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Abstract
We revisit the noisy binary search model of [10], in which we have n coins with unknown probabilities
pi that we can flip. The coins are sorted by increasing pi, and we would like to find where the
probability crosses (to within ε) of a target value τ . This generalized the fixed-noise model of [2], in
which pi = 1

2 ± ε, to a setting where coins near the target may be indistinguishable from it. It was
shown in [10] that Θ( 1

ε2 log n) samples are necessary and sufficient for this task.
We produce a practical algorithm by solving two theoretical challenges: high-probability behavior

and sharp constants. We give an algorithm that succeeds with probability 1 − δ from

1
Cτ,ε

·
(

log2 n + O(log2/3 n log1/3 1
δ

+ log 1
δ

)
)

samples, where Cτ,ε is the optimal such constant achievable. For δ > n−o(1) this is within 1 + o(1)
of optimal, and for δ ≪ 1 it is the first bound within constant factors of optimal.
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1 Introduction

Binary search is one of the most fundamental algorithms in computer science, finding an
index i∗ ∈ [n] from log2 n queries asking if a given index i is larger than i∗. But what if the
queries are noisy?

One model for noisy binary search has each query be incorrect independently with
exactly the same probability 1

2 − ε. In this model, which we call FixedNoiseNBS, a line of
work [2, 1, 5, 9] has found a sharp bound for the required expected sample complexity, with
tight constants. However, in many applications of noisy binary search the error probability
is not fixed, but varies with i: comparing i to i∗ is much harder when i is close to i∗.

As one example, consider the problem of estimating the sample complexity of an algorithm
such as for distribution testing or noisy binary search itself. Proofs in this space are often
sloppy with constant factors, so the proven bound is not reflective of the true performance.
If so, we would like to empirically estimate the sample complexity i at which the success
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75:2 Sharp Noisy Binary Search with Monotonic Probabilities

Table 1 Comparison of our result to prior algorithms for MonotonicNBS in the regime of
ε ≪ min(τ, 1 − τ) and δ = 1/no(1), ignoring lower order terms. The analysis in [10] is not careful
with constants, so we also include our best estimate of the actual constant after tuning constant
factors in the algorithms.

Algorithm Proven query complexity Actual constant

Binary Search w/ Repetition 2 τ(1−τ)
ε2 log n · log log2 n

δ

[10] Multiplicative Weights 4000 max(τ,1−τ)
ε2 log n · log 1

δ
≈ 31

[10] Backtracking 476909 max(τ,1−τ)
ε2 log n · log 1

δ
≈ 2000

BayesianScreeningSearch 2 τ(1−τ)
ε2 log n

probability pi is above a given threshold τ (say, 90%). (In some cases we even know the
worst-case distribution [6] so the empirical estimate is of the worst-case performance, not
just the distributional performance.) We can run the algorithm at a given sample complexity
i and check correctness, getting Success with probability pi. The success probability is
monotonic in i, and we would like to estimate the i∗ where pi crosses τ . Finding i∗ exactly
may be very hard – the success probability at 10000 and 10001 samples are likely to be
almost identical – so we would settle for some index with pi ≈ τ .

For a non-computer science example, calculating the LD50 for a substance (the dose
needed to kill half of the members of a specific population) is a noisy binary search problem
with error probability that skyrockets close to the true answer.

Such considerations led to the noisy binary search model of Karp and Kleinberg [10],
which we call MonotonicNBS: we have n coins whose unknown probabilities pi ∈ [0, 1] are
sorted in nondecreasing order. We can flip coin i to see heads with probability pi. The goal
is to find any coin i with nonempty [pi, pi+1] ∩ (τ − ε, τ + ε) (See Figure 1 for a graphical
representation). This model subsumes FixedNoiseNBS (where pi = 1

2 − ε for i ≤ i∗ and
1
2 + ε otherwise) and of course regular binary search (where pi ∈ {0, 1}). Throughout this
paper we will suppose that τ is a constant bounded away from {0, 1}, n grows to ∞, and ε

and the desired failure probability δ may be constant or may approach 0 as n→∞.
The naive solution to MonotonicNBS is binary search with repetition: we do regular

binary search, but repeat each query enough times to have δ
log n failure probability if

pi /∈ [τ − ε, τ + ε]. This gives sample complexity O( 1
ε2 log n log log n

δ ). In [10] it was shown
that this extra log log n term is unnecessary, giving two algorithms that each have sample
complexity

O( 1
ε2 log n log 1

δ
).

In this paper, we show how to improve this bound. We show upper and lower bounds that
achieve the tight constant on log n, and reduce the log 1

δ dependence from multiplicative to
additive. Table 1 compares our result to existing methods for MonotonicNBS.

On Studying Constants. When analyzing sublinear algorithms, and trying to remove
log log n factors in query complexity, constant factors really matter. The proofs in [10] are
not careful with constants, but the algorithms themselves inherently lose constants. Our best
estimate is that one algorithm “improves” upon naive repetition by a factor of log log2 n

31 , and
the other by log log2 n

2000 (where log is the natural log). Neither is an improvement for any n that
will ever be practical – the better algorithm is only an improvement for n > 2e31 ≈ 101011 .
By studying constants, we are forced to design an algorithm that (as we shall see) gives
improvements for practical values of n. We give further discussion of the value of studying
constants in Section 2.2.
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Connection to Communication. Noisy binary search is intimately connected to the asym-
metric binary channel, i.e., the binary channel that can choose between sending 1 with
probability τ − ε or with probability τ + ε. If each pi ∈ {τ ± ε}, then noisy binary search
needs to reveal the log2 n-bit i∗ through such a channel; queries below i∗ are 1 with probability
τ − ε and those above i∗ are 1 with probability τ + ε. The natural target sample complexity
is therefore 1

Cτ,ε
log2 n, where Cτ,ε is the information capacity of the asymmetric binary

channel:

Cτ,ε := max
q

H((1− q)(τ − ε) + q(τ + ε))− (1− q)H(τ − ε)− qH(τ + ε) (1)

where H(p) is the binary entropy function. For τ = 1
2 , the maximum is at q = 1

2 and this is
just C 1

2 ,ε = 1−H( 1
2 −ε), the capacity of the binary symmetric channel with error probability

1
2 − ε. For τ ̸= 1

2 , the information obtained from τ − ε and τ + ε probability coins is not the
same, so the capacity is achieved by getting τ + ε coins with some probability q different
from 1/2; it satisfies Cτ,ε ≈ ε2

2τ(1−τ) log 2 for fixed τ as ε→ 0.

Our results. Our main result is the following:

▶ Theorem 1 (Upper bound). Let 0 < τ < 1 be a constant. Consider any parameters
0 < ε, δ < 1/2 with 0 < ε < min(τ, 1 − τ)/2. On any MonotonicNBS(τ, ε) input, the
algorithm BayesianScreeningSearch uses at most

1
Cτ,ε

(log2 n + O(log2/3 n log1/3 1
δ

+ log 1
δ

))

queries and succeeds with probability 1− δ.

Unlike [2, 1, 5, 15, 9], our results apply to MonotonicNBS, not just FixedNoiseNBS,
so they do not restrict the value of pi and handle τ ̸= 1

2 . Unlike [10], we achieve good constant
factors, high-probability results, and a better scaling with the target τ . In particular, [10]
scales multiplicatively rather than additively with O(log 1

δ ); and it uses a reduction that
incurs a constant-factor loss for targets τ ̸= 1

2 , while Theorem 1 scales with Θ(τ(1− τ)) so
improves for τ ̸= 1

2 .
Using Shannon’s strong converse theorem, we show that the dependence on n is tight:

for ε ≫ n−1/4, any algorithm must sometimes use (1 − o(1)) 1
Cτ,ε

log2 n queries; in fact, it
must use this many queries with nearly 1− δ probability.

▶ Theorem 2 (Strong converse). Any MonotonicNBS(τ, ε) algorithm that succeeds with
1− δ probability on inputs with all pi ∈ {τ ± ε} must have at least a 1− δ−O( 1

γ2nε4 ) chance
of using at least

(1− γ) 1
Cτ,ε

log2 n

queries, for any γ > 0.

For τ = 1
2 , this is also a lower bound for FixedNoiseNBS. Thus Theorem 2 gives a new

worst-case lower bound for FixedNoiseNBS, which is a 1
1−δ factor larger than the lower

bound for expected query complexity achieved in prior work [2, 1, 5, 9].
For τ ̸= 1

2 , our results are the first ones connecting noisy binary search to Cτ,ε, the
information capacity of the binary asymmetric channel.

ICALP 2024
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Our results: expected queries. For constant δ, one can get a better bound for the expected
number of queries in a simple way: only run the algorithm with probability 1− (1− 1

log n )δ,
and otherwise output the wrong answer from zero queries. This saves essentially a 1 − δ

factor in queries, which for constant δ is nontrivial:

▶ Corollary 3 (Upper bound: expected queries). Under the same conditions as Theorem 1 and
for any MonotonicNBS(τ, ε) input, algorithm SillyBayesianScreeningSearch uses

1− δ

Cτ,ε
(log2 n + O(log2/3 n log1/3 log n

δ
+ log 1

δ
))

queries in expectation and succeeds with probability 1− δ.

This 1 − δ savings is essentially the best possible. Our strong converse (Theorem 2)
already implies this, if ε ≫ n−1/4; but using Fano’s inequality, the optimality is true in
general:

▶ Theorem 4 (Weak converse). Any MonotonicNBS(τ, ε) algorithm that succeeds with
1− δ probability on inputs with all pi ∈ {τ ± ε} must use

(1− δ) log2(n− 2)− 1
Cτ,ε

queries in expectation.

Theorem 4 was essentially shown in [2], which proved the τ = 1
2 case (by giving hardness

for FixedNoiseNBS).

Our results: experiments. In Section A we compare our approach to naive repetition and
the [10] algorithms. We find, for n ≥ 103 and ε = .1, that our approach outperforms naive
repetition, which outperforms both [10] algorithms. For n = 109, our approach uses 2.3×
fewer samples than naive repetition.

1.1 Algorithm Overview
We now describe our noisy binary search algorithm in the case of τ = 1

2 and δ > 1/no(1).

Bayesian start. The natural choice for a “hard” instance is when pi ∈ {τ ± ε} (though we
will see that having multiple right answers is also hard in a different way), so the algorithm
must find the transition location i∗, and information theoretic arguments show 1

Cτ,ε
log2 n

queries are necessary. To avoid losing a constant factor in sample complexity, the algorithm
essentially must spend most of its time running the Bayesian algorithm. This algorithm
starts with a uniform prior over which interval crosses τ , makes the maximally informative
query, updates its posterior, and repeats. When τ = 1

2 , the maximally informative query is
the median under the posterior, and the Bayesian update is to multiply intervals on one side
of the query by 1 + 2ε and the other side by 1− 2ε. This algorithm, BayesLearn, is given
in Algorithm 1; the algorithm for general τ is given in Section 4.

As a technical side note, the discrete nature of the problem introduces a bit of subtlety.
Note that MonotonicNBS flips coins i but returns an interval between coins that should
be good:

▶ Definition 5. We say that an interval [i, i + 1] is (τ, ε)-good if [pi, pi+1] ∩ (τ − ε, τ + ε) is
nonempty.
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Precisely, our version of the Bayesian algorithm is as follows: we start with a uniform
prior over intervals. The median of our posterior can be viewed as a fractional coin, and
we flip the nearest actual coin but update our posterior as if we flipped the fractional coin.
So, for example, suppose the median is 4.7 (.7 ∗ w(5) +

∑4
i=1 w(i) = .5). We flip coin 5, and

if it comes out 0, that suggests the true threshold is probably above 5. We then scale up
our posterior on all intervals above 5 by 1 + 2ε; scale down intervals below 4 by 1− 2ε; and
scale the weight on interval [4, 5] by .3(1 + 2ε) + .7(1 − 2ε). This new posterior is still a
distribution that sums to 1.

Algorithm 1 Bayesian learner in τ = 1
2 case. Flips M coins and returns M intervals.

Input A set of n queryable coins, update size ε, number of steps M .
Output A list of M intervals queried.

1: procedure BayesLearn(coins, ε, M)
2: n← |coins|
3: w1 ← uniform([n− 1]) ▷ Prior distribution over intervals
4: L← {}
5: for i ∈ [M ] do
6: ji ← median interval of wi

7: xi ← either ji or ji + 1, whichever is closer to the median
8: append ji to L

9: yi ← flip coin xi ▷ 1 with probability pxi

10: wi+1(x)←


wi(x) · (1− 2ε(−1)yi) if x < ji

wi(x) · (1 + 2ε(−1)yi) if x > ji

remainder so wi+1 sums to 1 if x = ji

11: return L

Using the result. After running the Bayesian algorithm for most of our query budget, we
need to output an answer. The question becomes: how can we take the transcript of the
Bayesian algorithm and extract a useful worst-case frequentist guarantee? We need the
algorithm to work for all monotonic p, which can have values very different than τ ± ε.

In the prior work achieving tight constants for FixedNoiseNBS [2, 5], because the
pi are guaranteed to be 1

2 ± ε, the analysis can show that the weight of the single “good”
interval grows in expectation at each step. By a Hoeffding bound, after the desired number of
iterations the “good” interval has more weight than every other interval combined, so it can
be easily selected. But that property is not true for the more general pi of MonotonicNBS:
if many pi are 1

2 ± 0.6ε, the Bayesian algorithm will wander somewhat too slowly through
these samples without growing any single interval by the desired amount.

However, in such cases the Bayesian algorithm is spending a lot of time among good
intervals. This holds in general. Our key lemma shows that, if we run BayesLearn for
1 + O(γ) times the information theoretic bound 1

Cτ,ε
log2 n, a γ fraction of the intervals it

visits are (τ, ε)-good:

▶ Lemma 6 (Bayesian performance). Consider any 0 < ε, τ, δ, γ < 1 with γ ≤ 1
7 , ε <

min(τ, 1− τ)/2, and let L be the list of intervals returned by BayesLearn, when run for

1 + O(γ)
Cτ,ε

·

(
log2 n + O(

√
log n log 1

δ
+ log 1

δ
)
)

iterations on an MonotonicNBS instance. With probability 1− δ, at least a γ fraction of
the intervals in L are (τ, ε)-good.

ICALP 2024
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2 Proofs of Statements

By considering the γ-quantiles of the returned list, we reduce n to 1
γ . We can now run

a less efficient noisy binary search algorithm on this small subproblem. There are some
complications, as the solution to the new noisy binary search could correspond to a larger
interval than two adjacent coins. To deal with this, we run BayesLearn with ε′ = (1−o(1))ε,
which lets us test our candidate answers.

Technical comparison of techniques. How we leverage the bayesian learner is the main
technical difference between our upper bound and that of prior work [10, 2, 5]. As described
above, the situation is rather simpler for FixedNoiseNBS. For MonotonicNBS, [10]
instead used conservative updates in their multiplicative weights algorithm: rather than the
true Bayesian update 1± 2ε, it multiplies by about 1± 3

5 ε. This necessarily loses a constant
factor, but ensures that either the median interval queried or the last interval queried is
good. This property is not true for the true Bayesian algorithm with sharp constant.

2.1 Related Work

The FixedNoiseNBS version of noisy binary search, where τ = 1
2 and pi ∈ { 1

2 ± ε}, was
posed by Burnashev and Zigangirov [2], who showed how to achieve

1
C 1

2 ,ε

(
log2 n + log2

1
δ

+ log2
1 + 2ε

1− 2ε

)
expected queries (in Russian; see [15] for an English proof). Essentially the same [2] algorithm
for FixedNoiseNBS was rediscovered in [1]. Some bugs with the [1] proof were discovered
and fixed in [5], as well as an analysis of a variant of the algorithm for worst-case sample
complexity

1
C 1

2 ,ε

(
log2 n + O(

√
log n log 1

δ
) + O(log 1

δ
)
)

.

For 1≪ log 1
δ ≪ log n, Gu and Xu [9] showed black-box improvements for other δ. If δ

is constant, they output ⊥ with probability δ − 1
log n , and otherwise run the [5] algorithm

with δ′ = 1
log n . On the other hand, for δ = n−Ω(1), repeatedly running [5] with δ′ = 1

log n

and checking the result gives improvements:

(1 + o(1))
(

1− δ

C 1
2 ,ε

log2 n +
log 1

δ

ε log 1+2ε
1−2ε

)

For ε ≪ 1, this is a factor 2 improvement on the constant factor on log 1
δ . Moreover, [9]

shows that this bound is sharp in both n and δ.
Our version of noisy binary search, MonotonicNBS, was first posed by Karp and

Kleinberg [10]. They gave two algorithms, based on recursive backtracking and multiplicative
weights respectively, that take O( 1

ε2 log n) queries for constant δ, which they showed is within
constant factors of optimal for constant τ, δ. Unfortunately, the constant factors make both
algorithms worse than the naive repetition algorithm for any reasonable n (see Table 1 and
Section A).
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Other models. There are many different variations for noisy binary search (see [12] for
a survey of older work on the subject). Emamjomeh-Zadeh, Kempe, and Singhal [7] solve
an extension of FixedNoiseNBS from the line to graphs. This result was improved and
simplied by Dereniowski, Tiegel, Uznański and Wolleb-Graf [4], which was in later improved
and simplified by Dereniowski, Łukasiewicz, and Uznański [5]. Nowak developed a different
generalization of FixedNoiseNBS to general hypothesis classes [11]. Waeber, Frazier, and
Henderson [14] investigates a continuous variant of FixedNoiseNBS, where the target is a
point in the real interval [0, 1], and show that the Bayesian algorithm converges geometrically
(the ideal convergence up to constant factors).

To our knowledge, [10] is the only previous work that handles a setting like Monoton-
icNBS where the “true” coin may be indistinguishable from nearby coins, and the goal is
just to find a sufficiently good answer.

Applications. Noisy binary search is also used as a subroutine in other algorithms. For
instance in [13] it is used for group testing, and in Crume [3] as a replacement for git-bisect
under unreliable tests. Both implementations were based on the multiplicative weights
algorithm of Karp and Kleinberg [10].

2.2 Why constants?
There is a tendency in theoretical computer science to regard constant factors as unimportant.
But theorists care about constants in many situations, such as approximation ratios or
rates of codes, and we believe that the query complexity of sublinear algorithms is another
situation where they should be considered.

In general, the arguments for ignoring constants in time complexity hold with much
less force for query complexity. The constant for time complexity is highly dependent on
the machine architecture, which changes over time (e.g., the relative cost of addition and
multiplication). Moreover, these hardware improvements mitigate the cost of poor constants.
But the number of queries is a mathematical value, and the cost of queries (which may be,
e.g., blood tests or running a giant test suite) does not clearly decrease with time.

The question should be: does theoretical study of constant factors lead to algorithmic
insights necessary for more practical algorithms? Our paper shows that it does. By considering
constants, we are forced to find a more efficient way of translating the Bayesian algorithm
into one with frequentist guarantees (via Lemma 6). The constants lost in the previous
attempt at this (in [10]) mean that it is worse than the naive method until n > 101011 .

It should not be surprising that a simple method that loses an O(log log n) factor can
beat an algorithm that loses “only” constants, for all practical values of n. The study of
leading constants is a lens by which we found a new algorithm that actually outperforms the
naive method for reasonable values of n (namely n > 1000).

3 Detailed Proof Sketch for Upper Bound

3.1 Key Lemma on Bayesian Learner
For this proof overview, we focus on the case of δ > n−o(1) and target τ = 1

2 , where
BayesLearn queries the median of the posterior at each stage, and

Cτ,ε = 1−H(1
2 + ε) = (1

2 + ε) log2(1 + 2ε) + (1
2 − ε) log2(1− 2ε) ≈ 2ε2

log 2 .

ICALP 2024
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We give an overview of the proof of our key lemma in this case:

▶ Lemma 6 (Bayesian performance). Consider any 0 < ε, τ, δ, γ < 1 with γ ≤ 1
7 , ε <

min(τ, 1− τ)/2, and let L be the list of intervals returned by BayesLearn, when run for

1 + O(γ)
Cτ,ε

·

(
log2 n + O(

√
log n log 1

δ
+ log 1

δ
)
)

iterations on an MonotonicNBS instance. With probability 1− δ, at least a γ fraction of
the intervals in L are (τ, ε)-good.

Let a be the “best answer”, an interval that straddles the bias 1
2 . The algorithm keeps

track of a distribution w on [n − 1]; at each step i, it queries the median of the current
distribution wi, then multiplies the density on one side by 1 + 2ε and the other by 1− 2ε to
form wi+1. We analyze the algorithm by looking at log2 w(a).

At each step, the interval j we choose is either good (a valid answer) or bad (invalid). If
it is bad, suppose the sampled coin x has probability px ≥ 1

2 + ε. Then x is above a, so w(a)
multiplies by 1 + 2ε with probability px, and 1− 2ε with probability 1− px. Hence:

E[log2 wi+1(a)− log2 wi(a)] = px log2(1 + 2ε) + (1− px) log2(1− 2ε) ≥ Cτ,ε.

The case of px ≤ 1
2 − ε is symmetric, giving the same bound. So every bad interval we select

increases log2 w(a) by Cτ,ε in expectation.
On the other hand, if the interval we select is good, log2 w(a) may decrease in expectation.

For example, if we query coin a and
∑a−1

i=1 w(i) = 1
2 , we could have

E[log2 wi+1(a)− log2 wi(a)] = 1
2 log2(1− 2ε) + 1

2 log2(1 + 2ε) ≈ − 2ε2

log 2 ≈ −Cτ,ε

It turns out this is essentially the worst case, and in general the expected decrease in log2 w(a)
is no more than 5Cτ,ε for any ε < 1

2 min(τ, 1− τ). As a result, the potential function

log2 wi(a)− γCτ,ε · (# intervals chosen) + 6Cτ,ε · (# good intervals chosen)

increases by at least (1− γ)Cτ,ε in expectation in each step i, regardless of where the median
is in that step. This potential function starts at − log2(n−1), so after M = (1+2γ) 1

Cτ,ε
log2 n

steps it is at least Θ(γ) log2 n in expectation. An Azuma-Hoeffding bound shows that the
value concentrates about this expectation, and in particular will be positive with 1 − δ

probability. If so, since log2 wi(a) ≤ 0 always, we have

6 · (# good intervals chosen)− γ(# intervals chosen) ≥ 0,

and hence a γ
6 fraction of chosen intervals are good.

This proves the key lemma: after (1 + O(γ)) 1
Cτ,ε

log n steps of BayesLearn, a γ fraction
of coins flipped are good with decent probability.

Targets τ ̸= 1
2 . When τ ≠ 1

2 , the maximum-information query is no longer the median
coin, but a slightly different quantile 1

2 ± O( ε
τ(1−τ) ), and the Bayesian updates use more

complicated factors. This choice is still capacity-achieving on bad intervals, i.e., the expected
“information gain” is E[log2 wi(a)− log2 wi+1(a)] ≥ Cτ,ε, and on good intervals the expected
information loss is still at most 5Cτ,ε, so the proof structure works unchanged.
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3.2 Rest of Upper Bound
Recall that in this overview we assume log 1

δ ≪ log n. By Lemma 6, if we take all
{γ, 2γ, . . . , ⌊ 1

γ ⌋γ} quantiles of the list returned by BayesLearn, run with parameter
ε′ = ε(1 − α) (where α is introduced so we can later test the bias of each coin), we
get a size- 1

γ list containing at least one ε′-good interval. This ε′ has Cτ,ε′ = (1−O(α))Cτ,ε.
For any γ, we can just flip all of these coins O( 1

α2ε2 log 1
γδ ) times to find an ε-good one. This

would give sample complexity

(1 + O(γ))(1 + O(α)) 1
Cτ,ε

(
log2 n + O(

√
log n log 1

δ
)
)

︸ ︷︷ ︸
BayesLearn, Lemma 6

+ O( 1
γ
· 1

α2ε2 log 1
γδ

)︸ ︷︷ ︸
Testing quantiles

(2)

which, by setting γ and α to ( log 1
δ

log n )1/4, gives sample complexity

(1 + O(
log 1

δ

log n
)1/4) 1

Cτ,ε
log2 n.

This is the desired sharp bound, within (1 + o(1)) of optimal. One can do slightly better:
the second stage is itself a noisy binary search question on O(1/γ) coins, so by apply-
ing the algorithm recursively with γ′ = O(1) we can solve it on the size-O(1/γ) list in
O( 1

(1−α)Cτ,ε
log 1

γδ + 1
α2ε2 log 1

γδ ) queries. As we recurse on a much smaller list, the samples
used are all lower order and we do not need to recurse more than once. However, the answer
to the recursive call might not be a valid answer to the original problem. Regardless, one of
the endpoints of the return call must be a valid answer, which we can test for. By optimizing
the parameters, this improves the sample complexity to

(1 + O(
log 1

δ

log n
)1/3) 1

Cτ,ε
log2 n,

giving Theorem 1.

4 Proof of Lemma 6

4.1 Definitions
Let {l, . . . , r} be the set of good intervals. Let a be the maximum i ∈ [n − 1] such that
pi ≤ τ . We also define the following functions:

Cτ,ε = max
q

H((1− q)(τ − ε) + q(τ + ε))− (1− q)H(τ − ε)− qH(τ + ε) (3)

W (x) =
∑
i∈[x]

w(i) (4)

Φ(w, L) = log2 w(a) + 6Cτ,ε(|{x ∈ L|x ∈ [l, r]}| − γ|L|) (5)
q = arg max

x
H((1− x)(τ − ε) + x(τ + ε))− (1− x)H(τ − ε)− xH(τ + ε) (6)

Cτ,ε is the capacity of a (τ, ε)-BAC. We let q satisfy the equation which expresses the
shared information between a sent and received message through a (τ, ε)-BAC. (See 12, 13
for explicit formulas for Cτ,ε, q) If our prior were true – so the coins really were τ ± ε – we
would like to flip a τ + ε coin with probability q. This is achieved by selecting the q-quantile
of our posterior, which is above the true threshold with probability q. If τ = 1

2 , q = 1
2 and

we query the median; in general, we query the q = 1
2 ±O( ε

τ(1−τ) ) quantile.
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Φ is a potential function that we will be analyzing. We also define:

d0,0 = 1 − τ − ε

1 − τ − (2q − 1)ε , d0,1 = 1 − τ + ε

1 − τ − (2q − 1)ε , d1,0 = τ + ε

τ + (2q − 1)ε , d1,1 = τ − ε

τ + (2q − 1)ε
(7)

for brevity. In terms of BayesLearn we can think of dx,y as “the multiplicative effect
of a flip resulting in x (1 = Heads, 0 = Tails) on the density of an interval on side y

(1 = Right, 0 = Left) of the flipped coin.” When τ = 1
2 , dx,y = 1− 2ε(−1)x⊕y.

Algorithm 2 Acts as a Bayesian learner for M iterations, returns a list of all the chosen intervals.
Expressions for the dx,y values are given in (7).

1: procedure getIntervalFromQuantile(w, q)
2: i← min i ∈ [n] s.t. W (i) ≥ q

3: procedure roundIntervalToCoin(i, w, q)
4: return i if q−W (i−1)

w(i) ≤ q else i + 1

5: procedure BayesLearn({ci}n
i=1, n, τ, ε, M)

6: w1 ← uniform([n− 1])
7: Define q as in (13) ▷ The quantile we choose
8: L← {}
9: for i ∈ [M ] do

10: ji ← getIntervalFromQuantile(wi, q) ▷ The chosen interval
11: xi ← roundIntervalToCoin(ji, wi, q) ▷ The index of the coin we are going to

flip
12: append ji to L

13: yi ← flip(cxi)

14: wi+1 ←


wi(x)dyi,0 if x ∈ {1, . . . , ji − 1}
dyi,0(q −Wi(ji − 1)) + dyi,1(Wi(ji)− q) if x = ji

w(x)dyi,1 if x ∈ {ji + 1, . . . , n− 1}
return L

▶ Lemma 7. In BayesLearn, E[Φt+1 − Φt|yt, yt−1, . . . , y1] ≥ (1−O(γ))Cτ,ε.
Proof. Φ is given by the sum of equations (8) and (9).

6Cτ,ε(|{j ∈ L|j ∈ [l, r]}| − γ|L|) (8)

log2 w(a) (9)

Recall that in the tth round, jt is the interval chosen, and xt is index of the coin flipped. Let
p be the probability cxt lands heads.

Bad queries. Suppose jt /∈ [l, r]. If jt > r, then p ≥ τ + ε and the expected change in (9) is

p log2 d1,0 + (1− p) log2 d0,0

The first log is positive and the second log is negative, so this expression is minimized at
p = τ + ε, at which point some computation (Lemma 9) shows that it equals Cτ,ε. Similarly,
if xt < l then p ≤ τ − ε and the expected change is

p log2 d1,1 + (1− p) log2 d0,1

which is also at least Cτ,ε by Lemma 9. As jt ̸∈ [l, r], the change in (8) is −γ ·6Cτ,ε. Therefore
in this case the expected change in Φ is at least (1− 6γ)Cτ,ε.
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Good queries. Suppose jt ∈ [l, r]. The change in (8) is now 6Cτ,ε(1− γ). But how much
can (9) decrease in expectation? Suppose that jt ̸= a. Then the expected change is either

p log2 d1,0 + (1− p) log2 d0,0

with p ≥ τ , or

p log2 d1,1 + (1− p) log2 d0,1

with p ≤ τ .
As d1,0 = τ+ε

τ+(2q−1)ε ≥
1−τ−ε

1−τ−(2q−1)ε = d0,0 and d1,1 = τ−ε
τ+(2q−1)ε ≤

1−τ+ε
1−τ−(2q−1)ε = d0,1,

both of these expressions are minimized when p = τ . So the expected change in (9) is lower
bounded by:

min (τ log2 d1,0 + (1− τ) log2 d0,0, τ log2 d1,1 + (1− τ) log2 d0,1) . (10)

We note that

τ log2 d1,0 + (1 − τ) log2 d0,0 = (τ + ε) log2 d1,0 + (1 − τ − ε) log2 d0,0 − ε log2 d1,0 + ε log2 d0,0

= Cτ,ε − ε log2 d1,0 + ε log2 d0,0

≥ Cτ,ε − 3ε( ε

τ
+ ε

1 − τ
) (Lemma 13)

= Cτ,ε − 3ε2

τ(1 − τ)
≥ Cτ,ε − (6 log 2)Cτ,ε (Lemma 10)
≥ −5Cτ,ε

a symmetric argument for lower bounding τ log2 d1,1 + (1− τ) log2 d0,1 holds. Therefore, the
change in (9) is lower bounded by −5Cτ,ε.

Now suppose that jt = a. Then for some k ∈ [0, 1] the expected change in (9) is:

p log2(d1,0k + d1,1(1− k)) + (1− p) log2(d0,0k + d0,1(1− k))

If k ≤ q then we flip a so p ≤ τ . d0,0k + d0,1(1 − k) ≥ d0,0q + d0,1(1 − q) = 1. Also
d1,0k + d1,1(1− k) ≤ d1,0q + d1,1(1− q) = 1. Therefore, this expression is minimized when
p = τ . By symmetry, when k > q this expression is also minimized when p = τ .

So the expected change in (9) is lower bounded by

τ log2(d1,0k + d1,1(1− k)) + (1− τ) log2(d0,0k + d0,1(1− k))

for some k ∈ [0, 1]. Taking the derivative with respect to k, we get

τ
d1,0 − d1,1

d1,1 + (d1,0 − d1,1)k + (1− τ) d0,0 − d0,1

d0,1 + (d0,0 − d0,1)k

As d1,1 < d1,0 and d0,1 > d0,0, τ
d1,0−d1,1

d1,1+(d1,0−d1,1)k > 0 > (1− τ) d0,0−d0,1
d0,1+(d0,0−d0,1)k . We note

that as k increases, τ
d1,0−d1,1

d1,1+(d1,0−d1,1)k decreases in magnitude, while (1− τ) d0,0−d0,1
d0,1+(d0,0−d0,1)k

increases in magnitude. Therefore, the minimum value of the above expression is achieved
when k = 0 or k = 1.

So the expected change in (9) is lower bounded by

min(τ log2 d1,0 + (1− τ) log2 d0,0, τ log2 d1,1 + (1− τ) log2 d0,1)

which is the same expression which we lower bounded for the jt ̸= a case. Combining
these two cases, when we are querying a good interval, the expected change is lower bounded
by 6Cτ,ε(1 − γ) − 5Cτ,ε = (1 − 6γ)Cτ,ε. Therefore E[Φt+1 − Φt|yt, yt−1, . . . , y1] ≥ (1 −
O(γ))Cτ,ε. ◀
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Now that we have the gain in our potential function, we can apply a stochastic domination
argument with Freedman’s inequality in order to get Lemma 6 (Appendix C).

5 Algorithm and Analysis

Algorithm 3 Noisy Binary Search. It recurses at most once.
Input n queryable coins {ci}n

i=1, update size ε, target τ , failure probability δ

Output An interval which is (τ, ε)-good
1: procedure ReductionToGamma({ci}n

i=1, n, τ, ε, δ, γ)
2: L← BayesLearn({ci}n

i=1, n, τ, ε, 1+O(γ)
Cτ,ε

(log2 n + O(
√

log n log 1
δ + log 1

δ )))
3: R← {}
4: for i ∈ [⌊ |L|

⌈γ|L|⌉⌋] do
5: append L⌈γ|L|⌉i to R

return Sorted(removeDuplicates(R))
6: procedure BayesianScreeningSearch({ci}n

i=1, n, τ, ε, δ, γ = 1
7 log2(n) )

7: ε′ = ε ·max(1− 3
√

logn(1/δ), 2
3 )

8: R← ReductionToGamma({ci}n
i=1, n, τ, ε′, δ/3, 1

3 log2(n) )
9: if |R| > 7 then

10: R← [1] + R + [n] ▷ Pad R with the extremes of the initial problem.
11: i← BayesianScreeningSearch({cRi

}|R|
i=1, |R|, τ, ε′, δ/3, 1

7 )
12: p̂Ri+1 ← estimate pRi+1 up to ± ε−ε′

2 error with δ/3 f.p.
13: if p̂Ri+1 > τ − ε + ε−ε′

2 then
14: return Ri

15: else
16: return Ri+1 − 1
17: else
18: for x ∈ R do
19: p̂x+1 ← estimate px+1 up to ± ε−ε′

2 error with δ/18 f.p.
20: if p̂x+1 > τ − ε + ε−ε′

2 then
21: return x

▶ Theorem 1 (Upper bound). Let 0 < τ < 1 be a constant. Consider any parameters
0 < ε, δ < 1/2 with 0 < ε < min(τ, 1 − τ)/2. On any MonotonicNBS(τ, ε) input, the
algorithm BayesianScreeningSearch uses at most

1
Cτ,ε

(log2 n + O(log2/3 n log1/3 1
δ

+ log 1
δ

))

queries and succeeds with probability 1− δ.

Proof.
Correctness. Suppose that we run BayesianScreeningSearch on a MonotonicNBS
instance with parameters {ci}n

i=1, n, τ, ε, δ. Also assume that all probabilistic stages succeed,
meaning that ReductionToGamma, BayesianScreeningSearch, and our coin bias
estimation all succeed. By a union bound, this occurs with probability ≥ 1− δ.

As we pick every γ|L|th coin from L and L contains at least ⌈γ|L|⌉ ε′-good intervals, R

contains at least one ε′-good interval. Suppose that |R| ≤ 7 and that Ri is the first ε′-good
interval in R.



L. Gretta and E. Price 75:13

Then for all j ∈ {1, . . . , i− 1}, either Rj is an ε-good interval or it is not. If it is, then we
have nothing to worry about outputting it. If it is not, then pRj+1 ≤ τ−ε (as if pRj+1 ≥ τ +ε

then Ri is not ε-good), so p̂Rj+1 ≤ τ − ε + ε−ε′

2 . So we do not output any not ε-good interval
before Ri. Once we reach Ri, pRi+1 > τ − ε′, so p̂Ri+1 > τ − ε′ − ε−ε′

2 = τ − ε + ε−ε′

2 and
we output Ri.

Now suppose that |R| > 7. As we recursively run BayesianScreeningSearch with
γ = 1/7, we note that for the R in the recursive call R′, |R′| = ⌊ |L|

⌈γ|L|⌉⌋ ≤ ⌊
1
γ ⌋ = 7,

so |R′| ≤ 7. By our work above, this means that the recursive call returns i such that
[pRi

, pRi+1 ] ∩ (τ − ε′, τ + ε′) ̸= ∅.
Either Ri or Ri+1 − 1 is ε′-good, as if pRi+1 ≤ τ − ε′ and pRi+1−1 ≥ τ + ε′ then R must

not contain any good intervals. The same logic as for the |R| ≤ 7 case holds, and we have
shown correctness.

Number of samples. Suppose that we run BayesianScreeningSearch with γ = 1/7.
The ReductionToGamma call takes

1 + O(γ)
Cτ,ε′

(
log2 n + O(

√
log n log 1

δ
+ log 1

δ
)
)

= 1
Cτ,ε

O(log n + log 1
δ

)

samples. As we have γ = 1/7, |R| ≤ 7 and we go through the second branch. Then the
bias estimation takes O( τ(1−τ) log 1

δ

(ε−(1− 3
√

logn
1
δ )ε)2

) = O( τ(1−τ) log 1
δ

(ε 3
√

logn
1
δ )2

) = O( log2/3 n log1/3 1
δ

Cτ,ε
) samples,

for overall 1
Cτ,ε

O(log n + log 1
δ ) samples.

Now consider the case γ = 1
7 log2 n , and suppose that 1 − 3

√
logn(1/δ) ≥ 2/3. When

γ = O(1/ log(n)), ε′ = ε ∗ (1 − 3
√

logn(1/δ)), we have 1+O(γ)
Cτ,ε′

= 1+O( 1
log n )

Cτ,ε′
= 1

Cτ,ε′
=

1
(1−O( 3

√
logn(1/δ))Cτ,ε

, by Lemma 12. So ReductionToGamma takes

1
(1−O( 3

√
logn(1/δ))Cτ,ε

·

(
log2 n + O(

√
log n log 1

δ
+ log 1

δ

)

= 1
Cτ,ε

·
(

log2 n + O(log2/3 n log1/3 1
δ

+ log 1
δ

)
)

samples.
If |R| ≤ 7 we take the second branch and take O( log2/3 n log1/3 1

δ

Cτ,ε
) more samples, which

meets our bound. If |R| > 7 we take the first branch and recurse with γ = 1/7 and
n′ = O(log n), for 1

Cτ,ε
O(log log n + log 1

δ ) samples.

As established previously, the bias estimation takes O( log2/3 n log1/3 1
δ

Cτ,ε
) samples. Overall

the algorithm takes

1
Cτ,ε

(log2 n + O(log2/3 n log1/3 1
δ

+ log 1
δ

))

samples. In the case 1− 3
√

logn(1/δ) < 2/3, the O(log 1
δ )

Cτ,ε
term dominates the rest, and the

bound holds. ◀

Corollary 3 then follows by elementary analysis.
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6 Lower Bounds

We achieve our lower bounds by a communication complexity reduction.

▶ Lemma 8. Given any algorithm A which solves NBS for parameters (τ, ε) with sample
budget m and failure probability δ, there exists a protocol that communicates over a discrete
memoryless channel with capacity Cτ,ε with rate R = log2(n−1)

m with failure probability δ.

Now we can use lower bounds from information theory. By applying Shannon’s Strong
Converse Theorem, we get Theorem 2, and by applying Fano’s inequality we get Theorem 4.
See Appendix C for proofs.

7 Future Work

One interesting topic of research is instance-dependent noisy binary search. If an instance is
much nicer than the worst case, say every coin has bias 1

2 ± α for α≫ ε, we would hope to
get a O( log n

α2 ) dependence, which BayesianScreeningSearch does not get. One could use
an adaptive coin bias estimator to get some adaptivity, but the constants gotten from this
will likely not be good.

Another open problem is attenuating the lower order terms in the upper bound for NBS.
For realistic n, lower order terms such as

√
log n, or even log log n are not negligible compared

to log n, and influences the practical application of BayesianScreeningSearch, as seen in
the experimental results where we spent 28% of our samples on the “lower order” recursive
calls.

One conjectural algorithm for noisy binary search would be: run BayesLearn for
(1 + O(γ))OPT steps, then output the median of the last γOPT intervals chosen. This
interpolates between the overall median (which loses a constant factor) and the final interval
(which has a large probability of failure), and avoids the inefficiency of recursive calls.
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A Figures and Experiments

Figure 1 In FixedNoiseNBS, every coin is ε-far from the true i∗ that must be found. We
consider MonotonicNBS, where many coins may be close to the threshold and the goal is to find
some good coin (the gray shaded region).

Applying NBS. To demonstrate the practicality of BayesianScreeningSearch we com-
pare it to standard binary search with repetition (NaiveNBS) and the two algorithms of [10]
(KKBacktracking and KKMultiplicativeWeights).

To fairly compare between these algorithms, we can’t just use the descriptions given in [10],
as the constants used in analysis are not optimized. We leverage BayesianScreeningSearch
to address this. We tweak the listed algorithms so they take a sample budget as input which
they allocate among all their stages. To estimate how large a budget is needed for algorithm
A to perform well on distribution D, we run BayesianScreeningSearch where when the
ith coin is flipped we run A on some input drawn from D, and return 1 if A succeeds and 0
if A fails. By setting τ = .8, .9 and ε = .05, we get upper and lower bounds for how many
samples is needed to get δ = .15 failure probability.

Experiments. We compare results on 4 different problem distributions: Standard, Biased,
Lopsided, and Wide.
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Figure 2 Performance of various MonotonicNBS algorithms for listed distributions.

Standard. pi ∈ {τ − ε, τ + ε}, τ = 1
2 , ε = .1, the transition interval chosen uniformly at

random..

Biased. pi ∈ {τ − ε, τ + ε}, τ = 3
4 , ε = .1, the transition interval chosen uniformly at

random.

Lopsided. pi ∈ {τ − .6ε, τ + ε}, τ = 1
2 , ε = .1, the transition interval chosen uniformly

at random..

Wide. we choose an interval (uniformly at random) of size 10 log n that linearly interpol-
ates between τ − ε and τ + ε, and set the rest to be pi ∈ {τ − ε, τ + ε}, τ = 1

2 , ε = .1.

Results. We remark that KKBacktracking performed markedly worse than the other
algorithms, and so is not included in the figures. For reference, for Standard, N = 1000
KKBacktracking required m > 2.9 × 106 samples, while the other algorithms need
m < 6000 samples (see Figure 2).

We find that KKMultiplicativeWeights is outperformed by NaiveNBS on all of
these distributions. In contrast, BayesianScreeningSearch outperforms NaiveNBS for
n > 103.

When τ ̸= 1
2 the difference between BayesianScreeningSearch, NaiveNBS and the

[10] algorithms increases. This is in line with our theory, as the first two perform better when
τ is further from 1

2 , while the [10] algorithms reduce to the case τ = 1
2 , losing a constant

factor.
More details on the experiments are in the full version.
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B Computations

This section gives the statements of some approximations used in the body of the paper.
The proofs are in the full version.

We give explicit formulas for some functions used in this paper

z = 2
H(τ−ε)−H(τ+ε)

2ε (11)

Cτ,ε = log2(z + 1) + τ − ϵ

2ϵ
H(τ + ϵ)− τ + ϵ

2ϵ
H(τ − ϵ) (12)

q =
(1− τ + ε)− 1

1+z

2ε
(13)

▶ Lemma 9.

Cτ,ε = (τ + ϵ) log2( τ + ϵ

τ + (2q − 1)ε ) + (1− τ − ϵ) log2( 1− τ − ϵ

1− τ − (2q − 1)ε )

and

Cτ,ε = (τ − ϵ) log2( τ − ϵ

τ + (2q − 1)ε ) + (1− τ + ϵ) log2( 1− τ + ϵ

1− τ − (2q − 1)ε )

▶ Lemma 10. For ε ≤ 1
2 min(τ, 1− τ),

1
2 log 2

ε2

τ(1− τ) ≤ Cτ,ε ≤
1

log 2
ε2

τ(1− τ) .

▶ Lemma 11. For 0 < ε ≤ 1
2 min(τ, 1− τ),

|q − 1
2 | ≤

2ε

τ(1− τ) .

▶ Lemma 12.

Cτ,(1−o(1))ε ≥ (1− o(1))Cτ,ε

▶ Lemma 13. For ε < 1
2 min(τ, 1− τ),

log2 d0,0 ≥ −3 ε
1−τ

log2
1

d0,1
≥ −3 ε

1−τ

log2
1

d1,0
≥ −3 ε

τ

log2 d1,1 ≥ −3 ε
τ

C Omitted Proofs

▶ Lemma 6 (Bayesian performance). Consider any 0 < ε, τ, δ, γ < 1 with γ ≤ 1
7 , ε <

min(τ, 1− τ)/2, and let L be the list of intervals returned by BayesLearn, when run for

1 + O(γ)
Cτ,ε

·

(
log2 n + O(

√
log n log 1

δ
+ log 1

δ
)
)

iterations on an MonotonicNBS instance. With probability 1− δ, at least a γ fraction of
the intervals in L are (τ, ε)-good.

Proof of Lemma 6. In this proof we omit some of the routine calculations, see the full
version for the complete proof.

Recall that Φ is given by the sum of equations (8) and (9).

6Cτ,ε(|{j ∈ L|j ∈ [l, r]}| − γ|L|) (8)

log2 w(a) (9)
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Reduction to Φ > 0. First note that Φ1 = − log2(n− 1), as initially L is empty so (8) is
0, and we initialize w as uniform so w(a) = 1

n−1 . Next note that if (8) > 0, then

6Cτ,ε(|{x ∈ L|x ∈ [l, r]}| − γ|L|) > 0
|{x ∈ L|x ∈ [l, r]}| > γ|L|

So there are strictly more than γ|L| good intervals in L. Next note that (9) is ≤ 0 always, so
Φ > 0 =⇒ (8) > 0. So it suffices to show that with δ failure probability Φt+1 > 0, where
t = 1+O(γ)

Cτ,ε
(log2 n + O(

√
log n log 1

δ + log 1
δ ))

Establishing a submartingale. By a stochastic domination argument, we can consider the
worst case where all coins sampled have bias in [τ − ε, τ + ε]. Suppose that we are flipping a
coin that has bias p ≤ τ − ε. The potential function consists of two parts, one of which does
not depend on the flip, and the other which does. We see that a tails increases the potential
function, while a heads decreases it. So p = τ − ε is the worst case. The argument for when
p ≥ τ + ε is symmetric. We do not need to worry about how this affects future states as
Lemma 7 conditions on the prior flips.

Let σ2
i be the variance of the difference random variables Φi+1 − Φi, then we note that

σ2
i is a Bernoulli random variable with parameter p ∈ [τ − ε, τ + ε], that is scaled by at most

a max(log2 d1,0 − log2 d0,0, log2 d0,1 − log2 d1,1) ≲ ε
τ(1−τ) factor, therefore

σ2
i ≲ p(1− p)

(
ε

τ(1− τ)

)2
≲ τ(1− τ)

(
ε

τ(1− τ)

)2
= ε2

τ(1− τ) ≲ Cτ,ε

Where we use the fact that ε ≤ min(τ,1−τ)
2 . Therefore σ2

i ≲ Cτ,ε.

Freedman’s inequality. For brevity let g = (1 − O(γ))Cτ,ε, the lower bound given in
Lemma 7.

Pr[Φt+1 ≤ 0] = Pr[Φt+1 − Φ1 ≤ −Φ1]

≤ exp
(
− 2(−gt− Φ1)2∑t

i=1 σ2
i + O( ε

τ(1−τ) )(gt + Φ1)

)
Freedman’s when gt ≥ −Φ1

≤ exp(−O(1)
tCτ,ε

· (g2t2 + 2gtΦ1 + Φ2
1))

Bounding this expression by δ, we get

g2t2 + (2gΦ1 − logO(1)(1/δ)Cτ,ε)t + Φ2
1 ≥ 0 (14)

(14) is a quadratic with respect to t, and has a positive leading coefficient. Applying the
quadratic formula, if we set

t ≥ −Φ1

g
+

Cτ,ε logO(1)(1/δ)
2g2 +

√
(logO(1)(1/δ)Cτ,ε)2 − 4gΦ1 logO(1)(1/δ)Cτ,ε

2g2 (15)

then (14) holds. As Φ1 = − log2(n− 1), g = (1−O(γ))Cτ,ε we get that (15) is

1
1−O(γ) ·

1
Cτ,ε

(log2 n + O(
√

log n log 1
δ

+ log 1
δ

))

As 1
1−O(γ) is 1 + O(γ), our lemma holds. ◀
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Algorithm 4 Noisy Binary Search that gets the optimal expected queries.

1: procedure SillyBayesianScreeningSearch({ci}n
i=1, n, τ, ε, δ)

2: return
{

Random([n− 1]) w.p. δ − δ/ log2 n

BayesianScreeningSearch({ci}n
i=1, n, τ, ε, δ

log(n) ) otherwise

Proof of Corollary 3. The failure probability of SillyBayesianScreeningSearch is ≤
δ− δ/ log2 n + (1− δ + δ/ log2 n)δ/ log2 n = δ− δ2/ log2 n + δ2/ log2

2 n ≤ δ. We use 0 samples
with probability δ − δ/ log2 n, and the expression in Theorem 1 with δ′ = δ/ log2 n, with
probability 1− δ + δ/ log2 n. ◀

Proof of Lemma 8. Omitted, see the full version. ◀

▶ Lemma 14 (Shannon’s Strong Converse Theorem). Over any discrete memoryless channel,
for R > C

Pe ≥ 1− K1

n(R− C)2 − exp(−K2n(R− C))

where Pe is the probability of error, K1, K2 are positive constants which depend on the
channel, n is the input alphabet size, R is the rate of information, and C is the channel
capacity [8].

Proof of Theorem 2. Let α = 1
1+ K

Cτ,ε
√

β(n−1)
, for constant K to be determined later. Sup-

pose that A uses at most α log2(n−1)
Cτ,ε

samples with probability at least δ + β. Let A′ be
the algorithm that runs A, but outputs a random answer if A uses more than α log2(n−1)

Cτ,ε

samples. A′ fails only whenever A fails or uses more than α log2(n−1)
Cτ,ε

samples, so by a union
bound A′ has a failure probability of at most 1 − β. By Lemma 8 we can construct a
protocol over a discrete memoryless channel with capacity Cτ,ε that communicates at rate
R = log2(n−1)

α log2(n−1)
Cτ,ε

= Cτ,ε

α = C
α with a failure probability of at most 1− β.

By Lemma 14 we have that

1− β ≥ 1− K1

(n− 1)(R− C)2 − exp(−K2(n− 1)(R− C))

= 1− K1

(n− 1)((1/α− 1)C)2 − exp(−(n− 1)K2((1/α− 1)C))

= 1− K1β

K
− exp(−

√
n− 1

β
K2K)

≥ 1− β

2 sufficiently large K and n

which is a contradiction. Therefore with probability at least 1 − δ − β A uses
1

1+ K√
β(n−1)(Cτ,ε)

1
Cτ,ε

log2 n samples. ◀

Proof of Theorem 4. Omitted, see the full version. ◀
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