
Finer-Grained Reductions in Fine-Grained Hardness
of Approximation
Elie Abboud #

Department of Computer Science, University of Haifa, Israel

Noga Ron-Zewi #

Department of Computer Science, University of Haifa, Israel

Abstract
We investigate the relation between δ and ϵ required for obtaining a (1 + δ)-approximation in time
N2−ϵ for closest pair problems under various distance metrics, and for other related problems in
fine-grained complexity.

Specifically, our main result shows that if it is impossible to (exactly) solve the (bichromatic)
inner product (IP) problem for vectors of dimension c log N in time N2−ϵ, then there is no (1 + δ)-
approximation algorithm for (bichromatic) Euclidean Closest Pair running in time N2−2ϵ, where
δ ≈ (ϵ/c)2 (where ≈ hides polylog factors). This improves on the prior result due to Chen and
Williams (SODA 2019) which gave a smaller polynomial dependence of δ on ϵ, on the order of
δ ≈ (ϵ/c)6. Our result implies in turn that no (1 + δ)-approximation algorithm exists for Euclidean
closest pair for δ ≈ ϵ4, unless an algorithmic improvement for IP is obtained. This in turn is very
close to the approximation guarantee of δ ≈ ϵ3 for Euclidean closest pair, given by the best known
algorithm of Almam, Chan, and Williams (FOCS 2016). By known reductions, a similar result
follows for a host of other related problems in fine-grained hardness of approximation.

Our reduction combines the hardness of approximation framework of Chen and Williams, together
with an MA communication protocol for IP over a small alphabet, that is inspired by the MA
protocol of Chen (Theory of Computing, 2020).

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Fine-grained complexity, conditional lower bound, fine-grained reduction,
Approximation algorithms, Analysis of algorithms, Computational geometry, Computational and
structural complexity theory

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.7

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2311.00798

Funding Elie Abboud: Research supported in part by ISF grant 735/20, and by the European Union
(ERC, ECCC, 101076663). Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or the European Research Council. Neither
the European Union nor the granting authority can be held responsible for them.
Noga Ron-Zewi: Research supported in part by ISF grant 735/20, and by the European Union (ERC,
ECCC, 101076663). Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or the European Research Council. Neither the
European Union nor the granting authority can be held responsible for them.

1 Introduction

Traditionally, the approach to determine whether a computational problem is tractable was
to find out whether it has a polynomial-time algorithm. Finding such an algorithm implies
that the problem is in P, and thus it was considered efficiently computable. Otherwise, if
one is interested in proving that the problem is intractable, we usually lack the tools to

EA
T

C
S

© Elie Abboud and Noga Ron-Zewi;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 7; pp. 7:1–7:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eliabboud1000@gmail.com
https://orcid.org/0009-0005-9611-9608
mailto:noga@cs.haifa.ac.il
https://orcid.org/0000-0002-8416-893X
https://doi.org/10.4230/LIPIcs.ICALP.2024.7
https://arxiv.org/abs/2311.00798
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Finer-Grained Reductions in Fine-Grained Hardness of Approximation

prove lower bounds; instead one relies on hardness assumptions which allow us to prove
conditional lower-bounds. In the classical theory of NP-hardness, the hardness assumption is
that P ̸= NP, which is known to imply that no polynomial-time algorithm exists for many
central computational problems.

In fine-grained complexity, one is interested in pinning down the precise complexity of
tractable computational problems. In particular, a central objective in fine-grained complexity
is to determine the exact exponent in the time complexity of problems already known to be in
P . More concretely, given a problem with input length n known to be solvable in t(n)-time,
is it possible to solve the problem in time t(n)1−ϵ for some ϵ > 0? This is motivated by
the fact that despite rigorous study of many central computational problems in P , we have
failed to improve on the running time of their best-known algorithms (see for example the
survey [21] for a list of such problems). This motivates the question of whether there is an
inherent difficulty in the problem that prevents us from finding faster algorithms.

Once more, we typically lack the tools to prove lower bounds, and we thus instead rely
on hardness assumptions to obtain conditional lower bounds for problems in P. One popular
such conjecture has been the Strong Exponential Time Hypothesis (SETH), which postulates
that for any ϵ > 0, there exists an integer k = k(ϵ) so that it is impossible to solve k-SAT on
n variables in time 2(1−ϵ)n [13].

Another popular conjecture is the Orthogonal Vector Conjecture (OVC) which in the
low-dimensional regime posits that for any ϵ > 0, there exists a cov = cov(ϵ) such that given
a pair of sets A, B ⊆ {0, 1}d of cardinality N each and of dimension d = cov · log N , it is
impossible to determine whether there exists a pair (a, b) ∈ A × B satisfying that ⟨a, b⟩ = 0
in N2−ϵ time [11]. It is known that SETH implies OVC [20], and so OVC is at least as
plausible as SETH. In terms of algorithms, it is known how to solve the OV problem in time
N2−ϵ with c = exp(1/ϵ) [3, 7], which implies that cov ≥ exp(1/ϵ).

A related assumption is the inner product (IP) assumption which postulates that for any
ϵ > 0, there exists a cip = cip(ϵ) such that given a pair of sets A, B ⊆ {0, 1}d of cardinality
N each and of dimension d = cip · log N , and an integer σ ∈ {0, 1, . . . , d}, it is impossible to
determine whether there exists a pair (a, b) ∈ A × B satisfying that ⟨a, b⟩ = σ in N2−ϵ time.
Once more, since the OV problem is a special case of the IP problem, the IP assumption is
at least as plausible as OVC1. Indeed, the best known algorithms for the IP problem are
only able to solve this problem in time N2−ϵ with c ≈ 1/ϵ [5], and this only imposes that
cip ⪆ 1/ϵ.2

In recent years, there has been a flurry of work showing fine-grained lower bounds for many
central computational problems in P, based on the above assumptions. A main challenge
in showing such fine-grained lower bounds based on these assumptions is that one must
carefully design the reductions so that they run fast enough as not to supersede the lower
bound assumptions.

One fundamental problem for which such fine-grained reductions were shown is the Closest
Pair (CP) problem. In this problem, given a distance metric dist : {0, 1}d × {0, 1}d → R+,
and given a pair of sets A, B ⊆ {0, 1}d, the goal is to find a pair (a, b) ∈ A × B which
minimizes dist(a, b). This problem was studied for various metrics such as Hamming, ℓp,
and edit distance, and it has many applications, for example in computational geometry,
geographic information systems [12], clustering [24, 6], and matching problems [23], to name
a few. For concreteness, in what follows we restrict our attention only to the Euclidean ℓ2
metric, though many of the results we mention hold also for other metrics.

1 The IP assumption is at least as plausible as OVC if we allow an arbitrary dependence of cip on epsilon.
2 We use ≈, ⪆, ⪅ to hide polylog factors.

E. Abboud and N. Ron-Zewi 7:3

One can naïvely solve the (Euclidean) Closest Pair problem in O(N2d) time. On the
other hand, algorithms have been developed which solve the problem in time ≈ NO(c) in the
low-dimensional regime d = c log N , [16, 14]; Thus, a truly sub-quadratic algorithm is only
known for smaller values of c. On the other hand, in [5] it was shown that assuming OVC,
for any ϵ > 0 there exists c = c(ϵ) so that no algorithm can solve this problem in time N2−ϵ.

1.1 Fine-grained hardness of approximation

Given the above state of affairs, it is natural to ask whether relaxing the requirements and
settling for an approximate “close-enough” answer can help in designing faster fine-grained
algorithms. For example, it is known that for the (Euclidean) CP problem, one can obtain a
(1 + δ)-approximation with running time N2−ϵ for δ ≈ ϵ3 (for any dimension d ≤ N1−ϵ) [4],
which is much faster than the best-known exact algorithm.

In terms of impossibility results, known fine-grained reductions can typically be adapted
to the approximate setting, based on appropriate gap assumptions, such as Gap-SETH.3 In
the theory of NP-hardness, it is often possible to base hardness of gap-problems on hardness
of exact problems using PCPs. However, a major barrier in applying this approach in the
fine-grained setting (for example for the purpose of reducing SETH to Gap-SETH) is the
large (super-constant) blow-up in the length of existing PCPs, which translates into a large
(super-constant) blow-up in the number of variables n in the reduction.

Nevertheless, in a recent breakthrough, Abboud, Rubinstein, and Williams [2] have shown
how to utilize PCP machinery (specifically, the sumcheck protocol) for showing fine-grained
hardness of approximation results based on non-gap assumptions. Since then, many works
have utilized this framework for showing fine-grained hardness of approximation results for
many central problems in P, based on non-gap assumptions such as SETH or OVC (see the
recent surveys [18, 10] for a description of this line of work).

In particular, for the CP problem, Rubinstein [17] has shown that assuming OVC, for
any ϵ > 0 there exists δ = δ(ϵ) such that there is no (1 + δ)-approximation algorithm for
(Euclidean) CP running in time N2−ϵ. This rules out truly sub-quadratic approximation
algorithms, running, say, in time f(δ) · N1.99. However, the obtained dependence of δ on ϵ is
far from optimal, specifically δ = exp(−cov/ϵ), where cov = cov(ϵ) ≥ exp(1/ϵ) is the constant
guaranteed by the OVC conjecture.

In a follow-up work, Chen and Williams [9] have shown an improved hardness of approxim-
ation result for CP in which δ only depends polynomially on ϵ. Specifically, they showed that
if the IP assumption holds, then for any ϵ > 0 there is no (1 + δ)-approximation algorithm
for (Euclidean) CP running in time N2−ϵ, where δ = poly(ϵ/cip) and cip = cip(ϵ) ⪆ 1/ϵ is
the constant guaranteed by the IP assumption. However, the obtained dependence of δ on
ϵ was still quite small, on the order of δ ≈ (ϵ/cip)6 ⪅ ϵ12. This is still quite far from the
dependence obtained by the best known approximation algorithm for CP which gives an
(1 + δ)-approximation in time N2−ϵ for δ ≈ ϵ3.

In this work, we investigate the question of whether the dependence of δ on ϵ can even
be further improved, potentially to match the best known approximation algorithm.

3 The Gap-SETH assumption asserts that for any ϵ > 0, there are k and δ > 0, so that no 2(1−ϵ)n-time
algorithm can, given a k-CNF on n variables, distinguish between the case that it is satisfiable, and the
case that any assignment satisfies at most an (1 − δ)-fraction of its clauses.

ICALP 2024

7:4 Finer-Grained Reductions in Fine-Grained Hardness of Approximation

1.2 Our results
Recall that by the discussion above, the best known approximation algorithm for (Euclidean)
CP gives an (1 + δ)-approximation in time N2−ϵ for δ ≈ ϵ3, while the best-known hardness of
approximation result shows that if the IP assumption holds, then no (1 + δ)-approximation
algorithm running in time N2−ϵ exists for δ ≈ (ϵ/cip)6 ⪅ ϵ12, where cip = cip(ϵ) ⪆ 1/ϵ is
the constant guaranteed by the IP assumption. Thus there remains a large polynomial gap
between the upper and lower bounds, and our main result narrows this gap.

▶ Theorem 1.1. Suppose that the IP assumption holds, i.e., for any ϵ′ > 0, there exists
a cip = cip(ϵ′) such that given a pair of sets A, B ⊆ {0, 1}d of cardinality N each and of
dimension d = cip(ϵ′) · logN , and an integer σ ∈ {0, 1, . . . , d}, it is impossible to find a pair
(a, b) ∈ A × B satisfying that ⟨a, b⟩ = σ in N2−ϵ′ time.

Then for any ϵ > 0, there is δ = Θ̃((ϵ
cip(ϵ/2))2), so that any algorithm running in time

N2−ϵ cannot (1 + δ)-approximate Euclidean CP.

Recall that it is known how to solve the IP problem in time N2−ϵ for dimension d = c log N

with c ≈ 1/ϵ, and so it must hold that cip ⪆ 1/ϵ. If we assume that cip ≈ 1/ϵ, then the above
theorem gives a dependence of δ on ϵ of the form δ ≈ ϵ4, which is very close to the dependence
of δ ≈ ϵ3 given by the best known algorithm. Moreover, improving the dependence in the
above theorem to δ ≈ ϵ

cip
would imply an algorithmic improvement on the IP problem. We

leave the question of determining the exact dependence of δ on ϵ as an interesting open
problem for future research.

By known reductions, the above theorem gives a similar improvement for a host of other
problems in fine-grained hardness of approximation such as closest pair with respect to other
metrics such as Hamming, ℓp-norm for any constant p > 0, and edit distance, Furthest Pair
and approximate nearest neighbor in these metrics, and additive approximations to Max-IP
and Min-IP, see Appendix A for more details.

Finally, we remark that the above theorem also holds under OVC (or SETH), but is less
meaningful, since as discussed above, for the OV problem we have that cov ≥ exp(1/ϵ).

1.3 Proof overview
Next we give an overview of our proof method, and how it improves on prior work. To
this end, we first describe the general framework presented in [2] for obtaining fine-grained
hardness of approximation results based on MA communication protocols. Then we discuss
the work of Rubinstein [17] who relied on this framework to give the first fine-grained hardness
of approximation result for CP, albeit with an exponential dependence of δ on ϵ, and the
work of Chen and Williams [9] who improved this dependence to polynomial. Following this,
we turn to discuss our proof method that obtains a tighter polynomial relation.

Fine-grained hardness of approximation via MA communication [2]. In a Merlin-Arthur
(MA) communication protocol for a function f : {0, 1}d × {0, 1}d → {0, 1}, two players Alice
and Bob wish to compute f(a, b), where Alice is given as input only a ∈ {0, 1}d, and Bob is
given as input only b ∈ {0, 1}d. To this end, Alice and Bob engage in a randomized (public
coin) communication protocol, where their goal is to use as little communication as possible.
To aid them with this task, there is also a (potentially malicious) prover Merlin who sees
Alice’s and Bob’s inputs, and before any communication begins Merlin sends Alice a short
message m, which can be thought of as a “proof” or “advice”. The requirement is that if

E. Abboud and N. Ron-Zewi 7:5

f(a, b) = 1, then there must exist some message m from Merlin on which Alice accepts with
probability 1. Otherwise, if f(a, b) = 0, then for any possible message m̃ from Merlin, Alice
accepts with probability at most 1

2 on m̃.4
In [2], it was shown that an efficient MA communication protocol for set disjointness5

implies a fine-grained reduction from OV to an approximate version of Max-IP in which given
two sets A, B ⊆ {0, 1}d of cardinality N each, the goal is to output a number sufficiently
close to M := maxa∈A,b∈B ⟨a, b⟩.

To see how a reduction as above can be constructed, suppose that there exists an MA
communication protocol for set disjointness with Merlin’s message length L, communication
complexity cc between Alice and Bob, and randomness complexity R. Suppose furthermore
that we are given an instance A, B ⊆ {0, 1}d of OV, where |A| = |B| = N . Then for each
possible Merlin’s message m ∈ {0, 1}L, we construct an instance Am, Bm ⊆ {0, 1}2cc+R of
Max-IP, where |Am| = |Bm| = N .

Fix m ∈ {0, 1}L. Then the set Am is obtained from A by mapping each element a ∈ A

to a binary vector am that contains an entry for each possible transcript Γ ∈ {0, 1}cc and
randomness string r ∈ {0, 1}R (so am has length 2cc+R), and whose (Γ, r)-entry equals 1 if
and only if Γ is consistent with r and a, and Alice accepts on input a, randomness string r,
and transcript Γ. The set Bm is obtained analogously from B.

Then the main observation is that for some m ∈ {0, 1}L, we have that the (Γ, r)-entry
of both am and bm equals 1 if and only if Alice accepts on Merlin’s message m, inputs
a and b, and randomness string r. Consequently, if there exists (a, b) ∈ A × B so that
⟨a, b⟩ = 0 (i.e., f(a, b) = 1), then there exists a Merlin’s message m on which Alice accepts
with probability 1 on inputs a and b, and consequently we have that the corresponding
vectors (am, bm) ∈ Am × Bm satisfy that ⟨am, bm⟩ = 2R. On the other hand, if ⟨a, b⟩ ̸= 0
(i.e., f(a, b) = 0) for any (a, b) ∈ A × B, then for any Merlin’s message m̃, and on any inputs
(a, b) ∈ A×B, Alice accepts with probability at most 1

2 , and so ⟨am̃, bm̃⟩ ≤ 1
2 ·2R for any pair

(am̃, bm̃) ∈ Am̃ × Bm̃. This gives the desired gap, showing that OV reduces to 2L instances
of approximate Max-IP.

To obtain a fine-grained reduction, one must make sure that cc, R and L are not too
large, so that the total construction time of the reduction is at most N ϵ. To achieve this, one
can use the MA communication protocol of Aaronson and Wigderson [1] for set disjointness
in which all these quantities are upper bounded by ≈

√
d.

For d = c log N , this gives that 2cc, 2R, and 2L are all upper bounded by 2Õ(
√

log N) ≪ N ϵ,
and so the reduction can be constructed in time N ϵ. Next we describe the MA communication
protocol of [1], as hardness of approximation results for CP (including ours) crucially rely on
its properties.

MA communication protocol for set disjointness [1]. The MA communication protocol
for set disjointness of Aaronson and Wigderson [1] relies on the influential sumcheck protocol
of [15], and it proceeds as follows.

Let a ∈ {0, 1}d be Alice’s input. Slightly abusing notation, we view a as a
√

d×
√

d binary
matrix in the natural way, and we let â denote the p ×

√
d matrix obtained by encoding each

column of a with a systematic Reed-Solomon code RS√
d,p : F

√
d

p → Fp
p of degree

√
d over a

prime field of size p ≈ 4
√

d.6 Let b̂ be defined analogously.

4 The accept probability can be increased by executing the communication phase between Alice and Bob
independently for multiple times and accepting if and only if all invocations accept.

5 Recall that set disjointness is the function disj : {0, 1}d×{0, 1}d → {0, 1} which satisfies that disj(a, b) = 1
if and only if the supports of a and b are disjoint, i.e., if ⟨a, b⟩ = 0.

6 The systematic Reed-Solomon code RSd,p : Fd
p → Fp

p of degree d over a prime field of size p > d is a linear

ICALP 2024

7:6 Finer-Grained Reductions in Fine-Grained Hardness of Approximation

In the protocol, Merlin first computes the pointwise product â ⋆ b̂ ∈ Fp×
√

d
p , and then

sends Alice the sum m ∈ Fp
p of the columns of â ⋆ b̂ (where arithemtic is performed mod p).

Alice first checks that m is a codeword of RS2
√

d,p, and that the first
√

d entries of m are all
zero, otherwise she rejects and aborts. Then Alice and Bob jointly sample a random index
i ∈ [p], Bob sends Alice the i’th row of b̂, Alice computes its inner product with the i’th row
of â, and accepts if and only if this product equals m(i) (where once more, arithmetic is
performed mod p).

To see that the protocol is complete, note first that if a and b are disjoint, then a ⋆ b is the
all-zero matrix. Consequently, by the systematic property of the Reed-Solomon encoding, the
first

√
d rows of â ⋆ b̂ are also identically zero, which implies in turn that the first

√
d entries

of m are identically zero. Furthermore, since the product of two polynomials of degree at
most

√
d is a polynomial of degree at most 2

√
d, it follows that m is a codeword of RS2

√
d,p.

Thus, both Alice’s checks will clearly pass. It can also be verified that by construction, the
inner product of the i’th rows of â and b̂ equals m(i), and so Alice accepts with probability 1.

To show soundness, suppose that a and b intersect, and let m̃ denote Merlin’s message.
We may assume that m̃ is a codeword of RS2

√
d,p, and that the first

√
d entries of m̃ are all

zero, since otherwise Alice clearly rejects. But on the other hand, since a and b intersect,
then a ⋆ b has a 1-entry, say in the j-th row, and since p >

√
d, the sum of entries in the j’th

row of a ⋆ b is non-zero mod p, which implies in turn that m(j) ̸= 0. Thus, we conclude that
m̃ and m are distinct codewords of RS2

√
d,p – a code of distance at least p

2 – and so they
must differ by at least 1

2 of their entries. But this implies in turn that with probability at
least 1

2 over the choice of i, it holds that m̃(i) ̸= m(i), in which case the inner product of the
i’th row of â and b̂ will be different than m̃(i), which will cause Alice to reject.

Finally, it can also be verified that in this protocol, cc, R, and L are all upper bounded
by ≈

√
d.

Hardness of approximation for CP with exponential dependence [17]. In [17], Rubinstein
utilized the above framework to show fine-grained hardness of approximation for CP. The
starting point of [17] is a simple linear-time reduction from δ-additive approximation for
Max-IP7 to an (1+Θ(δ))-approximation for (Euclidean) CP. Thus, to show that no algorithm
can find an (1 + Θ(δ))-approximation for (Euclidean) CP in time N2−ϵ, it suffices to show
that no algorithm can find a δ-additive approximation for Max-IP in time N2−ϵ.

The [2] framework discussed above generates instances of Max-IP of dimension 2cc+R and
additive gap of 1

2 · 2R, which gives δ := Θ(2−cc). However, the MA protocol of [1] described
above only gives cc ≈

√
d which is super-constant for a super-constant dimension d, and

consequently only yields a sub-constant δ.
To deal with this, [17] first utilized the fact (previously utilized also in [2]) that the [1]

protocol described above works equally well on skewed matrices of dimensions d
T × T , in

which case we have that L = d
T · log p and cc = T · log p. Thus, assuming d = c log N , to

achieve 2L ≤ N ϵ, one can set T = c
ϵ · log p, which gives in turn cc = c

ϵ · log2 p.

map, defined as follows. To encode a message m = (m(0), . . . , m(d − 1)) ∈ Fd
p, one finds the (unique)

degree d − 1 polynomial Pm(X) ∈ Fp[X] which satisfies that Pm(i) = m(i) for any i = 0, . . . , d − 1, and
lets RSd,p(m) = (Pm(0), . . . , Pm(p − 1)). The code is called systematic since the message is a prefix of
its encodings. The code has distance at least p − d + 1 since any pair of distinct degree d − 1 polynomials
can agree on at most d − 1 points.

7 In a δ-additive approximation for Max-IP, given A, B ⊆ {0, 1}d of cardinality N each, the goal is to
output a number in [M − δ · d, M], where M := maxa∈A,b∈B ⟨a, b⟩.

E. Abboud and N. Ron-Zewi 7:7

However, this is still not quite enough since the MA protocol of [1] requires setting
p >

√
d because of the use of Reed-Solomon codes that are only defined over a large alphabet,

and consequently the communication complexity is still super-constant. However, the main
observation in [1] is that the protocol can actually be executed using any error-correcting
code with a multiplication property8. Relying on this observation, Rubinstein replaced the
Reed-Solomon codes in the protocol of [1] with algebraic-geometric (AG) codes that satisfy
the multiplication property over a constant-size alphabet. This reduced the communication
complexity to ≈ c/ϵ, yielding in turn an approximation factor of δ = 2−Θ̃(c/ϵ).

Polynomial dependence [9]. While [17] gave the first non-trivial hardness of approximation
result for CP, a downside of this result was that the approximation factor δ depended
exponentially on the running time parameter ϵ. In the follow-up work [9], Chen and Williams
showed how to reduce this dependence to just polynomial.

The main observation of Chen and Williams was that instead of thinking of the output
of the MA protocol of [17] as being just accept or reject, one can view the output as being
short vectors a′, b′ ∈ FT

p (namely, the i’th row of â, b̂, respectively), and σ′ ∈ {0, 1, . . . , T · p2}
(namely, the i’th entry of Merlin’s message m), where a′ only depends on Alice’s input a and
the randomness string, b′ only depends on Bob’s input b and the randomness string, and σ′

only depends on Merlin’s message and the randomness string. The requirement then is that
if ⟨a, b⟩ = 0 for some (a, b) ∈ A × B, then for some Merlin’s message m, ⟨a′, b′⟩ = σ′ with
probability 1, while if ⟨a, b⟩ ≠ 0 for any (a, b) ∈ A × B, then for any Merlin’s message m̃,
then ⟨a′, b′⟩ ≠ σ′ with probability at least 1

2 .
Chen and Williams then suggested to create an instance Am, Bm for any Merlin’s message

m, where the set Am is obtained from A by simply mapping each element a ∈ A to a
vector am ∈ FT ×2R

p that is the concatenation of all possible output vectors a′ for all possible
randomness strings, and analogously for Bm. The advantage is that now the dimension of
the vectors in Am and Bm is much shorter than in [17]. However, a disadvantage is that now
the alphabet is not binary anymore, and an even more serious problem is that the soundness
guarantee is only that ⟨a′, b′⟩ ≠ σ′, so the reduction does not seem to produce any gap.

To deal with these issues, Chen and Williams use an encoding lemma which gives
mappings g, h and a value Γ, where g, h, and Γ only depend on p and T , so that g(a′, σ′)
and h(b′, σ′) are binary vectors of length poly(p, T) satisfying that if ⟨a′, b′⟩ = σ′ then
⟨g(a′, σ′), h(b′, σ′)⟩ = Γ, while if ⟨a′, b′⟩ ≠ σ′ then ⟨g(a′, σ′), h(b′, σ′)⟩ < Γ (see Lemma 4.2 for
a formal statement). This produces the desired additive gap, on the order of Ω(2R). Since
the encoding lemma increases the dimension of the vectors only by a factor of poly(p, T),
this yields an approximation factor of δ = 1

poly(p,T) = poly(ϵ
c).

We note that a delicate issue that should be dealt with in the reduction is that the
encoding lemma works over the integers, while the protocol works over finite fields, and in
particular, over non-prime fields, as AG codes are only known to exist over non-prime fields.
Additionally, Chen and Williams show that the reduction works equally well when using the
IP problem instead of OV as its starting point, and using an MA communication protocol
for IP similar to that of [1]. This can potentially allow for a smaller value of c as it is only
known how to solve (exact) IP in time N2−ϵ up to a dimension of c log N for c ≈ 1/ϵ.

8 Informally, we say that a linear code C : Fk → Fn has a multiplication property if the set span{C(m) ⋆

C(m′) | m, m′ ∈ Fk} has sufficiently large distance.

ICALP 2024

7:8 Finer-Grained Reductions in Fine-Grained Hardness of Approximation

This work – tighter polynomial dependence. While [9] obtained a polynomial dependence
of δ on ϵ, the dependence was quite small, on the order of δ ≈ (ϵ

c)6, and in the current work
we show how to improve the dependence to δ ≈ (ϵ

c)2.
To this end, we first observe that one reason for the small polynomial dependence obtained

in [9] was the large polynomial dependence of the dimension of the resulting vectors in the
encoding lemma on the alphabet size p. While in the protocol of [17] the field size p can
be made constant using AG codes, the field still needs to be of characteristic at least T ,
since otherwise the sum of entries in a non-zero row of a ⋆ b may sum to zero over Fp, and
consequently the soundness analysis will not go through.

To reduce the alphabet size, we first design a new MA protocol in which the alphabet size
is only polylogarithmic in T (see Theorem 3.1). This protocol is inspired by the MA protocol
of [8] for IP which achieved communication complexity O(

√
d log d log log d), improving on

the communication complexity of O(
√

d log d) of [1]. In a nutshell, Chen’s idea was to execute
the original MA protocol of [1] multiple times over different small prime fields, hoping that if
⟨a, b⟩ ≠ 0, then ⟨a, b⟩ is also non-zero modulo many of the primes, and so the protocol will
be executed correctly. Chen showed that this is indeed possible to achieve using O(log d)
distinct primes of cardinality at most polylog(d) each.

We observe that for skewed matrices of dimensions d
T × T , it in fact suffices to execute

the protocol with O(log T) distinct primes of cardinality at most polylog(T) each. While this
choice does not necessarily guarantee the property above that if ⟨a, b⟩ ≠ 0, then ⟨a, b⟩ is also
non-zero modulo many of the primes, this turns out to still suffice for a correct execution of
the protocol.

We then further observe that such a protocol can be used in the framework of [9] to
obtain an improved hardness of approximation result for Max-IP. Once more, a delicate issue
is how to use the encoding lemma in the presence of many different non-prime fields.

To the best of our knowledge, this is the first use of the techniques underlying the
improved MA protocol of [8] for showing a fine-grained hardness of approximation result.9

Paper organization. The rest of the paper is organized as follows. We begin in Section 2
below with the required notation and terminology with respect to fine-grained complexity
problems and error-correcting codes. Then in Section 3 we present our improved MA protocol
over a small alphabet, while in Section 4 we show how to use this protocol for obtaining
an improved reduction from IP to approximate Max-IP. Finally, in Appendix A we show
implications of our latter result to showing hardness of approximation results for closest pair,
as well as other related problems in fine-grained complexity.

2 Preliminaries

We start by setting some general notation. For a positive integer d, we let [d] := {1, 2, . . . , d}.
For convenience, we often view a vector a ∈ Σd as a function a : [d] → Σ, and we let a(i)
denote the i-th entry of a. For a pair of vectors a, b ∈ Nd, we let ⟨a, b⟩ :=

∑d
i=1 a(i) · b(i)

denote their inner product, and we let a ⋆ b ∈ Nd denote their pointwise product, given by
(a ⋆ b)(i) = a(i) · b(i) for i ∈ [d]. For a, b ∈ Σd, we let ∆(a, b) := |{i ∈ [d] | a(i) ̸= b(i)}| denote
their Hamming distance. For an n × k matrix A and i ∈ [n] (j ∈ [k], respectively), we let
rowi(A) (colj(A), respectively) denote the i-th row (j-th column, respectively) of A.

9 The paper [8] contains various hardness of approximation results for Max-IP, as well as the improved
MA protocol for IP. To the best of our knowledge, the improved MA protocol presented in this paper
was not used in this paper or in any subsequent work as the basis for hardness of approximation results.

E. Abboud and N. Ron-Zewi 7:9

2.1 Problems in fine-grained complexity
Below we list the main fine-grained problems that we will be concerned with in this paper.

▶ Definition 2.1 (Inner Product (IP)). In the inner product IPN,d problem, given two sets
A, B ⊆ {0, 1}d of cardinality N each, and an integer σ ∈ {0, 1, . . . , d}, the goal is to determine
whether there exists a pair (a, b) ∈ A × B satisfying that ⟨a, b⟩ = σ.

▶ Definition 2.2 (Maximum Inner Product (Max-IP)). In the maximum inner product Max-
IPN,d problem, given two sets A, B ⊆ {0, 1}d of cardinality N each, the goal is to compute
M := maxa∈A,b∈B ⟨a, b⟩ .

For the approximate version of Max-IP, defined next, we will consider the less standard
additive approximation version that will be useful for obtaining hardness of approximation
for the closest pair problem.

▶ Definition 2.3 (Approximate Maximum Inner Product (Apx-Max-IP)). Let δ > 0 be a
parameter. In the (additive) approximate maximum inner product δ-Apx-Max-IPN,d problem,
given two sets A, B ⊆ {0, 1}d of cardinality N each, the goal is to output a number in
[M − δ · d, M], where M := maxa∈A,b∈B ⟨a, b⟩.

▶ Definition 2.4 (Closest Pair (CP)). Let dist : {0, 1}d ×{0, 1}d → R+ be a distance function.
In the closest pair CPN,d,dist problem, given two sets A, B ⊆ {0, 1}d of cardinality N each,
the goal is to compute M := mina∈A,b∈B dist(a, b).

▶ Definition 2.5 (Approximate Closest Pair (Apx-CP)). Let dist : {0, 1}d × {0, 1}d → R+ be
a distance function, and let δ > 0 be a parameter. In the approximate closest pair δ-Apx-
CPN,d,dist problem, given two sets A, B ⊆ {0, 1}d of cardinality N each, the goal is to output
a number in [M, (1 + δ)M], where M := mina∈A,b∈B dist(a, b).

2.2 Error-correcting codes
Our reduction will make use of error-correcting codes. In what follows, we first present some
general notation and terminology with respect to error-correcting codes, and then describe
the kind of codes we shall use for our reduction.

Let Σ be a finite alphabet, and k, n be positive integers (the message length and the
codeword length, respectively). An (error-correcting) code is an injective map C : Σk → Σn.
The elements in the domain of C are called messages, and the elements in the image of C are
called codewords. We say that C is systematic if the message is a prefix of the corresponding
codeword, i.e., for every x ∈ Σk there exists z ∈ Σn−k such that C(x) = (x, z). The rate of a
code C : Σk → Σn is the ratio ρ := k

n . The relative distance dist(C) of C is the maximum
δ > 0 such that for every pair of distinct messages x, y ∈ Σk it holds that ∆(C(x), C(y)) ≥ δ.

If Σ = F for some finite field F, and C is a linear map between the vector spaces Fk and
Fn then we say that C is linear. The generating matrix of a linear code C : Fk → Fn is a
matrix G ∈ Fn×k such that C(x) = G · x for any x ∈ Fk. We say that a linear code C is
explicit if G can be generated in time poly(n).

For our reduction, we shall require linear codes over a small (constant-size, independent
of the codeword length) alphabet, satisfying the multiplication property, which informally
says that all pointwise products of pairs of codewords span a code of large distance. Such
codes can be obtained from the AG codes of [19] (see also [17, Theorem 2.4]).

▶ Theorem 2.6 ([19]; [17], Theorem 2.4). There exists a constant integer p0 so that for any
prime p ≥ p0, there exist two explicit code families C = {Ck}k∈N and C⋆ = {(C⋆)k}k∈N so
that the following hold for any k ∈ N:

ICALP 2024

7:10 Finer-Grained Reductions in Fine-Grained Hardness of Approximation

Ck, (C⋆)k are systematic linear codes over Fp2 of relative distance at least 0.1 and rate at
least 0.1.
Ck has message length k.
For any x, y ∈ (Fp2)k, Ck(x) ⋆ Ck(y) is a codeword of (C⋆)k.

3 MA protocol for IP over a small alphabet

In this section, we will provide an MA protocol for IP over a small alphabet. The protocol
will be later used in Section 4 below to show a reduction from IP to Apx-Max-IP.

▶ Theorem 3.1 (MA Protocol for IP over a small alphabet). For any sufficiently large integer
T , there is an integer q = O(log2 T), so that for any integer d which is a multiple of T there
is an MA Protocol which satisfies the following:
1. Alice is given as input a vector a ∈ {0, 1}d and an integer σ ∈ {0, 1, . . . , d}, Bob is given

as input a vector b ∈ {0, 1}d, and Merlin is given as input a, b, and σ.
2. Merlin sends Alice a message m of (bit) length L = O(d

T · log2 T). Alice reads Merlin’s
message, and based on this message and σ, decides whether to reject and abort, or
continue.

3. Alice and Bob sample a joint random string r of (bit) length R = log(d
T)+log log T +O(1).

4. Alice outputs a string a′ ∈ {0, 1, . . . , q}T and an integer σ′ ∈ {0, 1, . . . , T · q2}, where
a′ only depends on Alice’s input a and the randomness string r, and σ′ only depends
on Merlin’s message m and r, and Bob outputs a string b′ ∈ {0, 1, . . . , q}T , which only
depends on Bob’s input b and r, so that the following hold:

(Completeness) If ⟨a, b⟩ = σ, then on Merlin’s message m, Alice and Bob output a′, b′,
and σ′ so that ⟨a′, b′⟩ = σ′ with probability 1.
(Soundness) If ⟨a, b⟩ ̸= σ, then for any Merlin’s message m̃, Alice and Bob output
a′, b′, and σ′ so that ⟨a′, b′⟩ = σ′ with probability at most 0.98.

Moreover, the running time of both Alice and Bob is poly(d).

The main difference between the above protocol and that of [9], is that instead of working
over a field of characteristic Θ(T), we perform the protocol of [9] simultaneously over O(log T)
different fields of size O(log2 T) each.

To this end, we start by fixing some notation. Let t be an integer such that tt = T . By
Lemma 2.4 in [8], for a large enough integer t, there exist 10t distinct primes p1 < p2 <

· · · < p10t, where the value of each prime is bounded in the interval [t, t2]. Let q := t2, and
note that t = O(log T) and q = O(log2 T). For each ℓ ∈ [10t], let C(ℓ), C

(ℓ)
⋆ be the systematic

linear codes over Fp2
ℓ

guaranteed by Theorem 2.6, where C(ℓ) has message length d
T and

codeword length nℓ := O(d
T). Finally, recall that the elements of Fp2

ℓ
can be viewed as degree

1 polynomials over Fpℓ
, where multiplication is performed modulo an irreducible polynomial

Qℓ of degree 2 over Fpℓ
.

Let a ∈ {0, 1}d be Alice’s input. Slightly abusing notation, we view a as a d
T × T binary

matrix in the natural way. For ℓ ∈ [10t], let a(ℓ) denote the nℓ × T matrix over Fp2
ℓ

obtained
by encoding each column of a with the code C(ℓ). View each entry of a(ℓ) as a degree 1
polynomial over Fpℓ

, and let a(ℓ,0), a(ℓ,1) denote the nℓ × T matrices over Fpℓ
, obtained from

a(ℓ) by keeping in each entry only the free coefficient and linear coefficient, respectively.
Let b, b(ℓ), b(ℓ,0), b(ℓ,1) be defined analogously for ℓ ∈ [10t]. In what follows, all arithmetic
operations are performed over the reals, unless otherwise stated.

E. Abboud and N. Ron-Zewi 7:11

The protocol. The protocol proceeds as follows:

1. a. Merlin sends

m0 :=
T∑

j=1
colj(a) ⋆ colj(b) ∈ {0, 1, . . . , T}d/T .

b. For ℓ = 1, . . . , 10t and α, β ∈ {0, 1}, Merlin sends

mℓ,α,β :=
T∑

j=1
colj(a(ℓ,α)) ⋆ colj(b(ℓ,β)) ∈ {0, 1, . . . , T · q2}nℓ .

2. a. Alice checks that
∑d/T

i=1 m0(i) = σ.
b. Alice checks that mℓ,0,0(i) = m0(i) and mℓ,0,1(i) = mℓ,1,0(i) = mℓ,1,1(i) = 0 for

ℓ = 1, . . . , 10t and i = 1, . . . , d
T .

c. For ℓ = 1, . . . , 10t, let mℓ ∈ (Fp2
ℓ
)nℓ given by

mℓ = mℓ,0,0 + (mℓ,0,1 + mℓ,1,0) · X + mℓ,1,1 · X2 (mod Qℓ).

Alice checks that mℓ is a codeword of C
(ℓ)
⋆ for ℓ = 1, . . . , 10t.

If any of the checks is unsatisfied, then Alice rejects and aborts.
3. Alice and Bob jointly sample ℓ∗ ∈ [10t], i∗ ∈ [nℓ∗], and α∗, β∗ ∈ {0, 1}.
4. Alice outputs a′ := rowi∗(a(ℓ∗,α∗)) ∈ {0, 1, . . . , q}T and σ′ := mℓ∗,α∗,β∗(i∗) ∈ {0, 1, . . . , T ·

q2}, and Bob outputs b′ := rowi∗(b(ℓ∗,β∗)) ∈ {0, 1, . . . , q}T .

It can be verified that the protocol has the required structure, and that the running times
of Alice and Bob are as claimed. Next we show completeness and soundness.

Completeness. Suppose that ⟨a, b⟩ = σ, we shall show that in this case Alice and Bob
output a′, b′, and σ′ so that ⟨a′, b′⟩ = σ′ with probability 1.

We first show that in this case all of Alice’s checks on Step 2 always pass.
To this end, first note that by assumption that ⟨a, b⟩ = σ, we have that

d/T∑
i=1

m0(i) =
d/T∑
i=1

T∑
j=1

a(i, j) · b(i, j) = ⟨a, b⟩ = σ, (1)

so Alice’s check on Step 2a will pass.
We now show that Alice’s check on Step 2b passes. Fix ℓ ∈ [10t], and recall that a(ℓ)

is obtained by encoding each column of the matrix a ∈ {0, 1} d
T ×T with a systematic linear

code. Consequently, a is the restriction of a(ℓ) to the first d
T rows, and similarly for b. This

implies in turn that for any i ∈ [d
T], we have that

mℓ,0,0(i) =
〈

rowi(a(ℓ,0)), rowi(b(ℓ,0))
〉

= ⟨rowi(a), rowi(b)⟩ = m0(i), (2)

and

mℓ,0,1(i) = mℓ,1,0(i) = mℓ,1,1(i) = 0. (3)

So Alice’s check on Step 2b will pass as well.

ICALP 2024

7:12 Finer-Grained Reductions in Fine-Grained Hardness of Approximation

Finally, we show that Alice’s check on Step 2c passes. Fix ℓ ∈ [10t], and note that

mℓ = mℓ,0,0 + (mℓ,0,1 + mℓ,1,0) · X + mℓ,1,1 · X2 (mod Qℓ)

=
T∑

j=1

[
colj(a(ℓ,0)) ⋆ colj(b(ℓ,0))

+
(

colj(a(ℓ,0)) ⋆ colj(b(ℓ,1)) + colj(a(ℓ,1)) ⋆ colj(b(ℓ,0))
)

· X

+colj(a(ℓ,1)) ⋆ colj(b(ℓ,1)) · X2
]

(mod Qℓ)

=
T∑

j=1
(colj(a(ℓ,0)) + colj(a(ℓ,1)) · X) ⋆ (colj(b(ℓ,0)) + colj(b(ℓ,1)) · X) (mod Qℓ)

=
T∑

j=1
colj(a(ℓ)) ⋆ colj(b(ℓ)) (mod Qℓ). (4)

Now, since each column of a(ℓ) and b(ℓ) is a codeword of C(ℓ), we have that colj(a(ℓ)) ⋆

colj(b(ℓ)) (mod Qℓ) is a codeword of C
(ℓ)
⋆ for any j ∈ [T]. By linearity of C

(ℓ)
⋆ , this implies

in turn that mℓ is a codeword of C
(ℓ)
⋆ , and so Alice’s check on Step 2c will also pass.

Thus, we conclude that all of Alice’s checks on Step 2 pass. Furthermore, we clearly
have that

⟨a′, b′⟩ =
〈

rowi∗(a(ℓ∗,α∗)), rowi∗(b(ℓ∗,β∗))
〉

= mℓ∗,α∗,β∗(i) = σ′.

We conclude that in the case that ⟨a, b⟩ = σ, we have that ⟨a′, b′⟩ = σ′ with probability 1,
as required.

Soundness. Assume that ⟨a, b⟩ ̸= σ, and let m̃0 and m̃ℓ,α,β for ℓ = 1, . . . , 10t and α, β ∈
{0, 1} be Merlin’s messages on Step 1. We shall show that in this case Alice and Bob output
a′, b′, and σ′ so that ⟨a′, b′⟩ = σ′ with probability at most 0.98.

To this end, first note that we may assume that
∑d/T

i=1 m̃0(i) = σ, since otherwise Alice
clearly rejects on Step 2a. On the other hand, by (1) and by assumption that ⟨a, b⟩ ̸= σ, we
have that

∑d/T
i=1 m0(i) = ⟨a, b⟩ ≠ σ. Consequently, there exists i ∈ [d

T] so that m0(i) ̸= m̃0(i).
Moreover, since m0(i), m̃0(i) ∈ {0, 1, . . . , T}, we have that |m0(i) − m̃0(i)| ≤ T . Recalling

that tt = T , and that pℓ ≥ t for any ℓ ∈ [10t], we conclude that at most t of the pℓ’s can
divide |m0(i) − m̃0(i)|. Thus, with probability at least 0.9 over the choice of ℓ∗, it holds
that pℓ∗ does not divide |m0(i) ̸= m̃0(i)|, and so m0(i) ̸= m̃0(i) (mod pℓ∗). In what follows,
assume that this event holds.

Let m̃ℓ∗ ∈ (Fp2
ℓ∗

)nℓ∗ be given by

m̃ℓ∗ = m̃ℓ∗,0,0 + (m̃ℓ∗,0,1 + m̃ℓ∗,1,0) · X + m̃ℓ∗,1,1 · X2 (mod Qℓ∗).

Next observe that we may assume that for any i ∈ [d
T],

m̃ℓ∗ (i) = m̃ℓ∗,0,0(i)+(m̃ℓ∗,0,1(i)+ m̃ℓ∗,1,0(i)) · X + m̃ℓ∗,1,1(i) · X2 (mod Qℓ∗) = m̃0(i) (mod pℓ∗),

since otherwise Alice clearly rejects on Step 2b. On the other hand, by (2) and (3) we have
that for any i ∈ [d

T],

mℓ∗ (i) = mℓ∗,0,0(i)+(mℓ∗,0,1(i)+ mℓ∗,1,0(i)) · X + mℓ∗,1,1(i) · X2 (mod Qℓ∗) = m0(i) (mod pℓ∗).

Consequently, by assumption that m0(i) ̸= m̃0(i) (mod pℓ∗) for some i ∈ [d
T], we have that

m̃ℓ∗(i) ̸= mℓ∗(i).

E. Abboud and N. Ron-Zewi 7:13

Finally, note that we may assume that m̃ℓ∗ is a codeword of C
(ℓ∗)
⋆ , since otherwise Alice

clearly rejects on Step 2c. Moreover, by (4) we also have that mℓ∗ is a codeword of C
(ℓ∗)
⋆ .

Since C
(ℓ∗)
⋆ has relative distance at least 0.1, and by assumption that m̃ℓ∗ ̸= mℓ∗ , we have

that m̃ℓ∗ and mℓ∗ differ on at least a 0.1-fraction of their entries, and so with probability at
least 0.1 over the choice of i∗ it holds that m̃ℓ∗(i∗) ̸= mℓ∗(i∗). In what follows, assume that
this event holds as well.

By assumption that m̃ℓ∗(i∗) ̸= mℓ∗(i∗), there exist α, β ∈ {0, 1} so that m̃ℓ∗,α,β(i∗) ̸=
mℓ∗,α,β(i∗). Consequently, with probability at least 0.25 over the choice of α∗, β∗, it holds
that m̃ℓ∗,α∗,β∗(i∗) ̸= mℓ∗,α∗,β∗(i∗). But assuming that this latter event holds, we have that

⟨a′, b′⟩ =
〈

rowi∗(a(ℓ∗,α∗)), rowi∗(b(ℓ∗,β∗))
〉

= mℓ∗,α∗,β∗(i∗) ̸= m̃ℓ∗,α∗,β∗(i∗) = σ′.

We conclude that in the case that ⟨a, b⟩ ̸= σ, for any Merlin’s message, we have that
Alice either rejects or ⟨a′, b′⟩ ̸= σ′ with probability at least 0.9 · 0.1 · 0.25 ≥ 0.02 over the
choice of ℓ∗, i∗, α∗, and β∗. So ⟨a′, b′⟩ = σ′ with probability at most 0.98 over the choice of
ℓ∗, i∗, α∗, and β∗.

4 From IP to Apx-Max-IP

In this section we use Theorem 3.1 from the previous section which gives an MA protocol
for IP over a small alphabet to give a fine-grained reduction from IP to Apx-Max-IP with
a tighter polynomial dependence of the approximation parameter δ on the running time
parameter ϵ.

▶ Lemma 4.1 (From IP to Apx-Max-IP). The following holds for any ϵ > 0 and integer
c ≥ 1. Suppose that IPN,d cannot be solved in time N2−ϵ for d = c log N . Then there exists
d′ such that δ-Apx-Max-IPN,d′ cannot be solved in time N2−2ϵ for δ = Θ̃((ϵ

c)2).

To prove the above lemma, we shall use the following encoding lemma from [9], which
can be used to turn the (non-binary) vectors a′, b′ from the protocol given in Theorem 3.1
into (binary) vectors, whose inner product exhibits a gap.

▶ Lemma 4.2 (Encoding Lemma, [9]). For any non-negative integers T and q, there exist
mappings g, h : {0, 1, . . . , q}T ×{0, 1, . . . , T ·q2} → {0, 1}O(T 2q4) and an integer Γ ≤ O(T 2 ·q4),
so that for any a, b ∈ {0, 1, . . . , q}T and σ ∈ {0, 1, . . . , T · q2}:

If ⟨a, b⟩ = σ ⇒ ⟨g(a, σ), h(b, σ)⟩ = Γ.
If ⟨a, b⟩ ≠ σ ⇒ ⟨g(a, σ), h(b, σ)⟩ < Γ.

Moreover, g, h can be computed in time poly(T, q).

The reduction. We shall show a reduction from IP to many instances of Apx-Max-IP,
based on our MA protocol for IP over a small alphabet given in Theorem 3.1, and the above
encoding Lemma 4.2.

Let A, B ⊆ {0, 1}d and σ ∈ {0, 1, . . . , d} be an instance of IPN,d. Let T be a sufficiently
large integer, to be determined later on, and let π be the protocol guaranteed by Theorem
3.1 for T , q = O(log2 T), and d (without loss of generality assume that T divides d). Let
g, h, and Γ be the mappings and the integer guaranteed for T and q by Lemma 4.2.

Let Rej ⊆ {0, 1}L denote the subset of Merlin’s messages m ∈ {0, 1}L in π on which Alice
rejects on input σ. For b ∈ B and r ∈ {0, 1}R, let b′

r denote the string output by Bob in the
protocol π on input b and randomness string r. Similarly, for a ∈ A and r ∈ {0, 1}R, let a′

r

denote the string output by Alice in the protocol π on input a and randomness string r. For
m ∈ {0, 1}L \ Rej and r ∈ {0, 1}R, let σ′

m,r denote the integer output by Alice on Merlin’s
message m and randomness string r.

ICALP 2024

7:14 Finer-Grained Reductions in Fine-Grained Hardness of Approximation

For any m ∈ {0, 1}L \ Rej, we create an instance Am, Bm of Apx-Max-IPN,d′ , given by

Am := {(g(a′
r, σ′

m,r))r∈{0,1}R | a ∈ A},

and

Bm := {(h(b′
r, σ′

m,r))r∈{0,1}R | b ∈ B},

where

d′ = O(2R · T 2 · q4).

Let δ := 0.01·2R

d′ . Given an algorithm A for δ-Apx-Max-IPN,d′ , we show an algorithm
A′ for IPN,d: Given an instance A, B, σ for IPN,d, the algorithm A′ generates all instances
Am, Bm for m ∈ {0, 1}L \ Rej, and runs A on any of these instances. If on any of the
instances the algorithm A outputs a value at least 2R · (Γ − 0.01) then the algorithm A′

accepts, otherwise it rejects.

Correctness. Correctness relies on the following claim.

▷ Claim.
If there exists (a, b) ∈ A × B so that ⟨a, b⟩ = σ, then there exist m ∈ {0, 1}L \ Rej and
(a′′, b′′) ∈ Am × Bm so that ⟨a′′, b′′⟩ = 2R · Γ.
If ⟨a, b⟩ ≠ σ for any (a, b) ∈ A×B, then ⟨a′′, b′′⟩ ≤ 2R ·(Γ−0.02) for any m ∈ {0, 1}L \Rej
and (a′′, b′′) ∈ Am × Bm.

Proof. For the first item, suppose that there exists (a, b) ∈ A × B so that ⟨a, b⟩ = σ. Let
m be Merlin’s message in the protocol π on inputs a, b, and σ, and let (a′′, b′′) ∈ Am × Bm

be given by a′′ = (g(a′
r, σ′

m,r))r∈{0,1}R and b′′ = (h(b′
r, σ′

m,r))r∈{0,1}R . By the completeness
property of π, we have that m /∈ Rej, and ⟨a′

r, b′
r⟩ = σ′

m,r for any r ∈ {0, 1}R. Consequently,
by Lemma 4.2,

〈
g(a′

r, σ′
m,r), h(b′

r, σ′
m,r)

〉
= Γ for any r ∈ {0, 1}R. But this implies in turn

that

⟨a′′, b′′⟩ =
∑

r∈{0,1}R

〈
g(a′

r, σ′
m,r), h(b′

r, σ′
m,r)

〉
= 2R · Γ.

For the second item, suppose that ⟨a, b⟩ ̸= σ for any (a, b) ∈ A × B. Fix m ∈
{0, 1}L \ Rej and (a′′, b′′) ∈ Am × Bm. Then by construction, a′′ = (g(a′

r, σ′
m,r))r∈{0,1}R

and b′′ = (h(b′
r, σ′

m,r))r∈{0,1}R . By the soundness property of π, for at least a 0.02-fraction
of the randomness strings r ∈ {0, 1}R, it holds that ⟨a′

r, b′
r⟩ ≠ σ′

m,r. Consequently, by
Lemma 4.2 for at least a 0.02-fraction of the randomness strings r ∈ {0, 1}R, it holds that〈
g(a′

r, σ′
m,r), h(b′

r, σ′
m,r)

〉
≤ Γ − 1. But this implies in turn that

⟨a′′, b′′⟩ =
∑

r∈{0,1}R

〈
g(a′

r, σ′
m,r), h(b′

r, σ′
m,r)

〉
≤ 0.98 ·2R ·Γ+0.02 ·2R ·(Γ−1) = 2R ·(Γ−0.02).◁

Now, if there exists (a, b) ∈ A × B so that ⟨a, b⟩ = σ, then by the above claim there exists
m ∈ {0, 1}L \ Rej so that maxa′′∈Am,b′′∈Bm ⟨a′′, b′′⟩ ≥ 2R · Γ. Consequently, the algorithm A
will output a value greater than 2R · Γ − δ · d′ = 2R · (Γ − 0.01) on the instance Am, Bm, and
so the algorithm A′ will accept.

If on the other hand, ⟨a, b⟩ ≠ σ for any (a, b) ∈ A × B, then by the above claim
maxa′′∈Am,b′′∈Bm

⟨a′′, b′′⟩ ≤ 2R · (Γ − 0.02) for any m ∈ {0, 1}L \ Rej. Consequently, the
algorithm A will output a value at most 2R · (Γ − 0.02) < 2R · (Γ − 0.01) on any of the
instances, an so the algorithm A′ will reject.

E. Abboud and N. Ron-Zewi 7:15

Running time. Suppose that the algorithm A for δ-Apx-Max-IPN,d′ runs in time N2−2ϵ,
we shall show that for an appropriate choice of T , the running time of the algorithm A′ for
IPN,d is at most N2−ϵ.

The algorithm A′ enumerates over all possible Merlin’s messages m ∈ {0, 1}L, and for each
such message checks whether Alice rejects m in π, which takes time poly(d), and if she does
not reject, it generates the instance Am, Bm which takes time N · 2R · poly(d) · poly(T, q) ≤
N · poly(d), and runs the algorithm A on Am, Bm which takes time N2−2ϵ.

Hence the total running time of the algorithm A′ is at most

2L · (N · poly(d) + N2−2ϵ) ≤ 2O(d
T ·log2 T) · (N · poly(d) + N2−2ϵ)

= 2O(c log N
T ·log2 T) · (N · poly(c log N) + N2−2ϵ).

≤ 2O(c log N
T ·log2 T) · N2−2ϵ.

Finally, it can be verified that the latter expression is at most N2−ϵ for choice of T = Θ̃(c/ϵ)
which divides d.

Approximation parameter. By choice of δ = 0.01·2R

d′ , d′ = O(2R · T 2 · q4), T = Θ̃(c/ϵ), and
q = O(log2 T), we have that

δ = Θ
(

1
T 2q4

)
= Θ̃

((ϵ

c

)2
)

.

References
1 Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. ACM

Trans. Comput. Theory, 1(1):2:1–2:54, 2009.
2 Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed pcp theorems for hardness

of approximation in p. In FOCS, pages 25–36. IEEE Computer Society, 2017. doi:10.1109/
FOCS.2017.12.

3 Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Piotr Indyk, editor, SODA, pages 218–230. SIAM, 2015.

4 Josh Alman, Timothy Chan, and Ryan Williams. Polynomial representations of threshold
functions and algorithmic applications. In FOCS, pages 467–476. IEEE Computer Society,
2016. doi:10.1109/FOCS.2016.57.

5 Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neighbors.
In Venkatesan Guruswami, editor, FOCS, pages 136–150. IEEE Computer Society, 2015. URL:
http://www.computer.org/csdl/proceedings/focs/2015/8191/00/index.html.

6 Ethem Alpaydin. Introduction to Machine Learning. MIT Press, Cambridge, Massachusetts,
2014.

7 Timothy M. Chan and R. Ryan Williams. Deterministic apsp, orthogonal vectors, and more:
Quickly derandomizing razborov-smolensky. ACM Trans. Algorithms, 17(1):2:1–2:14, 2021.

8 Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product.
Theory of Computing, 16:1–50, 2020.

9 Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In SODA, pages
21–40. SIAM, 2019.

10 Andreas Emil Feldmann, C. S. Karthik, Euiwoong Lee, and Pasin Manurangsi. A survey on
approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146,
2020.

11 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness
for first-order properties on sparse structures with algorithmic applications. ACM Trans.
Algorithms, 15(2):23:1–23:35, 2019.

ICALP 2024

https://doi.org/10.1109/FOCS.2017.12
https://doi.org/10.1109/FOCS.2017.12
https://doi.org/10.1109/FOCS.2016.57
http://www.computer.org/csdl/proceedings/focs/2015/8191/00/index.html

7:16 Finer-Grained Reductions in Fine-Grained Hardness of Approximation

12 Tomislav Hengl. Finding the right pixel size. Computers and Geosciences, 32(9):1283–1298,
2006.

13 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci, 62(2):367–375, 2001.

14 Samir Khuller and Yossi Matias. A simple randomized sieve algorithm for the closest-pair
problem. Inf. Comput, 118(1):34–37, April 1995.

15 C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. Journal of the ACM, 39(4):859–868, 1992.

16 M. O. Rabin. Probabilistic Algorithms, pages 21–39. Academic Press, NY, 1976.
17 Aviad Rubinstein. Hardness of approximate nearest neighbor search. In STOC, pages 1260–1268.

ACM, 2018. URL: http://dl.acm.org/citation.cfm?id=3188745.
18 Aviad Rubinstein and Virginia Vassilevska Williams. Seth vs approximation. SIGACT News,

50(4):57–76, 2019.
19 Kenneth W. Shum, Ilia Aleshnikov, P. Vijay Kumar, Henning Stichtenoth, and Vinay Deolalikar.

A low-complexity algorithm for the construction of algebraic-geometric codes better than the
gilbert-varshamov bound. IEEE Transactions on Information Theory, 47(6):2225–2241, 2001.
doi:10.1109/18.945244.

20 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci, 348(2-3):357–365, 2005.

21 Virginia Vassilevska Williams. Some open problems in fine-grained complexity. SIGACT News,
49(4):29–35, 2018.

22 Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,
matrix, and triangle problems. J. ACM, 65(5):27:1–27:38, 2018.

23 Raymond Chi-Wing Wong, Yufei Tao, Ada Wai-Chee Fu, and Xiaokui Xiao. On efficient
spatial matching. In VLDB, pages 579–590. ACM, 2007. URL: http://www.vldb.org/conf/
2007/papers/research/p579-wong.pdf.

24 Charles Zahn. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE
Transactions on Computers, 20(1):68–86, January 1971.

A Applications

In this section we show a couple of consequences of Lemma 4.1 to obtaining tighter fine-grained
hardness of approximation results based on the IP assumption.

Closest pair in Hamming metric. The following reduction from Max-IP to CP in the
Hamming metric ∆ is implicit in [17].

▶ Lemma A.1 (From Apx-Max-IP to Apx-CP∆, [17]). Suppose that δ-Apx-Max-IPN,d cannot
be solved in time N2−ϵ. Then δ′-Apx-CPN,d′,∆ cannot be solved in time N2−2ϵ for δ′ = δ

2 .

The above lemma and Lemma 4.1 readily imply the following.

▶ Corollary A.2 (From IP to Apx-CP∆). Suppose that IPN,d cannot be solved in time N2−ϵ

for d = c log N . Then δ-Apx-CPN,d′,∆ cannot be solved in time N2−2ϵ for δ = Θ̃((ϵ
c)2).

In contrast, it is known how to obtain an (1 + δ)-approximation for CP over the Hamming
metric in time N2−ϵ for δ = Θ̃(ϵ3) [4].

Closest pair in ℓp metric. The following reduction from CP in the Hamming metric to CP
in the ℓp metric is also implicit in [17].

http://dl.acm.org/citation.cfm?id=3188745
https://doi.org/10.1109/18.945244
http://www.vldb.org/conf/2007/papers/research/p579-wong.pdf
http://www.vldb.org/conf/2007/papers/research/p579-wong.pdf

E. Abboud and N. Ron-Zewi 7:17

▶ Lemma A.3 (From Apx-CP∆ to Apx-CPℓp , [17]). Suppose that δ-Apx-CPN,d,∆ cannot be
solved in time N2−ϵ. Then for any p > 0, δ′-Apx-CPN,d,ℓp

cannot be solved in time N2−2ϵ

for δ′ = Θp(δ).

The following corollary is a consequence of the above lemma and Corollary A.2, and
implies Theorem 1.1.

▶ Corollary A.4 (From IP to Apx-CPℓp
). Suppose that IPN,d cannot be solved in time N2−ϵ

for d = c log N . Then for any p > 0, δ-Apx-CPN,d′,ℓp
cannot be solved in time N2−2ϵ for

δ = Θ̃p((ϵ
c)2).

In contrast, it is known how to obtain an (1 + δ)-approximation for CP over the ℓp metric
in time N2−ϵ for δ = Õ(ϵ3) and p ∈ {1, 2} [4].

Closest pair in edit distance metric. For a, b ∈ Σd, we let ED(a, b) denote their edit
distance which is the minimum number of character deletion, insertion, and substitution
operations needed to transform a into b. The following Lemma is also implicit in [17].

▶ Lemma A.5 (From Apx-CP∆ to Apx-CPED, [17]). Suppose that δ-Apx-CPN,d,∆ cannot be
solved in time N2−ϵ. Then δ′-Apx-CPN,d′,ED cannot be solved in time N2−2ϵ for δ′ = Θ(δ).

The above lemma and Corollary A.2 imply the following corollary.

▶ Corollary A.6 (From IP to Apx-CPED). Suppose that IPN,d cannot be solved in time N2−ϵ

for d = c log N . Then δ-Apx-CPN,d′,ED cannot be solved in time N2−2ϵ for δ′ = Θ̃((ϵ
c)2).

To the best of our knowledge, it is not known how to solve (1 + δ)-Apx-CPED in sub-
quadratic time.
▶ Remark (Apx-Min-IP and Furthest-Pair). It is not hard to show (see e.g., [9], Lemma 5.3)
that there is a simple linear-time reduction from δ-Apx-Max-IPN,d to δ-Apx-Min-IPN,d (and
vice versa), and so the same result as in Lemma 4.1 also holds for δ-Apx-Min-IPN,d (where
the goal is to output a number in [M, M + δ · d], where M := mina∈A,b∈B ⟨a, b⟩).

Using Apx-Min-IP as the starting point for the reductions cited above instead of Apx-
Max-IP implies the same results as in Corollaries A.2, A.4, and A.6 for Furthest Pair (where
the goal is to output a number in [(1 − δ)M, M], where M := maxa∈A,b∈B dist(a, b)).

Data structure setting. Our results extend to the data structure setting.

▶ Definition A.7 (Approximate Nearest Neighbor (Apx-NN)). Let dist : {0, 1}d ×{0, 1}d → R+

be a distance function, and let δ > 0 be a parameter. In the Approximate Nearest Neighbor
δ-Apx-NNN,d,dist problem, given a set A ⊆ {0, 1}d of cardinality N , the goal is to pre-process
the set, so that given a vector b ∈ {0, 1}d it is possible to quickly output a number in
[M, (1 + δ)M], where M := mina∈A dist(a, b).

It is known that Apx-CP can be reduced to Apx-NN [22] (see also proof of Corollary 1.4
in [2]).

▶ Lemma A.8 (From Apx-CP∆ to Apx-NN, [22]). Let dist : {0, 1}d × {0, 1}d → R+ be a
distance function. Suppose that δ-Apx-CPN,d,dist cannot be solved in N2−ϵ time. Then for
any r > 0, δ-Apx-NNN,d,dist cannot be solved with Nr preprocessing time and N1−2rϵ time.

▶ Corollary A.9 (From IP to Apx-NN). Suppose that IPN,d cannot be solved in time N2−ϵ for
d = c log N . Then for any distance function dist ∈ {∆, ℓp, ED} and r > 0, δ-Apx-NNN,d′,dist

cannot be solved with Nr preprocessing time and N1−3rϵ query time for δ = Θ̃((ϵ
c)2).

ICALP 2024

	1 Introduction
	1.1 Fine-grained hardness of approximation
	1.2 Our results
	1.3 Proof overview

	2 Preliminaries
	2.1 Problems in fine-grained complexity
	2.2 Error-correcting codes

	3 MA protocol for IP over a small alphabet
	4 From IP to Apx-Max-IP
	A Applications

