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Abstract
Let U be a universe on n elements, let k be a positive integer, and let F be a family of (implicitly
defined) subsets of U . We consider the problems of partitioning U into k sets from F , covering U

with k sets from F , and packing k non-intersecting sets from F into U . Classically, these problems
can be solved via inclusion–exclusion in 2nnO(1) time [8]. Quantumly, there are faster algorithms
for graph coloring with running time O(1.9140n) [26] and for Set Cover with a small number of
sets with running time O

(
1.7274n|F|O(1)) [1]. In this paper, we give a quantum speedup for

Set Partition, Set Cover, and Set Packing whenever there is a classical enumeration algorithm
that lends itself to a quadratic quantum speedup, which, for any subinstance on a set X ⊆ U ,
enumerates at least one member of a k-partition, k-cover, or k-packing (if one exists) restricted to
(or projected onto, in the case of k-cover) the set X in c|X|nO(1) time with c < 2. Our bounded-error
quantum algorithm runs in time (2 + c)n/2nO(1) for Set Partition, Set Cover, and Set Packing. It is
obtained by combining three algorithms that have the best running time for some values of c. When
c ≤ 1.147899, our algorithm is slightly faster than (2 + c)n/2nO(1); when c approaches 1, it matches
the O

(
1.7274n|F|O(1)) running time of [1] for Set Cover when |F| is subexponential in n.

For covering, packing, and partitioning into maximal independent sets, maximal cliques, maximal
bicliques, maximal cluster graphs, maximal triangle-free graphs, maximal cographs, maximal claw-
free graphs, maximal trivially-perfect graphs, maximal threshold graphs, maximal split graphs,
maximal line graphs, and maximal induced forests, we obtain bounded-error quantum algorithms
with running times ranging from O(1.8554n) to O(1.9629n). Packing and covering by maximal
induced matchings can be done quantumly in O(1.8934n) time.

For Graph Coloring (covering with k maximal independent sets), we further improve the running
time to O(1.7956n) by leveraging faster algorithms for coloring with a small number of colors to
better balance our divide-and-conquer steps. For Domatic Number (packing k minimal dominating
sets), we obtain a O((2 − ε)n) running time for some ε > 0.

Several of our results should be of interest to proponents of classical computing:

We present an inclusion-exclusion algorithm with running time O∗
(∑⌊αn⌋

i=0

(
n
i

))
, which determ-

ines, for each X ⊆ U of size at most αn, 0 ≤ α ≤ 1, whether (X, F) has a k-cover, k-partition,
or k-packing. This running time is best-possible, up to polynomial factors.
We prove that for any linear-sized vertex subset X ⊆ V of a graph G = (V, E), the number of
minimal dominating sets of G that are subsets of X is O((2 − ε)|X|) for some ε > 0.
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69:2 Quantum Algorithms for Graph Coloring and Other Problems

1 Introduction

Graph Coloring is an example of a problem requiring to partition an n-element set U into k

sets from a family F . In this case U is the vertex set of a graph G and F is implicitly defined
as the independent sets of G. We can also view Graph Coloring as a covering problem where
the vertex set needs to be covered with k maximal independent sets.

In 2006, Björklund and Husfeldt [4] and Koivisto [25] independently solved Graph Coloring
in O∗(2n) time via a new inclusion–exclusion approach, along with other partitioning and
covering problems. The approach has been used for packing problems as well, and has been
generalized to solve more generic subset convolution problems [5, 7, 8].

In this work, we give faster quantum algorithms for a range of partitioning, covering, and
packing problems, including Graph Coloring and Domatic Number. To do this, we use the
framework of Ambainis et al. [1] where a preprocessing step computes solutions to small
subinstances and stores them in QRAM. These solutions are then accessed by a divide-and-
conquer algorithm which enjoys a quadratic speedup in quantum models of computation
via techniques such as Grover’s search [22]. For the preprocessing step (Section 3), we
adapt the afore-mentioned inclusion-exclusion approach [8] to compute the solutions to all
subinstances induced by a small subset of U up to roughly n/4 elements. For the divide-and-
conquer step (Section 4) one would ideally like to divide U into two halves; unfortunately,
optimal partitions1 may not allow for such a balanced split. However, we can restrict the
divide-and-conquer step to divide U into two parts where in the larger part (equivalently, in
both parts) the removal of one set of an optimal partition results in at most n/2 elements.
Finding one set of the optimal partition is done via an algorithm that enumerates all relevant
candidate sets; for Graph Coloring, it enumerates the maximal independent sets in the
graph induced by the subset X ⊆ U under consideration. Importantly, we need that this
enumeration can be done in O∗ (c|X|) time, for some c < 2 by a classical algorithm that has
a quadratic quantum speedup, so that after two levels of divide-and-conquer, the overall
quadratic quantum speedup outperforms the classical O∗(2n) running time.

Our algorithm differs from the previously fastest quantum algorithm for Graph Coloring
by Shimizu and Mori [26] in both the preprocessing step and the divide-and-conquer step.
Our preprocessing step is deterministic and its running time is optimal, matching the size
of the output up to polynomial factors; the preprocessing step of [26] is a bounded-error
quantum algorithm whose running time is a multiplicative factor of 3|X|/6 slower than ours
for each small (up to size roughly n/4) subset X ⊆ U . For the divide-and-conquer step, our
divide-then-enumerate strategy is described above; [26] employ an enumerate-then-divide
strategy, where the enumeration is done on the set to be divided and the remainder is then
divided into two sets of size at most half the original set. It turns out that blending the the
divide-then-enumerate and the enumerate-then-divide strategy gives faster algorithms when
c ≤ 1.147899 (Section 5). For c ≤ 1.0872 case, we also use a third level of divide-and-conquer,
and when c approaches 1, our O(1.7274n) running time matches the running time for Set
Cover with a subexponential number of sets of Ambainis et al. [1].

This gives improved algorithms for a range of partitioning, covering, and packing problems
(Section 6). We further improve the running time for Graph Coloring (Section 7) to O(1.7956n)
by leveraging faster algorithms for a small number of colors [26]. Our algorithm considers
large subsets of vertices (≥ 0.48n) and checks whether they are 5-colorable, 6-colorable with

1 For conciseness, we will mainly discuss partitions in the introduction. The treatment of covers and
packings is similar.
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no large 5-colorable subset, and in some cases 7-colorable via a new 7-Coloring algorithm
that relies on the preprocessing step. The advantage of excluding such cases from further
consideration is that we can make the divide-and-conquer steps more balanced.

For Domatic Number, at first glance it seems that our approach cannot be used. The
issue is that when considering a vertex subset X, even though there is an algorithm that
enumerates all minimal dominating sets of G[X] in O(1.7159n) time [16], this is insufficient
for our purposes: we need to enumerate minimal vertex subsets of X that dominate all of
G, not just G[X], in O∗ (c|X|) time for some c < 2. In Section 8, we show that such an
enumeration algorithm (with a quadratic quantum speedup) indeed exists provided that
|X| = Ω(n). This then also gives a bounded-error quantum algorithm for Domatic Number
running in O((2 − ε)n) time.

2 Preliminaries

For a proposition P , the Iverson bracket [P ] is a function that returns 1 if P is true and 0
otherwise.

Asymptotic notation

The O∗-notation is similar to the usual O-notation but allows to hide polynomial factors
in the input size. The Õ-notation hides polylogarithmic factors. We make heavy use of

Stirling’s approximation for factorials, which implies that
(

n
k

)
= O∗

((
n
k

)k ·
(

n
n−k

)n−k
)

,

and of the binomial theorem,
∑n

k=0
(

n
k

)
xkyn−k = (x + y)n.

Set Systems

An implicit set system [15] is a function Φ that takes as input a string I ∈ {0, 1}∗ and outputs
a set system (UI , FI), where UI is a universe and FI is a collection of subsets of UI . The
string I is referred to as an instance and we denote by |UI | = n the size of the universe
and by |I| = N the size of the instance. We assume that N ≥ n. The implicit set system
Φ is said to be polynomial time computable if (a) there exists a polynomial time algorithm
that given I, produces UI , and (b) there exists a polynomial time algorithm that given I,
UI and a subset S of UI , determines whether S ∈ FI . Throughout this paper, we consider
only polynomial time computable implicit set systems. We define a subset polynomial time
computable implicit set system Φ to be a polynomial time computable set system, where (c)
there exists a polynomial time algorithm that given I, UI and a subset S of UI , determines
whether S ⊆ S′ for some S′ ∈ FI . This is equivalent to determining whether S ∈ F ↓, where
the downward closure F ↓ of F contains all sets in F and their subsets.

For any subset of elements X ⊆ U , an ordered tuple (S1, . . . , Sk) of k sets from F is a
k-cover for X if the union of these sets is X; it is a k-packing for X if the Si’s are contained
in X and are pairwise non-intersecting; it is a k-partition for X if it is both a k-cover and a
k-packing for X.

For a subset polynomial time computable implicit set system Φ, the input of the Φ-Set
Cover problem is an instance I and an integer k, and the question is whether the set system
Φ(I) = (UI , FI) has a k-cover. This is equivalent to asking whether (UI , FI ↓) has a k-cover
and therefore, we assume that FI = FI ↓ whenever discussing k-covers. For a polynomial
time computable implicit set system Φ, the input of the Φ-Set Partition and Φ-Set Packing
problem is an instance I and an integer k, and the question is whether the set system
Φ(I) = (UI , FI) has a k-partition or k-packing, respectively. We generally omit Φ and the
subscript I when they are clear from context.

ICALP 2024
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Graphs

In a graph G = (V, E), the open neighborhood of a vertex v, denoted NG(v) is the set
containing all vertices adjacent to v in G. The closed neighborhood of v in G also contains
v itself, and is denoted NG[v] = {v} ∪ NG(v). Again, we may omit the subscript G. For a
vertex subset X ⊆ V , the graph G − X is obtained from G by removing the vertices in X

and all their incident edges; the graph G[X] induced on X is the graph G − (V \ X).

Quantum Algorithms

It is known that most classical branching algorithms have a quadratic speedup on quantum
machines. As [26], we also rely on the following results.

▶ Theorem 1 ([22, 9]). Let A : {1, 2, . . . , N} → {0, 1} be a bounded-error quantum al-
gorithm with running time T . Then, there is a bounded-error quantum algorithm computing∨

x∈{1,...,N} A(x) with running time Õ(
√

NT ).

▶ Theorem 2 ([13]). Let A : {1, 2, . . . , N} → {0, 1} be a bounded-error quantum al-
gorithm with running time T . Then, there is a bounded-error quantum algorithm computing
minx∈{1,...,N} A(x) with running time Õ(

√
NT ).

In our context, A is an algorithm exploring paths in superposition from the root to the leaves
of the search tree of a classical branching algorithm. The amplitudes of this exploration
depend on estimates of the sizes of the subtrees, either by relying on an analysis of the
classical branching algorithm [18, 26] or by on-the-fly estimations [2]. We speak of a simple
branching algorithm when the exploration of one root-to-leaf path is independent of the other
paths; this excludes, for example, algorithms relying on clause learning, re-use of computation
done in earlier branches, and branch-and-bound. For a simple branching algorithm with
running time O∗(cn), one obtains a bounded-error quantum algorithm with running time
O∗(cn/2) in this way; we simply say that we apply Grover’s search to the branching algorithm.

3 Preprocessing small subsets

For α ∈ [0, 1], a subset X of U is α-small if |X| ≤ αn. Denote by s(n, α) =
∑⌊αn⌋

i=0
(

n
i

)
the number of α-small subsets of U . In this section, we consider the problem of counting
the number of k-covers, k-packings, and k-partitions for each α-small subset of U . When
considering k-covers, we assume that F has been replaced by F ↓. This is because when we
would like to cover a subset of elements of X, we may use a set from F that also contains
elements outside of X. Since Φ is subset polynomial time computable in the Φ-Set Cover
problem, we may as well replace F by F ↓; this makes the discussion of covering, partitioning,
and packing problems more uniform. Our algorithms run in O∗ (s(n, α)) time, which is best
possible, since the output is a list of s(n, α) integers.

This section heavily relies on previous O∗(2n) inclusion-exclusion approaches [7, 8] to
compute the number of k-covers, k-packings, and k-partitions for U and these results are
well-known when α = 1. The work by [6] is also related, but their running times depends on
the number of supersets of F .

We start by defining the α-small zeta transform, which is central to this section.

▶ Definition 3. Let f be a function from subsets of the universe U to an algebraic ring R.
The α-small zeta transform of f , denoted fζα is

fζα(X) =
∑

Y ⊆X

f(Y )

for any α-small X ⊆ U .
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The 1-small zeta transform is also called the zeta transform and the α-small zeta transform
is precisely the restriction of the zeta transform to α-small sets. Throughout this paper we
assume that arithmetic operations in the ring R take O∗(1) time and each ring element is
represented using O∗(1) space.

▶ Definition 4. Let f be a function from subsets of the universe U to an algebraic ring R.
The α-small Möbius transform of f , denoted fµα is

fµα(X) =
∑

Y ⊆X

(−1)|X\Y |f(Y )

for any α-small X ⊆ U .

It is well-known (see, e.g., [17]) that fζαµα = fµαζα = f when α = 1, and the same is
true when α ̸= 1.

▶ Lemma 5. The α-small zeta transform fζα and the α-small Möbius transform fµα can
be computed in O∗(s(n, α)) time.

Proof. We start with fζα and proceed as in Yates’s method [27]. Consider an arbitrary
ordering of the elements of U = {v1, . . . , vn}. The algorithm considers each α-small X ⊆ U

by increasing order of cardinality.
Set g0(X) = f(X). Then, iterate over the elements of U in the ordering fixed above.

When processing element vi, set

gi(X) = gi−1(X) + [vi ∈ X] · gi−1(X \ {vi}).

Finally, set fζα(X) = gn(X).
Correctness can be shown by induction on i by observing that

gi(X) =
∑

{vi+1,...,vn}∩X⊆Y ⊆X

f(Y ).

For each set X the computation takes O∗(1) time, and the number of sets X to be
considered is s(n, α).

To compute fµα, we use the fact that µα = σαζασα, where the α-small odd-negation
transform is

fσα(X) = (−1)|X|f(X),

defined for any α-small X ⊆ U . Indeed,

fσαζασα(X) = (−1)|X| ·
∑

Y ⊆X

(−1)|Y | · f(Y )

=
∑

Y ⊆X

(−1)|X|+|Y |f(Y )

=
∑

Y ⊆X

(−1)|X\Y |f(Y )

since |X|+ |Y | and |X|− |Y | = |X \Y | have the same parity. The result now follows, because,
for a function g and a set X, gσα(X) can be computed in O∗(1) time. ◀

ICALP 2024
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We refer to these algorithms as the fast α-small zeta transform and the fast α-small Möbius
transform.

By inclusion-exclusion, the number of k-covers for a subset X ⊆ U is [7]

ck(F , X) =
∑

Y ⊆X

(−1)|X\Y |a(Y )k, (1)

where a(Y ) is the number of subsets Z ⊆ Y that belong to F = F ↓.
For the number of k-partitions, we use an indeterminate z in the ring R that allows us to

keep track of the sum of the cardinalities of the sets in the cover. The number of k-partitions
for a subset X ⊆ U is given [7] by the coefficient of the monomial z|X| in the polynomial

dk(F , X) =
∑

Y ⊆X

(−1)|X\Y |

 |Y |∑
j=0

aj(Y )zj

k

, (2)

where aj(Y ) is the number of size-j subsets Z ⊆ Y that belong to F .
For the number of k-packings of X, we compute the number of (k + 1)-partitions where

the first k members of the (k + 1)-tuple belong to F and the last member is an arbitrary
subset of X. Noting that (1 + z)|Y | =

∑|Y |
i=0
(|Y |

i

)
zi, the number of k-packings for X ⊆ U is

[7] the coefficient of z|X| in

pk(F , X) =
∑

Y ⊆X

(−1)|X\Y |(1 + z)|Y |

 |Y |∑
j=0

aj(Y )zj

k

. (3)

The first algorithmic step is to compute the values for a(Y ) in (1) and the polynomials∑|Y |
j=0 aj(Y )zj in (2) and (3). Observe that |Y | ≤ |X| ≤ αn. To compute the values a(Y )

for all α-small Y ⊆ U , observe that a(Y ) =
∑

Z⊆Y [Z ∈ F ] is the α-small zeta transform of
the indicator function of F . Since the implicit set system is polynomial time computable,
the indicator function can be evaluated in polynomial time. Therefore, the fast α-small zeta
transform allows us to compute all relevant values of a(·) in O∗(s(n, α)) time. Similarly, the
polynomial

∑|Y |
j=0 aj(Y )zj equals hζα(Y ) where h(Z) = [Z ∈ F ] · z|Z| and can be computed

in the same time bound by the fast α-small zeta transform.
The second algorithmic step is to to use the fast α-small Möbius transform and apply it

to the functions that associate with each α-small Y ⊆ U the values a(Y )k;
(∑|Y |

j=0 aj(Y )zj
)k

;

and (1 + z)|Y |
(∑|Y |

j=0 aj(Y )zj
)k

, respectively.
We conclude that ck(F , X), dk(F , X), and pk(F , X) for each α-small X ⊆ U can be

computed in O∗(s(n, α)) time.

▶ Theorem 6. Given a polynomial time computable implicit set family Φ(I) = (U, F) with
|U | = n, there is a O∗(s(n, α)) time algorithm which determines, for all k ≤ αn and all
α-small X ⊆ U , whether (X, F) has a k-cover (if we assume that F is closed under subsets),
k-partition, or k-packing.

4 Divide-and-conquer algorithm

Let Φ(I) = (U, F) be a polynomial time computable implicit set family for which we would
like to determine whether there is a k-cover (assuming F = F ↓), k-partition, or k-packing.



S. Gaspers and J. Z. Li 69:7

We say that a simple branching algorithm enumerates a family F ′ of subsets of U if, at
each leaf of its search tree it finds at most one member of F ′, and collectively the leaves find
all members of F ′ (duplicates are allowed).

Our algorithm uses a divide-and-conquer strategy where the universe is twice partitioned
into two.

▶ Definition 7. For a family of subsets F of a universe U , and a subset X ⊆ U , the
restriction of F to X is r(F , X) = {S ⊆ X : S ∈ F}.

Observe that (U, F) has a k-partition (resp., a k-packing or a k-cover) for k ≥ 2 iff there
is a set L ⊆ U and a positive integer kl < k such that (L, r(F , L)) has a kl-partition (resp.,
a kl-packing or a kl-cover) and (R, r(F , R)) has a kr-partition (resp., a kr-packing or a
kr-cover), where R = U \ L and kr = k − kl. We say that a k-partition, k-packing, or k-cover
(S1, . . . , Sk) does not straddle X if for each i ∈ {1, . . . , k}, either Si ⊆ X or Si ∩ X = ∅.

In this section we prove the following theorem.

▶ Theorem 8. Suppose there is a simple (classical) branching algorithm A, which, given an
instance I with Φ(I) = (U, F) and a subset X ⊆ U , enumerates a family e(X, FX) of subsets
of X from FX such that

if (U, F) has a k-cover (resp., a k-partition or a k-packing) that does not straddle X, then
(U, F) has a k-cover (resp., a k-partition or a k-packing) (S1, . . . , Sk) with S1 ∈ e(X, FX),
and
the algorithm runs in O∗(c|X|) time for some c ≤ 2.

Then, there is a bounded-error quantum algorithm, which determines whether (U, F) has a
k-cover (resp., a k-partition or a k-packing) in O∗

((
n

n/4
)

+ (2 + c)n/2
)

time, where n = |U |.

From now on, we focus on Set Cover; the discussion of Set Partition and Set Packing is
analogous. The first step is to use the algorithm from Theorem 6 with α = 1

4 and store the
result in QRAM.

Ideally, we would want to divide the universe U into equal sized sets L and R and compute
a k-cover where each set of the cover is responsible for covering elements of either L or R.
However, we cannot guarantee that such a k-cover exists. Instead, we can focus on partitions
of U into L and R with |L| ≥ n/2 where the removal of one member of the k-cover decreases
the size of L to at most n/2.

▶ Lemma 9. For any x ∈ {0, . . . , n}, (U, F) has a k-cover, k ≥ 2, iff there is a partition of
U into (L, R) with |L| ≥ x and integers kL, kR ≥ 1 with k = kL + kR such that (L, r(F , L))
has a kL-cover (S1, . . . , SkL

) and (R, r(F , R)) has a kr-cover such that |Si| ≥ |L| − x for
every i ∈ {1, . . . , kL}.

Proof. For the backward direction, assume that (L, r(F , L)) has a kl-cover and (R, r(F , R))
has a kr-cover. Then (L∪R, r(F , L)∪ r(F , R)) has a k-cover where k = kl +kr. This k-cover
is of the form (S1, S2, · · · , Sk), where Si ⊆ r(F , L) ∪ r(F , R). To turn it into a k-cover for
(U, F), we replace each Si by a set S′

i with Si ⊆ S′
i ∈ F , and we note that such a set S′

i

exists in F , since Si is the restriction of some set in F to either L or R. Hence, (U, F) has a
k-cover.

For the forward direction, assume that (U, F) has a k-cover (S1, S2, · · · , Sk) and assume,
w.l.o.g., that |S1| ≥ |S2| ≥ · · · ≥ |Sk|. Let L =

⋃kL

i=1 Si and R = U \ L where kL is the
smallest value such that |L| > x. Obviously, (S1, S2, · · · , SkL

) is a kL-cover of (L, r(F , L))
and (Sk+1 ∩ R, Sk+2 ∩ R, · · · , Sk ∩ R) is a kR-cover of (R, r(F , R)) where kR = k − kL.

ICALP 2024
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Focusing on SkL
, the smallest set in the cover of L, we have that

kL⋃
i=1

Si \ SkL
⊆

kL−1⋃
i=1

Si

=⇒ |
kL⋃
i=1

Si| − |SkL
| ≤ |

kL−1⋃
i=1

Si|

=⇒ |L| − |SkL
| ≤ x

=⇒ |Si| ≥ |SkL
| ≥ |L| − x for all i ∈ {1, . . . , kL}.

Therefore, (U, F) has a k-cover if and only if the conditions are satisfied. ◀

In particular, this means that removing any member Si of the kL-cover gives a (kL − 1)-
cover of L \ Si and |L \ Si| ≤ x.

We use Grover’s search to divide the elements into two sets (L, R) where |L| ≥ n/2
and k into kL + kR. Then, we solve each of these two instances independently, again using
Grover’s search on (L, r(F , L)) (resp., on (R, r(F , R))), dividing it into (LL, LR) where
|LL| ≥ n/4 and kLL + kLR = kL (similar for R). For (LL, r(F , LL)) (and, similarly, on the
corresponding instances for LR, RL, RR), we use Grover’s search on the branching algorithm
A to enumerate candidate sets S1 ∈ e(LL, r(F , LL)); if |LL| − |S1| > n/4, then this branch
is unsuccessful; otherwise, look up whether LL \ S1 has a (kLL − 1)-cover in QRAM.

The running time of this algorithm is

O∗
((

n

n/4

))
for running the algorithm from Theorem 6; the steps using Grover’s search take

O∗

√√√√ n∑
l=⌈n/2⌉

(
n

l

) l∑
l′=⌈n/4⌉

(
l

l′

)
cl′

 = O∗
(

(2 + c)n/2
)

time to achieve constant success probability. This proves Theorem 8.

Discussion

When c ≥ 16
33/2 − 2 ≈ 1.079201, then the running time is O∗ ((2 + c)n/2). When c ≤ 16

33/2 − 2,
then the running time is dominated by the term

(
n

n/4
)

≈ 1.7548n. For c ≤ 1.147899, the next
section gives faster algorithms.

5 Divide-and-conquer algorithms for small c

In this section, we again assume that there is an enumeration algorithm A, as in Theorem 8,
with running time O∗ (c|X|). We present two divide-and-conquer algorithms which are faster
for small values of c.

Throughout this section, we focus on Set Cover; the discussion of Set Partition and Set
Packing is analogous.

▶ Theorem 10. There is a bounded-error quantum algorithm, which determines whether
(U, F) has a k-cover (resp., a k-partition or a k-packing) in O∗

((
n

n/4
)

+ (1 + c) 3
4 ·n
)

time,
where n = |U |.
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The first step is to use the algorithm from Theorem 6 with α = 1
4 and store the result in

QRAM. Our algorithm is similar to the algorithm in Theorem 8, but we use the branching
algorithm A to remove a subset from L before dividing it into (LL, LR). Again, Lemma 9 is
central to our algorithm.

We use Grover’s Search to divide the elements into two sets (L, R) where |L| ≥ n/2 and k

into kL + kR. Then, we solve each of these two instances independently, again using Grover’s
search on (R, r(F , R)), dividing it into (RL, RR) where |RL| ≥ n/4 and kRL +kRR = kR. For
the instance (L, r(F , L)), we use Grover’s search on the branching algorithm A to enumerate
candidate sets S1 ∈ e(L, r(F , L)); if |L| − |S1| > n/2 then this branch is unsuccessful;
otherwise, we use Grover’s search on the subinstance (L \ S1, r(F , L \ S1)), dividing it into
(LL, LR) where |LL| ≥ n/4 and kLL + kLR = kL − 1.

We process (LL, r(F , LL)) (and, similarly, the corresponding instances for LR, RL, RR)
as we did in Theorem 8 – we use Grover’s search on the branching algorithm A to enumerate
candidate sets S1 ∈ e(LL, r(F , LL)); if |LL| − |S1| > n/4, then this branch is unsuccessful;
otherwise, look up whether LL \ S1 has a (kLL − 1)-cover in QRAM.

The running time of this algorithm is

O∗
((

n

n/4

))
for the running the algorithm from Theorem 6; the steps using Grover’s search take

O∗


√√√√√ n∑

l=⌈n/2⌉

(
n

l

)
cl

⌊n/2⌋∑
l′=⌈n/4⌉

(
n/2
l′

)
cl′

 = O∗
(

(1 + c) 3
4 ·n
)

time to achieve constant success probability. This proves Theorem 10.

Discussion

When c ≥ 28/3

3 − 1 ≈ 1.11653, then the running time is O∗
(

(1 + c) 3
4 ·n
)

. When c ≤ 28/3

3 − 1,
then the running time is dominated by the term

(
n

n/4
)

≈ 1.7548n. When c ≤ 1.0872, then
the following algorithm is faster.

▶ Theorem 11. If c ≤ 1.0872, there is a bounded-error quantum algorithm, which determines
whether (U, F) has a k-cover (resp., a k-partition or a k-packing) in

O∗
((

min
0.1303≤α≤0.25

(
(1 + c)3/4cα/2 (1 − 4 · α)

4·α−1
8 (4 · α)− α

2 , α−α · (1 − α)α−1
))n)

time.

The first step is to use the algorithm from Theorem 6 with some 0.1303 ≤ α < 0.25 and
store the result in QRAM. Our algorithm is identical to the one presented in Theorem 10
except that we cannot directly look up whether a subset X ⊆ U has a k-cover in QRAM for
|X| ≤ n/4. Instead, we use the following approach.

▶ Lemma 12. If c ≤ 1.0872 and 0.1303 ≤ α < 0.25, after running the algorithm from
Theorem 6, there exists a bounded-error quantum algorithm that checks for a k-cover of a

subset X ⊆ U where |X| ≤ n/4 in O∗
(√(

n/4
α·n
)

· cα·n
)

time.
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Proof. We use Grover’s search to divide the elements of X into two sets (XL, XR) where
|XL| ≥ α · n and k into kXL + kXR. We use Grover’s search on the branching algorithm A

to enumerate candidate sets S1 ∈ e(XL, r(F , XL)); if |XL| − |S1| > α · n, then this branch
is unsuccessful; otherwise, look up whether XL \ S1 has a (kXL − 1)-cover and XR has a
kXR-cover in QRAM. The correctness of this approach follows from Lemma 9.

As the function f(x) =
(

n/4
x

)
cx is strictly decreasing for x > c

c+1 · n
4 and

α · n ≥ 0.1303 · n >
1.0872 / 4
1.0872 + 1 · n ≥ c

c + 1 · n

4 ,

the running time of this algorithm is

O∗


√√√√√ ⌊n/4⌋∑

i=⌈α·n⌉

(
n/4

i

)
ci

 = O∗

(√(
n/4
α · n

)
cα·n

)
.

This proves the lemma. ◀

Our algorithm is the same as the one in Theorem 8, except when we check for a (kLL − 1)-
cover for LL \ S1 (resp., on LR, RL, RR) we use Lemma 12 instead of a direct lookup in
QRAM.

Running the algorithm from Theorem 6 takes

O∗
((

n

α · n

))
= O∗

(
α−αn · (1 − α)(α−1)n

)
time. The steps using Grover’s search take

O∗


√√√√√ n∑

l=⌈n/2⌉

(
n

l

)
cl

⌊n/2⌋∑
l′=⌈n/4⌉

(
n/2
l′

)
cl′

√(
0.25 · n

α · n

)
cα·n


= O∗

((
(1 + c)3/4cα/2

(
1

1 − 4 · α

) 1−4·α
8
(

1
4 · α

)α
2
)n)

time.

The running time of the first part increases with α while the running time of the second
part decreases with α. We can therefore optimise the running time by balancing the value of
α for a given c. To determine when this approach is faster than O∗

((
n

n/4
))

we compute the
value of c when α is balanced at 0.25:

(1 + c)3/4c1/8 = 4
33/4

=⇒ c ≈ 1.08724 .

Therefore, this algorithm outperforms the algorithms of Theorem 8 and Theorem 10
when c ≤ 1.08723.

Combining Theorem 8, Theorem 10, and Theorem 11, we obtain the following corollary.

▶ Corollary 13. There is a bounded-error quantum algorithm, which determines whether
(U, F) has a k-cover (resp., a k-partition or a k-packing) in O∗ ((2 + c)n/2) time, where
n = |U |.



S. Gaspers and J. Z. Li 69:11

1 1.02 1.04 1.06 1.08 1.1 1.12 1.141.725

1.730

1.735

1.740

1.745

1.750

1.755

1.760

1.765

1.770

1.775

c

B
as

e
b

of
ru

nn
in

g
tim

e
O

∗ (
bn

)
Running time for various values of c

(2 + c)n/2

Theorem 10
Theorem 11

Figure 1 Visual presentation of running times of Theorem 10 and Theorem 11.

When c ≤ 1.147899, then the running time provided by the best among Theorem 10 and
Theorem 11 is slightly faster. At c = 1, the running time of Theorem 11 matches the running
time of the Set Cover algorithm of [1] when |F| is subexponential in n.

When c < − 2
3 + 3

√
47
54 −

√
93

18 + 3
√

47
54 +

√
93

18 ≈ 1.147899, then choosing the best algorithm
among Theorem 10 and Theorem 11 gives an algorithm running in O∗(bn) time for some
b <

√
c + 2. This can be seen visually in Figure 1 and proved rigorously, e.g., by interleaving

a stepwise function between the function (c + 2)n/2 and the function from Theorem 11 when
c ≤ 1.08:

steps(c, n) =


3n/2 if c ≤ 1.0123
1.735595n if 1.0123 ≤ c ≤ 1.0221
. . .

1.7533n if 1.0742 ≤ c ≤ 1.08.
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c α running time

1.0 0.236159 O∗(1.7274n)
1.01 0.238036 O∗(1.7312n)
1.02 0.239858 O∗(1.7349n)
1.03 0.241622 O∗(1.7384n)
1.04 0.243320 O∗(1.7418n)
1.05 0.244946 O∗(1.7450n)
1.06 0.246488 O∗(1.7480n)
1.07 0.247928 O∗(1.7508n)
1.08 0.249227 O∗(1.7533n)
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Figure 2 Running time for various values of c.

When 1.08 ≤ c ≤ 1.147899, then Theorem 10 gives an algorithm with running time O∗(dn)
for some d <

√
c + 2. We list precise running times for certain values of c in Figure 2.

6 Applications

We can now use Corollary 13 in combination with simple branching algorithms enumerating
various vertex sets in graphs, in particular algorithms enumerating maximal independent
sets (equivalently, maximal cliques in the complement graph) in O∗(3n/3) time [17] (we
note that the algorithm of [24] is not a simple branching algorithm), maximal bicliques in
O∗(3n/3) time, maximal induced matchings in O∗(10n/5) time [23], maximal induced forests
in O(1.8527n) time [19], and minimal k-hitting sets in O∗((2 − 1/k)n) time [15]. The last
result is used to enumerate maximal H-free subgraphs, which have no induced subgraph
isomorphic to any graph from the family H of graphs, all of which have at most k vertices.
Some well-known H-free graph classes are

cluster graphs with H = {P3}, where Pk denotes the path on k vertices,
triangle-free graphs with H = {K3}, where Kk denotes the complete graph on k vertices,
cographs with H = {P4} [12],
claw-free graphs with H = {K1,3}, where Kk,ℓ denotes the complete bipartite graph with
partite sets of size k and ℓ,
trivially-perfect graphs with H = {P4, C4} [21], where Ck denotes the cycle on k vertices,
threshold graphs with H =

{
P4, C4, C4

}
[11], where G denotes the complement of G,

split graphs with H =
{

C4, C4, C5
}

[14], and
line graphs, where H is a set of 9 graphs on at most 6 vertices each [3].

▶ Theorem 14. There are bounded-error quantum algorithms, which, for a graph on n

vertices and integer k, determine whether there is a k-packing, k-partitioning, or k-covering
of G

with maximal independent sets, maximal cliques, or maximal bicliques in O(1.8554n)
time,
with maximal cluster graphs or maximal triangle-free graphs in O(1.9149n) time,
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with maximal cographs, maximal claw-free graphs, maximal trivially-perfect graphs, or
maximal threshold graphs in O(1.9365n) time,
with maximal split graphs in O(1.9494n) time,
with maximal line graphs in O(1.9579n) time, and
with maximal induced forests in O(1.9629n) time.

There are bounded-error quantum algorithms, which, for a graph on n vertices and integer k,
determine whether there is a k-packing or k-partitioning of G

with maximal induced matchings in O(1.8934n) time2.

In particular, this leads to a bounded-error quantum algorithm computing the chromatic
number of an input graph in O(1.8554n) time; a graph can be covered with k maximal
independent sets iff it has chromatic number at most k. In Section 7, we expedite this
algorithm by exploiting fast algorithms for coloring a graph with a small number of colors and
this will enable us to partition the vertex set in a more balanced way in the divide-and-conquer
steps.

Even though there is a simple branching algorithm that enumerates all minimal dominating
sets in O(1.7159n) time [16], this algorithm cannot be readily used for computing the domatic
number using Theorem 8. This is because when we consider a subset X of the vertex set
of G = (V, E), we need to enumerate vertex subsets from X that are minimal dominating
sets for G, and not G[X]. In Section 8, we prove that such minimal dominating sets can be
enumerated in O∗ ((2 − ε)|X|) time if |X| is linear in |V |.

7 Faster Computation of the Chromatic Number

Assume the vertex set of input graph G = (V, E) can be partitioned into independent sets
C = (I1, I2, . . . , Iχ) where χ is the chromatic number of G. Denote by n the number of
vertices of G.

Using the algorithm from Theorem 8, we can compute the chromatic number of G in
O(1.8554n) time. The family of subsets F corresponds to the independent sets of G and
the family e(X, r(F , X)) corresponds to the maximal independent sets of G[X], which can
be enumerated by a simple branching algorithm A in O(3|X|/3) time [17]. We now prove a
stronger result.

A proof of Lemma 17 along with a more detailed complexity analysis can be found in the
full version of the paper [20].

▶ Theorem 15. There is a bounded-error quantum algorithm, which for a graph on n vertices,
computes the chromatic number in O(1.7956n) time.

Assume, w.l.o.g., that |I1| ≥ |I2| ≥ |I3| ≥ |I4| ≥ · · · ≥ |Iχ|.
In the first step, we use the algorithm from Theorem 6 with α = 0.27 and store the result

in QRAM. That is, for each α-small subset X ⊂ V , we find the chromatic number of X by
finding the smallest k such that there exists a k-partition of X into independent sets. This
takes O∗(

(
n

0.27·n
)
) = O∗(1.79187n) time.

We then consider a few different possibilities for the large sets in C and present an
algorithm which finds a partition into a smallest number of independent sets for each of
these cases. These possibilities cover all configurations of C so one result is guaranteed to
find the chromatic number by detecting the partition C above, or an equivalent partition.
The cases are as follows:

2 Note that it is NP-hard to determine, for a graph G = (V, E) and vertex subset X ⊆ V , whether there
is a superset Y ⊇ X that induces a 1-regular subgraph of G. This can be seen by a simple reduction
from Independent Set.
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1. G contains a vertex subset of size at least 0.48 · n that is the union of at most five sets
in C.
We check for k-coloring for all 1 ≤ k ≤ n and take the minimum valid value of k as
the chromatic number. To check for a certain k, we use Grover’s search over all Q ⊂ V

where |Q| ≤ 0.52 · n and check whether G − Q is 5-colorable. If it is 5-colorable, we
compute its chromatic number by checking its k′-colorability for k′ < 5. We then solve
the instance (Q, r(F , Q)) to find a kQ-coloring, where kQ = k − χ(G − Q), using Grover’s
search to divide Q into (QL, QR) where |QL| ≥ 0.27 · n and kQL + kQR = kQ. For
(QL, r(F , QL)) (and similarly for QR) we use Grover’s search on the branching algorithm
A to enumerate candidate sets S1 ∈ e(QL, r(F , QL)); if |QL| − |S1| > 0.27 · n, then this
branch is unsuccessful; otherwise, find χ(QL \ S1) in QRAM.
The running time of this case with quantum 5-coloring in O∗(1.4695n) [26] is O∗(1.7831n).

2. G contains a vertex subset of size at least 0.48 · n that is the union of six sets in C, but
does not contain a vertex subset of size at least 0.48 · n that is the union of at most five
sets in C.
In this case we have

|I1| + |I2| + · · · + |I5| < 0.48 · n

=⇒ 5 · |I6| ≤ 5 · |I5| < 0.48 · n

=⇒ |I1| + |I2| + · · · + |I6| < 0.576 · n,

which, along with the condition 0.48 · n ≤ |
⋃6

i=1 Ii| gives

0.424 · n < |V \
6⋃

i=1
Ii| ≤ 0.52 · n.

For this case we check for k-coloring for all 1 ≤ k ≤ n and take the minimum valid value
of k as the chromatic number. To check for a certain k, we use Grover’s search over all
Q ⊂ V where 0.424 · n < |Q| ≤ 0.52 · n and check whether G − Q is 6-colorable. If so, we
check whether the instance (Q, r(F , Q)) is (k − 6)-colorable in the same way as in item 1.
The running time of this case with quantum 6-coloring in O∗(1.5261n) [26] is O∗(1.7937n).

3. G does not contain a vertex subset of size at least 0.48 · n that is the union of at most six
sets in C. That is |

⋃6
i=1 Ii| < 0.48 · n.

Let T =
⋃q

i=1 Ii where q is the maximum index such that |T | < n
2 . As |

⋃6
i=1 Ii| < 0.48 ·n,

we have q ≥ 6. We consider two possibilities for the size of T and present an algorithm
which finds a partition into a smallest number of independent sets for each case. As a
valid coloring is computed in each case, the smallest partition gives the chromatic number
if |
⋃6

i=1 Ii| < 0.48 · n.

3.1. Consider the case where |T | < 6·n
13 :

Let L =
⋃q+1

i=1 Ii and R =
⋃χ

q+2 Ii. We have

|I1| + |I2| + · · · + |Iq| <
6 · n

13
=⇒ |I1| + |I2| + · · · + |Iq+1| <

7 · n

13
⇐⇒ |L| <

7 · n

13

and 0.5 · n ≤ |L| from the definition of q.
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Assume L is not 7-colorable. There must be more than 7 independent sets in the
construction of of L, which means

q + 1 > 7 ⇐⇒ q ≥ 7

=⇒ 7 · |Iq+1| <
6 · n

13
=⇒ |L| <

48 · n

91

By contraposition, |L| ≥ 48·n
91 implies that L is 7-colorable.

▶ Lemma 16. After running the algorithm presented in Theorem 6, there exists a
bounded-error quantum algorithm to check the 7-colorability of a subset X ⊆ U where
|X| ≤ 7

3 · α · n in O∗(1.5622|X|) time.

Proof. Assume that X is 7-colorable and there is a partition D = (J1, J2, . . . , J7)
of X into independent sets. Assume, w.l.o.g., that |J1| ≥ |J2| ≥ · · · ≥ |J7|. Let
TL = J1 ∪ J2 ∪ J3 and TR = J4 ∪ J5 ∪ J6 ∪ J7. We have

|TL|
3 ≥ |J3| ≥ |J4| ≥ |TR|

4
=⇒ |TL| + 4

3 · |TL| ≥ |X|

⇐⇒ |TL| ≥ 3
7 · |X|.

Consider TR \ J4,

|TR| ≤ 4
7 · |X| and |J4| ≥ 1

4 · |TR|

=⇒ |TR \ J4| ≤ 3
7 · |X| ≤ α · n.

So there exists a subset S1 ∈ e(TR, r(F , TR)) such that |TR \ S1| ≤ α · n.
We use Grover’s search to divide X into two sets (XL, XR) where |XL| ≥ 3·|X|

7 .
We check XL for 3-colorability using a fast quantum algorithm. If it is 3-colorable,
we use Grover’s search on the branching algorithm A to enumerate candidate sets
S1 ∈ e(XR, r(F , XR)); if |XR|−|S1| > α·n, then this branch is unsuccessful; otherwise,
check whether χ(XR\S1) ≤ 3 in QRAM. If X is 7-colorable and (XL, XR) = (TL, TR),
we indeed detect 7-colorability.
The running time of this algorithm with quantum 3-coloring in O∗(1.1528n) time [18]
is O∗(1.5622|X|). ◀

We check for k-coloring for all 1 ≤ k ≤ n and take the minimum valid value of k as the
chromatic number. To check for a certain k, we use Grover’s search to divide V into
two sets (L, R) where 0.5 ·n ≤ |L| < 7·n

13 and k into kL +kR. When |L| < 48·n
91 , we solve

the subinstances (L, r(F , L)) and (R, r(F , R)) as in Theorem 8. When |L| ≥ 48·n
91 , we

solve the subinstance (R, r(F , R)) as in Theorem 8 and run the algorithm in Lemma 16
on L; if L isn’t 7-colorable, then this branch is unsuccessful; otherwise the subinstance
(L, r(F , L)) is kL-colorable for kL ≥ 7. This algorithm finds the chromatic number of
G when (L, R) are equal to the ones we constructed from C. The running time of this
algorithm is O∗(1.7956n).
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3.2. Otherwise, consider the case where 6·n
13 ≤ |T | < n

2 :
Let L = T =

⋃q
i=1 Ii and R =

⋃χ
q+1 Ii. We partition R into independent sets

C ′ = (I ′
1, I ′

2, . . . , I ′
χ′) where I ′

i = Iq+i for all 1 ≤ i ≤ χ′. By the definition of C, this is
an optimal partition of R. As q ≥ 6, we get |L|

6 ≥ |Iq| ≥ |Iq+i| = |I ′
i| for all 1 ≤ i ≤ χ′.

▶ Lemma 17. Assume we have a partition D = (J1, J2, . . . , Jm) of a set X where
t ≥ |J1| ≥ |J2| ≥ · · · ≥ |Jm|. Define p =

⌈
|X|

t

⌉
and r = |X|

p . For any non-negative

integer a, 1 ≤ a ≤ p−2, there exists an integer k such that a ·r ≤ |
⋃k

i=1 Ji| ≤ (a+1) ·r.
Let Ta =

⋃q′

i=1 I ′
i and Tb =

⋃q′+1
i=1 I ′

i where q′ is the maximum index such that |Ta| < |R|
2 .

Note that |R|
2 ≤ |Tb|. When we apply Lemma 17 with X = R, D = C ′ and t = |L|

6 , we
get

|X|
t

= 6 · |R|
|L|

≤
6 · 7·n

13
6·n
13

= 7

and 6 · |R|
|L|

>
6 · n

2
n
2

= 6

=⇒ p =
⌈

|X|
t

⌉
= 7.

If we let a = 3, the lemma states that there exists a k such that
3·|R|

7 ≤ |
⋃k

i=1 I ′
i| ≤ 4·|R|

7 . As q′ and q′ + 1 differ by 1, it is not possible that
|
⋃q′

i=1 I ′
i| < 3·|R|

7 ≤ |
⋃k

i=1 I ′
i| ≤ 4·|R|

7 < |
⋃q′+1

i=1 I ′
i|. So, either 3·|R|

7 ≤ |Ta| < |R|
2 or

|R|
2 ≤ |Tb| ≤ 4·|R|

7 . We let TL = Ta or TL = Tb such that 3·|R|
7 ≤ |TL| ≤ 4·|R|

7 and
TR = R \ TL. Note that in both cases, removing the independent set I ′

q′+1 from
either TL or TR would leave both subsets with a size ≤ |R|

2 . Therefore, there exists a
subset S1 ∈ e(TL, r(F , TL)) (resp. for TR) such that |TL \ S1| ≤ |R|

2 ≤ 0.27 (and
similarly for TR).

We check for k-coloring for all 1 ≤ k ≤ n and take the minimum valid value of k as
the chromatic number. To check for a certain k, we use Grover’s search to divide
V into two sets (L, R) where 6·n

13 ≤ |L| < 0.5 · n and k into kL + kR. We solve the
subinstance (L, r(F , L)) as in Theorem 8. We also solve the subinstance (R, r(F , R))
as in Theorem 8, except that R is divided into (RL, RR) with 3·|R|

7 ≤ |RL| ≤ 4·|R|
7

instead of |RL| > 0.5 · |R|. This algorithm finds the chromatic number of G when
(L, R) are equal to the ones we constructed from C and (RL, RR) = (TL, TR). The
running time of this algorithm is O∗(1.7956n).

We observe that the overall running time of the algorithm is

O∗

(√(
n

7
13 · n

)( 7
13 · n
4

13 · n

)
3 1

3 · 4
13 ·n

)

= O∗

(( √
13

27/13 · 323/78

)n
)

= O∗(1.7956n)
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We reach this worst case when χ(G) = 13 and |I1| = |I2| = |I3| = · · · = |I13|. An example of
such a graph is the disjoint union of n

13 complete graphs on 13 vertices. If the universe is
partitioned into 2, one part must have at least 7 independent sets which is then partitioned
into two parts where one part has at least 4 independent sets. Hence we cannot improve on
the running time with a different twice-partitioning strategy.

We also note that the current best known quantum algorithms for checking 13-colorability,
7-colorability and 4-colorability [26] do not improve our running time. When iterating
through S1 ∈ (X, r(F , X)), we only need to consider S1 with |S1| ≥ |X| − α · n so we can
use an improved upper bound [10] when we only need to consider |S1| > |X| / 3. However,
this is only the case when |X| > 3

2 · α · n; so it does not affect our overall running time as
|X| = 4

13 · n in the worst case.
The pseudocode for the algorithm in this section can be found in [20].

8 Enumeration of Minimal Subset Dominating Sets

In this section, we prove that the number of minimal dominating sets of a graph that
are subsets of some linear-sized subset of vertices X is at most O∗ ((2 − ε)|X|). Moreover,
they can be enumerated by a simple branching algorithm whose running time is within a
polynomial factor of this bound.

▶ Theorem 18. There is a simple branching algorithm, which, given any graph G = (V, E)
and any subset of vertices X ⊆ V with |X| ≥ d · |V | for some d > 0, enumerates all minimal
dominating sets of G that are subsets of X in O∗ ((2 − εd)|X|) time, for some εd > 0.

The theorem will follow from a slightly more general theorem about minimal set covers of
a set system. From a graph G = (V, E) and a vertex subset X ⊆ V , we obtain a set system
(U, F) where U = V and a set Sx ∈ F for each x ∈ X that contains the closed neighborhood
of vertex x in the graph G: Sx = NG[x]. Then, there is a 1-to-1 correspondence between
inclusion-wise minimal dominating sets in G that are subsets of X and inclusion-wise minimal
set covers of (U, F).

▶ Theorem 19. There is a simple branching algorithm, which, given any set system
(U, F) with |U | ≤ r · |F| for some r > 0, enumerates all minimal set covers of (U, F)
in O∗ (2(1−εr)·|F|) time, for some εr > 0.

Fomin et al. [16] proved Theorem 18 for X = V and Theorem 19 for r = 1. In particular,
their algorithm enumerates all minimal dominating sets of a graph on n vertices in O(1.7159n)
time.

Proof. Let r > 0. Let ε = 3(r+1)−log(23(r+1)−1)
3(r+1)2 . Consider the measure

µ(U, F) = (1 − (r + 1)ε)|F| + ε|U |

which associates a weight of 1 − (r + 1)ε > 0 to each set and a weight of ε > 0 to each
element of a set system (U, F). We will show that every set system (U, F) has at most 2µ(U,F)

minimal set covers by induction on |F|. For a set system with |U | ≤ r · |F|, this number
is 2(1−(r+1)ε)|F|+ε|U | ≤ 2(1−ε)·|F|. The proof can easily be turned into a simple branching
algorithm enumerating all minimal set covers whose search tree is the induction tree of this
proof.

The statement trivially holds when |F| = 0 since such an instance has at most 1 minimal
set cover. For the induction, we consider three cases.
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1. F contains a set S with |S| ≥ 3(r + 1). Any minimal set cover either contains S or not.
Those that do not contain S are also minimal set covers of (U, F \ {S}) and those that
contain S are made up of S and a minimal set cover of (U \S, F \{S}). For the induction,
we would like that

2µ(U,F\{S}) + 2µ(U\S,F\{S}) ≤ 2µ(U,F)

⇐⇒ 2µ(U,F)−(1−(r+1)ε) + 2µ(U,F)−(1−(r+1)ε)−|S|·ε ≤ 2µ(U,F)

⇐⇒ 2−1+(r+1)ε + 2−1+(r+1)ε−|S|·ε ≤ 1

⇐= 2−1+(r+1)ε + 2−1−2(r+1)ε ≤ 1,

and this inequality holds because ε ≤ 1
r+1 log

(
1+

√
5

2

)
.

2. There is an element u ∈ U with frequency at most 3(r + 1), i.e., u occurs in at most
3(r + 1) sets of F . Denote the sets that contain u by S = {S ∈ F : u ∈ S}. Since u needs
to be covered, each set cover contains at least one set from S. We use induction on all
2|S| − 1 choices of including at least one set from S into the set covers and excluding the
remaining sets from S; each such choice leads to a set cover instance where we remove all
sets in S, and we remove all elements covered by the sets that are included in the set
covers. Each such choice reduces the measure µ by more than |S| · (1 − (r + 1)ε). Now,
we would therefore like that

(2|S| − 1) · 2µ(U,F)−|S|·(1−(r+1)ε) ≤ 2µ(U,F)

⇐⇒ (2|S| − 1) · 2−|S|·(1−(r+1)ε) ≤ 1

⇐⇒ 2−|S|·(1−(r+1)ε) ≤ (2|S| − 1)−1

⇐⇒ −|S| · (1 − (r + 1)ε) ≤ − log(2|S| − 1)

⇐⇒ (r + 1)ε − 1 ≤ − log(2|S| − 1)
|S|

⇐⇒ ε ≤ |S| − log(2|S| − 1)
(r + 1)|S|

Note that |S|−log(2|S|−1)
(r+1)|S| decreases when |S| increases, and for the maximum possible

value of |S|, which is 3(r + 1), the inequality holds with equality for the value of ε given
in the beginning of the proof.

3. It remains to consider the case where all sets have size less than 3(r + 1) and all elements
have frequency more than 3(r + 1). Since the sum of set sizes equals the sum of element
frequencies, we have that |F| ≥ |U |. Here, we use the result of Fomin et al. [16] who
proved that the number of minimal set covers is at most 1.7159|F|. For the induction, we
would like that

1.7159|F| ≤ 2µ(U,F)

⇐⇒ 2|F| log 1.7159 ≤ 2(1−(r+1)ε)|F|+ε|U |

⇐= 0.779|F| ≤ (1 − (r + 1)ε)|F|

⇐⇒ ε ≤ 0.221
r + 1

and this inequality holds for the value of ε given in the beginning of the proof.
This concludes the proof of the theorem. ◀

Theorem 8 now lets us conclude the following.
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▶ Corollary 20. There is a bounded-error quantum algorithm which computes the domatic
number of any graph on n vertices in O((2 − ε)n) time for some constant ε > 0.
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