
A Characterization of Complexity in Public Goods
Games
Matan Gilboa #

University of Oxford, UK

Abstract
We complete the characterization of the computational complexity of equilibrium in public goods
games on graphs. In this model, each vertex represents an agent deciding whether to produce a
public good, with utility defined by a “best-response pattern” determining the best response to any
number of productive neighbors. We prove that the equilibrium problem is NP-complete for every
finite non-monotone best-response pattern. This answers the open problem of [Gilboa and Nisan,
2022], and completes the answer to a question raised by [Papadimitriou and Peng, 2021], for all
finite best-response patterns.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory; Theory
of computation → Exact and approximate computation of equilibria; Theory of computation →
Problems, reductions and completeness

Keywords and phrases Nash Equilibrium, Public Goods, Computational Complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.73

Category Track A: Algorithms, Complexity and Games

Related Version arXiv Version: https://arxiv.org/abs/2301.11580

Acknowledgements I would like to thank Noam Nisan for many useful conversations, and for
suggesting the Copy Gadget in the proof of Theorem 3.2. I would like to thank Roy Gilboa for
many useful conversations, and for adjusting the Copy Gadget in the proof of Theorem 3.2. I would
like to thank Noam Nisan for communicating to me the alternative solution to the monotone case
(see footnote 2), which was suggested by Sigal Oren. I would like to thank the anonymous ICALP
reviewers for their helpful feedback.

1 Introduction

Public goods games describe scenarios where multiple agents face a decision of whether or
not to produce some “good”, such that producing this good benefits not only themselves,
but also other (though not necessarily all) agents. Typically, we consider the good to be
costly to produce, and therefore an agent might choose not to produce it, depending on
the actions of the agents that affect her. This type of social scenarios can be found in
various real-life examples, such as vaccination efforts (an individual pays some personal cost
for being vaccinated but she and other people in her proximity gain from it) and research
efforts (a research requires many resources, but the researcher benefits from the results along
with other researchers in similar areas). As is common in the literature, to model this we
use an undirected graph, where each node represents an agent and an edge between two
nodes captures the fact that these nodes directly affect one another by their strategy. As in
[4, 6, 7, 9, 10], in our model the utility of an agent is completely determined by the number
of productive neighbors she has, as well as by her own action. We focus on a specific version
of the game which has the following characteristics. Firstly, our strategy space is binary,
i.e. an agent can only choose whether or not to produce the good, rather than choose a
quantity (we call an agent who produces the good a productive agent); secondly, our game
is fully-homogeneous, meaning that all agents share the same utility function and cost of

EA
T

C
S

© Matan Gilboa;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 73; pp. 73:1–73:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matan.gilboa@cs.ox.ac.uk
https://orcid.org/0009-0009-9643-4105
https://doi.org/10.4230/LIPIcs.ICALP.2024.73
https://arxiv.org/abs/2301.11580
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

73:2 A Characterization of Complexity in Public Goods Games

producing the good; and thirdly, our game is strict, which means that an agent has a single
best response to any number of productive neighbors she might have (i.e. we do not allow
indifference between the actions).

The game is formally defined by some fixed cost c of producing the good, and by some
“social” function X(si, ni), which takes into account the boolean strategy of agent i and the
number of productive neighbors she has (marked as si and ni respectively), and outputs
a number representing how much the agent gains. The utility ui of agent i is then given
by the social function X(si, ni), reduced by the cost c if the agent produces the good, i.e.
ui(si, ni) = X(si, ni) − c · si. However, since any number of productive neighbors yields
a unique best response (i.e. the game is strict), we can capture the essence of the utility
function and the cost using what we call (as in [3]), a Best-Response Pattern T : IN → {0, 1}.
We think of the Best-Response Pattern as a boolean vector in which the kth entry represents
the best response to exactly k productive neighbors. We are interested in the problem of
determining the existence of a non-trivial pure Nash equilibrium in these games, which is
defined as follows.

Equilibrium decision problem in a public goods game. For a fixed Best-Response Pattern
T : IN → {0, 1}, and with an undirected graph G = (V, E) given as input, determine whether
there exists a pure non-trivial Nash equilibrium of the public goods game defined by T on G,
i.e. an assignment s : V → {0, 1} that is not all 0, such that for every 1 ≤ i ≤ |V | we have
that

si = T [
∑

j∈N(i)

sj],

where N(i) is the set of neighbors of agent i.
The first Best-Response Pattern for which this problem was studied was the so-called

Best-Shot pattern (where an agent’s best response is to produce the good only if she has no
productive neighbors, namely T = [1, 0, 0, 0, ...]), which was shown in [1] to have a pure Nash
equilibrium in any graph. In [1], they also show algorithmic results for “convex” patterns,
which are monotonically increasing (best response is 1 if you have at least k productive
neighbors). The question of characterizing the complexity of this problem for all possible
patterns was first raised in [7], where they manage to fully answer an equivalent problem
on directed graphs: They show tractability for the All-1 pattern, the infinite alternating
[1, 0, 1, 0, ...] pattern, and all patterns beginning with 0, and NP-completeness for all other
patterns. The open question on undirected graphs was then partially answered in [3],
where an efficient algorithm is shown for the pattern [1, 1, 0, 0, 0, ...], and NP-completeness is
established for several classes of non-monotone patterns: Those beginning with 0 or 11, or
have a prefix of the form 1, 0, 0, ..., 0, 1, 1. There have been several studies concerning other
versions of this problem as well. In [9], the general version of this problem (where the pattern
is part of the input rather than being fixed) was shown to be NP-complete when removing
the strictness assumption, (i.e. allowing indifference between actions, such that both 0 and
1 are best responses in certain cases) 1. In [10], NP-completeness is shown for the general
version of the problem in the heterogeneous public goods game, in which the utility function
varies between agents. In [4], they show NP-completeness of the equilibrium problem when
restricting the equilibrium to have at least k productive agents, or at least some specific
subset of agents. In [6], the parameterized complexity of the equilibrium problem is studied,
for a number of parameters of the graph on which the game is defined.

1 The paper [11] had an earlier version [10] which presented a proof for this case as well, but an error in
the proof was pointed out in [9], who then also provided an alternative proof.

M. Gilboa 73:3

In [3], two open problems are suggested regarding the two following patterns: T1 =
[1, 1, 1, 0, 0, 0, ...], T2 = [1, 0, 1, 0, 0, 0, ...]. T1 has been recently solved in [5], where they show
that all monotonically decreasing patterns can be viewed as potential games, and thus always
have a pure Nash equilibrium2.

There are various instances where non-monotonic patterns are of interest. For example,
consider work that necessitates collaboration from n agents or a financial effort that is
irrelevant if too few agents contribute but if too many do so it becomes redundant from
an agent’s perspective. Our main contribution is completing the characterization of the
equilibrium decision problem for all finite patterns, by showing that for all non-monotone
patterns the problem is NP-complete.

Theorem. For any Best-Response Pattern that is non-monotone and finite (i.e., has a finite
number of entries with value 1), the equilibrium decision problem in a public goods game is
NP-complete (under Turing reductions).

The first step along this way was to prove NP-completeness for the above pattern T2
(which we call the 0-Or-2-Neighbors pattern), namely the second open problem by [3]. An
alternative proof to this specific problem was obtained independently and concurrently in [5].

We note that we only focus on finite patterns, which we believe to be more applicable to
real-life problems that can be modeled by this game. Nonetheless, we find the characterization
of all infinite patterns to be of interest, and this topic remains open, though some initial
results can be found in Corollary 3.9. Another interesting open problem is to obtain a
similar characterization for the non-strict version of the game, where agents are allowed to
be indifferent between the two possible actions.

The rest of this paper is organized as follows. In Section 2 we introduce the formal model
and some relevant definitions. We then set out to show hardness of all remaining patterns,
dividing them into classes. In Section 3 we present a solution for the open question from
[3], showing hardness of the 0-Or-2-Neighbors Best Response Pattern, and expanding the
result to a larger sub-class of patterns that begin with 1,0,1. In Section 4 we show hardness
of all patterns beginning with 1,0,0 (where we also have a slightly more subtle division into
sub-classes), and in Section 5 we show hardness of all patterns beginning with 1,0,1 that
were not covered in Section 3, thus completing the characterization for all finite patterns.
The outline of this paper is also depicted3 in Figure 1.

2 Model and Definitions

A Public Goods Game (PGG) is defined on an undirected graph G = (V, E), V = {v1, ..., vn},
where each node represents an agent. The strategy space, which is identical for all agents, is
S = {0, 1}, where 1 represents producing the good and 0 represents not producing it. The
utility of node vi (which is assumed to be the same for all agents) is completely determined
by the number of productive neighbors vi has, as well as by vi’s own strategy. Moreover,
our model is restricted to utility functions where an agent always has a single best response
to the strategies of its neighbors, i.e. there is no indifference between actions in the game.
Therefore, rather than defining a PGG with an explicit utility function and cost for producing

2 Alternatively, known results about k-Dominating and k-Independent sets (Theorem 19 in [2]) can be
used to prove this.

3 Some patterns which start with 1,0 were solved in [3], though for simplicity we omit them from Figure 1.

ICALP 2024

73:4 A Characterization of Complexity in Public Goods Games

Figure 1 Outline of this paper.

the good, we can simply consider the best response of an agent for any number of productive
agents in its neighborhood. Essentially, this can be modeled as a function T : IN → {0, 1},
which, as in [3], we represent in the form of a Best Response Pattern:

▶ Definition 2.1. A Best-Response Pattern (BRP) of a PGG, denoted by T , is an infinite
boolean vector in which the kth entry indicates the best response for each agent vi given that
exactly k neighbors of vi (excluding vi) produce the good:

∀k ≥ 0 T [k] = best response to k productive neighbors.

▶ Definition 2.2. Given a Public Goods Game defined on a graph G = (V, E) with respect to
a BRP T , a strategy profile s = (s1, ..., sn) ∈ Sn (where si ∈ {0, 1} represents the strategy of
node vi ∈ V) is a pure Nash equilibrium (PNE) if all agents play the best response to the
strategies of their neighbors:

∀1 ≤ i ≤ n si = T [
∑

j∈N(i)

sj],

where N(i) = {j : {vi, vj} ∈ E}. In addition, if there exists 1 ≤ i ≤ n s.t. si = 1, then s is
called a non-trivial pure Nash equilibrium (NTPNE).

We note that throughout the paper we also use the notation vi = 0 and vi = 1 to indicate
the strategy of some node vi, rather than use si = 0 and si = 1, respectively.

▶ Definition 2.3. For a fixed BRP T , the non-trivial4 pure Nash equilibrium decision problem
corresponding to T , denoted by NTPNE(T), is defined as follows: The input is an undirected
graph G. The output is ’True’ if there exists an NTPNE in the PGG defined on G with
respect to T , and ’False’ otherwise.

4 In this paper, we only study BRPs where the best response for zero productive neighbors is 1, for
which there never exists a trivial all-zero PNE (as these are the only BRPs left to solve). However,
we sometimes reduce from patterns where this is not the case, and therefore include the non-triviality
restriction in our problem definition, in order to correspond with the literature.

M. Gilboa 73:5

▶ Definition 2.4. A BRP T is called monotonically increasing (resp. decreasing) if ∀k ∈ IN,
T [k] ≤ T [k + 1] (resp. T [k] ≥ T [k + 1]).

▶ Definition 2.5. A BRP T is called finite if it has a finite number of entries with value 1:

∃N ∈ IN s.t. ∀n > N T [n] = 0

As seen in Figure 1, the only patterns for which the equilibrium decision problem remains
open are patterns that begin with 1,0. We divide those into the two following classes of
patterns.

▶ Definition 2.6. A BRP T is called semi-sharp if:
1. T [0] = 1
2. T [1] = T [2] = 0
i.e. T begins with 1, 0, 0.

▶ Definition 2.7. A BRP T is called spiked if:
1. T [0] = T [2] = 1
2. T [1] = 0
i.e. T begins with 1, 0, 1.

We note that given any finite BRP T , the NTPNE(T) problem is in NP, since an
assignment to the nodes can be easily verified as an NTPNE by iterating over the nodes and
checking whether they all play their best response. Therefore, we only prove NP-hardness of
the problems throughout the paper.

3 Hardness of the 0-Or-2-Neighbors Pattern

In this section we show that the equilibrium problem is NP-complete for the 0-Or-2-Neighbors
pattern, and provide some intuition about the problem. This result answers an open question
from [3]. We then expand this to show hardness of a slightly more general class of patterns.
In the 0-Or-2-Neighbors BRP the best response is 1 only to zero or two productive neighbors,
as we now define.

▶ Definition 3.1. The 0-Or-2-Neighbors Best Response Pattern is defined as follows:

∀k ∈ IN T [k] =
{

1 if k = 0 or k = 2
0 otherwise

i.e.

T = [1, 0, 1, 0, 0, 0, ...].

▶ Theorem 3.2. Let T be the 0-Or-2 Neighbors BRP. Then NTPNE(T) is NP-complete.

Before proving the theorem, we wish to provide basic intuition about the 0-Or-2-Neighbors
BRP, by examining several simple graphs. Take for example a simple cycle. Since T [2] = 1
(i.e. best response for two productive neighbors is 1), we have that any simple cycle admits a
pure Nash equilibrium5, assigning 1 to all nodes (see Figure 2). However, looking at a simple
path with n nodes, we see that the all-ones assignment is never a pure Nash equilibrium.

5 In this pattern, any pure Nash equilibrium must also be non-trivial, since T [0] = 1.

ICALP 2024

73:6 A Characterization of Complexity in Public Goods Games

The reason for this is that T [1] = 0 (i.e. best response for one productive neighbors is 0),
and so the two nodes at both ends of the path, having only one productive neighbor, do
not play best response. Nevertheless, any simple path does admit a pure Nash equilibrium.
To see why, let us observe the three smallest paths, of length 2, 3 and 4. Notice that in a
path of length two a PNE is given by the assignment 0,1; in a path of length three a PNE is
given by the assignment 0,1,0; and in a path of length four a PNE is given by the assignment
1,0,0,1. We can use these assignment to achieve a PNE in any simple path: given a simple
path of length n, if n ≡ 0 (mod 3) we use the path of length three as our basis, adding 0,1,0
to it as many times as needed; if n ≡ 1 (mod 3) we use the path of length four as our basis,
adding 0,0,1 to it as many times as needed; and if n ≡ 2 (mod 3) we use the path of length
two as our basis, adding 0,0,1 to it as many times as needed (see example in Figure 3).

Figure 2 PNE in cycles. Figure 3 PNE in paths of lengths 2 and 5.

In contrast to the graphs discussed so far, there are graphs in which a pure Nash
equilibrium doesn’t exist for the 0-Or-2-Neighbors pattern. An example of this can be seen
in a graph composed of four triangles, connected as a chain where each two neighboring
triangles have a single overlapping vertex, as demonstrated in Figure 4. One may verify that
no PNE exists in this graph. This specific structure will also be of use to us during our
proof6.

Figure 4 No PNE exists in this graph.

Having provided some intuition regarding the problem, we move on to prove Theorem
3.2. The reduction is from ONE-IN-THREE 3SAT, which is a well known NP-complete
problem (see [8]). In ONE-IN-THREE 3SAT, the input is a CNF formula with 3 literals
in each clause, and the goal is to determine whether there exists a boolean assignment to
the variables such that in each clause exactly one of the literals is assigned True. We begin
by introducing our Clause Gadget, which is a main component of the proof. Given a CNF
formula, for each of its clauses we construct a 21-nodes Clause Gadget, in which three of the
nodes, denoted l1, l2, l3 (also referred to as the literal nodes) represent the three literals of the
matching clause. The purpose of this gadget is to enforce the property that in any NTPNE,
exactly one literal node in the gadget will be assigned 1, which easily translates to the key
property of a satisfying assignment in the ONE-IN-THREE 3SAT problem. The three literal

6 The Negation Gadget defined throughout the proof of Theorem 3.2 is constructed similarly to the graph
described here.

M. Gilboa 73:7

Figure 5 Clause Gadget.

nodes are connected to one another, forming a triangle. Additionally, for each i ∈ {1, 2, 3},
li is connected to two other nodes xi, yi, which are also connected to one another, forming
another triangle. Lastly, xi and yi each form yet another triangle, along with nodes ai, bi

and ci, di respectively. We refer to xi, yi, ai, bi, ci, di as the sub-gadget of li. We note that out
of the nodes of the Clause Gadget, only the literal nodes may be connected to other nodes
outside of their gadget, a property on which we rely throughout the proof. The structure of
the Clause Gadget is demonstrated in Figure 5, where each sub-gadget is colored differently.

The next four lemmas lead us to the conclusion that the gadget indeed has the desired
property mentioned above.

▶ Lemma 3.3. In any NTPNE in a graph G which includes a Clause Gadget cg, if a literal
node li of cg is assigned 1 then so are its two neighbors from its respective sub-gadget, xi, yi.
Furthermore, there exists an assignment to the sub-gadget of li such that all its nodes play
best response.

Proof. Divide into cases.
Case 1: If xi = yi = 0, then if ai ≠ bi (meaning only one of them is assigned 1) then xi

would have two productive neighbors and would not be playing its best response. However, if
ai = bi then ai and bi would not be playing their best response, and we reach a contradiction.

Case 2: If xi = 1, yi = 0 (the case where xi = 0, yi = 1 is, of course, symmetric) then xi

must have exactly one more productive neighbor (either ai or bi) in order to be playing best
response. But then that node would not be playing best response, in contradiction.

Case 3: We are left with the option where xi = yi = 1, where it is easy to verify that all
nodes of the sub-gadget of li are playing their best response if we set ai = bi = ci = di = 0. ◀

▶ Lemma 3.4. In any NTPNE in a graph G which includes a Clause Gadget cg, if one of the
literal nodes li of cg is assigned 1 then the other two literal nodes of cg must be assigned 0.

Proof. Since li = 1, from Lemma 3.3 we have that xi = yi = 1. Therefore, li has two
productive neighbors and cannot have any more, and so we have that the other two literal
nodes must play 0. ◀

▶ Lemma 3.5. In any graph G which includes a Clause Gadget cg, if exactly one of the
literal nodes of cg is assigned 1 then there exists an assignment to the other nodes of cg

such that they all (excluding the literal nodes) play best response. In addition, in any such
assignment, if the literal nodes have no productive neighbors outside cg, then they also play
best response.

ICALP 2024

73:8 A Characterization of Complexity in Public Goods Games

Proof. W.l.o.g. assume that l1 = 1, l2 = l3 = 0. Let us observe several details that must
hold in such an assignment. Focusing first on the sub-gadget of l1, according to Lemma 3.3
there exists an assignment the nodes of this sub-gadget such that they all play best response.
Furthermore, Lemma 3.3 tells us that x1 = y1 = 1 (and so l1 has two productive neighbors
within cg). We move on to the sub-gadget of l2. If x2 ≠ y2 then l2 would have 2 productive
neighbors and would not be playing its best response. If x2 = y2 = 1 then there is no
assignment to a2, b2 s.t. a2, b2, x2 all play their best response. Therefore x2 = y2 = 0. We are
left only with the option of setting a2 ̸= b2 and c2 ̸= d2 (for instance a2 = c2 = 1, b2 = d2 = 0).
The sub-gadget of l3 is symmetric to that of l2. One may verify that in this assignment all
nodes of cg excluding the literal nodes indeed play best response, and that if the literal nodes
have no productive neighbors outside cg then they also play best response. ◀

▶ Lemma 3.6. In any graph G which includes a Clause Gadget cg, if all three of the literal
nodes of cg are assigned 0, and the literal nodes do not have any productive neighbors outside
of cg, then the assignment is not a PNE.

Proof. Assume by way of contradiction that there exists a PNE where l1 = l2 = l3 = 0, and
all three of them have no productive neighbors outside cg. It must be that the other two
neighbors of l1, x1, y1, are assigned with different values (otherwise l1 is not playing its best
response). W.l.o.g. assume x1 = 1, y1 = 0. Now, if the remaining neighbors of y1 (c1 and
d1) are both assigned with 0 or both assigned with 1, then they themselves would not be
playing their best response. On the other hand, if we assign them with different values then
y1 would not be playing its best response, and so we have reached a contradiction. ◀

So far, we have seen that in any PNE which includes a Clause Gadget, it must be that
exactly one of the literal nodes of that gadget is assigned with 1, as long as the literal nodes
don’t have productive neighbors outside of their Clause Gadget. As we introduce the external
nodes that will be connected to the literal nodes, we will show that indeed they all must be
assigned 0 in any PNE, and thus a literal node cannot have any productive neighbor outside
of its Clause Gadget, which will finalize the property we were looking to achieve with the
Clause Gadget.

Our next goal is to make sure the translation between solutions from one domain to the
other is always valid. Specifically, we wish to ensure that in any PNE in our constructed
graph, if any two literal nodes represent the same variable in the CNF formula then they
will be assigned the same value, and if they represent a variable and its negation then they
will be assigned opposite values. We begin with the latter, introducing our Negation Gadget.
The goal of the Negation Gadget is to force opposite assignments to two chosen nodes, in
any Nash equilibrium. The Negation Gadget is composed of 9 nodes: five ’bottom’ nodes
b1, b2, b3, b4, b5, and four ’top’ nodes t1, t2, t3, t4, and for each i ≤ 4 we create the edges
{bi, bi+1}, {ti, bi} and {ti, bi+1}. It can intuitively be described as four triangles that are
connected as a chain. Say we have two nodes u, v which we want to force to have opposite
assignments, we simply connect them both to node t2 of a Negation Gadget, as demonstrated
in Figure 6.

▶ Lemma 3.7. In any Nash equilibrium in a graph G which includes two nodes u, v connected
through a Negation Gadget ng, u and v must have different assignments. Moreover, the node
t2 of ng, to which u and v are connected, must be assigned 0. In addition, if indeed u ̸= v

and t2 = 0, there exists an assignment to the the nodes of ng such that they all play best
response.

Proof. We first show that u and v must have different assignments, dividing into two cases.

M. Gilboa 73:9

Case 1: Assume by way of contradiction that u = v = 0. We divide into two sub-cases,
where in the first one t2 = 0; in this case, exactly one of the two remaining neighbors of t2
must be assigned 1 in order for t2 itself to be playing best response. If b2 = 0 then b3 = 1
and so, looking at t1, b1 (the remaining neighbors of b2), we see that any assignment to
them results either in b2 not playing best response, or in t1 not playing best response, in
contradiction. If, however, b3 = 0, then b2 = 1, and so, symmetrically, looking at t3, b4
(the remaining neighbors of b3) we see that any assignment to them results either in b3 not
playing best response, or in t3 not playing best response, in contradiction. In the second
sub-case, where t2 = 1, we have that its two remaining neighbors must be assigned the same
value in order for t2 itself to be playing best response. If b2 = b3 = 0 then again there is no
assignment to b1, t1 s.t. all of b1, t1, b2 play best response, and if b2 = b3 = 1 then one may
verify that there is no assignment to t3, t4, b4, b5 s.t. all of t3, t4, b3, b4, b5 play best response,
and so we reach a contradiction.

Case 2: Assume u = v = 1. Then we again divide into sub-cases according to t2’s assignment.
If t2 = 0, it must have at least one more productive neighbor in order to play best response.
The assignments where b2 = b3 = 1 or b2 = 0, b3 = 1 are easily disqualified, seeing as there
is no assignment to t1, b1 s.t. t1, b1, b2 all play best response. If b2 = 1, b3 = 0 then it must
hold that t3 = b4 in order for b3 to play best response, but this would mean that t3 is not
playing best response, in contradiction. If t2 = 1, then its two remaining neighbors b2, b3
must be set to 0 in order for it to play best response, and then there is no assignment to
b1, t1 s.t. all of t1, b1, b2 play best response, in contradiction.

And so it cannot be that u = v. We move on to show that t2 must play 0. Assume by
way of contradiction that t2 = 1. Then, seeing as exactly one of u, v is productive, t2 must
have exactly one more productive neighbor in order to play best response. If b2 = 1, b3 = 0
we reach a contradiction as there is no assignment to t1, b1 s.t. t1, b1, b2 all play best response.
If b2 = 0, b3 = 1 we reach a contradiction as there is no assignment to t3, t4, b4, b5 s.t. all
of t3, t4, b3, b4, b5 play best response. Lastly, one may verify that in the assignment where
t1 = b4 = 1, b1 = b2 = b3 = b5 = t2 = t3 = t4 = 0 all nodes of the gadget play best
response. ◀

Now, for each variable that appears in the CNF formula, we choose one instance of it and
one instance of its negation7 and connect the literal nodes representing these instances via a
Negation Gadget, thus ensuring they are assigned opposite values in any PNE, according to
Lemma 3.7. We note that this is not the only place where we use this gadget, as we will see
shortly.

We move on to introduce our Copy Gadget, which we will use to force literal nodes which
represent the same variable to have the same assignment in any PNE. The Copy Gadget
is composed of two negation gadgets ng1, ng2, and two additional nodes x, y which have an
edge between them. Say we have two nodes u, v which we want to force to have the same
assignment in any PNE, then we simply connect u and x to ng1, and we connect v and x to
ng2. The gadget is demonstrated in Figure 7.

▶ Lemma 3.8. In any Nash equilibrium in a graph G which includes two nodes u, v connected
through a Copy Gadget cpg, u, v must have the same assignment, and must have no productive
neighbors from cpg. In addition, if u = v then there exists an assignment to the nodes of cpg

s.t. all of them play best response.

7 We will soon ensure that instances of the same variable would get the same assignment in any PNE,
and thus it is sufficient to negate the assignments of only one instance of a variable and its negation.

ICALP 2024

73:10 A Characterization of Complexity in Public Goods Games

Figure 6 Negation Gadget connecting u and v. Figure 7 Copy Gadget connecting u and v.

Proof. We first show that u and v must have the same assignment. This follows directly
from the fact that x is connected to both u and v via a Negation Gadget. Therefore, from
Lemma 3.7 we have that x ̸= u and x ̸= v, and so u = v. Lemma 3.7 also tells us that the
Negation Gadget cannot add productive neighbors to the nodes that are connected to it in
any PNE, and therefore u and v have no productive neighbors from cpg. Lastly, we show
that there exists an assignment to the nodes of cpg s.t. they all play best response. From
Lemma 3.7 x cannot have any productive neighbors from ng1 or ng2. Therefore, if u = v = 0
then we can assign x = 1, y = 0, and if u = v = 1 then we can assign x = 0, y = 1. In both
cases, we assign ng1 and ng2 as suggested in the proof of Lemma 3.7. One may verify that
in this assignment indeed all nodes of cpg play best response. ◀

Now, for each variable in the CNF formula, we connect all the literal nodes representing
its different instances via a chain of copy gadgets, thus (transitively) ensuring they are all
assigned the same value in any PNE, according to Lemma 3.8.

Given these lemmas and the graph we constructed, we can now prove Theorem 3.2.

Proof. (Theorem 3.2) Given a ONE-IN-THREE 3SAT instance, we construct a graph G

as described previously8: For each clause we create a Clause Gadget, we connect all literal
nodes representing the same variable through a chain of Copy Gadgets, and for each variable
we choose one instance of it and one instance of its negation, and connect the literal nodes
representing those instances with a Negation Gadget. If there exists a satisfying assignment
to the 3SAT problem, we can set all literal nodes according to the assignment of their
matching variable, and set all other nodes as described throughout Lemmas 3.5, 3.7 and 3.8,
and according to those lemmas, we get a pure Nash equilibrium. On the opposite direction,
if there exists a non-trivial pure Nash equilibrium, then by Lemmas 3.4 and 3.6 in each
Clause Gadget exactly one literal node is assigned 1, and by Lemmas 3.7 and 3.8 we have
that literal nodes have the same assignment if they represent the same variable, and opposite
ones if they represent a variable and its negation. Thus we can translate the NTPNE into
a satisfying ONE-IN-THREE 3SAT assignment, assigning ’True’ to variables whose literal
nodes are set to 1, and ’False’ otherwise. ◀

8 Note that we do not need to explicitly represent the conjunction between the clauses: It is given to us
implicitly by the fact that each Clause Gadget must independently satisfy the 1-In-3 property in any
Nash equilibrium.

M. Gilboa 73:11

We now wish to expand this result to two slightly more general classes of patterns. Firstly,
we notice that the graph constructed throughout the proof of Theorem 3.2 is bounded9 by a
maximum degree of 6. Therefore, the proof is indifferent to entries of the pattern from index
7 onward, which means it holds for any pattern that agrees with the first 7 entries of the
0-Or-2-Neighbors pattern.

▶ Corollary 3.9. Let T be a BRP such that:
T [0] = T [2] = 1
∀k ∈ {1, 3, 4, 5, 6} T [k] = 0

Then NTPNE(T) is NP-complete.

Secondly, according to Theorem 7 in [3], adding 1,0 at the beginning of a hard pattern
that begins with 1 yields yet another hard pattern. Using this theorem recursively on the
patterns of Corollary 3.9, we have that the equilibrium decision problem is hard for any
pattern of the form:

T = [1, 0, 1, 0, 1, 0, ..., 1, 0︸ ︷︷ ︸
finite number of ′1,0′

, 0, 0, 0, ?, ?, ...].

▶ Corollary 3.10. Fix m ≥ 1, and let T be a BRP such that:
∀0 ≤ k ≤ m

1. T [2k] = 1
2. T [2k + 1] = 0
T [2m + 2] = T [2m + 3] = T [2m + 4] = 0

Then NTPNE(T) is NP-complete.

We will see later on that this result will also be of use during the proof of Theorem 5.1.
There is one very similar class of patterns on which the proofs throughout the paper rely.

This is the class of all finite patterns that start with a finite number of 1,0, followed by 1,1,
i.e. all patterns of the form:

T = [1, 0, 1, 0, 1, 0, ..., 1, 0︸ ︷︷ ︸
finite number of ′1,0′

, 1, 1, ?, ?, ..., 0, 0, ...].

The complexity of those patterns was already discussed and solved in Section 5.4 of [3], but
was not formalized and so we state it here in the following lemma.

▶ Lemma 3.11. Fix m ≥ 2, and let T be a BRP s.t.:
T is finite
∀k ∈ IN s.t. 2k ≤ m T [2k] = 1
T [1] = 0
∃1 ≤ n where 2n + 1 ≤ m + 1, s.t. T [2n + 1] = 1

Then NTPNE(T) is NP-complete under Turing reduction.

Proof. The proof follows directly from Theorems 6 and 7 from [3]. ◀

9 A literal node is connected to 4 nodes within its clause gadget, and possibly 2 nodes from copy gadgets
or 1 node from a negation gadget and 1 node from a copy gadget (assuming we connect the negation
gadgets at the end of their respective Copy-Gadget-chains).

ICALP 2024

73:12 A Characterization of Complexity in Public Goods Games

4 Hardness of Semi-Sharp Patterns

In this section we show hardness of semi-sharp Best-Response Patterns, beginning with a
specific sub-class of those patterns in Section 4.1, and expanding to all other semi-sharp
patterns in Section 4.2. We remind the reader that semi-sharp patterns are patterns that
begin with 1,0,0.

4.1 Semi-Sharp Patterns with Isolated Odd 1
In this section we show that any finite, semi-sharp pattern such that there exists some
“isolated” 1 (namely it has a zero right before and after it) at an odd index, presents a hard
equilibrium decision problem. Those patterns can be summarized by the following form:

T = [1, 0, 0, ?, ?, ..., 0, 1︸︷︷︸
odd index

, 0, ?, ?, ..., 0, 0, 0, ...]

▶ Theorem 4.1. Let T be a BRP which satisfies the following conditions:
T is finite
T is semi-sharp
∃m ≥ 1 s.t.:

1. T [2m] = T [2m + 2] = 0
2. T [2m + 1] = 1

Then NTPNE(T) is NP-complete under Turing reduction.

Before we proceed to the proof, we introduce two gadgets and prove two lemmas regarding
their functionality.

Force-1-Gadget. The first gadget is denoted the Force-1-Gadget, and it will appear in
several parts of the graph we construct for the reduction. The goal of this gadget is to
enable us to force any node to be assigned 1 in any Nash equilibrium in a PGG defined by T .
This gadget is composed primarily of a triangle x, y, z, where the triangle’s nodes have also
several ’Antenna’ nodes, which are connected only to their respective node from the triangle.
Specifically, x will have 2m + 1 Antenna nodes, and y and z will each have 2m Antenna
nodes. Say we have some node u, whose assignment we wish to force to be 1, then we simply
connect u to one of the Antenna nodes of x, denoted a. The gadget is demonstrated in
Figure 8.

Add-1-Gadget. our second gadget of this proof is denoted the Add-1-Gadget, and its goal
is to enable us to assure the existence of (at least) a single productive neighbor to any node
in a Nash equilibrium of a PGG defined by T . Say we have a node v, to which we wish to
add a single productive neighbor, in any equilibrium. We construct the Add-1-Gadget as
follows. We create m+1 nodes denoted x1, ..., xm+1, m+1 nodes denoted y1, ...ym+1, and an
additional ’bridge’ node, denoted b. We connect x1 and y1 to all of the other xi and yi nodes.
For all i, j ≥ 2 s.t. i ≠ j, we create the edges {xi, xj}, {yi, yj}, {xi, yj} (the xi, yi nodes
almost form a clique, except that for each i ≥ 2 we omit the edge {xi, yi}). Additionally, for
all i ≥ 2 the bridge node b is connected to xi and to yi. To b we attach a Force-1-Gadget,
and we also connect b to v. The gadget is demonstrated in Figure 9.

The following lemmas formalize the functionality of the two gadgets, beginning with the
Force-1-Gadget in Lemma 4.2.

M. Gilboa 73:13

Figure 8 Force-1-Gadget with m = 2, attached
to u.

Figure 9 Add-1-Gadget with m = 2, attached
to v.

▶ Lemma 4.2. In any PNE in a graph G corresponding to the BRP T (from Theorem 4.1),
where G has a node u that is connected to a Force-1-Gadget fg as described, u must be
assigned 1, and its neighbor from fg, a, must be assigned 0.10 Furthermore, if u = 1 there
exists an assignment to the nodes of fg such that they each play their best response.

Proof. First we show that u must be assigned 1. Assume by way of contradiction that u = 0.
Divide into the following two cases. If x = 1, then all of its Antenna nodes must be assigned
0 (according to T). Additionally, y and z must also be assigned 0, as otherwise x wouldn’t
be playing best response, since T is semi-sharp. Therefore, the best response of all of the
Antenna nodes of y and z is to play 1, which leaves y and z with 2m + 1 productive neighbors
each, and so they are not playing best response, in contradiction. If x = 0, then all of its
Antenna nodes must play 1. Therefore, x must have at least one other productive neighbor, as
otherwise it would have 2m + 1 productive neighbors and wouldn’t be playing best response;
w.l.o.g. assume y = 1. Then all of y’s Antenna nodes must play 0. Therefore, z must play
0, as otherwise y wouldn’t be playing best response. This means the best response for z’s
Antenna nodes is to play 1, which leaves z with 2m + 1 productive neighbors, and so it isn’t
playing best response, in contradiction. We move on to showing that a must play 0. This
follows directly from the fact that u = 1. Since a only has one other neighbor (x), regardless
of its strategy the best response for a, according to T , would be playing 0. It is left to show
that when u = 1 and a = 0, there exists an assignment to the nodes of fg s.t. they all play
best response. One may verify that when we set x = y = z = 0 and set all the Antenna
nodes in fg (except for a) to 1, then all nodes of fg play best response (specifically, x, y, z

would each have exactly 2m productive neighbors, which, by definition of T , means they are
playing best response). ◀

We move on to proving the following Lemma, which formalizes the functionality of the
Add-1-Gadget.

▶ Lemma 4.3. In any graph G corresponding to the BRP T (from Theorem 4.1), where G

has a node v that is connected to an Add-1-Gadget ag as described, there always exists an
assignment to the nodes of ag such that they all play best response, regardless of v’s strategy.
In addition, the bridge node b of ag must be assigned 1 in such an assignment.

10 The property that a = 0 allows us to use the Force-1-Gadget without risking potentially adding
productive neighbors to the respective node.

ICALP 2024

73:14 A Characterization of Complexity in Public Goods Games

Proof. The claim that b must play 1 follows directly from the fact that it has a Force-1-
Gadget attached to it, i.e. from Lemma 4.2. Additionally, all the nodes of the Force-1-Gadget
attached to b can be assigned as suggested in Lemma 4.2. It is left to show a possible
assignment to the rest of the nodes of ag. We divide into cases. If v = 0, then we set x1 = 1
and all other xi, yi nodes we set to 0. If v = 1, then we set xi = yi = 1 for all 1 ≤ i ≤ m + 1.
One may verify that given these assignments all nodes of ag play their best response. ◀

Given these two gadgets, we are almost ready to prove Theorem 4.1. We now introduce a
useful definition, and then proceed to the proof of the theorem.

▶ Definition 4.4. Let T and T ′ be two BRPs. We say that T ′ is shifted left by t from T if

∀k ≥ 0 T ′[k] = T [k + t].

Proof. (Theorem 4.1) Denote by T ′ the pattern which is shifted left by 1 from T , i.e.:

∀k ≥ 0 T ′[k] = T [k + 1].

Notice that T ′ is non-monotonic, finite, and begins with 0, and therefore NTPNE(T ′) is
NP-complete according to Theorem 4 in [3], which allows us to construct a Turing reduction
from it. The technique of the reduction is very similar to those of the proofs of Theorems
5 and 6 in [3]. Given any graph G = (V, E), where V = v1, ..., vn, we construct n graphs
G1, ..., Gn, where for each 1 ≤ i ≤ n the graph Gi is defined as follows. The graph Gi

contains the original input graph G, and in addition, we connect a unique Add-1-Gadget
to each of the original nodes, and a Force-1-Gadget only to node vi. If there exists some
non-trivial PNE in the PGG defined on G by T ′, let vj be some node who plays 1. Then the
same NTPNE is also an NTPNE in the PGG defined by T on Gj , when we assign the nodes
of the additional gadget as suggested in Lemmas 4.2 and 4.3. To see why, notice that T ′

is shifted left by 1 from T , and the Add-1-Gadgets ensure that all nodes have exactly one
additional productive neighbor than they had in G.

In the other direction, if there exists an NTPNE in a PGG defined by T on one of
the graphs Gj , then by the same logic this is also a PNE in the game defined by T ′ on G

(ignoring the assignments of the added nodes). Moreover, the Force-1-Gadget ensures this
assignment is non-trivial even after removing the added nodes, since vj must play 1 in this
assignment. ◀

4.2 All Semi-Sharp Patterns
In this section we show that any finite, non-monotone, semi-sharp pattern presents a hard
equilibrium problem.

▶ Theorem 4.5. Let T1 be a finite, non-monotone, semi-sharp BRP. Then NTPNE(T1) is
NP-complete under Turing reduction.

Before proceeding to the proof, we wish to introduce the following definition and prove
two lemmas related to it.

▶ Definition 4.6. Let T and T ′ be two BRPs such that ∀k ∈ IN it holds that T [k] = T ′[2k].
Then we say that T ′ is a double-pattern of T , and T is the half-pattern of T ′. Notice that a
pattern has a unique half-pattern, whereas, since the definition does not restrict T ′ in the
odd indices, any pattern has infinite double-patterns.

The first lemma is very simple and intuitive, stating that the largest index with value 1
in a half pattern is strictly smaller than the largest index with value 1 in its original pattern.
This is true since for any index i s.t. the value of the half pattern is 1 in that index, the
original pattern has a value of 1 in index 2i.

M. Gilboa 73:15

▶ Lemma 4.7. Let T and T ′ be two finite BRPs such that T is the half-pattern of T ′. Denote
by i the largest index s.t. T [i] = 1 and denote by j the largest index s.t. T ′[j] = 1. Then if
j > 0 we have that i < j.

Proof. The proof is trivially given by the definition of a half pattern, since T ′[2i] = T [i]. ◀

The next lemma is less trivial, stating the relation between hardness of a pattern and its
double-pattern.

▶ Lemma 4.8. Let T be a BRP such that NTPNE(T) is NP-complete, and let T ′ be a
double-pattern of T . Then NTPNE(T ′) is NP-complete.

Proof. We use a specific case of the same reduction that was used to prove Theorem 4 in
[3]. Given a graph G1 = (V1, E1) as input, where V1 = v1

1 , ..., v1
n, we create another replica

of it G2 = (V2, E2), where V2 = v2
1 , ..., v2

n. For each node (from both graphs), we add edges
connecting it to all replicas of its neighbors from the opposite graph. That is, the following
group of edges is added to the graph:

E = {{v1
i , v2

j }|{v1
i , v1

j } ∈ E1}.

A demonstration of the reduction can be seen in Figure 10.

Figure 10 Example of the reduction of Lemma 4.8’s proof.

Denote by P the PGG defined on G1 by T , and by P ′ the PGG defined by T ′ on
G′ = (V ′, E′) where V ′ = V1 ∪ V2, E′ = E ∪ E1 ∪ E2. We show that there exists an NTPNE
in P iff there exists one in P ′. If there exists an NTPNE in P , we simply give the nodes of
G2 the same assignment as those of G1. Since T ′ is a double pattern of T , any node v′ ∈ V ′

must play best response, having exactly twice as many supporting neighbors than it had (or
its replica had) in P . In addition, this assignment is clearly non-trivial as the nodes of G1
have the same (non-trivial) assignment they had in P .

In the opposite direction, if there exists an NTPNE in P ′, notice that for all 1 ≤ i ≤ n it
must be that v1

i and v2
i have identical assignments, since they both share exactly the same

neighbors, and thus have identical best responses. Therefore, any node v′ ∈ V must have
an even number of productive neighbors, half of which are in V1 and the other half in V2
(as for each productive neighbor from V1 there is a respective productive neighbor from V2).
We then simply ignore G2, and leave the assignment of G1 as it is, and each node shall now
have exactly half as many productive neighbors as it had in the original assignment. Since T

is a half pattern of T ′, we get a PNE in P . Furthermore, the symmetry between matching
nodes from G1 and G2 ensures that at least one node from G1 was originally assigned 1, and
so the constructed PNE in P ′ is also non-trivial. ◀

ICALP 2024

73:16 A Characterization of Complexity in Public Goods Games

Given Lemmas 4.7 and 4.8, we are now able to prove Theorem 4.5. The intuitive idea
of the proof is that we halve the pattern T1 (i.e. find its half-pattern) repeatedly, until
eventually we reach some pattern for which we already know the equilibrium problem is hard,
which, as we will see, must happen at some point. Then, by applying Lemma 4.8 recursively,
we have that T1 is hard.

Proof of Theorem 4.5. From Lemma 4.7 we have that if we halve a pattern beginning
with 1 enough times, we will eventually reach the Best-Shot pattern: TBest-Shot[0] = 1 and
∀k ≥ 1 TBest-Shot[k] = 0. Divide into two cases.

In the first case assume that ∀k ∈ IN it holds that T1[2k] = 0. In this case, we know
that no matter how many times we halve T1 into patterns T2, T3, ..., the value in index 1
of all these half-patterns will always be 0, i.e. Ti[1] = 0 for all i. Assume that we halve T1
repeatedly into patterns T2, T3, ..., Tm (where Ti is the half pattern of Ti−1) such that Tm

is the first time that we reach the Best-Shot pattern. Observe Tm−1. For any even index
k ≠ 0 it must hold that Tm−1[k] = 0, otherwise Tm would not be the Best-Shot pattern.
Additionally, there must exist at least one odd index j s.t. Tm−1[j] = 1, since Tm is the first
time we reach the Best-Shot pattern. For these two reasons, we have that Tm−1 satisfies
the conditions of Theorem 4.1 and therefore NTPNE(Tm−1) is NP-complete under Turing
reduction. From Lemma 4.8 (used inductively), we have that ∀1 ≤ i ≤ m − 2 NTPNE(Ti) is
also NP-complete under Turing reduction, and specifically NTPNE(T1).

In the second case, assume that there exists some k ∈ IN s.t. T1[2k] = 1. In that
case, after at most k halvings, we reach some pattern for which the value of index 1 is
1. Assume that we halve T1 repeatedly into patterns T2, T3, ..., Tn (where Ti is the half
pattern of Ti−1) such that Tn is the first time that we reach a pattern for which index 1 is
1, i.e. ∀1 ≤ i ≤ n − 1 Ti[1] = 0 and Tn[1] = 1. Notice that, additionally, by definition of
a half-pattern for each i it holds that Ti[0] = 1 (since T1[0] = 1). If Tn is non-monotone,
then by Theorem 5 in [3] we have that NTPNE(Tn) is NP-complete under Turing reduction,
and from Lemma 4.8 (used inductively), we have that ∀1 ≤ i ≤ n − 1 NTPNE(Ti) is also
NP-complete under Turing reduction, and specifically NTPNE(T1). Otherwise (i.e. Tn is
monotone), denote by l the largest index s.t. Tn[l] = 1, and observe Tn−1. By definition of
double-patterns, we have that:

∀j ∈ IN Tn−1[2j] =
{

1 if j ≤ l

0 otherwise

i.e. the value in the even indices up to 2l is 1, and afterwards 0. Since Tn is defined to be
the first halving of T1 s.t. its value in index 1 is 1, we have that Tn−1[1] = 0. However, since
the definition of a double-pattern does not restrict its values in odd indices, there might be
odd indices (strictly larger than 1) for which the value of Tn−1 is 1. Divide into 3 sub-cases:

Sub-case 1: If there exists some z ≤ l s.t. Tn−1[2z + 1] = 1, then by Lemma 3.11, we have
that NTPNE(Tn−1) is NP-complete under Turing reduction.

Sub-case 2: Otherwise, if there exists some z > l s.t. Tn−1[2z + 1] = 1, then observe the
pattern T ′

n−1, which we define as the pattern shifted left by 2l from Tn−1 i.e.:

∀j ∈ IN T ′
n−1[j] = Tn−1[j + 2l]

Notice that this pattern satisfies the conditions of Theorem 4.1, and therefore NTPNE(T ′
n−1)

is NP-complete under Turing reduction. Then, by applying Theorem 7 from [3] l times, we
have that NTPNE(Tn−1) is also NP-complete under Turing reduction.

M. Gilboa 73:17

Sub-case 3: Otherwise (i.e. there is no odd index whatsoever in which the value of Tn−1
is 1), then by Corollary 3.10 we have that NTPNE(Tn−1) is NP-complete under Turing
reduction.

And so, in either case we have that NTPNE(Tn−1) is NP-complete under Turing reduction,
and therefore from Lemma 4.8 (used inductively), we have that ∀1 ≤ i ≤ n − 1 NTPNE(Ti)
is also NP-complete under Turing reduction, and specifically NTPNE(T1). ◀

5 Hardness of All Spiked Patterns

There are several finite, spiked patterns that we have not yet proved hardness for, and we now
have enough tools to close the remaining gaps. We remind the reader that spiked patterns
are patterns that begin with 1,0,1. The following theorem formalizes the result of this section,
and completes the characterization of all finite patterns.

▶ Theorem 5.1. Let T be a finite, spiked BRP. Then NTPNE(T) is NP-complete under
Turing reduction.

The intuitive idea of the proof is as follows. If the pattern simply alternates between 1
and 0 a finite amount of times (and at least twice, since the pattern is spiked), followed by
infinite 0’s, i.e. the pattern is of the form

T = [1, 0, 1, 0, 1, 0, ..., 1, 0︸ ︷︷ ︸
finite number of ′1,0′

, 0, 0, 0, ...]

then the problem11 is already shown to be hard by Corollary 3.10. Otherwise, we wish to
look at the first “disturbance” where this pattern stops alternating from 1 to 0 regularly.
Either the first “disturbance” is a 1 at an odd index, i.e. the pattern is of the form

T = [1, 0, 1, 0, 1, 0, ..., 1, 0︸ ︷︷ ︸
finite number of ′1,0′

, 1, 1, ?, ?, ...]

or the first “disturbance” is a 0 at an even index, i.e. the pattern is of the form

T = [1, 0, 1, 0, 1, 0, ..., 1, 0︸ ︷︷ ︸
finite number of ′1,0′

, 0, ?, ?, ..., 1, ?, ?, ...]

(in the latter option, after the first “disturbance” there must be some other index with value
1, since otherwise the pattern fits the form of Corollary 3.10). The first option was solved in
Lemma 3.11, and the second option can be solved using our previous results, as we shall now
formalize in the proof.

Proof of Theorem 4.5. If T satisfies the conditions of Corollary 3.10 or Lemma 3.11 then
NTPNE(T) is NP-complete under Turing reduction according to them. Otherwise, let k be
the smallest integer such that T [2k] = 0. Denote by T ′ the pattern which is shifted left by
2k − 2 from T , i.e.:

∀j ≥ 0 T ′[j] = T [j + 2k − 2]

11 In fact, Corollary 3.10 gives a more general result, but we currently only need the special case where
the pattern ends with infinite 0’s.

ICALP 2024

73:18 A Characterization of Complexity in Public Goods Games

Notice that from definition of k (being the first even index such that T [2k] = 0) we have
that for all j < k it holds that T [2j] = 1. Moreover, since T does not satisfy the conditions
of Lemma 3.11 it must hold for all j ≤ k that T [2j − 1] = 0, i.e. the value of T in the odd
indices until 2k is 0 (since otherwise T would start with a finite number of 1,0, followed by
two consecutive 1’s, and would satisfy the conditions of Lemma 3.11). Thus, we have that

∀j < 2k T [j] =
{

1 if j is even
0 if j is odd

(1)

In particular, we have that T [2k − 2] = 1, T [2k − 1] = 0, which implies that T ′[0] =
1, T ′[1] = 0; as T [2k] = 0 we have that T ′[2] = 0, and thus we conclude that T ′ is semi-sharp.
In addition, since T does not satisfy the conditions of Corollary 3.10, there must be some
other index x > 2k such that T [x] = 1, and therefore we have that T ′ is non-monotone.
Therefore, by Theorems 4.1 and 4.5, we have that NTPNE(T ′) is NP-complete under Turing
reduction. We now wish to use this in order to prove that NTPNE(T) is also hard.

From Equation 1, we can apply Theorem 7 of [3] (k − 1) times (we remind the reader
that this theorem states that prefixing a hard pattern with 1, 0 maintains its hardness), and
we have that NTPNE(T) is NP-complete under Turing reduction. ◀

References
1 Yann Bramoullé and Rachel Kranton. Public goods in networks. Journal of Economic Theory,

135(1):478–494, 2007. doi:10.1016/j.jet.2006.06.006.
2 Mustapha Chellali, Odile Favaron, Adriana Hansberg, and Lutz Volkmann. k-domination

and k-independence in graphs: A survey. Graphs and Combinatorics, 28(1):1–55, 2012.
doi:10.1007/s00373-011-1040-3.

3 Matan Gilboa and Noam Nisan. Complexity of public goods games on graphs. In Panagiotis
Kanellopoulos, Maria Kyropoulou, and Alexandros A. Voudouris, editors, Algorithmic Game
Theory - 15th International Symposium, SAGT 2022, Colchester, UK, September 12-15, 2022,
Proceedings, volume 13584 of Lecture Notes in Computer Science, pages 151–168. Springer,
2022. doi:10.1007/978-3-031-15714-1_9.

4 David Kempe, Sixie Yu, and Yevgeniy Vorobeychik. Inducing equilibria in networked public
goods games through network structure modification. In Amal El Fallah Seghrouchni, Gita
Sukthankar, Bo An, and Neil Yorke-Smith, editors, Proceedings of the 19th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS ’20, Auckland, New
Zealand, May 9-13, 2020, pages 611–619. International Foundation for Autonomous Agents
and Multiagent Systems, 2020. doi:10.5555/3398761.3398835.

5 Max Klimm and Maximilian J. Stahlberg. Complexity of equilibria in binary public goods games
on undirected graphs. In Kevin Leyton-Brown, Jason D. Hartline, and Larry Samuelson, editors,
Proceedings of the 24th ACM Conference on Economics and Computation, EC 2023, London,
United Kingdom, July 9-12, 2023, pages 938–955. ACM, 2023. doi:10.1145/3580507.3597780.

6 Arnab Maiti and Palash Dey. On parameterized complexity of binary networked public
goods game. In Piotr Faliszewski, Viviana Mascardi, Catherine Pelachaud, and Matthew E.
Taylor, editors, proceedings of the 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2022), pages 871–879, Auckland New Zealand, 2022.
International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS).
doi:10.5555/3535850.3535948.

7 Christos H. Papadimitriou and Binghui Peng. Public goods games in directed networks.
In Péter Biró, Shuchi Chawla, and Federico Echenique, editors, EC ’21: The 22nd ACM
Conference on Economics and Computation, Budapest, Hungary, July 18-23, 2021, pages
745–762, Budapest Hungary, 2021. ACM. doi:10.1145/3465456.3467616.

https://doi.org/10.1016/j.jet.2006.06.006
https://doi.org/10.1007/s00373-011-1040-3
https://doi.org/10.1007/978-3-031-15714-1_9
https://doi.org/10.5555/3398761.3398835
https://doi.org/10.1145/3580507.3597780
https://doi.org/10.5555/3535850.3535948
https://doi.org/10.1145/3465456.3467616

M. Gilboa 73:19

8 Thomas J. Schaefer. The complexity of satisfiability problems. In Richard J. Lipton, Walter A.
Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V. Aho, editors, Proceedings of the
10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San Diego, California,
USA, pages 216–226, San Diego California USA, 1978. ACM. doi:10.1145/800133.804350.

9 Yongjie Yang and Jianxin Wang. A refined study of the complexity of binary networked public
goods games. CoRR, abs/2012.02916, 2020. doi:10.48550/arXiv.2012.02916.

10 Sixie Yu, Kai Zhou, P. Jeffrey Brantingham, and Yevgeniy Vorobeychik. Computing equilibria
in binary networked public goods games. CoRR, abs/1911.05788, 2019. doi:10.48550/arXiv.
1911.05788.

11 Sixie Yu, Kai Zhou, P. Jeffrey Brantingham, and Yevgeniy Vorobeychik. Computing equilibria
in binary networked public goods games. In The 34th AAAI Conference on Artificial Intel-
ligence, AAAI 2020, The 32nd Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The 10th AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, volume 34(2), pages 2310–2317. AAAI
Press, 2020. doi:10.1609/aaai.v34i02.5609.

ICALP 2024

https://doi.org/10.1145/800133.804350
https://doi.org/10.48550/arXiv.2012.02916
https://doi.org/10.48550/arXiv.1911.05788
https://doi.org/10.48550/arXiv.1911.05788
https://doi.org/10.1609/aaai.v34i02.5609

	1 Introduction
	2 Model and Definitions
	3 Hardness of the 0-Or-2-Neighbors Pattern
	4 Hardness of Semi-Sharp Patterns
	4.1 Semi-Sharp Patterns with Isolated Odd 1
	4.2 All Semi-Sharp Patterns

	5 Hardness of All Spiked Patterns

