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Abstract
For edge coloring, the online and the W-streaming models seem somewhat orthogonal: the former
needs edges to be assigned colors immediately after insertion, typically without any space restrictions,
while the latter limits memory to be sublinear in the input size but allows an edge’s color to be
announced any time after its insertion. We aim for the best of both worlds by designing small-space
online algorithms for edge coloring.

Our online algorithms significantly improve upon the memory used by prior ones while achieving
an O(1)-competitive ratio. We study the problem under both (adversarial) edge arrivals and vertex
arrivals. Under vertex arrivals of any n-node graph with maximum vertex-degree ∆, our online
O(∆)-coloring algorithm uses only semi-streaming space (i.e., Õ(n) space, where the Õ(.) notation
hides polylog(n) factors). Under edge arrivals, we obtain an online O(∆)-coloring in Õ(n

√
∆) space.

We also achieve a smooth color-space tradeoff: for any t = O(∆), we get an O(∆t(log2 ∆))-coloring
in Õ(n

√
∆/t) space, improving upon the state of the art that used Õ(n∆/t) space for the same

number of colors.
The improvements stem from extensive use of random permutations that enable us to avoid

previously used colors. Most of our algorithms can be derandomized and extended to multigraphs,
where edge coloring is known to be considerably harder than for simple graphs.
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1 Introduction

A proper edge-coloring of a graph or a multigraph colors its edges such that no two adjacent
edges share the same color. The goal is to use as few colors as possible. Any graph with
maximum vertex-degree ∆ trivially requires ∆ colors to be properly edge-colored. Vizing’s
celebrated theorem [46] asserts that ∆ + 1 colors suffice for any simple graph.1 Constructive
polynomial-time algorithms exist for (∆ + 1)-edge-coloring in the classical offline setting
[39], and these are likely to be optimal with respect to the number of colors: distinguishing
between whether the edge-chromatic number (i.e., the minimum number of colors needed to
edge-color a graph) of a simple graph is ∆ or ∆ + 1 is NP-hard [33].

1 For multigraphs, 3∆/2 colors are necessary and sufficient. [44]
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71:2 Low-Memory Algorithms for Online Edge Coloring

The edge-coloring problem finds applications in various practical scenarios, including
switch routing [2], round-robin tournament scheduling [34], call scheduling [27], optical
networks [42], and link scheduling in sensor networks [30]. In applications like switch routing,
where the underlying graph evolves through edge insertions, the color assignments must be
made instantly and irrevocably. This is modeled by the online edge coloring problem. Due to
its restrictions, an online algorithm cannot obtain a (∆ + 1)-coloring [11]. Nevertheless, the
simple greedy algorithm, which colors every edge with the first available color not assigned to
any neighbor, obtains a (2∆−1)-coloring since each edge can have at most 2∆−2 neighboring
edges. Thus, the competitive ratio achieved is 2− o(1) (since the optimum is ∆ or ∆ + 1).
Bar-Noy, Motwani, and Naor [11] showed that no online algorithm can outperform this
greedy algorithm. However, they proved this only for graphs with max-degree ∆ = O(log n).
They conjectured that for ∆ = ω(log n), it is possible to get better bounds – specifically,
a (1 + o(1))∆-coloring. For this regime of ∆, several works [2, 10, 23, 18, 43, 35, 41] have
studied online edge coloring with the goal of surpassing the greedy algorithm and, even
further, of resolving the said conjecture. Additionally, other variants of the online problem
have been investigated [29, 38, 28]. However, all prior works assume full storage of all graph
edges and their colors in memory.

With the ubiquity of big data in the modern world, the assumption of storing entire
graphs in memory becomes impractical. Even graphs like communication and internet routing
networks that motivate the study of edge coloring often turn out to be large-scale networks.
This challenge has given rise to big-graph processing models such as graph streaming which,
like the online model, sequentially accesses the graph edges, but only retains a small summary.
There is an immediate barrier for edge coloring in this setting: reporting all edge colors at
the end of the stream would use space linear in the number of edges. To remedy this, a
natural extension of the model, called the W-streaming model, allows reporting the output in
streaming fashion. Here, an algorithm with limited working memory stores information about
both the input graph and the output coloring and periodically streams or announces edge
colors. Unlike the online model, here we don’t need to assign a color to an incoming edge
right away, and can defer it. However, due to space constraints, we are not able to remember
all the previously announced colors. Note that this makes even the greedy (2∆− 1)-coloring
algorithm hard, if not impossible, to implement in this model.

In this work, we aim to get the best of both worlds of the online and the streaming
models by designing low-memory online algorithms for edge coloring. This addresses the
need for immediate color assignment in modern scenarios while optimizing space usage. We
achieve an O(1)-competitive ratio, i.e., a color bound of O(∆). Note that no prior work in
the sublinear-space setting has achieved an O(∆)-coloring W-streaming algorithm, let alone
an online algorithm. For adversarial edge-arrival streams, we get an online O(∆)-coloring
in Õ(n

√
∆) space2, significantly reducing the space compared to prior online algorithms

with only a constant factor increase in colors. We can smoothly trade off space with colors,
obtaining an Õ(∆t)-coloring in Õ(n

√
∆/t) space. This improves upon the state of the

art [21, 5] which used Õ(n∆/t) space for the same color bound. Furthermore, for natural
and well-studied settings of vertex-arrival in general graphs and one-sided vertex arrival in
bipartite graphs, we enhance the space usage to Õ(n), the prevalent semi-streaming memory
regime for graph streaming problems. Most of our algorithms generalize to multigraphs and
can be made deterministic.

2 Throughout the paper, the Õ(.) notation hides polylog(n) and polylog(∆) factors.
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We remark that apart from being interesting online algorithms on their own, our results
can be also viewed as strengthening W-streaming algorithms with the guarantee of online
output-reporting. In particular, they contribute an important conceptual message: the
state-of-the-art W-streaming space bound for O(∆) edge coloring can be matched without
the exclusive power of the W-streaming model (allowing delayed assignment of edge colors);
we can report edge colors online.

1.1 Our Results and Contributions

We study edge-coloring in the online model with sublinear (i.e., o(n∆)) memory, under
(adversarial) edge-arrivals as well as vertex-arrivals. These results are summarized in Table 1,
and their corollaries for the W-streaming model in Table 2. The tables mention the state of
the art, for comparison.

Table 1 Our results in the online model. Here, t ≤ ∆ is any positive integer. Algorithms marked
with a ⋆ require oracle randomness for randomized algorithms and an advice string computable in
exponential time for deterministic.

Arrival Algorithm Colors Space Graph Reference

Edge

Randomized
(

e
e−1 + o(1)

)
∆ Õ(n∆) Simple [35]

Randomized O(∆) Õ(n
√

∆) Simple Theorem 1

Deterministic (2∆ − 1)t O(n∆/t) Multigraph [5]

Deterministic Õ(∆t) Õ(n
√

∆/t)⋆ Multigraph Theorem 3 +
Lemma 5

Vertex

Randomized (1.9 + o(1))∆ Õ(n∆) Simple [43]
Randomized O(∆) Õ(n)⋆ Multigraph Theorem 6

Deterministic 2∆ − 1 O(n∆) Multigraph Greedy folklore
Deterministic O(∆) Õ(n)⋆ Multigraph Theorem 7

One sided
vertex

Randomized (1 + o(1))∆ Õ(n∆) Simple [23]
Randomized 1.533∆ Õ(n∆) Multigraph [41]
Randomized 5∆ Õ(n)⋆ Multigraph Theorem 6

Deterministic 2∆ − 1 O(n∆) Multigraph Greedy folklore
Deterministic O(∆) Õ(n)⋆ Multigraph Theorem 7

Table 2 Our results in the W-streaming edge-arrival model. Here, s ≤ ∆/2 is any positive integer.
Results marked with ⋆ require oracle randomness for randomized algorithms and an advice string
computable in exponential time for deterministic.

Algorithm Colors Space Graph Reference

Randomized O(∆2/s) Õ(ns) Simple [21]
Randomized O(∆) Õ(n

√
∆) Simple Corollary 2

Deterministic (1 − o(1))∆2/s O(ns) Simple [5]
Deterministic Õ(∆2/s) Õ(n

√
s)⋆ Multigraph Corollary 4 + Lemma 5

ICALP 2024
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Edge-arrival model

Here we design both online and W-streaming algorithms.

▶ Theorem 1. Given any adversarial edge-arrival stream of a simple graph, there is a
randomized algorithm for online O(∆)-edge-coloring using Õ(n

√
∆) bits of space.

Previously, there was no sublinear space online algorithm known for O(∆)-coloring. As
observed in Table 1, all prior algorithms need Θ(n∆) space in the worst case to achieve a
color bound of O(∆).

Note that Theorem 1 immediately implies a randomized W-streaming algorithm with the
same space and color bounds. Although immediate, we believe that it is important to note it
as a corollary.

▶ Corollary 2. Given an adversarially ordered edge stream of any simple graph, there is a
randomized W-streaming algorithm for O(∆)-edge-coloring using Õ(n

√
∆) bits of space.

The above result improves upon the state of the art algorithms of [21, 5] which, as
implied by Table 2, only obtain ω(∆)-colorings for o(n∆) space (the non-trivial memory
regime in W-streaming). In fact, we improve upon them by a factor of Ω(

√
∆) in space for

O(∆)-coloring.
Further, we prove that we can make the above algorithms deterministic, and able to

handle multigraphs, at the cost of only a polylogarithmic factor in the number of colors used.
Once again, the online algorithm is also a W-streaming algorithm.

▶ Theorem 3. Given an adversarially ordered edge-arrival stream of any multigraph, there is
a deterministic algorithm for online O(∆ log2 ∆)-edge-coloring using Õ(n

√
∆) bits of space.

▶ Corollary 4. Given an adversarially ordered edge stream of any multigraph, there is a
deterministic W-streaming algorithm for O(∆ log2 ∆)-edge-coloring using Õ(n

√
∆) bits of

space.

Furthermore, in each case, we can achieve a smooth tradeoff between the number of colors
and the memory used. This is implied by a framework captured in the following lemma.

▶ Lemma 5. Suppose that we are given an online f(n, ∆)-space streaming algorithm A for
O(∆)-coloring any n-node multigraph with max-degree ∆ under adversarial edge arrivals.
Then, for any t ≥ 1, there is a online streaming algorithm B for O(∆t)-coloring the same
kind of graphs under adversarial edge arrivals using f(n/t, ∆t) + Õ(n) bits of space.

For the online model, the above lemma combined with Theorem 3 immediately gives
the tradeoff of Õ(∆t) colors and Õ(n

√
∆/t) space for any t = O(∆), as claimed in Table 1.

In other words, combined with Corollary 4, it implies the W-streaming bounds of Õ(∆2/s)
colors and O(n

√
s) space for any s = O(∆), as claimed in Table 2.3 Note that our results

match the tradeoff obtained by the state of the art for t = Θ(∆) and s = O(1), and strictly
improve upon them for t = o(∆) and s = ω(1).

3 We use the parameter t for online algorithms and s for W-streaming, where t · s = ∆, so that a reader
can easily compare our bounds with the “ideal” bounds of O(∆) colors and Õ(n) space in the respective
models by smoothly growing t or s from 1 to ∆.
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Vertex-arrival Model

We now turn to the weaker vertex-arrival model. The online edge-coloring problem has been
widely studied in this setting as well (see Section 1.2 for a detailed discussion). Our online
algorithms obtain significantly better space bounds than the edge-arrival setting.

▶ Theorem 6. Given any adversarial vertex-arrival stream of a multigraph, there is a
randomized online O(∆)-edge coloring algorithm using Õ(n) bits of space. It works even
against an adaptive adversary and uses Õ(n∆) oracle random bits.4 In particular, for
one-sided bipartite vertex arrivals, there is an algorithm using 5∆ colors.

Thus, at the cost of only a constant factor in the number of colors, we can improve
the memory usage from Õ(n∆) to Õ(n) for vertex-arrival streams. Since this algorithm
immediately implies a W-streaming algorithm with the same bounds, we see that for vertex-
arrival streams, O(∆)-coloring can be achieved in semi-streaming space, the most popular
space regime for graph streaming. Behnezhad et al. [12] mentioned that “a major open
question is whether [the number of colors for W-streaming edge-coloring] can be improved to
O(∆) while also keeping the memory near-linear in n.” Our results answer the question in
the affirmative for the widely studied model of vertex-arrival streams.

Further, we show that the algorithm can be made deterministic using Õ(n) bits of advice
instead of Õ(n∆) bits of oracle randomness. By picking a uniformly random advice string,
the updated algorithm can alternatively be used as a robust algorithm (see Definition 12)
with 1/ poly(n) error; the advice can also be computed in exponential time.

▶ Theorem 7. Given any adversarial vertex-arrival stream of a multigraph, there is a
deterministic online O(∆)-edge-coloring algorithm using Õ(n) bits of space, using Õ(n) bits
of advice.

An interesting special case of the vertex-arrival model is the one-sided vertex-arrival
setting for bipartite graphs. Here, the vertices on one side of the bipartite graph are fixed,
while the vertices on the other side arrive in a sequence along with their incident edges. A
couple of works [23, 41] have studied online edge-coloring specifically in this model. We
design low-memory online algorithms in this setting and use them as building blocks for our
algorithms in the more general settings of vertex-arrival and edge-arrival. These algorithms
may be of independent interest due to practical applications of the one-sided vertex-arrival
model; moreover, the randomized algorithm here uses only 5∆ colors (as opposed to our
other algorithms where the hidden constants in O(∆) are rather large).

Finally, we present a lower bound on the space requirement of a deterministic online
edge-coloring algorithm. To the best of our knowledge, this is the first non-trivial space lower
bound proven for an online edge-coloring algorithm.

▶ Theorem 8. For ∆ ≤ εn for a sufficiently small constant ε, any deterministic online
algorithm that edge-colors a graph using (2− o(1))∆ colors requires Ω(n) space.

4 The use of oracle randomness here is not a big deal. In practice (where we assume cryptographic
pseudo-random number generators exist), it is straightforward to generate the bits of the oracle random
string on demand, ensuring that computationally bounded systems essentially cannot produce hard
inputs for the algorithm. Also, against oblivious adversaries, one can easily modify the randomized
vertex arrival algorithm to use only Õ(n) random bits, by choosing its random permutations from
almost O(log n)-wise independent families, but we skip this to keep the proof simple.

ICALP 2024
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1.2 Related Work
Online model

Online edge-coloring has a rich literature [2, 5, 11, 10, 18, 19, 23, 28, 29, 37, 38, 41, 35, 43].
The seminal work of Bar-Noy, Motwani, and Naor [11] ruled out any online algorithm
outperforming the (2∆ − 1)-coloring greedy algorithm that assigns each edge the first
available color not used by any adjacent edge. However, this lower bound applies only to
graphs with ∆ = O(log n). They conjectured that for ∆ = ω(log n), there exist online
(1 + o(1))∆-coloring algorithms. Although this conjecture remains unresolved, there has been
significant progress on it over the years. A number of works [2, 10, 18] considered the problem
under random-order edge arrivals: Aggarwal et al. [2] showed that if ∆ = ω(n2), then a
tight (1 + o(1))∆-coloring is possible. For ∆ = ω(log n) (the bound in the said conjecture),
Bahmani et al. [10] obtained a 1.26∆-coloring. Bhattacharya et al. [18] then achieved the
best aspect of each result as they attained the tight color bound of (1 + o(1))∆ for the broad
range of ∆ = ω(log n), essentially resolving the conjecture for random-order arrivals.

More relevant to our work is the setting of adversarial-order edge arrivals. Cohen et
al. [23] were the first to make progress on [11]’s conjecture in this regard, obtaining a
(1 + o(1))∆-coloring for bipartite graphs under one-sided vertex arrivals (i.e., the nodes
on one side are fixed, and the nodes on the other side arrive one by one with all incident
edges). Their algorithm assumes a priori knowledge of the value of ∆. For unknown ∆, they
rule out any online algorithm using fewer than (e/(e − 1))∆ colors and also complement
this result with a (e/(e − 1) + o(1))∆-coloring algorithm. For bipartite multigraphs with
one-sided vertex arrivals, Naor et al. [41] very recently proved that 1.533∆ colors suffice,
while at least 1.207∆ colors are necessary even for ∆ = 2. Saberi and Wajc [43] showed that
it is possible to beat the greedy algorithm for ∆ = ω(log n) under vertex arrivals in general
graphs: they designed a (1.9 + o(1))∆-coloring algorithm. Recently, Kulkarni et al. [35]
made the first progress on the said conjecture for fully general adversarial edge arrivals: they
obtained a (e/(e− 1) + o(1))∆-coloring in this model. Note that the focus of all these works
was on resolving [11]’s conjecture without any space limitations. Our focus is on designing
low-memory online algorithms while staying within a constant competitive ratio. The only
prior sublinear-space online edge-coloring algorithm we know was given by Ansari et al. [5]:
a (deterministic) online 2∆t-coloring in O(n∆/t) space for any t ≤ ∆.

Several works [29, 26, 28] have addressed the variant where, given a fixed number of
colors, the goal is to color as many edges as possible. Mikkelsen [37, 38] considered online
edge coloring with limited advice for the future.

W-Streaming model

The W-streaming model [25] is a natural extension of the classical streaming model for
studying problems where the output size is very large, possibly larger than our memory.
While the W-streaming literature has considered several graph problems [25, 24, 36, 31],
we are aware of only three past works [12, 21, 5] that have studied edge-coloring here.
Behnezhad et al. [12] initiated the study of W-streaming edge coloring. They considered the
problem for both adversarial-order and random-order streams: using Õ(n) bits of working
memory, they gave an O(∆2)-coloring in the former setting, and a (2e∆)-coloring in the
latter setting. Charikar and Liu [21] improved these results: for adversarial-order streams, for
any s ∈ [Ω(log n), ∆], they presented an O(∆2/s)-coloring algorithm that uses Õ(ns) space;
and for random-order streams, they gave a (1 + o(1))∆-coloring algorithm using Õ(n) space.
Both of the said adversarial-order streaming algorithms are, however, randomized. Ansari
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et al. [5] designed simple deterministic algorithms achieving the same bounds of O(∆2/s)
colors and Õ(ns) space. Their algorithm can also be made online at the cost of a factor of
2 in the number of colors. Note that, parameterizing our results in Table 2 appropriately,
our algorithms achieve O(∆2/s)-colorings in Õ(n

√
s) space, matching the state of the art for

s = O(1), and strictly improving upon it for s = ω(1).
The related problem of vertex coloring has a more mature literature in the streaming

model [1, 3, 6, 7, 8, 9, 15, 16, 17, 20, 32]. However, due to fundamental differences between
the classical streaming and W-streaming models and between the two problems, not many
techniques seem to carry over.

Concurrent work

In an independent and parallel work, Behnezhad and Saneian [13] have designed a randomized
Õ(n
√

∆)-space W-streaming algorithm for O(∆)-edge-coloring for edge-arrival streams in
simple general graphs. This matches our Corollary 2. Their result generalizes to give,
for any s ∈ [

√
∆], an O(∆1.5/s) coloring algorithm in Õ(ns) space, while we achieve an

O(∆2/s2)-coloring in the same space. They also get an O(∆)-edge-coloring algorithm for
vertex-arrival streams using Õ(n) space, similar to our Theorem 6. Note that a crucial
difference between the two papers is that most of our algorithms have the additional strong
feature of being online, while it is not clear if their W-streaming edge-arrival algorithm can
also be implemented in the online setting. Thus, conceptually, our results affirm that to
obtain an O(∆)-coloring in sublinear space, the only advantage of W-streaming over online –
enabling delay of color assignment – is not necessary.

In terms of techniques, while both works have some high level ideas in common (e.g., using
random offsets/permutations to keep track of colors, or designing a one-sided vertex-arrival
algorithm first and building on it to obtain the edge-arrival algorithm), the final algorithms
and analyses in the two papers are fairly different.

Another independent work by Chechik, Mukhtar, and Zhang [22] obtains a randomized
W-streaming algorithm that colors an edge-arrival stream on general multigraphs using
O(∆1.5 log ∆) colors in expectation5, and Õ(n) space in expectation. Unlike us, they make
no claims in the online model.

2 Notation and Definitions

Throughout the paper, logarithms are in base 2. The notation [t] indicates the set of integers
{1, . . . , t}. The notation Õ(x) ignores poly(log(n), log(∆)) factors in x. A ⊔ B gives the
disjoint union of A and B. St is the set of permutations over [t], and for any permutation
σ ∈ St and X ⊆ [t], we denote σ[X] := {σi : i ∈ X}. For any set X,

(
X
k

)
denotes the set of

all k-sized subsets of X.
If not otherwise stated, n is the number of vertices in a graph G, V the set of vertices (or

A ⊔B if the graph is bipartite), E the (multi-)set of edges, and ∆ is the maximum degree of
the graph (counting multiplicity, for multigraphs).

5 While [22] does not claim this, one can prove their algorithm uses O(∆1.5 log ∆) colors with ≥ 1 −
1/ poly(n) probability.

ICALP 2024



71:8 Low-Memory Algorithms for Online Edge Coloring

2.1 Models
We consider the following models for presenting edges (to be colored) to an algorithm. In all
cases, the set of vertices for the graph is known in advance.

▶ Definition 9 (Edge-Arrival Model). With an edge-arrival stream, the algorithm is given a
sequence of edges in the graph. Each edge is provided as an unordered pair {x, y} of vertices in
V . In this paper, online algorithms processing edge arrival streams will implement a method
Process({x, y}) which returns the color assigned to the edge. W-streaming algorithms may
assign the color for an edge at any time, although all edges must be given a color at the end
of the stream. We permit algorithms to output not just integers but also tuples of integers as
“colors”, since users of the algorithms can easily remap these colors to whatever space they
wish.

▶ Definition 10 (Vertex-Arrival Model). In a vertex-arrival stream, the algorithm is given a
sequence of (vertex, edge-set) pairs (v, Mv), where the edge (multi-)set Mv contains all edges
from v to vertices that have been seen earlier in the stream. Online algorithms should report
colors for all edges in Mv when (v, Mv) is processed.

A one-sided vertex-arrival stream on a bipartite graph with partite sets A, B is a vertex
arrival stream where the vertices in one partite set (B) are fixed, and then all the (vertex,
edge-set) pairs for the other partite set (A) are given. This means that the stream consists of
pairs (v, Mv), where each v ∈ A, and Mv contains all edges from v to vertices in B.

▶ Remark 11 (Assumption of prior knowledge of ∆). We assume that the maximum degree ∆
of G is known in advance. An edge-coloring algorithm for which ∆ is not known in advance
can be converted to one which is, although one way to do this conversion (by running a new
2∆-coloring algorithm with a fresh set of colors whenever the maximum degree of graph
formed by the input stream doubles) increases the total number of colors used by a constant
factor, and uses O(n log ∆) bits of space to keep track of the maximum degree. Since the
algorithms in this paper already have large constant factors on number of colors used, it is
not worth it to optimize the algorithms for the case where ∆ is not known in advance.

▶ Definition 12 (Robust Streaming). An algorithm is said to be robust or adversarially robust
if it works with ≥ 1− δ probability even when its input streams are adaptively generated. By
“adaptively generated”, we mean that the input is produced by an adaptive adversary that sees
all outputs of the online (or W-streaming) algorithm, and repeatedly chooses the next element
of the stream based on what the algorithm has output so far. See [14] for a more detailed
explanation.

2.2 Basic Definitions
▶ Definition 13 ((ϵ, k)-wise independent permutation). A random permutation σ is (ϵ, k)-wise
independent if for all distinct a1, . . . , ak in [n], the distribution of σ on a1, . . . , ak has total
variation distance ≤ ϵ from uniform. In other words,

1
2

∑
distinct b1, . . . , bk ∈ [n]

∣∣∣∣∣∣Pr

 ∧
i∈[k]

{σ(ai) = bi}

− 1∏
i∈[k](n− i + 1)

∣∣∣∣∣∣ ≤ ϵ .

Per [4], while it is not known if there are nontrivial (0, k)-wise independent families of
permutations for large k and n, one can always construct weighted distributions which have
support of size nO(k) and provide (0, k)-wise independence. However, sampling from these
may not be efficient.

We say a random permutation is almost k-wise independent when it is (ϵ, k)-wise inde-
pendent for sufficiently small ϵ.
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We, using a result by [40] on switching networks, give a short lemma describing an efficient
construction of (ϵ, k)-wise independent permutations.

▶ Lemma 14 (Random permutations through switching networks). Let C be a power of 2, let
s be a natural number ≤ C, and let ϵ > 0. For r = O(s(log C)4 log 1

ϵ ), there is a map f from
{0, 1}r to SC so that, if U is a uniformly random string of r bits, then σ = f(U) is an (ϵ, s)
wise independent random permutation.

Furthermore, for any i ∈ [C] and u ∈ {0, 1}r, with σ = f(u), we can evaluate σ(i) and
σ−1(i) in O(s(log C)4 log 1

ϵ log C) time.

3 Technical Overview

In this section, we give a high-level overview of our algorithms and techniques. We see these
techniques as a major contribution of the paper since many of them are used for the first
time in the context of W-streaming and online edge coloring. The proofs of our results are
given in the full version of this paper.

3.1 General Reductions

Reducing to bipartite case

We show that it is essentially enough to consider bipartite graphs. Suppose that we can
partition a general graph into O(log n) bipartite graphs, each of which has max-degree
roughly ∆/ log n, where ∆ is the max-degree of the original graph. Then, if we run our
algorithm on these bipartite graphs with disjoint palettes, we use colors roughly proportional
to ∆. It is known (see [21] or for a similar result, [43, Lemma 2.1]) that such a partition
can be done in a randomized way, incurring a multiplicative overhead of just 1 + o(1) in the
number of colors. In this work, we show that if we are willing to tolerate an O(1) blowup
in the number of colors, then this partition can be done deterministically. Since such a
primitive is used in multiple edge-coloring algorithms, this deterministic version might be
of independent interest. One advantage of this version is that it works against adaptive
adversaries, unlike the randomized version which can be shown to be breakable by such an
adversary.

We construct this partition using appropriate binary codes for the vertices: the codes
are of length O(log n) and we have a bipartite graph corresponding to each bit, where the
bipartition is given by whether the bit is 0 or 1. Now, we need to ensure that (a) every edge
goes to “some” bipartition, and (b) the max-degree of a single bipartite graph is not much
higher than ∆/ log n. This can be done using codes with constant rate and relative distance,
like the expander codes described by [45]. Now we can focus on getting O(∆)-colorings
for bipartite graphs, which would give us asymptotically same number of colors for general
graphs.

Note that for the vertex-arrival model, we can go one step farther and assume “one-sided”
vertex arrival, i.e., vertices along with their incident edges arrive on only one side of the
bipartite graph. This is because we can run two copies of the algorithm, one each for the
vertices arriving on either side, with disjoint palettes. This incurs only a factor of 2 in the
number of colors.
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Space-color tradeoff for multigraphs

We show with Lemma 5 that if an algorithm can handle multigraphs, then we can smoothly
tradeoff colors with space. This is one of our motivations behind extending our algorithms
to multigraphs. Recall that we reduce the problem to just bipartite graphs. Now the idea for
the tradeoff is simple: we arbitrarily group t nodes (for some parameter t) from the same
partite set together as a single supernode. Since the vertices on the same partite set do not
share any edges, there are no edges inside a supernode. Then, the resulting multigraph has
no self-loops, but any pair of supernodes can have multiple edges between them. Observe
that the max-degree can now increase to ∆t, where ∆ is the max-degree of the original graph.
Thus, if we have an S(n, ∆)-space f(∆)-coloring algorithm for multigraphs, then we can
turn it into an S(n/t, ∆t)-space f(∆t)-coloring algorithm. In particular, our Õ(n

√
∆)-space

Õ(∆)-coloring algorithm from Theorem 3 generalizes to an Õ(n
√

∆/t)-space Õ(∆t)-coloring
for any 1 ≤ t ≤ ∆. We generalize most of our algorithms to multigraphs and establish such a
tradeoff.

3.2 Randomized Online Algorithms

Randomized online algorithm for vertex arrivals

Recall the simple greedy algorithm for online (2∆− 1)-coloring: we assign each incoming
edge a color that is not already taken up by any of its adjacent edges. However, even
in the one-sided vertex arrival model, to naively implement this algorithm, we need to
remember the colors assigned to edges incident on each vertex on the “fixed” side, and hence,
essentially colors assigned to all previous edges. This needs O(n∆) space, and hence, the
greedy algorithm doesn’t seem to help in getting low-memory algorithms.

Algorithm 1 Randomized algorithm for 5∆-coloring under one sided vertex arrivals.

Input: Stream of vertex arrivals of n-vertex graph G = (A ⊔B, E)

Initialize:
1: Let C = 5∆.
2: for v ∈ B do
3: Let σv be a uniformly random permutation over [C] ▷ constructed on demand from

random oracle bits
4: hv ← 1. ▷ counter for vertex v

Process(vertex x ∈ A with multiset Mx of edges)
5: Let Sx ← ∅ ▷ set of colors Mx will have used so far
6: for e = {x, y} in Mx, in arbitrary order do

▷ Increase counter for y to next value with color σy[hy] not already used, if possible
7: while (hy ≤ C) ∧ (σy[hy] ∈ Sx) do
8: hy ← hy + 1 ▷ increment counter for y

9: if hy > C then ▷ counter exceeded 5∆
10: abort
11: Assign color σy[hy] to e ▷ if this line is reached, current color must be unused; assign

to e

12: Sx ← Sx ∪ {σy[hy]} ▷ add assigned color to set of used colors
13: hy ← hy + 1 ▷ increment counter for y
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We observe, however, that for the vertex-arriving side, it is enough to remember only
the colors assigned to edges on the “current” vertex so as to ensure no conflict among these
edges. We shoot for a semi-streaming, i.e., Õ(n) space algorithm, and hence can afford to
store the entire edge set of the current vertex with the assigned colors. To ensure that there
is no color-conflict on the fixed side, we resort to random permutations. On each such vertex
v, we have a random permutation σv of [5∆] and a counter hv. When an edge {a, b} arrives
with b on the fixed side, we look at the color at the hbth index of σb. If that color is already
taken by any edge incident on a (whose colors we explicitly store), then we increment the
counter hb. We continue this until we find an available color and increment the counter.
The random permutations ensure (i) no color will be repeated on any fixed vertex (since a
permutation takes distinct counter values to distinct colors) and (ii) with high probability,
none of the counters can exceed 5∆.6 Intuitively, the slack in the number of colors ensure
that for a single edge, an available color is reached within a constant counter increment in
expectation. Hence, the ∆ edges incident on a vertex can increase its counter to at most
O(∆) in expectation. Since we only store a counter for each vertex whose value can go up to
O(∆), the space usage is Õ(n). Thanks to the reductions discussed above, we can extend
this to a semi-streaming7 O(∆)-coloring for the general vertex arrival case, even for general
graphs.

Randomized algorithm for online edge arrivals

When handling edge arrivals for simple graphs, our goal on receiving an edge {u, v} is to
assign a color that has not been used by any edge incident on u or on v. As precisely tracking
the set of available colors for any given vertex requires Ω(∆) space, we will instead keep
track of a subset of the available colors for a vertex, and choose colors for edges in a way
that limits the amount of information we must store.

Algorithm 2 Storing free regions from a permutation.

F ←InitFreeTracker(C,s,∆,σ): ▷ Assume C,s,∆ are powers of two, C ≥ ∆, C ≥ s,
and σ ∈ SC

1: H ← [s] be a subset of [s]
2: b← 1 be a counter with range from 1 to C/s

Interpreting F as subset of [C]
3: return σ[H + (b− 1)s]

F .RemoveAndUpdate(c) ▷ This will only be called with c ∈ F

4: H ← H \ {σ−1(c)}
5: if |H| ≤ s− s∆/C then ▷ Switch to next block
6: H ← [s]
7: b← b + 1

Specifically, for each vertex v in the graph, we associate a uniform and independently
chosen random permutation σv over the set [C] of colors, where C = O(∆) is the number of
colors used. When edges incident on v arrive, we will choose colors by very roughly increasing

6 This algorithm essentially discards colors that it skips over. We suspect one can obtain a semi-streaming
(2∆ − 1)-edge-coloring, or better, by retaining and promptly using the skipped colors in some fashion.

7 Not counting random oracle bits. To implement without oracle randomness, choose each permutation
independently from an almost O(log n)-wise independent distribution over permutations.
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order in σv. Specifically, we split σv up into a sequence of disjoint blocks Pv,1, . . . , Pv,C/s

of size s = O(
√

∆ log n) each. At any given time, the algorithm have an integer bv so that,
all colors in blocks from Pv,1 up to Pv,bv−1 are assumed unsafe to use; none of the colors in
Pv,bv+1, . . . , Pv,C/s have been used; and the set Fv of colors in Pv,bv

that are still available is
tracked exactly. Pseudocode for updating this state is given in Algorithm 2; it will ensure
that |Fv| ≥ s(1−∆/C). Whenever an edge {x, y} arrives, the algorithm (Algorithm 3) will
assign it a random color in Fx ∩ Fy. We will prove that, since Fx and Fy have size close to s,
and only a ∆/C fraction of (biased) random elements from Px,bx

and Py,by
will have been

used/excluded from Fx and Fy, the intersection of Fx ∩Fy will have size Ω(s2/C) = Ω(log n)
with high probability. Thus, our algorithm will w.h.p. be able to pick a color for the edge
{x, y}.

Algorithm 3 Randomized algorithm for O(∆) edge coloring for simple graph edge arrival streams.

Input: Stream of vertex arrivals n-vertex graph G = (V, E)
Assume ∆ is a power of two, and ∆ = Ω(log(n/δ))
δ is the maximum failure probability over all input streams

Initialize:
1: Let C = 128∆ and ϵ = δ

16n3

2: Let s be the least power of two which is ≥ 128
√

∆ log(n/δ)
3: for v ∈ V do
4: σv ← permutation drawn from the (ϵ, s)-wise independent distribution over SC from

Lemma 14
5: Fv ← InitFreeTracker(C, s, ∆, σv)

Process(edge {x, y}) → color
6: if Fx ∩ Fy = ∅ then
7: abort
8: Let c be chosen uniformly at random from Fx ∩ Fy.
9: Fx.RemoveAndUpdate(c)

10: Fy.RemoveAndUpdate(c)
11: return color c

Keeping track of the available colors for each vertex will use Õ(
√

∆) space per vertex.
We will choose the random permutations from an (ε, s)-wise independent distributions (see
Definition 13). We show in a technical lemma that there is a particular such distribution
whose permutations can be encoded using Õ(

√
∆) space each, and for which sampling and

permutation evaluation are efficient. In total over all vertices, we will use Õ(n
√

∆) space for
our algorithm.

3.3 Deterministic Online Algorithms
Derandomization of online vertex arrival

When a vertex a and its neighboring edges are processed, the randomized online vertex
arrival algorithm is greedily finding an assignment for each edge incident on a to the next
few available colors on the “fixed” vertex at the other endpoint. While this greedy selection
works acceptably in the average case, it does not provide strong worst-case guarantees: with
Ω(1/ poly(n)) probability, some vertex adjacent to a will increase its counter by Ω(log n),
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thereby marking (“consuming”) Ω(log n) colors from its random permutation as unavailable.
Consequently, there is small but nonzero risk that a vertex will use up too many colors from
its random permutation and run out. In contrast, our deterministic algorithm for online
edge coloring for one-sided vertex arrivals (Algorithm 4) is designed to ensure that, for any
fixed vertex, the amortized number of colors consumed per edge incident on a fixed vertex is
always bounded by a constant.

First, instead of greedily coloring the edges incident to a, we explicitly construct a
matching in a bipartite graph between the set Ma of edges incident to a and the set of all
colors, where each edge {a, b} in Ma is linked to some of the colors that are known to be still
available for vertex b. This avoids the problem of the greedy color selection, where there was
always a small risk that for some vertex, all the next few colors in its random permutation
were used; although it has the risk that the matching might not exist. Fortunately, as
the number of color candidates per edge in Ma increases, the probability of there being
no matching shrinks rapidly. If there are no repeated edges in Ma, and if each edge has t

uniformly randomly chosen color candidates, the probability of there being no matching is
exp(−Ω(t|Ma|)).

Second, instead of using random permutations, the deterministic algorithm uses a certain
“good” array of permutations for which we are guaranteed that whenever we look for a
matching, one will exist. This relies on an additional modification: instead of having each
“fixed” vertex v keep track of a single counter hv, we store a set of ≥ t = Ω(log n) colors
known to still be available for vertex v, and periodically replace this set with a range of new
colors from the permutation σv. The exact details of the encoding ensure that each fixed
vertex has only O(poly n) possible states. Now, consider what happens when a vertex a

(with incident edge set Ma) arrives, assuming for simplicity that Ma has no repeated edges.
The number of possible configurations of states of vertices in N(a) will be exp(|Ma| log n). If
each vertex had a random permutation, the probability of there being no matching would be
exp(−Ω(|Ma| log n). By carefully adjusting parameters, we can ensure the product of these
two is exponentially small. Then by a union bound we can show that the probability (over
the random permutations) of any matching failing, for any set Ma and any associated vertex
state, is at most 1

2 . In other words, for a good choice of permutations, our algorithm would
always find a matching, in any state.

A notable problem is that storing each permutation would require Õ(∆) bits each.8 To
avoid this, we select the permutations from small, almost-k-wise independent families of
permutations, instead. This works, but requires a more careful analysis to prove correct, and
a large fraction of our proof is spent dealing with the interaction of this and support for
multigraphs.

Derandomization of online edge arrival

We did not find a way to directly derandomize the randomized algorithm for online edge
arrival. Instead, we created an algorithm (Algorithm 5) that manages to partially solve the
edge coloring problem, only assigning a color to a ≥ 1/3 fraction of the incoming edges, and
leaving the rest uncolored. Now, say we run O(log ∆) instances of this algorithm in parallel,
each using a distinct palette of O(∆) colors. When an edge arrives, we pass it to the first
instance of the algorithm, and if it wasn’t assigned a color, pass it to the second instance;

8 One could recompute individual “good” permutations on demand, instead of storing all of the permuta-
tions, but this has the risk of the computation itself requiring Õ(n∆) bits of scratch space.
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Algorithm 4 Deterministic O(∆) edge coloring algorithm for one sided bipartite vertex arrivals.

Input: Stream of vertex arrivals for n-vertex graph G = (A ⊔B, E) of max degree ∆,
where ∆ is a power of 2

Initialize(δ):
Let C = 218∆.
Let s =

⌈
218 log n∆

δ

⌉
.

▷ To get a deterministic algorithm, fix “good” values of these permutations
▷ When the permutations are chosen randomly, with probability ≥ 1− δ the algorithm
will succeed on all inputs
Let (σv)v∈B be permutations drawn from an (ϵ = C−s−1, s)-wise independent distribution
over SC , using Lemma 14

1: for v ∈ B do
2: bv ← 1.
3: Qv ← [s].

Process(vertex x with multiset Mx of edges to B)
Let dx,y be the number of times edge {x, y} is in Mx

4: for each y ∈ B with dx,y > 0 do
5: if dx,y < 1

16 s then
6: Let Fy = (by − 1)s + Qy

7: else
8: Let Fy = ((by − 1)s + Qy) ⊔

[
bys + 1, bys +

⌈
64dx,y

s

⌉
s
]

9: Construct bipartite graph H from Mx to [C], edge e ∈Mx is linked to all c ∈ σy[Fy].
10: Compute an Mx-saturating matching P of H.
11: for each e ∈Mx do
12: Assign color P (e) to e

13: if dx,y < 1
16 s then

14: Remove σ−1
y (P (e))− (by − 1)s from Qy

15: for each y ∈ B with dx,y > 0 do
16: if dx,y < 1

16 s then
17: if |Qy| ≤ s− 1

217 s then
18: by ← by + 1
19: Qy ← [s]
20: else
21: Qy ← [s]
22: by ← by +

⌈
64dx,y

s

⌉
+ 1

and if that didn’t assign a color, pass it to the third instance, and so on. All in all, only a
≤ 1/ poly(∆) fraction of the input stream will fail to be colored by this process, and there
are few enough of these leftover edges that one can store them all and color them using O(∆)
colors. This approach uses O(∆ log ∆) colors in total.

The partial edge coloring algorithm itself uses an interesting trick. Let C be the number
of colors allowed. Each vertex v has an associated permutation σv ∈ SC , which is partitioned
into a number of blocks Pv,1, Pv,2, . . . of Õ(

√
∆) colors each. Whenever an edge {u, v} arrives,

it must be colored using a color in the set Pv,i ∩ Pu,j , where i and j depend on the degrees
of vertices v and u at the time. Parameters are set up so this set has size Ω(log n), and the
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Algorithm 5 (1/3)-partial O(∆) edge coloring algorithm for graph edge arrival streams.

Input: Stream of edge arrivals in n-vertex graph G = (V, E) of max degree ∆, where ∆
is a power of two

Initialize(∆,C,s):
▷ C: number of colors used; s: block size parameter
▷ As with Algorithm 4, a “good” set of permutations will exist, if C/∆ is large
(σv)v∈V are specific s-wise almost independent permutations

1: for v ∈ V do
2: Fv ← InitFreeTracker(C, s, ∆, σv). ▷ Defined in: Algorithm 2

Process(edge {x, y}) → Option<color> ∈ {⊥} ∪ [C]
3: if Fx ∩ Fy ̸= ∅ then
4: Choose c ∈ Fx ∩ Fy arbitrarily
5: Fx.RemoveAndUpdate(c, {x, y})
6: Fy.RemoveAndUpdate(c, {x, y})
7: return color c

8: else
9: return ⊥

algorithm knows which colors in Pv,i and Pu,j have been used so far. We prove that, if the
algorithm could preview the future of the stream, it could always pick the “right” color in
Pv,i ∩ Pu,j , and thereby find a valid edge coloring. On the other hand, without being able to
look at future edges, if one just greedily picks valid colors in Pv,i ∩ Pu,j that don’t conflict
with colors chosen earlier – assuming there are any – then the algorithm will color at least a
1/3 fraction of the edges.

Handling multigraphs in online edge arrival

Let us now turn to multigraphs. Note that the degree of a vertex takes into consideration
the multiplicity of each incident edge. Both the randomized online edge arrival algorithm
and what was described so far of the deterministic algorithm will fail when faced with input
streams that repeat edges. But looking more closely, both can tolerate some amount of
repeated edges – a given edge e could be repeated up to Õ(

√
∆) times, as long as it doesn’t

arrive too frequently. Specifically, as long as, for a given endpoint x of e, the substream of
edges incident on x does not contain e more than Õ(1) times in any interval of Õ(

√
∆) edges.

This is a consequence of the way the edge arrival algorithms rotate between blocks of colors
for each vertex.

On the other hand, the edges that would break the sketch, which repeat many times
within the last Õ(

√
∆) edges incident on a given vertex, are easy to detect using Õ(n

√
∆)

space. All one must do is keep track of the edges which recently arrived at a vertex, and
detect duplicates.

To handle the “bad” type of repeated edges, we maintain O(log ∆) modified instances of
an edge arrival algorithm. (In this paper, we use the basic deterministic online edge arrival
algorithm, but the same argument would work for the randomized one.) The first instance
processes all edges in the stream, filtering out the edges which it detects to have repeated
at least once. The repeated edges are sent to the second instance, which filters out edges
that it finds to have repeated twice, and sends those to the third instance. In general, the
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ith instance will receive edges which have been seen Θ(2i) times in the stream. (The exact
condition is a bit more complicated.) The ith instance is also modified to handle edges with
high repetition rates, assigning batches of colors to each edge type that it processes.

3.4 A Lower Bound
Space lower bound for online deterministic edge coloring

Our last notable result is a lower bound on the space needed for deterministic online edge
coloring algorithms, which use β∆ colors, for a constant β < 2. It applies in the one sided
bipartite vertex arrival setting, and thus automatically gives a lower bound for general vertex
and edge arrivals. Let B be the “fixed” set of vertices, and A the “arriving” set of vertices.
We prove the lower bound by reducing a deterministic, ∆-player, one way, communication
game to (deterministic, one-sided, bipartite, vertex arrival) online edge coloring.

In this game, each player receives a set of edges to color, and must immediately output a
coloring for the edges, before sending a message to the next player. Say that there are only
2o(n) possible messages. Each message corresponds to a collection of inputs which the player
could have received. One can show that each message “rules out” some of the colors for each
vertex v in B, so that, if the protocol is correct, future players cannot mark edges going to v

with one of the ruled out colors. Furthermore, there must be some message which has a large
number of associated inputs, and which rules out > β colors for each fixed vertex, on average.
As this can happen for each of the ∆ players, by the end of the protocol it is possible to
have ruled out > β∆ colors per vertex, on average, which contradicts the assumption that
the algorithm uses at most β∆ colors. Thus, there must be 2Ω(n) possible messages.
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