ψ) with endpoints in {s, t} ∪ V (ψ).
S ⊆ {s, t} \ V (M). Informally, S captures whether s or t are contained as inner vertices
on path segments corresponding to M .

We now provide the formal semantics of types; see Figure 4 for an illustration. Let X be
the set of all types and Pe∗(b) be the graph obtained from Pe(b) after adding the dummy
vertices l, l′, r, and r′ together with the edges sl, ll′, l′t, sr, rr′, and r′t. We say that b
has type X = (ψ,M, S) if there is a set P of vertex-disjoint paths or a single cycle in the
complete graph with vertex set V (Pe∗(b)) such that:

P consists of exactly one path Pe between u and v for every e = {u, v} ∈ M or P is a
cycle and M = ∅.
{ IN(P) | P ∈ P } is a partition of (V (Pe(b)) \ {s, t}) ∪ S, where IN(P) denotes the set
of inner vertices of P .
there is a planar drawing D(b,X) of Pe∗(b) ∪

⋃
P ∈P P with outer-face f such that

σ(f) = {s, r, r′, t, l′, l}.

The way we define the types X = (ψ,M, S) of a node b allows us to associate each witness
W = (D,DH , GH , H) with a type, denoted by ΓW (b), based on the restriction of the witness
to the respective pertinent graph.

4.3 Framework for Sphere-cut Decomposition
Here, we introduce our framework to simplify the computation of records via bottom-up
dynamic programming along a sphere-cut decomposition. Since the framework is independent
of the type of records one aims to compute, we believe that the framework is widely applicable
and therefore interesting in its own right. In particular, we introduce a simplified framework
for computing the types of arcs (or, equivalently, nooses) in sphere-cut decompositions.

Indeed, the central ingredient of any dynamic programming algorithm on sphere-cut
decompositions is a procedure that given an inner node with parent arc aP and child arcs aL

and aR computes the set of types for the noose OaP
from the set of types for the nooses OaL

and OaR
. Unfortunately, there is no simple way to obtain OaP

from OaL
and OaR

and this
is why computing the set of types for OaP

from the set of types for OaL
and OaR

usually
involves a technical and cumbersome case distinction [18]. To circumvent this issue, we

R. Ganian, H. Müller, S. Ordyniak, G. Paesani, and M. Rychlicki 68:9

s

t

l

r

r′

s

t

l

l′

r

r′

s

t

l r

Figure 4 The figure shows three different types of a node in an SPQR-tree with reference edge
(s, t), i.e., the types shown are (from left to right): ({{L → {l}}, {R → {r, r′}}, {{l, s}, {r, r′}}, {t}),
({{L → {l, l′}}, {R → {r, r′}}, {{l, s}, {l′, r}, {t, r′}}, ∅), and ({{L → {l}}, {R → {r}}, {{l, r}}, {t}).
The subset of {l, l′} and {r, r′} that appears corresponds to ψ(L) and ψ(R) respectively. The blue
edges correspond to the matching M and the blue vertices corresponds to S.

introduce a simple operation, i.e., the ⊕ (XOR) operation defined below, and show that the
noose Oap can be obtained from the nooses OaL

and OaR
using merely a short sequence –

one of length at most four – of ⊕ operations.
Central to our framework is the notion of weak nooses, which are defined below and can

be seen as intermediate results in the above-mentioned sequence of simple operations from
the child nooses to the parent noose; in particular, weak nooses are made up of subcurves
of the nooses in the sphere-cut decomposition. Let G be a biconnected multi-graph and
let B be an SPQR-tree of G. Let b be an R-node or S-node of B with pertinent graph
Pe(b). Let ⟨Tb, λb,Πb⟩ be a sphere-cut decomposition of Sk(b) and a be an arc of Tb with
pertinent graph Pe(b, a). Let C(Tb) be the set of all subcurves of all nooses occurring in Tb,
i.e., C(Tb) =

⋃
a∈E(Tb) Oa where Oa is seen as a set of subcurves. We say O is a weak noose

if O is a noose consisting only of subcurves from C(Tb). For each O ⊆ C(Tb), let V (O) be
equal to the vertices of G touched by the noose O.

Having defined weak nooses, we will now define our simplified operation. Let A⊕B be
an exclusive or for two sets A and B, i.e. A ⊕ B = (A ∪ B) \ (A ∩ B). We will apply the
⊕-operation to weak nooses, whose ⊕ is again a weak noose. The following lemma, whose
setting is illustrated in Figure 5, is central to our framework as it shows that we can always
obtain the noose for the parent arc aP from the nooses of the child arcs aL and aR using a
short sequence of ⊕-operations such that every intermediate result is a weak noose.

▶ Lemma 6. Let aP be a parent arc with two child arcs aL and aR in a sphere-cut decompo-
sition ⟨T, λ,Π⟩ of a biconnected multi-graph G with the drawing D. There exists a sequence
Q of at most 3 ⊕-operations such that:

each step generates a weak noose O with |O| ≤ 1 + max{|mid(aP)|, |mid(aL)|, |mid(aR)|}
as the ⊕-operation of two weak nooses O1 and O2, whose inside region contains all
subcurves in (O1 ∩O2),
the last step generates the noose OaP

,
Q contains OaL

and OaR
and at most two new weak nooses, each of them bounds the

edge-less graph of size 3.

We are now ready to define the types of weak nooses, which informally can be seen as
a generalization of the types of nodes in an SPQR-tree introduced in Subsection 4.2. An
illustration of the types is also provided in Figure 7. In the following we fix an arbitrary
order πG of the vertices in G. A type of a weak noose O is a triple (ψ,M, S) such that:

ICALP 2024

68:10 A Tight Subexponential Algorithm for Two-Page Book Embedding

u1

u2

u3

u4

u5

u6

u7

u8

OaL

OaR

O1 O2

OaP

Figure 5 An illustration of the relationship of the parent noose OaP and the child nooses OaL

and OaR . The illustration represents the case of Lemma 6 where O′ = OaP ⊕OaL ⊕OaR consists of
two disjoint weak nooses (triangles) O1 and O2.

(1) ψ is a function that for each subcurve c = ({u, v}, f) in O, i.e., the subcurve of O
between u and v in face f , returns a sequence of at most two new nodes, (2) S is a subset
of V (O), and (3) M ⊆ { {u, v} | u, v ∈ V (ψ) ∪ (V (O) \ S) ∧ u ̸= v }, V (ψ) ⊆ V (M), and M

is a non-crossing matching w.r.t. the circular order π◦(ψ) defined as follows. π◦(ψ) is the
circular order obtained from the circular order π◦(O) of V (O) after adding ψ(c) between u

and v, for every c = ({u, v}, f) ∈ O assuming that πG(u) < πG(v).
The semantics for the types as well as the definition of a type given a witness are now

defined in a similar way as in the case of types for SPQR-tree nodes.

5 An FPT-algorithm for SUBHAM using Treewidth

In this section we show that SUBHAM admits a constructive single-exponential fixed-
parameter algorithm parameterized by treewidth.

▶ Theorem 7. SUBHAM can be solved in time 2O(tw) · nO(1), where tw is the treewidth of
the input graph.

Since the treewidth of an n-vertex planar graph is upper-bounded by O(
√
n) [28, 39, 44]

and there are single-exponential constant-factor approximation algorithms for treewidth [37],
Theorem 7 immediately implies the following corollary.

▶ Corollary 8. SUBHAM can be solved in time 2O(
√

n).

The main component used towards proving Theorem 7 is the following lemma, from
which Theorem 7 follows as an easy consequence .

▶ Lemma 9. Let G be a biconnected multi-graph with n vertices and m edges and SPQR-tree
B. Then, we can decide in time O(315ωn+ n3) whether G is subhamiltonian, where ω is the
maximum branchwidth of Sk(b) over all R-nodes and S-nodes b of B.

The remainder of this section is therefore devoted to a proof of Lemma 9, which we show
by providing a bottom-up dynamic programming algorithm along the SPQR-tree of the
graph. That is, let G be a biconnected multi-graph, B be an SPQR-tree of G with associated
set T of sphere-cut decompositions for every R-node and S-node of B. Using a dynamic
programming algorithm starting at the leaves of B, we will compute a set R(b) of all types
X satisfying the following two conditions:

R. Ganian, H. Müller, S. Ordyniak, G. Paesani, and M. Rychlicki 68:11

(R1) If X ∈ R(b), then b has type X.
(R2) If there is a witness W = (D,DH , GH , H) for G that respects B such that b has type

X = ΓW (b), then X ∈ R(b).
Interestingly, we do not know whether it is possible to compute the set of all types X such that
b has type X as one would usually expect to be able to do when looking at similar algorithms
based on dynamic programming. That is, we do not know whether one can compute the set
of types that also satisfies the reverse direction of (R1). While we do not know, we suspect
that this is not the case because b might have a type that can only be achieved by crossing
some sub-curves of nooses inside of Pe(b) more than twice. Indeed Lemma 3, which allows
us to avoid more than two crossings per sub-curve, requires the property that the type of b
can be extended to a Hamiltonian cycle of the whole graph, which is clearly not necessarily
the case for every possible type of b.

5.1 Handling P-nodes
In this part, we show how to compute the set of types for any P -node in the given SPQR-tree
by establishing the following lemma.

▶ Lemma 10. Let b be a P-node of B such that R(c) has already been computed for every
child c of b in B. Then, we can compute R(b) in time O(ℓ), where ℓ is the number of children
of b in B.

In the following, let b be a P-node of B with reference edge (s, t) and let C with |C| = ℓ be
the set of all children of b in B. Informally, R(b) is the set of types X such that there is
an ordering ρ = (c1, . . . , cℓ) of the children in C and an assignment τ : C → X of children
to types with τ(c) ∈ R(c) for every child c ∈ C that “realizes” the type X for b. The
main challenge is to compute R(b) efficiently, i.e., without having to enumerate all possible
orderings ρ and assignments τ . Below, we make this intuition more precise before proceeding.

For a type X = (ψ,M, S) of b and A ∈ {L,R}, we let #A(X) = |ψ(A)|. Moreover, for
every A ∈ {s, t}, we set #A(X) to be equal to 2 if A ∈ S, equal to 1 if A ∈ V (M) and equal
to 0 otherwise. Next, let ρ = (X1, . . . , Xℓ) be a sequence of types, where Xi = (ψi,Mi, Si)
for every i with 1 ≤ i ≤ ℓ. We say that ρ is weakly compatible if the following holds:
(C1) for every i with 1 ≤ i < ℓ, #R(Xi) = #L(Xi+1), and
(C2)

∑ℓ
i=1 #s(Xi) ≤ 2 and

∑ℓ
i=1 #t(Xi) ≤ 2.

Note that (C1) corresponds to our assumption made in Lemma 4 that we can add the nooses
Nb to any planar drawing D of G such that every face of D contains at most one subcurve
of any Nb. This in particular means that if Pe(c) is drawn immediately to the left of Pe(c′)
for two children c and c′ of b, then the subcurves Rc and Lc′ are identical. Please also refer
to Figure 6 for an illustration of these subcurves.

Let ρ be weakly compatible. We define the following auxiliary graph H(ρ). H(ρ) has
two vertices s and t and additionally for every i with 1 ≤ i ≤ ℓ and every vertex v ∈ V (ψ),
H(ρ) has a vertex vi. For convenience, we also use si and ti to refer to s and t, respectively.
Moreover, H(ρ) has the following edges:

for every 1 ≤ i ≤ ℓ if Mi = ∅ and Si = {si, ti}, H(ρ) has a cycle on si and ti,
for every 1 ≤ i ≤ ℓ if Mi ̸= ∅ then for every e = {u, v} ∈ Mi, H(ρ) has the edge {uivi},
for every 1 ≤ i < ℓ, H(ρ) contains the edge {ri, li+1} if r ∈ ψi(R) and l ∈ ψi+1(L),
for every 1 ≤ i < ℓ, H(ρ) contains the edge {r′

i, l
′
i+1} if r′ ∈ ψi(R) and l′ ∈ ψi+1(L).

We say that ρ is compatible if it is weakly compatible and furthermore either H(ρ) is
acyclic, or H(ρ) − (

⋃ℓ
i=1 Si) is a single (Hamiltonian) cycle.

ICALP 2024

68:12 A Tight Subexponential Algorithm for Two-Page Book Embedding

t

s

Figure 6 An illustration of how a Hamiltonian Cycle in normal form can interact with a drawing
of Pe(b) for a P-node b. Here, the pertinent graphs Pe(c) for all children c of b (without the nodes
s and t of the common reference edge (s, t)) are represented by gray ellipses. The Hamiltonian cycle
is given in blue with dashed segments representing path segments outside of Pe(b). The red curves
represent the subcurves of Nc for every child c of b. In this figure all but the types of the second
and fourth pertinent graph are clean. Moreover, the type of the third and fifth pertinent graphs are
1-good and 2-good, respectively, and the types of all other pertinent graphs are bad.

In the following let ρ = (X1, . . . , Xℓ) be compatible. We now define the type X associated
with ρ, which we denote by X(ρ), as follows. If H(ρ) is a single cycle and {s, t} ⊆

⋃ℓ
i=1 Si,

then we set X(ρ) = (ψ, ∅, {s, t}), where ψ(L) = ψ(R) = ∅. Otherwise, let P(ρ) be the set of
paths in H(ρ), which can be shown to have their endpoints in {s, t, l1, l′1, rℓ, r

′
ℓ}. Then, we

set X(ρ) = (ψ,M, S), where ψ, M , and S are defined as follows. M contains the set {u, v}
for every path in P(ρ) with endpoints u and v; for brevity, we denote l1, l′1, rℓ, r′

ℓ as l, l′, r,
r′, respectively. Moreover, ψ(L) = V (M) ∩ {l, l′}, ψ(R) = V (M) ∩ {r, r′}, and S contains s
(t) if

∑ℓ
i=1 #s(Xi) = 2 (

∑ℓ
i=1 #t(Xi) = 2).

We say that ρ is realizable if there is an ordering π = (c1, . . . , cℓ) of the children in C and
an assignment τ : C → X from children to types with τ(c) ∈ R(c) for every c ∈ C such that
ρ = τ(π) = (τ(c1), . . . , τ(cℓ)). The following lemma now allows us to focus on finding the set
of all types X for which there is a compatible and realizable ρ such that X = X(ρ).

▶ Lemma 11. The set R containing every type X ∈ X such that there is a compatible and
realizable ρ with X = X(ρ) satisfies the properties (R1) and (R2).

We will now show that this can be achieved very efficiently because only a constant number,
i.e., at most 8 types (and their ordering) need to be specified in order to infer the type of a
sequence ρ. Let X = (ψ,M, S) ∈ X be a type. We say that X is dirty if #s(X) + #t(X) > 0
and otherwise we say that X is clean. We say that X is 0-good, 1-good, and 2-good, if X is
clean and additionally M = ∅, M = {{l, r}}, and M = {{l, r}, {l′, r′}}, respectively. We say
that X is good if it is x-good for some x ∈ {0, 1, 2} and otherwise we say that X is bad. We
denote by XG and XB the subset of X consisting only of the good respectively bad types.
An illustration of these notions is provided in Figure 6.

▶ Lemma 12. Let ρ = (X1, . . . , Xℓ) be compatible, then ρ contains at most 8 bad types.

Next, we will show that any compatible sequence contains at most 8 bad types and that
the type X(ρ) is already determined by looking only at the sequence of bad types that
occur in ρ. This will then allow us to simulate the enumeration of all possible sequences, by
enumerating merely all sequences of at most 8 bad types.

We say that a sequence ρ′ is an extension of ρ if ρ is a (not necessarily consecutive)
sub-sequence of ρ′. We call a compatible sequence ρ (X, i)-extendable for some X ∈ X and

R. Ganian, H. Müller, S. Ordyniak, G. Paesani, and M. Rychlicki 68:13

integer i, if there is a compatible extension ρ′ of ρ such that ρ′ is obtained by adding i

elements of type X to ρ and X(ρ) = X(ρ′). We call ρ X-extendable if ρ is (X, i)-extendable
for any integer i. We say that ρ′ is an (X, i)-extension of ρ if ρ′ is a compatible sequence
obtained after adding i elements of type X to ρ and X(ρ) = X(ρ′).

▶ Lemma 13. Let ρ = (X1, . . . , Xℓ) with Xi = (ψi,Mi, Si) and X ∈ XG. Then, ρ is (X, 1)-
extendable if and only if ρ is X-extendable. Moreover, deciding whether ρ is (X, 1)-extendable
and if so computing an (X, i)-extension ρ′ of ρ can be achieved in time O(ℓ+ i) for every
integer i.

▶ Lemma 14. Let ρ be a compatible sequence and let ρ′ be the sub-sequence of ρ consisting
only of the bad types in ρ. Then, ρ′ is compatible and X(ρ) = X(ρ′).

At this point, we are ready to describe the algorithm we will use to compute R(b) (and
argue its correctness). The algorithm first enumerates all possible compatible sequences ρ of
at most 8 bad types, i.e., ρ = (Y1, . . . , Yr) with r ≤ 8 and Yi ∈ XB for every i. Note that
there are at most (|XB | + 1)8 (and therefore constantly many) such sequences and those can
be enumerated in constant time. Given one such sequence ρ = (Y1, . . . , Yr), the algorithm
then tests whether the sequence can be realized given the types available for the children in
C as follows. It first uses Lemma 13 to test whether ρ allows for adding a 0-good, 1-good or
2-good type in constant time. Let Aρ ⊆ XG be the set of all good types that can be added
to ρ and let Cρ be the subset of C containing all children c such that Aρ ∩ R(c) ̸= ∅.

Consider the following bipartite graph Qρ having one vertex yi for every i with 1 ≤ i ≤ r

representing the type Yi on one side and one vertex vc for every c ∈ C representing the child c
on the other side of the bipartition. Moreover, Qρ has an edge between yi and vc if Yi ∈ R(c).
We claim that ρ can be extended to a compatible and realizable sequence if and only if Qρ

has a matching that saturates {y1, . . . , yr} ∪ { vc | c ∈ C \ Cρ }. This problem can be solved
using a simple reduction to the well-known maximum flow problem. The following lemma
now establishes the correctness (i.e., the soundness and completeness) of the algorithm.

▶ Lemma 15. Let X ∈ X . Then, there is a compatible and realizable sequence ρ with
X = X(ρ) if and only if there is a compatible sequence ρ = (Y1, . . . , Yr) of bad types with
r ≤ 8 with X = X(ρ) such that the bipartite graph Hρ has a matching that saturates
{y1, . . . , yr} ∪ { vc | c ∈ C \ Cρ }.

5.2 Handling R-nodes and S-nodes

Here, we will show how to compute a set of types satisfying (R1) and (R2) for every R-node
and S-node of B. To achieve this we will again use a dynamic programming algorithm albeit
on a sphere-cut decomposition of Sk(b) instead of on the SPQR-tree. The aim of this
subsection is therefore to show the following lemma.

▶ Lemma 16. Let b be an R-node or S-node of B such that R(c) has already been computed
for every child c of b in B. Then, we can compute R(b) in time O((84

√
14)ωωℓ+ ℓ3), where

ω is the branchwidth of the graph Sk(b) and ℓ is the number of children of b in B.

In the following, let b be an R-node or S-node of B with reference edge (sb, tb) and let
⟨Tb, λb,Πb⟩ be a sphere-cut decomposition of Sk(b) that is rooted in r = λ−1

b ((sb, tb)). For
a weak noose O ⊆ C(Tb), let A(O) be the set of all types of O satisfying the following two
natural analogs of (R1) and (R2), i.e.:

ICALP 2024

68:14 A Tight Subexponential Algorithm for Two-Page Book Embedding

(RO1) if X ∈ A(O), then O has type X, and (RO2) if there is a witness (D,DH , GH , H)
for G that respects B such that ΓW (b,O) = X, where ΓW (b,O) is defined analogously to
ΓW (b) for the graph Pe(b,O), then X ∈ A(O).

Our aim is to compute A(Oar) for the arc ar incident to the root r of Tb. This is achieved by
computing A(Oa) for every inner arc a of Tb via a bottom-up dynamic programming algorithm
along Tb; after initially calculating A(Oa) from R(c) for every leaf-arc a corresponding to
the child c of b. Employing our framework introduced in Subsection 4.3, we only have to
show how to compute A(O1 ⊕O2) from A(O1) and A(O2) for any weak nooses O1 and O2.

Let O1 and O2 be two weak nooses having type X1 = (ψ1,M1, S1) and type X2 =
(ψ2,M2, S2), respectively. We say that X1 and X2 are compatible if
(1) O = O1 ⊕O2 is a weak noose,
(2) the inside region of the noose O contains all subcurves in (O1 ∩O2),
(3) ∀c ∈ O1 ∩O2, it holds ψ1(c) = ψ2(c),
(4) for every u ∈ V (O1 ∩O2) \ V (O1 ⊕O2), it holds that u is only in one of following sets:

S1, S2 or V (M1) ∩ V (M2), and
(5) the multi-graph obtained from the union of M1 and M2 is acyclic, or is one cycle and

V (O) ⊆ S1 ∪ S2 ∪ (V (M1) ∩ V (M2)),
(6) if X1 is the full type, then X2 is the empty type and V (O2) ⊆ V (O1), and vice versa.

We denote by X1 ◦ X2 the combined type X = (ψ,M, S) of X1 = (ψ1,M1, S1) and
X2 = (ψ2,M2, S2) for the weak noose O = O1 ⊕ O2 that is defined as follows and also
illustrated in Figure 7. For each c ∈ O, if c ∈ O1 then ψ(c) is equal to ψ1(c), otherwise ψ(c)
is equal to ψ2(c) and the set S is equal to (S1 ∪ S2 ∪ (V (M1) ∩ V (M2))) ∩ V (O), i.e., any
vertex with degree two w.r.t. X must be in V (O) and have degree two already w.r.t. X1 or
X2, or it must be in both matchings M1 and M2. If either X1 or X2 is a full type, then by
(6) we get that M1 = M2 = M = ∅ and X1 ◦X2 is the full type. If the multi-graph M1 ∪M2
is one cycle, then by (5) we get that M = ∅ and X1 ◦X2 is the full type. Otherwise, due to
(5), the multi-graph M1 ∪M2 is acyclic and corresponds to a set of paths. Therefore, the
matching M is the set containing the two endpoints for every path in M1 ∪M2.

▶ Observation 17. Let X1 and X2 be two types defined on the weak nooses O1 and O2,
respectively. Then, we can check whether X1 and X2 are compatible and if so compute the
type X1 ◦X2 in time O(|O1| + |O2|).

To show the correctness of our approach it now remains to show that: (1) if there is a
witness W for G that respects B, then for every two weak nooses O1 and O2 it holds that
ΓW (b,O1) and ΓW (b,O2) are compatible types and ΓW (b,O) = ΓW (b,O1) ◦ ΓW (b,O2) and
(2) if O1 and O2 have compatible types X1 and X2, then O = O1 ⊕O1 has type X1 ◦X2.

5.3 Putting Everything Together
Finally, we show how to compute the set of types for every leaf (Q-node) l of B in time
O(1); informally, since Pe(b) is just an edge (s, t), R(l) contains all types that do not allow
the Hamiltonian cycle to cross from left to right without using either s or t. Together with
Lemma 10 and 16, this then concludes the proof of Lemma 9.

6 An Algorithm Using the Feedback Edge Number

In this section, we establish the following theorem:

▶ Theorem 18. Book Thickness is fixed-parameter tractable when parameterized by the
feedback edge number of the input graph.

R. Ganian, H. Müller, S. Ordyniak, G. Paesani, and M. Rychlicki 68:15

O1

O2

u1
x7

u9

x8 x9
u10

u11 x10 u5

u2

x1
u3 x2

u4

x3

u8

u7 x6
x5

u6

x4

Ou1 u5

u2

x1
u3 x2

u4

x3

u8

u7 x6
x5

u6

x4

Figure 7 An illustration of combining two compatible types X1 = (ψ1,M1, S1) and X2 =
(ψ2,M2, S2) for two weak nooses O1 and O2 into the combined type X = (ψ,M, S) = X1 ◦X2 for
O = O1 ⊕O2. Vertices of the graph are represented as circles and vertices subdividing the nooses,
i.e., vertices in V (ψ1) ∪ V (ψ2), are represented as crosses. Black vertices are the vertices that are
within a matching, i.e., the vertices in V (M1) ∪ V (M2), green (red) vertices are the vertices in S1

(S2) and all other vertices of the graph are white.

The result is achieved by separately handling two cases: one where the targeted number
of pages is greater than 2, or where it is precisely 2. Both cases are handled by a kernelization
procedure, and in both cases it is easy to show that pendant vertices can be safely removed.
At this point, the target graph consists of a tree plus k edges, whereas the only part that
may remain large in this tree are paths of degree-2 vertices. In the former case, we obtain
a non-trivial proof that allows us to reduce the maximum length of such a path to length
that is bounded by an exponential function of the feedback edge number. In the latter case
(which is equivalent to solving SUBHAM), the reduction step is easier and we in fact obtain
a linear kernel for the problem:

▶ Theorem 19. SUBHAM parameterized by the feedback edge number k admits a kernel
with at most 12k − 8 vertices and at most 14k − 9 edges.

Moreover, by combining Theorem 19 with the subexponential algorithm of Corollary 8,
we can slightly strengthen our main result as follows.

▶ Corollary 20. SUBHAM can be solved in time 2O(
√

k) ·nO(1), where k is the feedback edge
number of the input graph.

7 Concluding Remarks

While our main algorithmic result settles the complexity of computing 2-page book embeddings
under the exponential time hypothesis, many questions remain when one aims at computing
k-page book embeddings for a fixed k greater than 2. To the best of our knowledge, even the
existence of a single-exponential algorithm for this problem is open.

In terms of the problem’s parameterized complexity, it is natural to ask whether one can
obtain a generalization of Theorem 7 for computing k-page book embeddings when k > 2.
In fact, it is entirely open whether computing, e.g., 4-page book embeddings is even in XP

ICALP 2024

68:16 A Tight Subexponential Algorithm for Two-Page Book Embedding

when parameterized by the treewidth. In this sense, our positive result for the feedback
edge number can be seen as a natural step on the way towards finally settling the structural
boundaries of tractability for computing page-optimal book embeddings.

References

1 Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Pedro Ramos, and
Gelasio Salazar. The 2-page crossing number of Kn. Discrete & Computational Geometry,
49(4):747–777, 2013. doi:10.1007/S00454-013-9514-0.

2 Patrizio Angelini, Marco Di Bartolomeo, and Giuseppe Di Battista. Implementing a partitioned
2-page book embedding testing algorithm. Proc. GD 2012, 7704:79–89, 2012. doi:10.1007/
978-3-642-36763-2_8.

3 Michael J. Bannister and David Eppstein. Crossing minimization for 1-page and 2-page
drawings of graphs with bounded treewidth. Journal of Graph Algorithms and Applications,
22(4):577–606, 2018. doi:10.7155/jgaa.00479.

4 Giuseppe Di Battista and Roberto Tamassia. Incremental planarity testing. Proc. FOCS 1989,
pages 436–441, 1989. doi:10.1109/SFCS.1989.63515.

5 Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou. Two-page
book embeddings of 4-planar graphs. Algorithmica, 75(1):158–185, 2016. doi:10.1007/
s00453-015-0016-8.

6 Frank Bernhart and Paul C. Kainen. The book thickness of a graph. Journal of Combinatorial
Theory, Series B, 27(3):320–331, 1979. doi:10.1016/0095-8956(79)90021-2.

7 Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized
algorithms for book embedding problems. Journal of Graph Algorithms and Applications,
24(4):603–620, 2020. doi:10.7155/jgaa.00526.

8 Daniel Bienstock and Clyde L. Monma. Optimal enclosing regions in planar graphs. Networks,
19(1):79–94, 1989. doi:10.1002/NET.3230190107.

9 Daniel Bienstock and Clyde L. Monma. On the complexity of embedding planar graphs
to minimize certain distance measures. Algorithmica, 5(1):93–109, 1990. doi:10.1007/
BF01840379.

10 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Information and Computation, 243:86–111, 2015. doi:10.1016/J.IC.2014.12.008.

11 F. Chung, F. Leighton, and A. Rosenberg. Embedding graphs in books: a layout problem
with applications to VLSI design. SIAM Journal on Algebraic Discrete Methods, 8(1):33–58,
1987. doi:10.1137/0608002.

12 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

13 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

14 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of
perfect matchings. Journal of the ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.

15 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. ACM Transactions on Algorithms, 18(2):17:1–17:31, 2022. doi:
10.1145/3506707.

16 Hubert de Fraysseix, Patrice Ossona de Mendez, and János Pach. A left-first search algorithm
for planar graphs. Discrete & Computational Geometry, 13:459–468, 1995. doi:10.1007/
BF02574056.

17 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

https://doi.org/10.1007/S00454-013-9514-0
https://doi.org/10.1007/978-3-642-36763-2_8
https://doi.org/10.1007/978-3-642-36763-2_8
https://doi.org/10.7155/jgaa.00479
https://doi.org/10.1109/SFCS.1989.63515
https://doi.org/10.1007/s00453-015-0016-8
https://doi.org/10.1007/s00453-015-0016-8
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.7155/jgaa.00526
https://doi.org/10.1002/NET.3230190107
https://doi.org/10.1007/BF01840379
https://doi.org/10.1007/BF01840379
https://doi.org/10.1016/J.IC.2014.12.008
https://doi.org/10.1137/0608002
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3148227
https://doi.org/10.1145/3506707
https://doi.org/10.1145/3506707
https://doi.org/10.1007/BF02574056
https://doi.org/10.1007/BF02574056

R. Ganian, H. Müller, S. Ordyniak, G. Paesani, and M. Rychlicki 68:17

18 Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient exact
algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica, 58(3):790–
810, 2010. doi:10.1007/S00453-009-9296-1.

19 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

20 Vida Dujmović and David R. Wood. On linear layouts of graphs. Discrete Mathematics &
Theoretical Computer Science, 6(2):339–358, 2004. doi:10.46298/dmtcs.317.

21 Vida Dujmovic and David R. Wood. Graph treewidth and geometric thickness parameters.
Discrete & Computational Geometry, 37(4):641–670, 2007. doi:10.1007/s00454-007-1318-7.

22 Toshiki Endo. The pagenumber of toroidal graphs is at most seven. Discrete Mathematics,
175(1):87–96, 1997. doi:10.1016/S0012-365X(96)00144-6.

23 Robert Ganian, Fabrizio Montecchiani, Martin Nöllenburg, and Meirav Zehavi. Parameterized
complexity in graph drawing (dagstuhl seminar 21293). Dagstuhl Reports, 11(6):82–123, 2021.
doi:10.1016/j.artint.2017.12.006.

24 Robert Ganian, Haiko Mueller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki.
A tight subexponential-time algorithm for two-page book embedding, 2024. arXiv:2404.14087.

25 Joseph L. Ganley and Lenwood S. Heath. The pagenumber of k-trees is O(k). Discrete Applied
Mathematics, 109(3):215–221, 2001. doi:10.1016/S0166-218X(00)00178-5.

26 M. R. Garey, D. S. Johnson, and R. Endre Tarjan. The planar hamiltonian circuit problem is
np-complete. SIAM Journal on Computing, 5(4):704–714, 1976. doi:10.1137/0205049.

27 Emilio Di Giacomo and Giuseppe Liotta. The hamiltonian augmentation problem and
its applications to graph drawing. Proc. WALCOM 2010, LNCS, 5942:35–46, 2010. doi:
10.1007/978-3-642-11440-3_4.

28 Qian-Ping Gu and Hisao Tamaki. Improved bounds on the planar branchwidth with re-
spect to the largest grid minor size. Algorithmica, 64(3):416–453, 2012. doi:10.1007/
S00453-012-9627-5.

29 Carsten Gutwenger, Petra Mutzel, and René Weiskircher. Inserting an edge into a planar
graph. Algorithmica, 41(4):289–308, 2005. doi:10.1007/S00453-004-1128-8.

30 András Gyárfás and Jenö Lehel. Covering and coloring problems for relatives of intervals.
Discrete Mathematics, 55(2):167–180, 1985. doi:10.1016/0012-365X(85)90045-7.

31 Christian Haslinger and Peter F. Stadler. RNA structures with pseudo-knots: Graph-theoretical,
combinatorial, and statistical properties. Bulletin of Mathematical Biology, 61(3):437–467,
1999. doi:10.1006/bulm.1998.0085.

32 Lenwood S. Heath. Embedding outerplanar graphs in small books. SIAM Journal on Algebraic
Discrete Methods, 8(2):198–218, 1987. doi:10.1137/0608018.

33 Seok-Hee Hong and Hiroshi Nagamochi. Two-page book embedding and clustered graph
planarity. Technical report, Citeseer, 2009.

34 Seok-Hee Hong and Hiroshi Nagamochi. Simpler algorithms for testing two-page book
embedding of partitioned graphs. Theoretical Computer Science, 725:79–98, 2018. doi:
10.1016/J.TCS.2015.12.039.

35 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/JCSS.2001.1774.

36 Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth graphs,
planar graphs, and bipartite graphs. Proc. WG 2022, 13453:287–299, 2022. doi:10.1007/
978-3-031-15914-5_21.

37 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. Proc.
FOCS 2021, pages 184–192, 2021. doi:10.1109/FOCS52979.2021.00026.

38 Seth M. Malitz. Genus g graphs have pagenumber O(√g). Journal of Algorithms, 17(1):85–109,
1994. doi:10.1006/jagm.1994.1028.

39 Dániel Marx. Four shorts stories on surprising algorithmic uses of treewidth. Treewidth,
Kernels, and Algorithms, 12160:129–144, 2020. doi:10.1007/978-3-030-42071-0_10.

ICALP 2024

https://doi.org/10.1007/S00453-009-9296-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.46298/dmtcs.317
https://doi.org/10.1007/s00454-007-1318-7
https://doi.org/10.1016/S0012-365X(96)00144-6
https://doi.org/10.1016/j.artint.2017.12.006
https://arxiv.org/abs/2404.14087
https://doi.org/10.1016/S0166-218X(00)00178-5
https://doi.org/10.1137/0205049
https://doi.org/10.1007/978-3-642-11440-3_4
https://doi.org/10.1007/978-3-642-11440-3_4
https://doi.org/10.1007/S00453-012-9627-5
https://doi.org/10.1007/S00453-012-9627-5
https://doi.org/10.1007/S00453-004-1128-8
https://doi.org/10.1016/0012-365X(85)90045-7
https://doi.org/10.1006/bulm.1998.0085
https://doi.org/10.1137/0608018
https://doi.org/10.1016/J.TCS.2015.12.039
https://doi.org/10.1016/J.TCS.2015.12.039
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1007/978-3-031-15914-5_21
https://doi.org/10.1007/978-3-031-15914-5_21
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1006/jagm.1994.1028
https://doi.org/10.1007/978-3-030-42071-0_10

68:18 A Tight Subexponential Algorithm for Two-Page Book Embedding

40 Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. A subexponential parameterized
algorithm for directed subset traveling salesman problem on planar graphs. SIAM Journal on
Computing, 51(2):254–289, 2022. doi:10.1137/19M1304088.

41 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and
Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

42 Malgorzata Nowicka, Vinay K. Gautam, and Pekka Orponen. Automated rendering of
multi-stranded dna complexes with pseudoknots, 2023. arXiv:2308.06392.

43 Neil Robertson and Paul D. Seymour. Graph minors. x. obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/0095-8956(91)
90061-N.

44 Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar graph.
Journal of Combinatorial Theory, Series B, 62(2):323–348, 1994. doi:10.1006/JCTB.1994.
1073.

45 Johannes Uhlmann and Mathias Weller. Two-layer planarization parameterized by feedback
edge set. Theoretical Computer Science, 494:99–111, 2013. doi:10.1016/J.TCS.2013.01.029.

46 Avi Wigderson. The complexity of the hamiltonian circuit problem for maximal planar graphs.
Technical Report, 1982.

47 Mihalis Yannakakis. Embedding planar graphs in four pages. Journal of Computer and System
Sciences, 38(1):36–67, 1989. doi:10.1016/0022-0000(89)90032-9.

https://doi.org/10.1137/19M1304088
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://arxiv.org/abs/2308.06392
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1006/JCTB.1994.1073
https://doi.org/10.1006/JCTB.1994.1073
https://doi.org/10.1016/J.TCS.2013.01.029
https://doi.org/10.1016/0022-0000(89)90032-9

	1 Introduction
	2 Preliminaries
	3 Solution Normal Form
	4 Setting Up the Framework
	4.1 Reducing to the Biconnected Case
	4.2 Defining the Types for Nodes in the SPQR-tree
	4.3 Framework for Sphere-cut Decomposition

	5 An FPT-algorithm for SUBHAM using Treewidth
	5.1 Handling P-nodes
	5.2 Handling R-nodes and S-nodes
	5.3 Putting Everything Together

	6 An Algorithm Using the Feedback Edge Number
	7 Concluding Remarks

