BQP, Meet NP: Search-To-Decision Reductions
and Approximate Counting

Sevag Gharibian &
Department of Computer Science and Institute for Photonic Quantum Systems (PhoQS),
Paderborn University, Germany

Jonas Kamminga &
Department of Computer Science and Institute for Photonic Quantum Systems (PhoQS),
Paderborn University, Germany

—— Abstract

What is the power of polynomial-time quantum computation with access to an NP oracle? In this

work, we focus on two fundamental tasks from the study of Boolean satisfiability (SAT) problems:
search-to-decision reductions, and approximate counting. We first show that, in strong contrast to
the classical setting where a poly-time Turing machine requires ©(n) queries to an NP oracle to
compute a witness to a given SAT formula, quantumly ©(logn) queries suffice. We then show this
is tight in the black-box model — any quantum algorithm with “NP-like” query access to a formula
requires §2(logn) queries to extract a solution with constant probability.

Moving to approximate counting of SAT solutions, by exploiting a quantum link between
search-to-decision reductions and approximate counting, we show that existing classical approximate
counting algorithms are likely optimal. First, we give a lower bound in the “NP-like” black-box
query setting: Approximate counting requires Q(logn) queries, even on a quantum computer. We
then give a “white-box” lower bound (i.e. where the input formula is not hidden in the oracle) —
if there exists a randomized poly-time classical or quantum algorithm for approximate counting
making o(logn) NP queries, then BPPNPIe(™I contains a PNP-complete problem if the algorithm is
classical and FBQPNP°(] contains an FPNP-complete problem if the algorithm is quantum.

2012 ACM Subject Classification Theory of computation — Quantum complexity theory

Keywords and phrases Approximate Counting, Search to Decision Reduction, BQP, NP, Oracle
Complexity Class

Digital Object ldentifier 10.4230/LIPIcs.ICALP.2024.70
Category Track A: Algorithms, Complexity and Games
Related Version Previous Version: https://arxiv.org/abs/2401.03943

Funding Sevag Gharibian: supported by the DFG under grant numbers 432788384 and 450041824,
the BMBF within the funding program “Quantum Technologies - from Basic Research to Market”
via project PhoQuant (grant number 13N16103), and the project “PhoQC” from the programme
“Profilbildung 2020”7, an initiative of the Ministry of Culture and Science of the State of Northrhine
Westphalia.

Jonas Kamminga: supported by the DFG under grant number 450041824.

Acknowledgements The authors would like to thank Ronald de Wolf, Dieter van Melkebeek, Osamu
Watanabe, Henry Yuen, Scott Aaronson, William Kretschmer and Eric Allender for helpful comments

and remarks.

1 Introduction

A fundamental direction of study in classical complexity theory is: What can P or BPP
achieve with access to an NP oracle? Here, the study of relational-problems, i.e. where the
output is not a single bit, but a string, has proven particularly fruitful. (Formally, this refers
© Sevag Gharibian and Jonas Kamminga;

oY licensed under Creative Commons License CC-BY 4.0
51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).

Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 70; pp. 70:1-70:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:sevag.gharibian@upb.de
mailto:jonas.kamminga@upb.de
https://orcid.org/0009-0002-3755-0658
https://doi.org/10.4230/LIPIcs.ICALP.2024.70
https://arxiv.org/abs/2401.03943
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

70:2

BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting

to the classes FunctionP (FP) and FunctionBPP (FBPP); see Section 2.) A first direction
here has been search-to-decision reductions. Namely, given a SAT formula ¢ and an NP
oracle, it is well-known that O(n) queries suffice to extract a solution to ¢ (assuming one
exists). Moreover, this is likely classically optimal: an o(n)-query algorithm would violate
the Exponential Time Hypothesis [17]!. (Before ETH was posited, Krentel showed that if
O(logn) queries suffice, then P = NP [21].)

A second key direction has been approzimate counting of the number of solutions of a
Boolean formula, first studied by Stockmeyer [22]. Approximate counting has proven widely
influential, even having applications in quantum advantage frameworks such as Aaronson
and Arkhipov’s Boson Sampling [2]. Stockmeyer showed [22] that an FBPP machine making
O(lognloglogn) NP queries suffices to approximate the number of solutions within a constant
multiplicative factor, and that at least (logn) queries are required. This gap was closed
by Chakraborty, Meel, and Vardi, who improved the upper bound to O(logn) queries [13].
Thus, the NP-query complexity of these two tasks is now well understood.

The quantum setting. The guiding question of this work is the next natural frontier:
Can quantum access to an NP oracle reduce the number of required queries? For relation
problems, this is a particularly intriguing question: Intuitively, a single classical NP query
yields only 1 bit of information, suggesting that if an FP machine wishes to produce an n-bit
output, then ©(n) queries are necessary. (Indeed, as mentioned above, this is the case for
search-to-decision reduction of SAT, assuming ETH.) Quantum access to an oracle, however,
can sometimes bypass this obstacle, producing n bit outputs with just a single query. A
notable instance of this is the Bernstein-Vazirani algorithm [11], which requires just a single
query to an oracle encoding an affine function f(x) = a -z + b to output string = € {0,1}".
We thus ask: Can a FunctionBQP (FBQP) machine make fewer queries to an NP oracle to
extract a SAT solution or approximately count the number of solutions?

Our results

In this work, we give tight resolutions to this question for both tasks.

Search-to-decision reductions. As mentioned earlier, classically, ©(n) NP queries are
necessary and sufficient for search-to-decision reduction for SAT, assuming ETH. Before
proceeding to our main results, the lower bounds, we show that O(logn) queries suffice
quantumly.

» Theorem 1. FNP C FBQPNPlog],

Here, FunctionNP (FNP) asks to produce a witness to an NP relation (Section 2), and NP[log]
in the exponent denotes O(logn) NP queries. We remark that independently and prior to
this work, Irani, Natarajan, Nirkhe, Rao and Yuen [18] showed that for SAT formulae with a
unique satisfying assignment, a single NP query suffices to extract said solution (see Related
Work).

L If there is an FPNPO(™] algorithm outputting a satisfying assignment then SAT can be decided in time
2°(") as follows: Enumerate through all possible strings y of o(n) NP query answers, which takes 20(n)
time. For each y, run the FP machine on y to obtain candidate solution z, and check if p(z) = 1.

S. Gharibian and J. Kamminga

Is Theorem 1 tight? Unfortunately, since we are in the white-box model for search-to-
decision reductions (i.e. the input formula ¢ is given as input to the FBQP machine, rather
then hidden in the oracle), even a single-query lower bound would imply? NP ¢ BQP, and
is thus likely out of reach. We hence move to the black-box model in order to prove a
lower bound. For this, note that the standard quantum query model does not capture the
power of “existential” or NP queries. Rather, we introduce the (straightforward quantum
reformalization of) Stockmeyer’s [22] existential query model:

» Definition 2 (Existential query model). An algorithm in the existential query model has
access to the input string x € {0, 1}N via the following existential query gate:

03: [2) 1 (—1)ersn(e2) |5) 1)
where z € {0,1}" and overlap(z, z) = 1 if there is an i such that z; = z; = 1 and 0 otherwise.
In this model, we show a matching lower bound for Theorem 1.

» Theorem 3. Any quantum algorithm with existential query access to x € {0, 1}N that
outputs a i with x; = 1 with constant probability needs to make Q(loglog N) = Q(logn)
existential queries.

Approximate counting. Recall that, classically, approximate counting requires ©(logn) NP
queries. We next exploit the fact that the technique behind the proof of Theorem 1 (c.f. [18])
reveals a genuinely quantum link between search-to-decision reduction and approximate
counting. This allows us to show the following tight black-box lower bound on gquantum
algorithms in the existential query model:

» Corollary 4. Any quantum algorithm with existential query access to a string x € {0, 1}N
which outputs an estimate ¢ such that 21*1=1 < ¢ < 21%1 where || is the Hamming weight of
x, requires at least Q(loglog N) queries to the oracle.

Above, x denotes the truth table of the SAT formula, and so N = 2" for n the number of
variables. Thus, for approximate counting, quantum algorithms do not outperform classical
algorithms.

Finally, we prove a tight white-box lower bound for both classical or quantum algorithms
which approximately count using o(logn) NP queries. As far as we are aware, no white-box
lower bounds existed for either setting prior to this work.

» Corollary 5. If there exists a classical randomized poly-time algorithm for approzximate
counting, making o(logn) NP queries, then BPPNPICM contains a PNP-complete problem
3. Similarly, if there is a poly-time quantum algorithm for approzimate counting making
o(logn) NP queries, then FBQPNP™MI contains an FPNP-complete problem.

While the complexity theoretic implications above are not as standard as P = NP or the
collapse of PH, they nevertheless would arguably be striking if true. This is because an FPNP-

complete problem is finding a satisfying assignment of smallest lexicographical ordering [21].

Thus, using o(n) queries would seem to require resolving the lex-ordering in sublogarithmic
time (in the search space size), whereas classical and quantum algorithms for the closely
related task of binary search cannot achieve sublogarithmic time [5].

2 1If one could show that any FBQP machine requires at least 1 NP query for search-to-decision, then
NP & BQP. This is because if NP C BQP, then FNP C FBQP via the standard search-to-decision
reduction for SAT.

3 Note that this is not quite as strong as PN? C BPPNPIP(™] a5 overheads in the reduction to the
PNP-complete problem may erase the reduction in the number of queries.

70:3

ICALP 2024

70:4

BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting

Proof techniques

We now sketch our proof techniques, organized by topic.

Search-to-decision. Theorem 1 follows rather straightforwardly from prior results. We first
note that, quantumly, the solution of a formula with a unique satisfying assignment can be
found with a single NP query using the Bernstein Vazirani algorithm (c.f. [18]). Therefore,
it remains to reduce an arbitrary formula to a uniquely satisfiable one. Valiant and Vazirani
showed this can be done with probability O (%) [23]. If, however, the approximate cardinality
of the set of solutions is known, then this reduction succeeds with constant probability.
Since approximately counting this cardinality can be done with log(n) NP queries [22, 13]
classically, this gives a quantum algorithm for search-to-decision reduction using O(logn)
queries and with constant success probability. The success probability can now be boosted
to any constant by running the algorithm a constant number of times, checking the outputs
and outputting one of the satisfying assignments.

Next, we discuss the first of our main results, the black-box lower bound (Theorem 3).
Here the proof requires more work. Most quantum query lower bounds fall in one of two
groups: polynomial methods and adversary methods [8, 10, 6]. Unfortunately, these methods
are tailored to the standard query model, and it is not clear how to effectively utilize them
in our existential query model. Another complicating factor for us is that search-to-decision
is a relational problem, not a function problem. That is, for a given input formula ¢ there
are multiple correct outputs: all solutions of ¢.

To overcome this, we instead give a reduction from “(unstructured) search with existential
queries” to “binary search with standard queries”, so we may invoke Ambainis’ binary search
lower bound [5]. We show that an algorithm for search on strings of length N = 2" using
q existential queries induces an algorithm for binary search on a space of size n with the
same number of standard queries. The basic idea for this is as follows. If we can find a
solution, then we can also sample a random solution by randomly permuting the solution
space. Furthermore, a binary search instance, which is the task of finding the index of the first
1 in a monotonically increasing binary string z € {0,1}", can be modified in the following
way. We make a new exponentially longer string y € {0, 1}N where the first 27! entries
of y are set to 1, the next 2”2 to x5 and so on. The index of a uniformly random 1 in y
corresponds to the index of the least 1 in x with probability > % Therefore, transforming x
into y and running the random solution sampling algorithm on it solves binary search on
x using q existential queries. We now note that because x is monotonically increasing, any
existential query can be simulated by a standard query. The results of an existential query
with string z will be the same as simply querying the largest index ¢ where z; = 1. As the
last step of the proof, we invoke Ambainis result that binary search on a space of size n takes
Q(logn) queries to complete the proof [5].

Approximate counting. Our black-box lower bound (Corollary 4) follows by combining the
proof of Theorem 1 with Theorem 3. If there is an approximate counter making ¢ existential
queries, then an index with x; = 1 can be found with constant success probability and ¢ + 1
existential queries using the algorithm from Theorem 1. By Theorem 3 this is only possible
if ¢ = Q(logn).

Finally, we discuss our white-box lower bound (Corollary 5). We assume the existence of an
approximate counter making o(log n) queries and show that we can, with o(logn) queries, find
the lexicographically smallest solution of a formula ¢, which is an FPNP-complete problem [21].
The main idea is as follows. The algorithm from Theorem 1 samples approximately from

S. Gharibian and J. Kamminga

the uniform distribution on the set of solutions of ¢. We run this algorithm on the AND of
n? copies of o, where we pick new sets of variables for each instance. This will give us n?
solutions of ¢ picked almost uniformly at random. We find the least x,,;, and repeat the
process on the formula ¢(z) A (< Xy,). After every round the number of solutions will be

divided by at least n with high probability. Therefore, after O(log,, (|sol(¢)|)) = O (-)

logn

rounds we will have found the lexicographically smallest solution of ¢. As every round takes
o(logn) queries, we have found the lexicographically smallest solution using o(n) queries,
completing the proof.

Related work

As previously mentioned, Irani, Natarajan, Nirkhe, Rao and Yuen already independently
showed that the Bernstein-Vazirani algorithm can be used to find the solution of a uniquely
satisfiable formula (our Lemma 17) [18]. They combine this with the Valiant-Vazirani
theorem to do search-to-decision reduction for QCMA (and NP) with a single query and
inverse polynomial success probability. However, they do not further study the case of a
constant success probability as done here. They also show that there exists a quantum
polynomial time algorithm that makes a single query to a PP oracle and generates a witness
for a QMA problem up to polynomial precision. Additionally, they show that there is an
oracle such that QMA search does not reduce to QMA decision relative to that oracle.

In their work [12], Buhrman and van Dam study the difference between classical and
quantum access to an NP-oracle. They show that an EQP machine, that is, a quantum
computer that is not allowed to err, can save on the number of queries compared to
classical. Among other results they prove the inclusions plINP[2K] - EQP|| NPl and FPINP -
FEQPNP(©Uogn)) = Note that while PINY = PNP(O(IOg")), a similar equality for FP would
collapse the polynomial hierarchy.

Search-to-decision reduction has been studied in other settings. If only parallel (i.e.
non-adaptive) queries to the NP oracle are allowed, then the standard O(n)-query search-
to-decision reduction for NP does not work. Nevertheless, it has been shown that O(n?)
parallel oracle queries suffice for classical randomized algorithms [9]. Kawachi, Rossman
and Watanabe showed that this is optimal in a black-box model and give an algorithm with
improved error tolerance [19]. In a later work they also consider more general black-box
models and show that O(n?) parallel classical queries are still needed [20].

The class BQP with access to various resources has been studied before. Aaronson,
Ingram and Kretschmer [4] study oracle separations between various complexity classes
involving BQP as an oracle or BQP with access to an oracle. Among other results the
authors prove that there is an oracle relative to which BQPNP Z PHBQP and an oracle
relative to which NPB®” ¢ BQPPH. Aaronson, Buhrman and Kretschmer [3] investigate
BQP when given various types of advice. There it is shown, among other results, that
FBQP/gpoly # FBQP/poly (not relative to an oracle!).

Isolation algorithms, i.e., algorithms reducing the number of solutions of a Boolean
formula to 1, have been studied by Dell, Kabanets, van Melkebeek and Watanabe [15]. They
show that, unless NP C P/poly, no randomized polynomial time isolation algorithm with
success probability better than % can exist.

Discussion and open questions

Our paper characterizes the quantum NP-query complexity of search-to-decision reductions
and approximate counting (and additionally gives a white-box lower bound for classical
approximate counting algorithms). For this, some of our results utilized a quantum reformu-
lation of Stockmeyer’s classical existential query model. Can quantum query lower bound

70:5

ICALP 2024

70:6

BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting

methods like polynomial methods and adversary methods be adapted to apply directly to
existential queries? An obstacle here is the fact that, for example, adversary methods often
keep track of how a “progress measure” increases with each query made. Existential queries,
however, seem to allow arbitrarily large jumps in such “progress measures”.

Second, we prove that BPPNPL()] anq FBQPNPIe(™)] containing PNP- and FPNP-complete
problems, respectively, are consequences to very efficient approximate counting. It would
be interesting to see if there are further consequences to these conclusions or if our results
can be strengthened. For example, can our results be strengthened to a contradiction of a
common complexity theoretic hypothesis such as the (strong) Exponential Time Hypothesis?
Third, what other tasks might a BQPN? or FBQPNP machine be good for? Finally, we close
with a simple-to-state, concrete open question, which captures much of the difficulty of
working with BQPNP: Let ¢ be a SAT formula. Classically, it is easy to see that a solution
to ¢ cannot be produced by an FBPP machine with a single NP query, for this would imply
BPP = NP. This is because one can simply plug each possible answer, 0 or 1, from the NP
machine into the FBPP machine, and check if the string = produced by the latter satisfies ¢.
Unfortunately, this approach completely breaks down for an FBQP machine making a single

NP query, since the query may involve exponentially many inputs in superposition! Can one
nevertheless show that FNP C FBQPNPI implies NP C BQP?

Organization

In Section 2 we cover definitions and prior results used in this article. In Section 3, we will
give the proof of Theorem 1, the upper bound on search-to-decision reduction for NP with
quantum access to the oracle. Following that, in Section 4 we give the proofs of our results
in the existential query model, Theorem 3 and Corollary 5. Finally, we prove Theorem 5 in
Section 5.

2 Preliminaries

2.1 Notation

Throughout the paper we use n for the number of variables of the formulae and N = 2" for
the size of their truth tables. We write sol(y) for the set {z € {0,1}": ¢(z)} of solutions of
the Boolean formula ¢. If z € {0,1}" is a binary string we write |z| for its Hamming weight.

2.2 Function classes

We briefly recall the definition the relevant function classes. Contrary to what the name
suggests, function classes are actually classes of relations. We will require all relations R in
these classes to be p-bounded.

» Definition 6. A relation R C {0,1}" x {0,1}" ds called p-bounded if there is some polyno-
mial p such that, for each x, if Jy.R(x,y), then Iz such that len(z) < p(len(z)) and R(x, z).
Here len(x) is the length of the string x.

» Definition 7. FP is the class of polynomial time computable* p-bounded relations R C
{0,1}" x {0,1}" such that there is a deterministic poly-time algorithm that on input x does
the following:

1. If 3y such that R(x,y) then the algorithm outputs one such y

2. If Vy.(z,y) ¢ R then the algorithm outputs L.

4 With a poly-time computable relation we mean that there is a poly-time algorithm for evaluating R(z,y)
when given z and y as inputs.

S. Gharibian and J. Kamminga

» Definition 8. The class FNP consists of all poly-time computable p-bounded relations
R C{0,1}" x {0,1}".

To see the similarities with the definition of FP we note that this condition implies the
existence of a poly-time non-deterministic algorithm for computing R in the following
sense. The algorithm takes as input a string z, and each branch of the (non-deterministic)
computation outputs either a string z or | and satisfies the following properties:
1. If Jy such that R(x,y), then all branches either output L or a string z such that R(z, z)
(not necessarily the same one). Furthermore, at least one branch does not output L.
2. If Yy (x,y) ¢ R, then all branches output L.
An FNP-complete problem is FunctionSAT. It is the relation R(y,x) where ¢ is a (bin-
ary encoding of) a Boolean formula and (p,z) € R iff x is a satisfying assignment of ¢.
FunctionSAT is FNP-complete for the same reasons that SAT is NP-complete.
For the definition of FBQP we follow Aaronson [1].

» Definition 9. FBQP is the class of p-bounded relations R C {0,1}" x {0,1}" for which are
computable by a quantum algorithm in the following sense. There exists a poly-time quantum
algorithm that takes as input x and 0/¢ and outputs a y. This is such that R(x,y) with
probability at least 1 — € (assuming a y with R(x,y) exists). If Vy (x,y) ¢ R then it outputs
L with probability at least 1 — €.

2.3 Witness isolation

We consider algorithms that reduce an arbitrary formula to a uniquely satisfying one.

» Definition 10 (Isolation algorithm). An isolation algorithm with success probability p is a
randomized algorithm that maps a Boolean formula ¢ on n variables to a formula u on the
same variables such that the formula @ A u has a unique solution with probability at least p.

A celebrated result by Valiant and Vazirani states that isolation algorithms exist.

» Theorem 11 (Valiant Vazirani Theorem ([23])). There exists an isolation algorithm with
success probability ﬁ.

The main idea of Valiant and Vazirani is to use cleverly chosen pairwise independent hash
function to reduce the size of the solutions space.

» Definition 12 (Pairwise independent hash functions ([7, Definition 8.14])). A collection H.,
of functions from {0,1}" to {0, l}k is a collection of pairwise independent hash functions if
for every x # ' € {0,1}" and y,y’ € {0, l}/l€ we have

Prih(z) =y Ah(z') = y] =27 (2)
where the probability is over h being drawn uniformly at random from H,, k.

The proof of Valiant and Vazirani’s theorem follows from the following lemma which will
also be of independent interest for us.

» Lemma 13 ([7, Lemma 17.19]). Let H, , be a collection of pairwise-independent hash
functions from {0,1}" to {0,1}* and suppose that sol(p) C {0,1}" is such that 28=2 <
|sol(¢)| < 281, Then

hNI;_erk [[{z €sol(p) : h(z) =0"}| =1] >

: 3)

ool =

70:7

ICALP 2024

70:8

BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting

It follows that witness isolation can be performed with constant success probability if the
approximate size of the set of solutions is known.

We will also consider witness isolation algorithms with the added requirement that all
solutions of ¢ will be the unique solution of ¢ A u with approximately equal probability. We
call such algorithms almost-uniform isolation algorithms.

» Definition 14. An c-almost-uniform isolation algorithm A;s, with success probability p
takes as input a Boolean formula ¢, and efficiently produces a Boolean formula uw on the
same vartables such that:
p-Completeness: if ¢ € SAT, then, with probability at least p, () A u(x) has a unique
satisfying assignment. In this case we say that the isolation succeeds.
e-almost-uniformity: for all x € sol(y) we have:
1+e€

Pr [go(w) A u(:c)“sol(go(m) Au(z))| = 1] < Tolil

Note that we do not require a lower bound on this probability.

2.4 Approximate counting

Stockmeyer was the first to realize that an NP oracle can be used for approximate counting.
It was shown by Chakraborty, Meel and Vardi that a logarithmic number of NP queries
suffice: [22, 13].

» Theorem 15 (Approximate counting, [22, 13]). Given a formula ¢ on n variables and
parameters §,¢ > 0, there exists a randomized poly-time algorithm, making O (%)

queries to an NP-oracle, that outputs a value ¢ such that:

Pr <|S1°1f”€) <c< (1+e)|sol(<p)l) 21-a. @

2.5 Query complexity

In query complexity one studies how often an algorithm needs to query an input string
x € {0, 1}N in order to compute some function of z. In this paper we will consider three
different types of oracles: standard oracles, succinct existential oracles and non-succinct
existential oracles.

With the standard oracle model we will refer to the oracle model that is usually used in
quantum query complexity. In this model, the queries give access to a string = € {0, l}N
using the following query gate:

i) ()

We will call an application of the oracle classical if it is applied to a computational basis

Oy i) — (—1)%

state.

In this paper, the string = will usually be the truth table of a hidden formula ¢ (i.e.
x; =1 <= ¢(i)). Then, querying the oracle on index i corresponds to computing ¢(i).

Standard queries do not satisfactorily capture the power of NP queries. For example,
it only takes one NP query to determine if a formula is satisfiable (i.e. if its truth table is
not all 0s), but it is well known that determining if there is an i with 2; = 1 takes ©(v/N)
standard queries ([16, 10]). Therefore, we will also consider other query models that better
capture the power of NP queries.

S. Gharibian and J. Kamminga

The first of these query models we will call the succinct existential query model. Here,
the oracle hides a formula ¢. A query consists of a different poly-size formula ¥ and the
result to this query will be whether or not ¢ A 9 is satisfiable. Specifically, the oracle can be
queried using the query gate

057+ i) = (=1) (6)

where sat(p A) is 1 if ¢ A 4 is satisfiable and 0 otherwise. The succinct 3-query model
captures the power of an actual NP oracle well. It is strong enough to be used for the most
common, if not all, well-known algorithms computing properties of Boolean formulae, such as
finding the lexicographically-least solution of the hidden formula ¢ (a PNP—Complete problem)
and approximately count the number of solutions of ¢ (e.g. with [13]).

We will also consider a non-succinct version of the existential query model, which we will
also simply call the existential query model. Essentially this model is a reformulation of a
model originally introduced by Stockmeyer [22] and used in e.g. [19]. We restated it in a
manner closer to the standard query model. Existential queries (3-queries) are of the form

OF: |2) s (~1)n(s)). @
where overlap: {0,1}" x {0,1}" — {0,1} is the function

0 otherwise.

overlap(z, z) = { (8)

Again, the hidden string will usually be the truth table of a formula ¢. At first glance, this
query model may look rather useless. The query register has size exponential in n (the
number of variables of ¢). Therefore, even performing a single query will take exponential
time. However, if one is only concerned with the number of queries, and not with other
resources such as time and space, then non-succinct existential queries are more powerful
than succinct ones. Instead of making a succinct 3-query with formula v, an algorithm
can make a non-succinct existential query with z the truth table of . Furthermore, not
all truth tables correspond to poly-size formulae. In this paper we will prove lower bounds
on the number of existential queries an algorithm needs to make. The result will allow the
algorithms unbounded time and space and hence these lower bounds will in particular hold
for efficient algorithms making succinct 3-queries.

We are interested in the number of these queries needed to find a solution of ¢. In the
existential query model this corresponds to solving the search problem on the truth table x
of ¢, that is, outputting an index ¢ such that x; = 1. It should be noted that, unlike in the
case of standard queries, the existential query complexity of this function search problem is
not necessarily the same as that of the decision search problem (i.e. determining if there is
such an index). For example, an information theoretic argument shows that classically ©(n)
existential queries are needed for function search, but a single existential query with z = 1V
solves decision search.®

We will also be interested in a slight variation of the search problem which we call the
index sampling problem. Here the task is to sample according to the uniform distribution on
the support of x. Formally, we define it as

5 The string 1V has overlap with any non-zero string. Hence it has overlap with the truth table of ¢ iff ¢
is satisfiable.

70:9

ICALP 2024

70:10

BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting

» Definition 16 (Index sampling). An algorithm solves the index sampling problem if it, for
all z € {0, 1}V \{ON}, outputs s € [NJU{L} such that:
for alli € [N] with z; =1, Prls =i|s # 1] = ﬁ,

there is a constant ¢ such that Pr[s # L] > c.

3 Quantum algorithm for search-to-decision reduction

We are now ready to prove our results. For pedagogical reasons we start with the proof of
the upper bound (Theorem 1) before proving our main results: the lower bounds in Theorem
3 and Theorem 5.

» Theorem 1. FNP C FBQPNPUOg]. Furthermore, all queries made to the oracle are of the
form o A\ x where ¢ is the input formula and x some other formula.

Proof. We will show that there exists an FBQPNPlIog] algorithm that, when given a SAT
instance , outputs a satisfying assignment x € {0,1}" of ¢ if one exists, and outputs
“no solution” otherwise. The algorithm succeeds with constant probability. This success
probability can be boosted by running the algorithm a constant number of times, checking
for each output if it is indeed a satisfying assignment and then outputting one that is. Hence,
the success probability can be taken to be any arbitrary constant.

The existence of a satisfying assignment can be checked using a single query to the
NP-oracle. Therefore, we will restrict our attention to the case where a satisfying assignment
exists. We will proceed in two steps. First, we show how the satisfying assignment of a
formula with ezactly one satisfying assignment can be found with only a single query to the
NP-oracle using the Bernstein Vazirani algorithm. Then we show how we can use O(logn)
queries to reduce any formula to a uniquely satisfying one with constant probability.

» Lemma 17 ("Bernstein-Vazirani (BV) trick” [18]). Let ¢ be a formula with exactly one
solution. There exists a BQP algorithm that makes a single query to an NP-oracle and finds
this unique solution with probability 1.

Proof of BV trick. Let the unique solution of ¢ be denoted by s and consider the formula

Yo = QD(:E) A (l’ ta= 1)7 (9)

where a € {0,1}" and z - a denotes the inner product of the two binary strings = and a
modulo 2. (Note that 1), is of the form ¢ A x.) We now have that 1, is satisfiable (i.e. there
is a y such that o(y) Ay -a = 1) if and only if® a - s = 1 because s is, by assumption, the
only solution of ¢. Now we run the Bernstein-Vazirani algorithm, where to evaluate a - s
we ask the NP machine whether v, is true. That is, we start with the state |0"™) and apply
H®™ to get the uniform superposition on n qubits. The next step is to query the oracle on
input v, where a is in a uniform superposition:

1 1
= Y, la=—= > (-1)*la). (10)
2n ac{0,1}" 2 ac{0,1}"

Now another application of H®" gives:

1 csta 1 (s
on S (et y) = o > ()T jy) = |s). (11)
a,y€{0,1}" a,y€{0,1}"

Hence measuring the final state in the computational basis gives the unique satisfying
assignment s of . <

6 Note this does not imply a = s.

S. Gharibian and J. Kamminga

To deal with an arbitrary number of solutions, we first use Theorem 15 and O(logn) queries
to the NP oracle to find k such that 2¥=2 < |sol(¢)| < 2¥~1. (All queries made by the
approximate counting algorithm in [13] are of the form ¢ A x.) Then, we invoke Lemma 13
to obtain u(z) = h(z) = 0% such that ¢ A u has a unique solution with probability > 1.
Applying the BV trick to ¢ A u then completes the proof. Furthermore, all queries made
were of the claimed form. <

4 Lower bound for existential query complexity of search

We will prove that all quantum algorithms for the search problem need Q(logn) existential
queries, even if we allow the algorithm to additionally make poly(n) classical standard queries.
To do so, we will reduce binary search to this problem in order to use Ambainis’ lower
bound for binary search [5]. A binary search problem consists of a monotonic binary string
x=00...01...1 and the task is to find the index of the first 1.

» Theorem 3 (Restated). Any quantum algorithm with existential query access to x € {0, 1}N
needs to make Q(loglog N) = Q(logn) existential queries to find an i such that x; = 1. This
remains true even if the algorithm is allowed to make an additional poly(n) classical standard
queries.

The proof will follow from the following lemma.

» Lemma 18. Consider the following statements:

1. There exists a quantum algorithm for search on strings of size N = 2" that makes q
J-queries and poly(n) classical standard queries and succeeds with constant probability.

2. There exists a quantum algorithm for search on strings of size N using ¢ + O(loglogn)
J-queries and no additional standard queries which succeeds with constant probability.

3. There exists a quantum algorithm for index sampling on strings of size N using q +
O(loglogn) 3-queries and no additional standard queries which succeeds with constant
probability.

4. There exists a quantum algorithm for binary search on strings of size n using ¢+O(loglogn)
J-queries and no additional standard queries. The algorithm succeeds with constant
probability.

5. There exists a quantum algorithm for binary search on strings of size n using g+0O(loglogn)
standard quantum queries and no 3-queries. The algorithm succeeds with constant prob-
ability.

Then, 1 — 2 — 3 = 4 = 5.

It is worth noting that all success probabilities can be boosted to be bigger than any constant
c< 1.

Proof. 1 = 2: consider an algorithm for search using ¢ 3-queries and poly(n) classical
standard queries. We will modify the algorithm to get rid of the standard queries. Our
new modified algorithm will act exactly the same as the original algorithm, except it does
not actually perform the classical standard queries. Instead, it assumes the answer to those
queries is 0 and keeps track of the positions that should have been queried in a set A. At
the end of the algorithm, it checks if its assumptions were correct using an 3-query. That is,
it performs an 3-query with string z defined by z; = 1 iff the i-th index should have been
queried by a classical standard query at some point.

Now there are now two options. Either the result of this 3-query is 0, in which case
the assumptions that all indices queried by classical standard queries were 0 is correct, and
hence the modified algorithm and the original algorithm coincide. Alternatively, the result of

70:11

ICALP 2024

70:12

BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting

the 3-query is 1. Then at least one of the assumptions was wrong. But now the algorithm
has determined that the set A C [N] contains some i € A with 2; = 1. Furthermore, A
contains at most poly(n) elements since only poly(n) classical queries were made. The search
algorithm from Theorem 1 makes only (succinct) existential queries, so we can now use it to
search, within A, for an i with ; = 1.7 Because we know that |A| = poly(n), approximately
counting the number of solutions within A will take O(loglog|A|) = O(loglogn) 3-queries
using the algorithm from [13].8 Therefore, finding a solution within A given that there is
one will take O(loglogn) existential queries.

2 = 3: consider a permutation o € Sy mapping [N] to itself drawn uniformly at
random. With slight abuse of notation we define o(x) by o(x); = 2,(;). Our algorithm for
index sampling will apply the algorithm for search to o(z), undo the permutation, check if
it is indeed a solution and output the result if it is, and abort (i.e. output L) if it is not.
The probability of aborting is exactly the failure probability of the search algorithm. In the
following we condition on the sampling algorithm not aborting and assume x # 0% (this case
can be checked with 1 3-query).

Denote by search(z) the output of the search algorithm on input x. Consider the
probability p(i) = Pr[oc~!(search(c(z))) = i] = Pr[search(c(z)) = o(i)]. We will show that
p(i) = ﬁ if z; = 1 and 0 otherwise. Note that there are two sources of randomness: the
random choice of ¢ and potentially random behavior of the search algorithm. We can write:

p(i) = Z Z Prlo(z) = y Ao(i) = k Asearch(y) = k] (12)
y€{0,1}~ k€[N]

ZPr[o(m) =y] - Prlo(i) = k|lo(z) = y] - Pr[search(y) = k|o(z) = y Ao (i) = k].

y,k
(13)
Because the algorithm for search does not depend on o, we have that
py (k) = Pr[search(y) = k|o(x) = y A o(i) = k| = Pr[search(y) = kJ. (14)

The p, (k) are unknown, but because the algorithm solves the search problem we do know
that Pr[search(y) = klyx = 0] =0and >, _, py(k) = 1. Furthermore, we have

() i el =yl
Prlo(z) = y| = {0 i it 2] £ [y (15)
and
ﬁ ife, =y =1
Prlo(i) = klo(x) = y] = N+\l| ife;, =y =0 (16)
0 if x; # yg.

We can now put everything together to get

i)=Y (Nl) 3 %'py(k):';ﬂ (17)

yilz|=|y| \z|/ kiyp=1

7 We can add Az € A to all formulae to restrict the search to within A.

8 Essentially, the algorithm from [13] uses binary search to find k € [n] such that 2871 < |sol(y)| < 2*.
Because |A| = O(poly(n)), it is already known that |sol(p(z) Az € A)| < O(poly(n)) = 200s™),
Therefore, the binary search is sped up.

S. Gharibian and J. Kamminga

yl y2 yn—l yn
ﬂ N Duplicate
Ll wrrrnnns !L‘N/Q :L'N/2+1 $3N/4 ITN-2 ITN-1 TN
Permute
G(I) 1+ v v e r e me e e e e e o(z)n

Figure 1 Modification of the binary-search oracle y in steps 2 =— 3 and 3 =— 4. Queries to
o(z) are made by “going up the arrows”.

if 2; = 1. On the other hand, if ; = 0, we have that p,(k) = 0 if y, = 0 and that
Prio(i) = klo(x) = y] = 0 if y,, = 1. Therefore, we have p(i) = 0 if z; = 0.

3 = 4: let y € {0,1}" be a binary search instance. That is, y = 00...011...1 is
monotonically increasing. For binary search, we want to find the smallest index ¢ such
that y; = 1. We will now define another (exponentially longer) binary string « € {0, 1}N
by x1 = 2 = -+ = Tnj/2 = Y1, TNj241 = '+ = Tan/4 = Y2 and so on, ending with
IN_2 =TN-1=YlogN-1 and Tp, = Yiog N, i.€.

T=YIY1---Y1Y2Y2 - Y2 - Yili - - Yi - - Yiog N—1Ylog N—1Ylog N - (18)
—_— — = —
% times % times 2% times

If we sample an ¢ with z; = 1 uniformly at random, it will correspond to the smallest j with
y; = 1 with probability > % This is because by construction each y; appears more in x
than all y, for k > j together. Furthermore, each query to y (standard or existential) can be
simulated by a single query of the same kind to x (see Fig. 1). Therefore, statement 3. allows
us to solve binary search with constant success probability and g + O(loglogn) 3-queries.
4 = b: because the strings considered in a binary search problem are monotonically
increasing we can simulate an 3-query on such a string using only a single standard query.
Instead of an 3-query with z, we find the largest i such that z; = 1 and use a standard query
to query the i-th bit. The claimed implication follows. |

With this lemma in hand, Theorem 3 is easily proven.

Proof of Theorem 3. Suppose there exists an algorithm for search on x € {0, 1}N making
g = o(logn) existential queries and poly(n) classical standard queries. Then, by Lemma 18
there is an algorithm for binary search on strings of length n making g+O(loglogn) = o(logn)
standard queries. This contradicts Ambainis’ lower bound on binary search, which states
that Q(logn) queries are required for binary search on size n strings [5]. Therefore, any
search algorithm needs to make at least ¢ = Qlogn existential queries, even if it also makes
poly(n) classical standard queries. <

Corollary 4 is an easy consequence of the previous theorem.

» Corollary 4. Any quantum algorithm that is given existential query access to a string
x € {0, I}N and outputs an estimate ¢ such that 21%1=1 < ¢ < 2% where |x| is the Hamming
weight of x, needs to make at least Q(loglog N) queries to the oracle.

70:13

ICALP 2024

70:14

BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting

Proof. We show that the existence of such an approximate counter making o(loglog N) =
o(logn) J-queries implies the existence of an algorithm for search making o(logn) 3-queries.
Using the approximate counter and Lemma 13 we can reduce = to be of Hamming weight
1 with constant probability and o(logn) 3-queries. The index of the unique 1 can then be
extracted using the BV trick (Lemma 17) and a single 3-query. <

5 Conditional lower bound on number of NP queries for approximate
counting

In order to prove Corollary 5 we will first concern ourselves with almost-uniform isolation
algorithms. We will first prove the following theorem stating consequences of the existence
of almost-uniform isolation algorithms making o(logn) NP queries. Thereafter, we will show
that approximate counting with o(logn) NP queries implies almost-uniform isolation with
o(logn) NP queries.

» Theorem 19. Let € > 0 and p € (0,1] be constants such that there exists an e-almost-
uniform isolation algorithm A;s, with success probability p making Q(n) = o(logn) queries
to an NP-oracle. Then, BPPNPICMI contains a PNP_complete problem if this algorithm is
classical and FBQPNPL™! contains an FPNP_complete problem if it is quantum.

Proof. We will give a BPPNPlo(m)] algorithm to isolate the lexicographically least solution
of an input formula ¢, as outputting the last bit of this solution is PNP—complete [21].
The idea of the algorithm will be as follows. We work in rounds. In the first round we
sample n? almost-uniformly random solutions of ¢. We will not explicitly know what these
solutions are, but we can find a formula to which they are the unique solution. Next, we
sample n? solutions of ¢ among all solutions that are lexicographically smaller than the
all previously found solutions. We keep going like this until only one solution remains,
which will be the lexicographically least solution of ¢. We show that with high probability,
the number of solutions that are smaller than the least solution found yet decreases by
at least a factor % every round. Therefore, we will, with high probability, need at most

log, (|sol(i)]) = ¥EG2TA < pas

ogn — logn

In the first round we apply A;so to Uy (&1, ..., Tn2) == @(Z1) A+ A p(Zn2). Here the &;
denote fresh sets of variables and we use the vector notation to emphasize that they are n-bit

rounds to isolate the lexicographically least solution of .

strings and not bits. The result of this application will be u; (&1, ..., Z,2) such that U3 A uy
has a unique solution. This unique solution will be the concatenation of n? solutions of .
In round r + 1 we will do the following. From the previous round we have already

constructed
\I/T(x,«’l, ey Tpp2y e, 11y 7£C1,n2)
with a unique solution. In this unique solution, &;1,...,%; 2 Will be the solutions to ¢

picked in round i. We set

X1 (Trg 1,15 s Trgin2s oo s L1150 T102) = @(Trg1,0) Ao A @(Zrp1n2)
ANY(Zray oo Tpp2y ooy B0 T n2)
A Tr41,1 <lex Tr 1 ANRREA Tr41,1 <lew Ty n2

A f7"-&-1,712 <lex fr,n2 ARERNAS f'r+171 <lex fr,nQ- (19)

S. Gharibian and J. Kamminga

In any satisfying assignment of x,41, the first line of the RHS enforces that & y11,...,Lrt1,n2
are solutions of ¢. The second line makes sure that Z.1,..., % n2,...,%1,1,..., %1 2 are set
to the unique solutions picked in previous rounds. The third and fourth lines make sure that
the new solutions are lexicographically strictly smaller than any solution picked in a previous
round.”

We now pick the new solutions of round r + 1 by applying A;s, to x,+1. We call
the round is successful if A;s, succeeds, i.e. if its output w,41 is such that x,411 A upiq
has a unique solution. We can check if A;,, succeeded by spending 2 NP queries.'® In
case of a success ¥, 1 = X,+1 A up41 will have a unique solution, which is picked almost
uniformly at random from all solutions of x,y; (by definition of A;s,). In this unique
solution Ty41,1,...,%Tr+1,n2 Will be the newly picked solutions. By construction they will be
smaller than the solutions found in the previous rounds. The previously picked solutions
Trly-eosLpn2y. .-y &11,- .-, L1 2 Will be the same as in previous rounds because the second
line of Equation 19 has a unique solution. Finally, we check if there are still smaller solutions
available by checking if

(p(y)/\\ljr+1(fr+1,17 e vfr+1,n27 e vfl,lv e vfl,nr")/\y <lex f’r‘Jrl,l/\' AY <lex f7"+1,712 (20)

is still satisfiable. If it is satisfiable we proceed to the next round and if it is not then, in the
unique solution of ¥, 1, one of the &1 ; will be the minimal solution of . Therefore,

CWIAY 1 (Trg 1,15 T2y - s L1 1w T n2) ANY Ztew Try11 A ANY Ziex Try1,n2 (21)

will have a unique solution where y is the lexicographically least assignment of ¢ (note the use
of < instead of <). Asking the oracle if this formula is still satisfiable with the last bit of y
set to 1 will then tell us the last bit of the lexicographically least solution of ¢. Alternatively,
a BQP-machine can use the BV trick to obtain the entire lexicographically least solution
with one query and solve the FPNP-complete problem of outputting the lexicographically
least solution of ¢ [21].

We will proceed by proving that this algorithm succeeds with probability at least % and
makes at most o(n) NP queries using the following claims. The proofs of these claims can be
found in Appendix A.1.

> Claim 20 (Number of successful rounds needed). For sufficiently large n, the probability

that the algorithm described above has not terminated after 1oZn successful rounds is less

than % (a successful round is a round in which a unique solution remains after the application
of Aiso)~

> Claim 21 (Probability of successful rounds). The probability that after plign rounds there

have not been & successful rounds is at most % for sufficiently large n. Here, recall p is
the success probability of A;g,.

From these claims it follows that with probability at least %, the algorithm will, after
2n
plogn
because only a polynomial amount of terms are added to ¥, every round (recall that Q(n)
is the number of queries made by A;s,). Since Q(n) = o(logn) by assumption, we have
Q(n°) = o(c-logn) = o(logn). Hence the algorithm makes at most pfogno(log n) = o(n)
queries. |

at most rounds, have terminated. In every round, Q(poly(n)) queries are made

9 Note that comparing only to the previous rounds solutions suffices.
10 One query is used to check if the formula is satisfiable and the other is used to check if there are two or
more distinct solutions.

70:15

ICALP 2024

70:16

BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting

Corollary 5 follows by showing that an algorithm for approximate counting induces an
algorithm for almost-uniform isolation with the same number of NP queries.

» Corollary 5. If there exists a classical randomized poly-time algorithm for approximate
counting making o(logn) NP queries, then BPPNPlMI contains a PNP-complete problem.
Similarly, if there is a poly-time quantum algorithm for approximate counting making o(logn)
NP queries, then BQPNFIC™] contains an FPNP-complete problem.

The idea of the proof is that we can make a almost-uniform isolation algorithm by first
approximately counting the number of solutions (using o(logn) NP queries by assumption)
and then picking a suitable hash function. Using ideas from Dellanoy and Meel [14, Lemma 3]
it can be shown that this procedure indeed gives an almost-uniform isolation algorithm. The
full proof of the corollary can be found in Appendix A.2.

—— References

1 Scott Aaronson. The equivalence of sampling and searching. Theory of Computing Systems,
55(2):281-298, 2014. doi:10.1007/s00224-013-9527-3.

2 Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In
Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 333-342,
2011. doi:10.1145/1993636.1993682.

3 Scott Aaronson, Harry Buhrman, and William Kretschmer. A qubit, a coin, and an advice
string walk into a relational problem. arXiv preprint arXiv:2302.10332, 2023. doi:10.48550/
arXiv.2302.10332.

4 Scott Aaronson, DeVon Ingram, and William Kretschmer. The Acrobatics of BQP. In Shachar
Lovett, editor, 87th Computational Complexity Conference (CCC 2022), volume 234 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 20:1-20:17, Dagstuhl, Germany, 2022.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.CCC.2022.20.

5 Andris Ambainis. A better lower bound for quantum algorithms searching an ordered list. In
40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pages
352-357. IEEE, 1999. doi:10.1109/SFFCS.1999.814606.

6 Andris Ambainis. Quantum lower bounds by quantum arguments. In Proceedings of the
thirty-second annual ACM symposium on Theory of computing, pages 636—-643, 2000. doi:
10.1145/335305.335394.

7 Sanjeev Arora and Boaz Barak. Computational complezity: a modern approach. Cambridge
University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.asp?isbn=
9780521424264.

8 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. Journal of the ACM (JACM), 48(4):778-797, 2001. doi:
10.1145/502090.502097.

9 Shai Ben-David, Benny Chor, and Oded Goldreich. On the theory of average case complexity.
In Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages
204-216, 1989. doi:10.1145/73007.73027.

10 Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and
weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510-1523, 1997.
doi:10.1137/S0097539796300933.

11 Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proceedings of
the twenty-fifth annual ACM symposium on Theory of computing, pages 11-20, 1993. doi:
10.1145/167088.167097.

12 Harry Buhrman and Wim van Dam. Quantum bounded query complexity. In Proceedings.
Fourteenth Annual IEEE Conference on Computational Complezity (Formerly: Structure
in Complezity Theory Conference)(Cat. No. 99CB36317), pages 149-156. IEEE, 1999. doi:
10.1109/CCC.1999.766273.

https://doi.org/10.1007/s00224-013-9527-3
https://doi.org/10.1145/1993636.1993682
https://doi.org/10.48550/arXiv.2302.10332
https://doi.org/10.48550/arXiv.2302.10332
https://doi.org/10.4230/LIPIcs.CCC.2022.20
https://doi.org/10.1109/SFFCS.1999.814606
https://doi.org/10.1145/335305.335394
https://doi.org/10.1145/335305.335394
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/73007.73027
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1145/167088.167097
https://doi.org/10.1145/167088.167097
https://doi.org/10.1109/CCC.1999.766273
https://doi.org/10.1109/CCC.1999.766273

S. Gharibian and J. Kamminga

13 Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. Algorithmic improvements in
approximate counting for probabilistic inference: from linear to logarithmic SAT calls. In
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pages
3569-3576, 2016. URL: http://wuw.ijcai.org/Abstract/16/503.

14 Remi Delannoy and Kuldeep S Meel. On almost-uniform generation of SAT solutions: The
power of 3-wise independent hashing. In Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 1-10, 2022. doi:10.1145/3531130.3533338.

15 Holger Dell, Valentine Kabanets, Dieter van Melkebeek, and Osamu Watanabe. Is Valiant—
Vazirani’s isolation probability improvable? computational complexity, 22:345-383, 2013.
d0i:10.1007/s00037-013-0059-7.

16 Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, pages 212—219, 1996.
doi:10.1145/237814.237866.

17 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367-375, 2001. doi:10.1006/jcss.2000.1727.

18 Sandy Irani, Anand Natarajan, Chinmay Nirkhe, Sujit Rao, and Henry Yuen. Quantum
Search-To-Decision Reductions and the State Synthesis Problem. In Shachar Lovett, editor,
37th Computational Complexity Conference (CCC 2022), volume 234 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 5:1-5:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl
— Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.CCC.2022.5.

19 Akinori Kawachi, Benjamin Rossman, and Osamu Watanabe. Query complexity and error
tolerance of witness finding algorithms. In Electron. Colloquium Comput. Complex., volume 19,
page 2, 2012. URL: https://eccc.weizmann.ac.il/report/2012/002, arXiv:TR12-002.

20 Akinori Kawachi, Benjamin Rossman, and Osamu Watanabe. The query complexity of witness
finding. Theory of Computing Systems, 61:305-321, 2017. doi:10.1007/s00224-016-9708-y.

21 Mark W Krentel. The complexity of optimization problems. In Proceedings of the eighteenth
annual ACM symposium on Theory of computing, pages 69—76, 1986. doi:10.1145/12130.
12138.

22 Larry Stockmeyer. The complexity of approximate counting. In Proceedings of the fifteenth
annual ACM symposium on Theory of computing, pages 118-126, 1983. doi:10.1145/800061.
808740.

23 Leslie G Valiant and Vijay V Vazirani. NP is as easy as detecting unique solutions. In
Proceedings of the seventeenth annual ACM symposium on Theory of computing, pages 458—
463, 1985. doi:10.1145/22145.22196.

A Omitted proofs

A.1 Claims in proof of Theorem 19

> Claim 20 (Number of successful rounds needed). For sufficiently large n, the probability

that the algorithm described above has not terminated after @ successful rounds is less

than % (a successful round is a round in which a unique solution remains after the application
Of Ai so) .

Proof of Claim 20. Let ¢; < --- < %) denote all solutions to ¢ smaller than ¢,in r—1, the

smallest solution found in round r — 1. Define g = [£]. We now compute the probability

n
that, in a single round 7, ¥min,» is larger than ¢, as

70:17

ICALP 2024

http://www.ijcai.org/Abstract/16/503
https://doi.org/10.1145/3531130.3533338
https://doi.org/10.1007/s00037-013-0059-7
https://doi.org/10.1145/237814.237866
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.4230/LIPIcs.CCC.2022.5
https://eccc.weizmann.ac.il/report/2012/002
https://arxiv.org/abs/TR12-002
https://doi.org/10.1007/s00224-016-9708-y
https://doi.org/10.1145/12130.12138
https://doi.org/10.1145/12130.12138
https://doi.org/10.1145/800061.808740
https://doi.org/10.1145/800061.808740
https://doi.org/10.1145/22145.22196

70:18

BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting

Pr[gmin,r >lex ng] =Pr [fr,l >lex ?jg ANRRRA fr,n2 >lex gg} (22)
. . . . 2
:Pr[(xr,la"wxr,vﬁ) € {y9+17~-~7yk}n] (23)
2 1+e¢
S |{g +17"'agk}7L | = — (24)
I |{y1?"'ayk}n2‘
2] + €
=(k—g)" n? (25)

(2)

2

1 n
=(1 1—— 27
a+9(1-1) . (27)
where Equation 25 follows from a union bound and the definition of an e-almost-uniform
isolation algorithm Hence, by a union bound, the probability that in at least one of &

successful rounds ¥min,r >iex Ygoal,r, i-€., the probability that in at least on of the rounds
the search space is not cut down by at least a factor % is

2

n n 1\"
Pr[ar < A Yminge >lex Ygr] < (1 1—-— , 28
(B < o e i St o < (L O (127 (28)
of which the right-hand side goes to 0 as n goes to co. The claim follows. <

> Claim 21 (Probability of successful rounds). The probability that after 12" rounds there
plogn

successful rounds is at most % for sufficiently large n. Here, recall p is

have not been logn
the success probability of A;g,.

Proof of claim 21. Each round succeeds with probability p. After piﬁ rounds the expected
number of successful rounds is lfgnn. By a Chernoff bound we have:

Pr[#successes < ﬁ] <exp <_4p 12gn> . (29)
For sufficiently large n, the right-hand side will indeed be at most %. <

A.2 Full proof of Corollary 19

» Corollary 5. If there exists a classical randomized poly-time algorithm for approzximate
counting making o(logn) NP queries, then BPPNPlMI contains a PNP-complete problem.
Similarly, if there is a poly-time quantum algorithm for approximate counting making o(logn)
NP queries, then BQPNPl™I contains an FPNP—complete problem.

Proof of Corollary 5. The approximate counting algorithms can be used to make an almost-
uniform isolation algorithm as follows. First, use the approximate counting algorithm to
find k such that 2¥=2 < |sol(p)| < 2¥~L. Next, choose a random hash function h from a set
of pairwise independent hash functions from {0,1}" to {0, 1}’“. By Lemma 13, the formula
¢(x) Ah(x) = 0% will then have a unique solution with probability at least £.'! We claim that
in this case the unique solution will be distributed almost-uniformly at random among all
solutions of ¢. Our proof of this claim is based on work by Dellanoy and Meel [14, Lemma 3].

'We only require almost-uniformity in the case that there is a unique solution.

S. Gharibian and J. Kamminga

Before we prove the claim let us first introduce some notation. Let the random variable
N denote the number of solutions of ¢(z) A h(xz) = 0% and let SC denote the event that
the approximate counting was successful, i.e. 2872 < |sol(y)| < 2871, We assume that SC
occurs with probability 1 — §. For any fixed x, we are interested in

Prlh(z) = 0¥ AN = 1]

Prin(@) = 01N =1] = PN — 1] (30)
P =0 AN=1]
DY yesol(p) Prip(y) = 0F AN =1] (31)
_ __ PrlN = 1ja(e) = 0] Prlh(z) = 0'] (32)
> yesol() PIINV = 1[h(y) = 0¥ Pr[h(y) = OF]

2 yesol(p) PrIN = 1|h(y) = 0]

and want to show that this probability is < \sTE(mr Let x(y) be 1 if h(y) = 0 and 0
otherwise. For any x € sol(¢) we have:
E[N|h(z) =0*ASC] =E | Y x()|h(z)=0"ASC (34)
y€sol(p)
= Z E [x(y)|h(z) = 0% A SC] (35)
yesol(p)
[sol(g)| — 1
=1+ 5k (36)

where we use that h is a 2-wise independent hash function. By Markov’s inequality this
means that for all x € sol(yp)

Pr[N = 1]h(z) = 0¥ A SC] = 1 — Pr[N > 2|h(z) = 0F A SC] (37)
_— E[N\h(m); 0ASC] (38)
1 sol -1
> 1 loltel = (39)
1
> (40)

Combining with Equation 33 and using that Pr[N = 1|h(y) = 0F] > Pr[N = 1ASC|h(y) = 0*]
and Pr[N = 1|h(z) = 0¥] < 1 gives

1
Pr[h(fli) = 0k|N = 1] < Zyesol(gp) PI‘[N —1A SO|h(y) _ Ok] (41)
1
= 2 yesol(p) IV = 1]A(y) = 08 A SC] Pr[SC] (42)
: (43)

= T 0)sol(p)]

Note that this holds for any x. Hence the existence of an approximate counter gives us an
almost-uniform isolation algorithm with p = % and € = i’—fg. Furthermore, the approximate

counter and isolation algorithm will make the same amount of NP queries (i.e. o(logn)). <«

70:19

ICALP 2024

	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Function classes
	2.3 Witness isolation
	2.4 Approximate counting
	2.5 Query complexity

	3 Quantum algorithm for search-to-decision reduction
	4 Lower bound for existential query complexity of search
	5 Conditional lower bound on number of NP queries for approximate counting
	A Omitted proofs
	A.1 Claims in proof of Theorem 19
	A.2 Full proof of Corollary 19

