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Abstract

We propose a unifying framework for smoothed analysis of combinatorial local optimization problems,
and show how a diverse selection of problems within the complexity class PLS can be cast within
this model. This abstraction allows us to identify key structural properties, and corresponding
parameters, that determine the smoothed running time of local search dynamics. We formalize
this via a black-box tool that provides concrete bounds on the expected maximum number of steps
needed until local search reaches an exact local optimum. This bound is particularly strong, in the
sense that it holds for any starting feasible solution, any choice of pivoting rule, and does not rely
on the choice of specific noise distributions that are applied on the input, but it is parameterized by
just a global upper bound ϕ on the probability density. The power of this tool can be demonstrated
by instantiating it for various PLS-hard problems of interest to derive efficient smoothed running
times (as a function of ϕ and the input size).

Most notably, we focus on the important local optimization problem of finding pure Nash equilibria
in Congestion Games, that has not been studied before from a smoothed analysis perspective.
Specifically, we propose novel smoothed analysis models for general and Network Congestion Games,
under various representations, including explicit, step-function, and polynomial resource latencies.
We study PLS-hard instances of these problems and show that their standard local search algorithms
run in polynomial smoothed time.

Further applications of our framework to a wide range of additional combinatorial problems can
be found in the full version of our paper.
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1 Introduction

Local search heuristics are some of the most prominent, and widely used in practice, algorithms
for solving computationally hard, combinatorial problems [1, 15]. Their appeal stems not
only from their simplicity and theoretical elegance, but also from the fact that, for many
applications, they seem to perform remarkably well both in terms of their running time and
the quality of the solutions they produce.

Theoreticians have long tried to rigorously study the performance of local search, but also
explain its prevalence in practice. Johnson, Papadimitriou, and Yannakakis [13] introduced
the class PLS to capture the complexity of local optimization problems; since then, many
important such problems have been shown to be PLS-complete, implying that they most
likely cannot be solved (exactly) in polynomial time. This hardness applies not only to local
search algorithms, but to arbitrary local optimization methods. For local search, in particular,
PLS-hardness (under tight reductions) implies the provable existence of instances leading
to exponentially slow convergence [26]. Examples include the Travelling Salesman problem
under the k-Opt heuristic [14, 5] (TSP/k-Opt in the following), Local Maximum Cut on
weighted graphs [23] (LocalMaxCut), and the problem of finding pure Nash equilibria in
Congestion Games [10] (PNE-Congestion).

On the other hand, Orlin, Punnen, and Schulz [17] designed a local-search-based
polynomial-time scheme for efficiently computing approximately locally-optimal solutions
for general combinatorial optimization problems (with linear objectives). Although this
result provides concrete justification for the practical tractability of local optimization, there
are still many important aspects that call for further investigation. First, if one requires
exponential accuracy, their FPTAS still cannot provide polynomial running times. Secondly,
approximate solutions do not always make sense for all local optimization problems; there
are problems in PLS that are inherently exact and they are not derived by simply considering
the local version of some “master” global optimization problem. A notable example is
PNE-Congestion [19]. Finally, we would like to be able to argue about the more general
family of “vanilla” local search, and to ideally get positive results that do not depend on
additional details and specific choices of pivoting rules. Addressing these points is a key
objective of the present paper.

Smoothed analysis was introduced by Spielman and Teng [24] as a more realistic alternative
to traditional worst-case analysis, where now the adversarially selected input is submitted to
small random shocks of its numerical parameters, before being presented to the algorithm;
the running time is then measured in expectation with respect to these perturbations. Under
this model, Spielman and Teng were able to show that Simplex, the archetypical method
for solving linear programs, is guaranteed to terminate in polynomial time (under a shadow
pivoting rule) – as opposed to its exponential complexity under worst-case analysis. This
remarkable result established smoothed analysis as a canonical framework for studying the
performance of algorithms beyond the worst-case (see [20] for an overview of this field).

In particular, smoothed analysis has been applied successfully to important local search
algorithms, providing thus a theoretical basis for the justification of their good performance
in practice; these include, e.g., the k-Opt heuristic for TSP and the Flip heuristic for
LocalMaxCut. (A more detailed exposition of related work on this front is deferred to the
following sections of this paper, where each of our local optimization problems of interest
is explicitly studied; see, namely, Section 4 and [12, Sec. 5].) A common characteristic
of this prior work, though, is that running-time analysis is usually tailored specifically to
the local optimization problem at hand. This naturally creates the need for technically
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heavy derivations, from which it is generally not clear how to pin down the core properties
of the underlying local-search structure that allow for the efficient smoothed complexity.
Furthermore, as a result, it is often not easy to immediately generalize these results to
capture interesting extensions, e.g., argue about the asymmetric version of TSP, or go from
TSP/2-Opt to TSP/k-Opt. Finally, this lack of sufficient abstraction is one of the reasons
that smoothed analysis has not been yet considered at all for prominent PLS-hard problems,
including, e.g., PNE-Congestion. Dealing with this set of challenges is another driving
force behind our paper.

Our Results and Outline
We start by proposing an abstract model for smoothed analysis of combinatorial local
optimization (CLO) in Section 2. Our family of CLO problems includes problems in PLS
that have an arbitrary combinatorial neighbourhood structure and linear objective functions;
essentially, our model generalizes that of [17] beyond binary configurations. In Section 2.1,
we add our smoothness layer that introduces probabilistic noise (independently) to the cost
parameters of the CLO problem. No further assumptions are made on the distributions of the
perturbed costs; their densities are only parameterized by a global upper bound of ϕ. This
is a standard model (employed, e.g., in [3, 22, 8, 9]) that makes positive smoothed-analysis
results even stronger, and extends the seminal model of Gaussian perturbations from [24].

Section 3 contains our key technical result for deriving upper bounds on the expected
(under smoothness) number of local-search steps, until an exact local optimum is reached.
Our black-box tool (Theorem 2) can be readily applied to an abstract CLO problem, once its
underlying neighbourhood structure is appropriately captured; this is formalized through the
notion of separability (see Definition 1), quantified by a collection of three parameters that are
critical for the upper bound given by Theorem 2. We note here that our bounds are robust
against the specific choice of a starting point for the local search dynamics, as well as the
pivoting rule utilized at every step to transition to an improving neighbour. In other words,
our main black-box tool establishes bounds for the entire family of local search heuristics of
a local optimization problem. At a technical level, our proof works by lower-bounding the
probability that all steps of the local-search sequence improve sufficiently the objective.

In Section 4 we demonstrate the applicability of our general framework by instantiating it
for PNE-Congestion, a prominent PLS-complete problem which has not been studied before
from a smoothed analysis perspective. First, we propose smoothed analysis formulations
for various representations of interest for the problem, namely explicit, step-function, or
polynomial resource latencies. Next, after formally establishing how PNE-Congestion
is indeed a CLO problem in Section 4.1, we identify a natural parameterization of the
problem that we call B-restrained games (Section 4.2), where B is an upper bound on the
number of resources that can be changed during a single-player deviation (see Definition 5).
Interestingly enough, the case of constant B is still rich enough to encode the full PLS-
hardness of PNE-Congestion ([12, Appendix B]), while at the same time it can be shown
(see the proof of Theorem 6) to be appropriately separable in order to immediately provide
polynomial smoothed running time bounds via our black-box tool developed in Section 3.
Similarly, in Section 4.3 we also study a special class of network congestion games, which
we term (A, B)-compact (Definition 9); we establish polynomial smoothed complexity for
various families of instances, including the one where A is polynomial and B is constant
(Corollary 11), which we pair with a complementing PLS-hardness proof ([12, Appendix C]).

Finally, we apply our high-level framework to various other local optimization problems
of interest, by first formally establishing that they can be viewed as CLO problems and then
identifying the proper separability structures that can be plugged into our black-box tool to
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provide good smoothed bounds for local search. This not only unifies, and greatly simplifies,
prior existing positive results, but also allows us to extend or improve them. Notable examples
include: rederiving and strengthening the polynomial smoothed time for local Max-Cut, for
graphs with up to logarithmic degree, first given by Elsässer and Tscheuschner [7]; extending
the polynomial smoothed time, of Englert, Röglin, and Vöcking [8], for the 2-Opt heuristic
for the general (symmetric) Travelling Salesman problem (TSP), to k-Opt neighbourhoods
and to asymmetric TSP (ATSP); and improving the quasipolynomial smoothed time for
Network Coordination Games, by Boodaghians, Kulkarni, and Mehta [4], to polynomial for
constant-degree graphs.

Due to space constraints, the study of all these additional applications of our framework
is deferred to the full version of our paper [12].

2 Smoothed Combinatorial Local Optimization

In this section we formalize our model and fix the necessary notation.
We denote by N and R, the natural and real numbers, respectively. We also denote

N∗ := N \ {0} and [k] := {1, 2, . . . , k}, JkK := {0} ∪ [k] for k ∈ N. We will use boldface
notation for vectors, s = (s1, s2, . . . , sn) ∈ Rn. For an index i ∈ [n], we use s−i to denote
the (n − 1)-dimensional vector that results from an n-dimensional vector s if we remove its
i-component; in that way, we can express s as (si, s−i) in order to easily denote deviations in
the i-th component. More generally, for a set of indices I ⊆ [n], sI denotes the |I|-dimensional
vector that we get if we keep only the components of s whose indices are in I. For finite sets
I, I, we say that I is a cover of I if I ⊆

⋃
I′∈I I ′. All logarithms appearing in our paper are

of base 2.

Combinatorial local optimization (CLO)

An instance of a combinatorial local optimization (CLO) problem is composed of:

A set of feasible configurations S ⊆ JMKν × {0, 1}ν̄ , where M, ν ∈ N∗, ν̄ ∈ N. A
configuration s can be expressed as s = (s•, s◦), where s• = (s1, . . . , sν) ∈ JMKν is called
its cost part and s◦ = (sν+1, . . . , sν+ν̄) ∈ {0, 1}ν̄ its non-cost part.

A vector of costs c = (c1, c2, . . . , cν) ∈ [−1, 1]ν . We call the ci cost coefficients.1

A neighbourhood function N : S −→ 2S . For s ∈ S, any configuration s′ ∈ N(s) will be
called a neighbour of s.

For the special case of M = 1 we will call our problem binary.
The cost of a configuration s (with respect to a fixed cost vector c) is given by

C(s) := c · s• =
ν∑

i=1
cisi.

1 Note that the restriction of costs to the range of [−1, 1] has been made to facilitate the translation to
smoothed CLO problems below (see Section 2.1). In fact, due to the linearity of our objective, scaling c
by any positive constant does not change the structure of the problem, and we will implicitly use this
fact when formulating other problems as CLO problems.
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A configuration s is said to be a local optimum (minimum2) if there are no neighbours with
better costs; formally,

C(s) ≤ C(s′) for all s′ ∈ N(s). (1)

For every CLO problem we can define its configuration (or neighbourhood) graph, made
up by all edges pointing from configurations to their neighbours. Formally, it is the directed
graph G = (V, E) with node set V = S and edges E = {(s, s′) | s ∈ S, s′ ∈ N(s)}. Observe
that the configuration graph does not depend on the costs c, but only on the combinatorial
structure of the problem. Taking the cost vector c into consideration, we can now restrict
the configuration graph edges to those that correspond to locally improving moves, i.e. take
E′ = {(s, s′) ∈ E | C(s′) < C(s)}. The resulting acyclic subgraph G′ = (V, E′) is called
transition graph.

The transition graph provides an elegant and concise interpretation of local optimization:
finding a local optimum of a combinatorial (local optimization) problem translates to finding
a sink of its transition graph. This task is exactly the object of interest of our paper: we
study (the running time of) algorithms that find local optima of such problems.

Complexity

If the configuration set and the neighbourhoods N(·) were given explicitly in the input of
a local optimization algorithm, then finding a locally optimal solution would have been a
computationally trivial task: we could afford (in polynomial time) to exhaustively go over
all nodes of the transition graph, until we find a sink. Notice that the existence of a sink is
guaranteed, by the fact that S is finite. However, most problems of interest (including all
the problems that we study here) have exponential-size configuration graphs, with respect
to the dimension ν + ν̄ of the problem. Therefore, S and N are usually instead described
implicitly, via some succinct representation (that is polynomial on ν, ν̄ and M). Then, the
computational complexity of our algorithms is naturally measured as a function of the critical
parameters ν, ν̄ and M (and the bit representation of the costs c).

Polynomial local optimization (PLS)

In this paper we want to study problems contained in PLS, the “canonical” complexity class
for local optimization problems, introduced by Johnson, Papadimitriou, and Yannakakis [13].
Therefore, without further mention, from now on we will assume that our CLO problems
further satisfy the following properties:

An initial configuration s0 ∈ S can be computed in polynomial time (on the size of the
input).
There exists a polynomial-time algorithm that, given as input any configuration s, decides
whether s is a local optimum and, if not, returns an improving neighbour s′ ∈ N(s) with
C(s′) < C(s). Such an algorithm is called pivoting rule.

It is important to clarify that the polynomial time algorithms of the bullets above are
formally not part of the description of the CLO problem, neither are they required to be
specified in the input of a local optimization algorithm. The existence of these algorithms is

2 Here we choose to write the local optimality condition with respect to minimization problems. All the
theory developed in this paper applies immediately to local maximization problems as well: just flip the
inequality in (1) or, equivalently, negate the cost vector c.

ICALP 2024
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merely a requirement for the membership of the problem in the class PLS (similarly to the
existence of short certificates and an efficient verifier for membership in NP). As a result,
PLS can be interpreted as the class of problems that correspond to looking for a sink in an
(implicitly given, possibly exponentially large) directed acyclic graph3, where at least one
node can be found efficiently and, for any given node, at least one neighbour (if such exists)
can be found efficiently [6, 11].

This interpretation naturally gives rise to the standard local search heuristic: start
from an arbitrary initial configuration, and at every iteration perform an (arbitrary4) locally
improving move until no such move exists anymore. For a fixed pivoting rule, this corresponds
to traversing a single path of the transition graph. Due to the definition of PLS membership
above, the running time of such a process is thus determined by the number of these local
search iterations. In the worst case, this amounts to bounding the length of the longest path
in the transition graph.

It is important to emphasize that, regardless of being a very natural heuristic, standard
local search is definitely not the only method for finding local optima: as a matter of fact,
we know that there exist local optimization problems that are efficiently solvable via more
involved, “centralized” methods (e.g., by using linear programming), but for which standard
local search would provably require exponential time (see, e.g., [2]): more precisely, there
exist nodes in their transition graphs from which all paths have exponential length [23].

To assert the intractability of a problem, the common argumentation is via complexity
theory techniques that prove the conditional inexistence of polynomial time algorithms. If a
problem is PLS-hard, then unless PLS = P, there is no algorithm that solves it in polynomial
time under traditional worst-case analysis. However, since we are studying the performance
of local search heuristics, we are in fact interested in specifically their running time. Schäffer
and Yannakakis [23] introduced the notion of a stronger reduction among problems in PLS,
named tight PLS-reduction, which preserves key structural properties of the initial instance
to the target-problem’s instance. An important implication of an initial-problem P having a
tight PLS-reduction to target-problem Q is the following: for any instance I of P , a path
in the transition graph of the corresponding reduced instance J of Q induces a path of I

of length no larger than its own. In particular, if for an instance I there exists a starting
configuration from which all paths to solutions are exponentially long, this also applies to
the reduced instance J . We show that all the problems we study have this property, either
by referring to explicit bad instances for the problem at hand, or through (chains of) tight
reductions, which we construct if they haven’t been established before.

For a more thorough treatment of the complexity of local optimization and the class PLS,
the interested reader is referred to the excellent monograph of Yannakakis [26].

2.1 Smoothed Combinatorial Local Search
Under traditional, worst-case algorithmic analysis, the running time of an algorithm for a
CLO problem would be evaluated against an adversarially selected cost vector c = (c1, . . . , cν).
Instead, our goal here is to propose a systematic smoothed analysis [25, 21, 20] framework
for local optimization. Therefore, for the remainder of this paper we assume that c is
not fixed, but drawn randomly from a product distribution. More specifically, each cost
coefficient ci is drawn independently from a continuous probability distribution with density

3 This is the transition graph mentioned earlier.
4 Thus, standard local search is essentially a family of algorithms; different pivoting rules can give rise to

different local search algorithms.
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fi : [−1, 1] −→ [0, ϕ], where ϕ ≥ 1
2 . These distributions can be adversarially selected,

but their realizations ci are not; the running time is then computed in expectation with
respect to the random cost vector c. An efficient algorithm runs in time polynomial in
the combinatorial-structure parameters ν, ν̄ and M of the problem, and in the smoothness
parameter ϕ. We will sometimes refer to this model as smoothed CLO, if we want to give
particular emphasis to the fact that we are performing a smoothed running time analysis (as
opposed to worst-case analysis).

In that sense, smoothed analysis can be seen as interpolating between two extremes: an
average-case analysis setting where all ci’s are drawn i.i.d. from a uniform distribution over
[−1, 1], derived for ϕ = 1

2 ; and traditional worst-case analysis that can be derived in the
limit, via ϕ → ∞, as distributions fi approximate adversarial, single-point-mass instances.

In this paper we focus on smoothed analysis for standard local search, and so our quantity
of interest will be the expected number of improving moves (for any set of adversarially given
input distributions) until a local optimum is reached; that is, the expected length of the
longest path in the transition graph. This allows us to also avoid some delicate representation
issues that are typical of smoothed analysis, and which have to do with how the realizations ci

of continuous distributions (which therefore produce irrational numbers almost surely) can be
handled as inputs to a Turing-machine-based computational model. For a careful discussion
about this topic we point to the papers of Beier and Vöcking [3] or Röglin and Vöcking [22].
In a nutshell, for our purposes it is safe to think of the polynomial-time improving-local-move
oracle (from the PLS definition) as having access to real-number arithmetic.

3 Smoothed Analysis of Local Search

In this section we present our first main result, which is a black-box tool for upper-bounding
the number of improving moves of standard local search, under smoothed analysis. To achieve
this, we first highlight an appropriate underlying structure of CLO problems and identify
key parameters that characterize it (see Definition 1). Then, our bounds for standard local
search are directly expressed as a function of these parameters (see Theorem 2). As we will
demonstrate in Sections 4.2 and 4.3, and [12, Sec. 4.2], for various CLO problems of interest
these parameters are well-behaved enough to result in polynomial smoothed running times.

We now introduce some terminology and notation that will be necessary for stating our
main result in Theorem 2. Fix an instance of a CLO problem with cost coordinates [ν] and
configurations S (see Section 2), and let G = (S, E) be its neighbourhood graph. A covering
(E , I) of this instance consists of a cover E of the edges of its neighbourhood graph, and a
cover I of its cost coordinates. That is, E ⊆ 2E and I ⊆ 2[ν] such that E =

⋃
E′∈E E′ and

[ν] =
⋃

I∈I I. We call E the transition cover and I the coordinate cover and they contain
transition clusters and coordinate clusters respectively. Recall that, under our previous
discussion (see Section 2), E can be simply interpreted as covering all potential configuration
transitions that can be made by standard local search, clustered appropriately in different
groups T ∈ E . For an arbitrary set of such transitions T ⊆ E, we also define its core to be
the set of coordinates affected by any of the transitions:

core(T ) := {i ∈ [ν] | s•
i ̸= s′•

i for some (s, s′) ∈ T } ,

and its diversity with respect to a given set of coordinates I ⊆ [ν] to be the number of
different configuration changes when projected to I:

δI(T ) := |rangeI(T )| , where rangeI(T ) := {s•
I − s′•

I | (s, s′) ∈ T } .

ICALP 2024
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▶ Definition 1 ((λ, β, µ)-separable instances). An instance of a CLO problem is called
(λ, β, µ)-separable if it has a covering (E , I) with |E| ≤ λ, such that any transition cluster
T ∈ E:
(a) has a core that can be covered by using β many coordinate clusters from the cover I;

formally, there exists a IT ⊆ I with |IT | ≤ β such that core(T ) ⊆
⋃

I∈IT
I, and

(b) has at most µ diversity with respect to all coordinate clusters; formally, maxI∈I δI(T ) ≤ µ.

▶ Theorem 2. On any (λ, β, µ)-separable smoothed combinatorial local optimization instance,
standard local search terminates after at most

3 · µβλ · ν2M log(M + 1) · ϕ

many steps (in expectation).

For the proof of Theorem 2 we will need the following technical lemmas. Their proofs
can be found in [12, Appendix A]. We would like to highlight the fact that the structural
quantities (λ, β, µ) appear as the expression µβλ in the statement of the theorem and are
the deciding quantities for the running time complexity of the problem, as evidenced in the
applications further below. As the choice of the covering is not unique (and often even allows
for more than just one natural choice), this exact expression helps to explain the quantitative
interaction between the properties of the covering.

▶ Lemma 3. Let I ⊆ [ν] be a set of cost coordinates and J ⊆ 2[ν] be a cover of I, i.e.
I ⊆

⋃
J∈J J . Then, for any set of transitions T ⊆ E,

δI(T ) ≤
∏

J∈J
δJ(T ).

▶ Lemma 4. Fix some ϕ > 0 and let X = (X1, X2, . . . , Xm) be a random real vector,
where each component Xi is drawn independently from a continuous distribution with density
fi : R −→ [0, ϕ]. Then, for any nonzero vector ξ ∈ Rm and any ε ≥ 0,

Prob [0 ≤ ξ · X ≤ ε] ≤ min
(

1
∥ξ∥∞

,

√
2

∥ξ∥2

)
· εϕ, (2)

where ∥·∥2 and ∥·∥∞ denote the Euclidean and maximum norms, respectively. For the special5
case where ξ is a (nonzero) integer vector we get

Prob [0 ≤ ξ · X ≤ ε] ≤ εϕ. (3)

Proof of Theorem 2. Fix a (λ, β, µ)-separable smoothed CLO instance, with neighbourhood
graph G = (S, E), and let (E , I) be a covering satisfying the conditions of Definition 1.

We introduce the following notation:

∆(s, s′) :=
{

C(s) − C(s′), if this is positive,

∞, otherwise,

5 In this paper we will be actually making use of Lemma 4 only via its weaker bound (3), rather than the
stronger form (2). This is sufficient for our purposes because, as it turns out, this has an asymptotically
negligible effect on our bounds. However, we still choose to state (and prove) Lemma 4 in its full
generality, since we expect it to be of potential independent interest for future extensions, especially if
one considers more involved structures, or non-integral configurations.
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for all (s, s′) ∈ E, and

∆ := min
(s,s′)∈E

∆(s, s′).

Notice that these are random variables, depending on the realizations of the cost vector c.
Our first goal is to give a bound on the probability that there exists a local move that

improves the cost only by (at most) ε > 0, as a function of this improvement bound ε.
If this quantity is sufficiently small, then with high probability, standard local search will
achieve improvements more than ε at every step, thus resulting in faster convergence. To
upper bound this probability Prob [∆ ≤ ε], we first use a union bound over the cover E of all
transitions (s, s′) ∈ E to get

Prob [∆ ≤ ε] = Prob

 ⋃
(s,s′)∈E

[∆(s, s′) ≤ ε]

 ≤
∑
T ∈E

Prob

 ⋃
(s,s′)∈T

[∆(s, s′) ≤ ε]

 . (4)

Next, for a fixed transition cluster T ∈ E we can express the inner union of events in (4) as⋃
(s,s′)∈T

[∆(s, s′) ≤ ε] =
⋃

(s,s′)∈T

[
0 < ccore(T ) ·

(
score(T ) − s′

core(T )

)
≤ ε

]
=

⋃
x∈rangecore(T )(T )

[
0 < ccore(T ) · x ≤ ε

]
. (5)

By the separability assumption of our CLO instance (see Definition 1), for any cluster T ∈ E
there exists a subset IT of I with |IT | ≤ β that covers core(T ) such that, additionally,
maxJ∈IT

δJ(T ) ≤ maxI∈I δI(T ) ≤ µ. So, from Lemma 3 we can deduce that∣∣∣rangecore(T )(T )
∣∣∣ = δcore(T )(T ) ≤

∏
J∈IT

δJ(T ) ≤ µβ .

Furthermore, observe that each x ∈ rangecore(T )(T ) is a nonzero integral vector. Thus,
applying (3) of Lemma 4 we can derive that, for a fixed x ∈ rangecore(T )(T ), we have

Prob
[
0 < ccore(T ) · x ≤ ε

]
≤ ϕε.

Therefore, using again a union bound, this time on event (5), we can see that

Prob

 ⋃
(s,s′)∈T

[∆(s, s′) ≤ ε]

 ≤
∑

x∈rangecore(T )(T )

Prob
[
0 < ccore(T ) · x ≤ ε

]
≤ µβϕε.

Plugging this into (4), and using again the separability of our instance, we can finally bound
our desired probability

Prob [∆ ≤ ε] ≤ λµβεϕ. (6)

Now we continue with the second part of the proof, in which we utilize the probability
bound in (6) to derive a concrete bound on the expected number of iterations of standard
local search. Let T denote the random variable of that maximum length among all paths in
the transition graph of our instance. Then, our goal is to bound E [T ].

Recall that the number of different possible cost-part configurations is trivially upper-
bounded by (M + 1)ν . Also, at every step of standard local search, the configuration cost is
strictly decreasing. Thus T ≤ (M + 1)ν and, furthermore, since the range of configuration
costs is within [−Mν, Mν], and the minimum cost improvement of any iteration is ∆, we
also know that T ≤ 2Mν

∆ holds. Using these, we get
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E [T ] =
(M+1)ν∑

t=1
Prob [T ≥ t]

≤
(M+1)ν∑

t=1
Prob

[
∆ ≤ 2Mν

t

]

≤ 2λµβϕMν

(M+1)ν∑
t=1

1
t
, due to (6),

≤ 2λµβϕMν
3
2 log(M + 1)ν , since 1 + 1

2 + · · · + 1
n

≤ 3
2 log n ∀n ≥ 2,

= 3µβλϕν2M log(M + 1). ◀

4 Smoothed Analysis for Congestion Games

Congestion games are composed of finite nonempty sets of players N = [n] and resources R.
Each player i ∈ N has a strategy set Σi ⊆ 2R and each resource r ∈ R has a cost (or latency)
function κr : [n] −→ R≥0. Each (pure) strategy profile (or outcome) σ = (σ1, . . . , σn) ∈ Σ :=
Σ1 × · · · × Σn induces a load on each resource r, equal to the number of players that use it:

ℓr(σ) := |{i ∈ N | r ∈ σi }| .

Then, the cost of player i is the total cost she experiences from all resources that she is using:

Ci(σ) :=
∑
r∈σi

κr(ℓr(σ)).

An (exact) pure Nash equilibrium (PNE) is an outcome σ∗ from which no player can improve
her cost by unilaterally deviating. Formally, for any player i ∈ N and any deviation σ′

i ∈ Σi:

Ci(σ∗) ≤ Ci(σ′
i, σ∗

−i).

Thus, if a strategy profile σ is not a PNE, there has to exist a player i and a deviation
σ′

i ∈ Σi that reduces her cost, i.e.

Ci(σ′
i, σ−i) < Ci(σ).

Such a strategy σ′
i is then called a better-response (of player i with respect to the profile σ).

By the seminal work of Rosenthal [18] we know that function Φ : Σ −→ R≥0 defined by

Φ(σ) =
∑
r∈R

ℓr(σ)∑
ℓ=1

κr(ℓ) (7)

and commonly referred to as Rosenthal’s potential, has the property that

Ci(σ′
i, σ−i) − Ci(σ) = Φ(σ′

i, σ−i) − Φ(σ) ∀σ ∈ Σ ∀i ∈ N ∀σ′
i ∈ Σi.

In other words, function Φ is an (exact) potential [16] of the corresponding congestion game.
This implies that PNE of a congestion game correspond exactly to the set of local minimizers
of its Rosenthal’s potential (7), meaning that Φ(σ∗) ≤ Φ(σ′

i, σ∗
−i) for any player i and any

deviation σ′
i ∈ Σi. This also immediately establishes the existence of PNE in all congestion

games, since the potential function Φ(σ) can only take finitely many different values.
Depending on the type and representation of the cost functions, different classes of

congestion games can arise. Below, we describe three prominent ones which we will focus on
in this paper:
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General. The cost functions are given explicitly as a list of nonnegative values, one for
each possible load on the resource; (κr(1), κr(2), . . . , κr(n)). Notice how in this model
we do not impose a monotonicity constraint; this is deliberate, to maintain full generality.
If one wants to focus on nondecreasing cost functions (as is many times the case in the
literature), then the step-function representation (see below) can easily be used instead.
Polynomials (of degree d). The cost functions are polynomials of maximum degree d ∈ N
with nonnegative coefficients. More specifically, the cost functions are given implicitly by
the coefficients {αr,j}r∈R,j∈JdrK ⊆ R≥0, where dr ≤ d, via

κr(ℓ) =
dr∑

j=0
αr,jℓj for all ℓ ∈ [n]. (8)

Step functions (with d break-points). The cost functions are nondecreasing, piecewise
constant, given by pairs of break-points and value-increases. More specifically, for each
resource r ∈ R there is a list of break-points Br ⊆ [n] and associated jumps {αr,j}j∈Br

. We
denote the number of break-points of a resource r by dr := |Br|, and we set d := maxr∈R dr.
Then, the cost functions are given via

κr(ℓ) =
∑

j∈Br∩[ℓ]

αr,j for all ℓ ∈ [n]. (9)

To the best of our knowledge, no smoothed analysis model has been established so far for
congestion games. In this paper, we propose and study the following perturbation semantics
for the aforementioned classes:

General congestion games. The costs κr(ℓ) are independently distributed according to
densities fr,ℓ : [0, 1] −→ [0, ϕ], for all r ∈ R and ℓ ∈ [n].
Polynomial games. The coefficients αr,j are independently distributed according to
densities fr,j : [0, 1] −→ [0, ϕ], for all r ∈ R and j ∈ JdrK.
Step-function games. The jump increases αr,j are independently distributed according
to densities fr,j : [0, 1] −→ [0, ϕ], for all r ∈ R and j ∈ Br. Notice, however, that the
break-points Br themselves are not subjected to any noise, and they are assumed to be
fixed (and adversarially selected).

4.1 Nash Equilibria as Combinatorial Local Optimization Problems
We now show how PNE-Congestion, the problem of finding a pure Nash equilibrium in
congestion games, can actually be interpreted as a combinatorial local optimization problem
(with respect to our definitions in Section 2.1), for any of the cost models described above.
For all models, their randomness semantics translate directly to the respective randomness
of cost coefficients in the smoothed CLO problem.

General congestion games. By (7) we know that PNE correspond exactly to local
minimizers of the potential function Φ(σ) =

∑
r∈R

∑ℓr(σ)
j=1 κr(j). Therefore, finding a

PNE of a general congestion game can be viewed as a binary (M = 1) CLO problem,
with cost dimension ν = |R| n (the cost coordinates are given by R × [n]), where each
strategy profile σ is mapped to a cost configuration s• = (sr,j)r∈R,j∈[n] given by the
indicator functions:

sr,j = 1 [j ≤ ℓr(σ)] . (10)

The CLO cost coefficients are given by cr,j = κr(j).
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Furthermore, we want to establish a one-to-one correspondence between configurations s

of the CLO problem and strategy profiles σ of our congestion games where, in partic-
ular, the neighbours of s are exactly the configurations corresponding to single-player
deviations {(σ′

i, σ−i)}i∈N ,σ′
i
∈Σi

. In that way, better-responses of the congestion game
would correspond exactly to local improvements in the CLO formulation. However, this
cannot be achieved by using just the cost part defined above by (10), since in that case,
different strategy profiles may end up being mapped to the same cost part configuration
(when they induce the same resource loads). To overcome this technical pitfall, we also
maintain a non-cost part s◦, which keeps track of the actual strategies of the players:
this can be easily achieved, with only an additional polynomial size burden.6
Finally, notice that the neighbourhoods of the CLO problem we created can be explicitly
listed and efficiently searched for a better (smaller cost) value: they have a maximum size
of n · maxi∈N |Σi|, which is polynomial in the description of the original congestion game.
Polynomial games. Using (8), Rosenthal’s potential (7) can now be written as

Φ(σ) =
∑
r∈R

ℓr(σ)∑
ℓ=1

dr∑
j=0

αr,jℓj =
∑
r∈R

dr∑
j=0

αr,j

ℓr(σ)∑
ℓ=1

ℓj =
∑
r∈R

dr∑
j=0

αr,jSj(ℓr(σ)),

where

Sj(ℓ) :=
ℓ∑

k=1
kj ≤ ℓj+1 ≤ ℓd+1 ≤ nd+1

for any ℓ ∈ N. This induces a CLO problem with parameters

ν =
∑
r∈R

(dr + 1) ≤ |R| (d + 1) and M = nd+1,

with each strategy profile σ corresponding to a cost configuration s• = (sr,j)r∈R,j∈JdrK
given by:

sr,j = Sj(ℓr(σ)).

The costs coefficients are given by cr,j = αr,j . Notice that again all neighbourhoods are
efficiently searchable since they have a polynomial maximum size of n · maxi∈N |Σi|.
Step-function games. Using (9), Rosenthal’s potential (7) can now be written as

Φ(σ) =
∑
r∈R

ℓr(σ)∑
ℓ=1

∑
j∈Br∩[ℓ]

αr,j =
∑
r∈R

∑
j∈Br∩[ℓr(σ)]

(ℓr(σ) − j + 1)αr,j

=
∑
r∈R

∑
j∈Br

max(0, ℓr(σ) − j + 1)αr,j .

This induces a CLO problem with dimension

ν =
∑
r∈R

|Br| =
∑
r∈R

dr ≤ |R| d and M = n,

with each strategy profile σ corresponding to configuration s• = (sr,j)r∈R,j∈[dr] given by

sr,j = max(0, ℓr(σ) − Br(j) + 1),

6 E.g. we can choose ν̄ = |N | and let s◦
i ∈ [|Σi|] be the index of strategy σi deployed by player i in profile

σ. To simplify our exposition, in the remaining congestion game classes studied below, we will avoid
explicitly discussing these non-cost parts; they are identical to the general congestion game model.
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where we use Br(j) to denote the j-th break-point7 of resource r. The costs are given by
cr,j = αr,Br(j). Again, it is straightforward to see that all neighbourhoods are efficiently
searchable.

4.2 Restrained Congestion Games
Although congestion games are guaranteed to have (at least one) PNE, the computational
problem of actually finding one is considered hard; as a matter of fact, the problem PNE-
Congestion is one of the most prominent PLS-complete problems. Our goal in this section
is to investigate whether this computational barrier can be bypassed, under the lens of the
more optimistic complexity model of smoothed analysis.

To achieve this, we establish an upper bound (Theorem 6) on the expected number of
better-responses that need to be performed until a PNE is found in a congestion game, as a
function of a critical structural parameter of its action space that we identify (see Definition 5).
Then, we can deduce that for congestion games in which this parameter is appropriately
bounded, the smoothed running time becomes tractable (Corollary 7). At the same time, we
show how such a restriction does not make the problem trivially tractable, by proving that
PNE-Congestion remains PLS-complete even for this subclass of games (Theorem 8).

▶ Definition 5 (Restrained Congestion Games). A congestion game will be called B-restrained,
where B ∈ N, if the maximum number of resources changed by any single-player deviation is
at most B. Formally,

max
i∈N

max
σ,σ′∈Σi

|σ△σ′| ≤ B,

where △ denotes the standard symmetric difference operator (recall that σ, σ′ are subsets of
resources).

▶ Theorem 6. Consider a B-restrained n-player congestion game, under any of the smoothed-
analysis models described in Section 4 (namely general, polynomial, or step-function latencies),
with maximum density parameter ϕ. Then, performing any better-response dynamics, starting
from an arbitrary strategy profile, converge to an (exact) PNE of the congestion game in an
expected number of iterations that is bounded by

O
(
nB+3k2m2ϕ

)
for general games,

O
(
nB+d+2 log(n)(d + 1)3k2m2ϕ

)
for polynomial games with degree at most d, and

O
(
(d + 1)B+2n2 log(n)k2m2ϕ

)
for step-function games with at most d break-points,

where m = |R| is the number of resources and k = maxi∈N |Σi| is the maximum strategy set
size.

Proof. In Section 4.1 we already showed how congestion games can be interpreted as CLO
problems. In particular, we established a one-to-one correspondence between better-responses
of the players to local improvements of the CLO cost objective (which corresponds to the
value of Rosenthal’s potential). Using this interpretation, we can now make use of our
main black-box tool from Section 3: bounding the expected number of local search steps
will induce the same bound in the expected iterations of better-response dynamics in the
original congestion game. Therefore, the gist of our proof is to construct coverings (E , I) so
that the induced CLO problem can be shown to be (λ, β, µ)-separable (see Definition 1) for
parameters with appropriately small magnitude.

7 That is, if Br = {b1, b2, . . . , bdr
} ⊆ [n], then Br(j) = bj , for any j ∈ [dr].
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We start by establishing some properties that will be shared across all three different
cost models. Fix a congestion game and its corresponding CLO problem, as described
in Section 4.1.8 For convenience, we denote by ki := |Σi| the size of the strategy set of
a player i, and let k := maxi∈N ki. Also, in all of the models we have a similar index
structure in the cost part; the cost-part is given by (sr,j)r∈R,j∈Jr

, where Jr depends on
the cost function model (Jr = [n] for general, Jr = JdrK for polynomial, and Jr = [dr] for
step-function costs).

The transition cover E is constructed from clusters that collect all edges in the neighbour-
hood graph (of the CLO problem) that correspond to a fixed deviation of a player, regardless
of the configuration of the remaining players. Formally, we let

E := {E(i, σi, σ′
i) | i ∈ N , σi, σ′

i ∈ Σi } , where
E(i, σi, σ′

i) := {(s(σi, σ−i), s(σ′
i, σ−i)) ∈ E | σ−i ∈ Σ−i } ,

and s(σ) is used to denote the CLO configuration corresponding to strategy profile σ in the
congestion game. Now we immediately get the bound

|E| ≤ nk(k − 1),

which will be used as the value for our separability parameter λ (see Definition 1).
Next, for the coordinate cover I, we cluster the indices with respect to each resource, i.e.

we choose

I := {Ir | r ∈ R} , where Ir = {(r, j) | j ∈ Jr} .

In congestion games, a deviation σi → σ′
i only affects the resources r ∈ σi△σ′

i. Their loads
are changed to increase by 1 for r ∈ σ′

i \ σi and decrease by 1 for r ∈ σi \ σ′
i; the load

of all other resources does not change. Our choice of the cover I, therefore, will allow us
to settle β for all models due to the B-restrain assumption on the size of σi△σ′

i. In more
detail, recall that the cost parts of a configuration depend only on the loads of the resources,
thus all components associated with resources r /∈ σi△σ′

i (specifically, the components with
coordinates Ir) remain unchanged during the transition, since the load of r does not change
either. The fact that the size of those sets σi△σ′

i is universally bounded, by assumption, will
let us use β = B as a separability parameter (see Definition 1).

The remaining parameter µ depends on the structure of the configurations in the cost
part. Again, we emphasize that for all cost models in Section 4.1, the sub-configuration
sIr

(σ), which comprises all components of s(σ) that correspond to a resource r, depends
only on the load ℓr(σ) of resource r (under strategy profile σ). We can therefore represent
it as a function hr : JnK → JMKJr , i.e., sIr

(σ) = hr(ℓr(σ)). For ease of notation we write
sr = sIr

in the following.
To discuss rangeIr

(E(i, σi, σ′
i)), we need to consider the configuration changes given by

sr(σ) − sr(σ′) =
{

hr(ℓr(σ)) − hr(ℓr(σ′)) = hr(ℓr(σ)) − hr(ℓr(σ) + 1), r ∈ σ′
i \ σi,

hr(ℓr(σ)) − hr(ℓr(σ′)) = hr(ℓr(σ)) − hr(ℓr(σ) − 1), r ∈ σi \ σ′
i.

The only variable in this expression is therefore the initial load ℓr(σ). In either case, there are
n possible initial loads for each resource9 and therefore also at most n difference-vectors within
rangeIr

(E(i, σi, σ′
i)); thus µ ≤ n. In the following, we will discuss the actual configuration

difference structure for each model and whether we can improve µ over this basic bound.

8 We will use standard notation for the various components and parameters of the game and the CLO
problem, as introduced above in Section 4.

9 Note that although there are n + 1 different loads 0, . . . , n, a load-increasing resource cannot already
have load n and a decreasing one cannot have 0.
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General. The CLO representation follows a binary model with M = 1 and ν = mn:
each resource r corresponds to components sr,j , j = 1, . . . , n (the indices from Ir), with a
value of sr,j = 1 for j ≤ ℓr(σ) and sr,j = 0 otherwise. The function hr : JnK −→ {0, 1}n

is thus given by

(hr(ℓ))j = 1 [j ≤ ℓ] , for all j ∈ [n].

In particular, the vectors δ ∈ rangeIr
(E(i, σi, σ′

i)) are a result of moving the rightmost
entry with value 1 within the vector sr to the next larger or smaller load in the configura-
tion, i.e. they are given by: δℓr(σ)+1 = −1 for r ∈ σ′

i \ σi; δℓr(σ) = +1 for r ∈ σi \ σ′
i; and

zeroes elsewhere. Since there are n many such vectors for every resource r, we cannot
improve over µ = n.
In this case, thus, Theorem 2 yields an expected running time of at most

3 · nBnk(k − 1) · (mn)2 · ϕ = O
(
nB+3k2m2ϕ

)
.

Polynomial games. For this model, each (cost-part) configuration component sr,j is given
by accumulated monomials Sj(ℓr(σ)), for degrees j = 0, 1, . . . , dr. Thus, ν = m(d + 1),
and also M = nd+1, in order to capture all possible values of these functions. Therefore
we now get hr : JnK −→ Jnd+1Kdr+1 with

hr(ℓ) = (S0(ℓ), . . . ,Sdr
(ℓ))

for the configuration component of Ir. Again, we cannot do better than the basic bound,
so we use µ = n.
Similarly to the previous case for general latency functions, using Theorem 2 we can
bound the expected number of better-response iterations by

3 · nBnk(k − 1) · (m(d + 1))2nd+1 log(nd+1) · ϕ = O
(
nB+d+2 log(n)(d + 1)3k2m2ϕ

)
.

Step-function games. The configuration mapping is now given by

sr,j = max (0, ℓr(σ) − Br(j) + 1)

and M = n, ν = m · d. Therefore, the (cost-part) configuration components of a resource
r are represented by the function hr : JnK −→ JnKdr given by

hr(ℓ) = (max(0, ℓ − Br(1) + 1), . . . , max(0, ℓ − Br(dr) + 1)) .

In this case, we can do even better than the basic µ = n bound. We investigate the
structure of the differences with respect to each coordinate j ∈ Jr, for an increase in the
load of a resource r, i.e. for r ∈ σ′

i \ σi (the decreasing case follows analogously):

(hr(ℓ) − hr(ℓ + 1))j = max (0, ℓ − Br(j) + 1) − max (0, (ℓ + 1) − Br(j) + 1)

=


0 − 0 = 0, if ℓ < Br(j) − 1,

− ((ℓ + 1) − Br(j) + 1 − 0) = −1, if ℓ = Br(j) − 1,

(ℓ − Br(j) + 1) − ((ℓ + 1) − Br(j) + 1) = −1, if ℓ > Br(j) − 1.

Because the jump points Br(j) are ordered increasingly with respect to j, the resulting
vectors hr(ℓ) − hr(ℓ + 1) are of the form (−1, . . . , −1, 0, . . . , 0), including the zero vector.
Therefore, with respect to the coordinate cluster Ir, there are at most dr + 1 possible
distinct vectors for the (cost-part) configuration differences, and we choose µ = maxr dr +
1 = d + 1. By Theorem 2 we can thus bound the expected number of iterations by

3 · (d + 1)Bnk(k − 1) · (m · d)2n log(n) · ϕ = O
(
(d + 1)B+2n2 log(n)k2m2ϕ

)
. ◀
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An immediate corollary of Theorem 6 is that, when congestion games are sufficiently
restrained, PNE can be found efficiently via better-response dynamics. In what follows, by a
constantly- and polylogarithmically-restrained congestion game we mean a B-restrained game
with B ∈ O (1) and B ∈ O (logc N) for some constant c > 0, respectively, where N is the
size of the input.

▶ Corollary 7. Better-response dynamics terminate in polynomial smoothed time for the
class of constantly-restrained congestion games, and in quasipolynomial smoothed time for
polylogarithmically-restrained games, under any cost model. Under the step-function cost
model, in O (log N)-restrained congestion games with a constant number of steps d, better-
response dynamics terminate in polynomial smoothed time.

We now show that the class of constantly-restrained congestion games, for which Co-
rollary 7 provides efficient smooth running time, constitutes a computationally meaningful
restriction of arbitrary congestion games, since they can still encode the PLS-completeness of
the original problem. The hardness is a straightforward adaptation of that in [19], and so
the proof of Theorem 8 is deferred to [12, Appendix B] for completeness. It makes use of the
fact that LocalMaxCut is PLS-complete even for constant-degree graphs.

▶ Theorem 8. The problem of computing a PNE of a constantly-restrained congestion game
is PLS-complete, for all the input models described in Section 4 (namely general, polynomial,
or step-function cost representations).

In addition to the conditional intractability that PLS-hardness implies for these families of
congestion games, we show an unconditional lower bound on the worst-case running time of
the standard local search algorithm of the problem. We do this by using the notion of a tight
PLS-reduction, as discussed in Section 2. Since we reduce from the problem LocalMaxCut-
d for d ≥ 5 (defined in [12, Appendix B]), which admits a configuration starting from which
the standard local search algorithm needs exponentially many iterations (see discussion after
proof of [12, Theorem 5.10]), our tight PLS-reduction implies that standard local search of
our families of congestion games – under any pivoting rule – takes exponential time in the
worst case.

4.3 Network Congestion Games
An interesting, and very well studied, variation on the vanilla representation model for
congestion games (which we presented at the start of Section 4 above) is that of network
congestion games. In such games, the strategy sets Σi of the players are not given explicitly
in the input, but implicitly via an underlying directed graph G whose edges constitute the
resources of the game. More precisely, for each player i we are given an origin oi and a
destination di node of G. Then, Σi is defined (implicitly) as the set of all (simple) oi → di

paths in G. Importantly, this means that now players may have exponentially many strategies
available to them.

A critical implication is that Σi cannot be searched exhaustively for better-responses.
However, a better-response can still be found efficiently: keeping all other players fixed, a
minimum-cost strategy of player i is a shortest path on graph G with edge costs equal to the
cost cr (ℓr(σ−i) + 1) of an edge/resource r when used by player i. This means that actually a
polynomial-time best-response oracle does exist. This immediately places network congestion
games in the complexity class PLS (since neighbourhoods can be searched efficiently for a
local cost improvement; see our discussion in Section 2) and thus it constitutes a valid CLO
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problem (via a similar interpretation as we did for general congestion games in Section 4.1).
To emphasize this, we will refer to these “canonical” best-response dynamics of network
congestion games as shortest-path dynamics.

Finding PNE of network congestion games remains a PLS-complete problem [2]. Given
the prominence of these games, both in the theoretical and applied literature, in this section
we want to identify conditions under which network congestion games inherit the desirable
properties of their general counterparts that allow them to be tractable under smoothed
analysis. More precisely, can our positive result from Theorem 6 be applied to network
congestion games in a straightforward way? And which structural parameters are now
relevant for the running time bound? At the same time, the network congestion game
instances that allow for efficient smoothed solutions should still be interesting enough to
remain PLS-hard under traditional worst-case analysis. We introduce the following family of
network congestion games that are defined by two parameters.

▶ Definition 9 (Compact Network Congestion Games). For A, B positive integers, a network
congestion game is called (A, B)-compact if (a) each player has at most A different best-
response strategies, and (b) all such strategies are paths of length at most B. Formally, there
exist strategy sets Σ∗

i ⊆ Σi, such that:
(a) |Σ∗

i | ≤ A for all i ∈ N and argminσi∈Σi
Ci(σi, σ−i) ⊆ Σ∗

i for all i ∈ N , σ−i ∈ Σ−i, and
(b) |σi| ≤ B for all i ∈ N , σi ∈ Σ∗

i .

Property (b) above will serve the purpose of imposing the restraint condition (see Defini-
tion 5) needed to deploy Theorem 6. Property (a) will help us constrain the exponentiality of
the strategy space of network games, in order to be able to handle them using tools designed
for general games. Intuitively, this property can be related to classical vehicle routing settings
in which players can a priori exclude unreasonable detours or paths that involve a road with
a construction site with large delay. Both properties are illuminated within the proof of our
following positive result for network congestion games.

▶ Theorem 10. Consider an (A, B)-compact n-player network congestion game, under
any of the smoothed-analysis models described in Section 4 (namely general, polynomial, or
step-function latencies), with maximum density parameter ϕ. Then, performing shortest-path
dynamics, starting from an arbitrary strategy profile, converges to a PNE of the game in an
expected number of iterations that is polynomial in ϕ, (d + 1)B, A, and the description of the
game, where the parameter d depends on the cost function representation. In particular: for
general latencies, (d + 1) can be replaced by n; for polynomial latencies, d is the maximum
degree; and for step-functions, d is the maximum number of break-points.

An immediate consequence of Theorem 10 is that (analogously to Corollary 7 for general
congestion games) in (A, B)-compact network games with sufficiently small parameters A, B,
a PNE can be found efficiently under smoothness.

▶ Corollary 11. Let N be the size of the input, and A be a polynomial in N . Shortest-path
dynamics on (A, B)-compact network congestion games under any cost model terminate in
polynomial smoothed time when B ∈ O (1) and in quasipolynomial smoothed time when
B ∈ O (logc N) for some constant c > 0. Under the step-function cost model, when A is
a polynomial in N , B ∈ O (log N), and the number of steps d is constant, shortest-path
dynamics terminate in polynomial smoothed time.

The following hardness result establishes that such games, even for A, B ∈ O (1), are
PLS-hard. The proof is deferred to [12, Appendix C]. It is based on the reduction constructed
by Ackermann, Röglin, and Vöcking [2], with special care taken in order to incorporate
constant-length paths that can be established by making use of the fact that LocalMaxCut
is PLS-complete even for constant degree graphs.
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▶ Theorem 12. The problem of computing a PNE of an (A, B)-compact network congestion
game is PLS-complete, even for A, B ∈ O (1), for all the input models described in Section 4
(namely general, polynomial, or step-function latencies).

Similarly to our PLS-hardness reduction of Theorem 8, the above theorem’s PLS-reduction
is tight, in the sense of [23] (see Section 2). The chain of tight PLS-reductions that leads
to Network Congestion Games starts from LocalMaxCut with maximum degree 5, and
includes Congestion Games. As we discuss after the proof of [12, Theorem 5.10], in such
LocalMaxCut instances there is a starting configuration from which all improvement
sequences of standard local search have exponential length in the worst case. Therefore,
shortest-path dynamics on our family of network congestion games – under any pivoting rule
– need exponentially many iterations in the worst case. In contrast, our Theorem 10 and
Corollary 11 show that under smoothness, even for significantly wider instance families that
include these problematic cases, shortest-path dynamics terminate after polynomially many
steps in expectation.
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