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Abstract
In the recently introduced framework of solution discovery via reconfiguration [Fellows et al.,
ECAI 2023], we are given an initial configuration of k tokens on a graph and the question is whether
we can transform this configuration into a feasible solution (for some problem) via a bounded number b

of small modification steps. In this work, we study solution discovery variants of polynomial-time
solvable problems, namely Spanning Tree Discovery, Shortest Path Discovery, Matching
Discovery, and Vertex/Edge Cut Discovery in the unrestricted token addition/removal model,
the token jumping model, and the token sliding model. In the unrestricted token addition/removal
model, we show that all four discovery variants remain in P. For the token jumping model we
also prove containment in P, except for Vertex/Edge Cut Discovery, for which we prove
NP-completeness. Finally, in the token sliding model, almost all considered problems become
NP-complete, the exception being Spanning Tree Discovery, which remains polynomial-time
solvable. We then study the parameterized complexity of the NP-complete problems and provide a
full classification of tractability with respect to the parameters solution size (number of tokens) k

and transformation budget (number of steps) b. Along the way, we observe strong connections
between the solution discovery variants of our base problems and their (weighted) rainbow variants
as well as their red-blue variants with cardinality constraints.
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1 Introduction

In classical optimization problems, we are given a problem instance and the task is to
compute an optimal solution. However, in many applications and real-world scenarios we are
already provided with a current solution, albeit non-optimal or infeasible for a given instance.
Depending on the application, it might be desirable to find an optimal or feasible solution
via a bounded number of small modification steps starting from the current solution.

Very prominent examples for such “systems” are typically settings where humans are
involved in the system and big changes to the running system are not easily implementable or
even accepted. When optimizing public transport lines, shift plans, or when assigning workers
to tasks it is clearly desirable to aim for an optimal solution that is as similar as possible to
the current state of the system. Fellows et al. [13] recently introduced the solution discovery
via reconfiguration framework addressing the computational aspects of such problems. In
their model, an optimizer is given a problem instance together with a current (possibly)
infeasible solution. The aim is to decide whether a feasible solution to the given problem
can be constructed by applying only a bounded number of changes to the current state. We
extend this line of work and focus on core polynomial-time solvable problems on graphs,
namely Spanning Tree, Shortest Path, Matching, and Vertex/Edge Cut. More
precisely, for any of the four aforementioned problems, say Π, we consider instances consisting
of a graph G, a budget b, and a starting configuration of k tokens, which is not necessarily a
feasible solution for Π (and where tokens either occupy vertices or edges of G). The goal
is to decide whether one can transform the starting configuration of tokens into a feasible
solution for Π by applying at most b “local changes”.

The solution discovery framework is inspired by approaches transforming one solution
to another such as local search, reoptimization, and combinatorial reconfiguration. Local
search is an algorithmic paradigm that is based on iterative improvement of solutions in a
previously defined neighborhood. In contrast to our setting, local search typically improves
the current solution in each step, while we allow arbitrary configurations between the starting
and ending configurations (our only restriction is that each vertex/edge can be occupied
by at most one token). In reoptimization the aim is also to compute optimal solutions
starting from optimal solutions of “neighboring” instances (distance between instances being
usually defined as the number of vertex/edge addition/deletion required to make the two
graphs isomorphic). Closely related is the field of sensitivity analysis, a very classical area
studying how sensitive an optimal solution is (how it reacts) to small changes in the input. In
combinatorial reconfiguration we are also given a starting solution, but additionally a target
solution, and very often constraints on the intermediate steps, e. g., that every intermediate
step maintains a valid solution. In our setting the target and intermediate steps are not
explicitly specified, but we aim for any final configuration satisfying some desired properties.

As an illustrating example application, consider the scenario in which a city experiences
severe weather conditions, leading to a rapid increase in river water levels. The city relies
on the protection of a dam, but there is a foreseeable risk that the dam may eventually
fail. We assume that the dam breaks (continuously) from point A to point B, where the
(shortest) distance between A and B in our graph-view of the world is exactly k vertices
(including A and B). In anticipation of such emergencies, the city has also placed (at least) k
sandbags in fixed locations across the city so that one can move them as fast as possible
to avoid greater damage (we here make the simplifying assumption that each unit of the
broken dam can be fixed by a single sandbag). When the dam breaks we can easily compute
a shortest path between A and B, which also allows us to compute the minimum number of
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sandbags required to stop the flowing water. However, computing such a shortest path is not
enough in this situation. Instead, we additionally need to account for sandbags having to
move to the appropriate locations as quickly as possible. This corresponds exactly to the
problem of finding a shortest path (between two fixed vertices) that is quickly reachable from
a predefined set of positions (vertices) in the graph. In other words, this motivates the study
of discovery variants of the Shortest Path problem.

An alternative perspective at solution discovery problems is as follows. Consider a vertex
(resp. edge) selection problem Π on graphs. Assume that each element (vertex or edge) in
the solution of size k must be supported by one of k support points, which are located at k
different elements of the input graph, and which can each support exactly one element of
the solution. The cost of supporting an element is measured by the distance to the chosen
support point. The problem of deciding whether there exists a solution that can be supported
with cost b corresponds to a discovery variant of problem Π.

Before we proceed and state our results we quickly recall the solution discovery framework
of Fellows et al. [13] (see preliminaries for formal definitions). Consider an instance of a
vertex (resp. edge) selection problem Π on graphs, where some vertices (resp. edges) of the
input graph are occupied by (distinct and indistinguishable) tokens. A token may be moved
(in a specific way depending on the concrete model) for a cost of 1. In the unrestricted token
addition/removal model1, an existing token may be removed, or a new token may be placed
on an unoccupied vertex (resp. edge) for a cost of 1. In the token jumping model, a token
may be moved from one vertex (resp. edge) to an arbitrary unoccupied vertex (resp. edge) for
a cost of 1. In the token sliding model, a token may be moved to a neighboring unoccupied
vertex (resp. edge) for a cost of 1. The goal is to move the tokens such that they form a
valid solution for problem Π within the given budget. We remark that these notions of token
moves have also been studied in the realm of combinatorial reconfiguration [21, 24].

Fellows et al. [13] considered the solution discovery variants of (computationally hard)
fundamental graph problems, namely Vertex Cover, Independent Set, Dominating
Set and Vertex Coloring. The complexity of solution discovery for Vertex Coloring
in the color flipping model was studied in [16] under the name k-Fix and in the color
swapping model in [10] under the name k-Swap. Since these problems, which we call base
problems, are NP-complete, it is not surprising that their solution discovery variants are also
NP-complete in all of the aforementioned models. In this work, we continue the examination
of the solution discovery framework and focus on the discovery variants of polynomial-time
solvable base problems, namely Spanning Tree Discovery, Shortest Path Discovery,
Matching Discovery, and Vertex/Edge Cut Discovery. When a base problem is
polynomial-time solvable, one may, given an instance with a partial or infeasible solution,
efficiently compute an optimal solution from scratch. However, as previously illustrated,
there are situations in which a solution that is close to a currently established configuration
is more desirable. As we show in this work, the constraints put on these problems in the
solution discovery framework, namely a limited number of changes, can drastically alter their
complexities.

We observe strong connections between the solution discovery variants of our base
problems and their weighted rainbow variants as well as their red-blue variants with cardinality
constraints. An instance of a weighted rainbow vertex (resp. edge) selection problem consists

1 We call the model “unrestricted” to differentiate it from the addition/removal model usually considered
in reconfiguration problems as the latter imposes a lower or upper bound on the number of tokens in
the graph at all times.
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of a weighted vertex (resp. edge) colored graph, and the solution of such an instance may
not contain two vertices (resp. edges) of the same color, while “collecting” a certain amount
of weight. We show that if (the parameterized version of) the weighted rainbow variant of
problem Π admits a fixed-parameter tractable (FPT-) algorithm, then this algorithm can be
used to design a fixed-parameter tractable algorithm for the solution discovery variant of Π
in the token sliding model. Similarly, solving the solution discovery variant of a problem in
the token jumping model boils down to solving the red-blue variant of that same problem.
An instance of a red-blue vertex (resp. edge) selection problem consists of a graph where
every vertex (resp. edge) is either colored red or blue and two integer parameters k and b.
The goal is to find a solution of size k that contains at most b blue vertices (resp. edges).

1.1 Our results

We provide a full classification of tractability vs. intractability with respect to the classical
as well as the parameterized complexity of the aforementioned solution discovery problems in
all three token models (Table 1). Moreover, we prove some results for rainbow problems as
well as red-blue problems, which we believe to be of independent interest. Our main results
can be summarized as follows:

Spanning Tree Discovery, Shortest Path Discovery, Matching Discovery,
and Vertex/Edge Cut Discovery are polynomial-time solvable in the unrestricted
token addition/removal model.
Spanning Tree Discovery, Shortest Path Discovery and Matching Discovery
are polynomial-time solvable, while Vertex/Edge Cut Discovery is NP-complete in
the token jumping model.
Spanning Tree Discovery is polynomial-time solvable, while Shortest Path Dis-
covery, Matching Discovery, and Vertex/Edge Cut Discovery are NP-complete
in the token sliding model.

We then consider the parameterized complexity of the NP-complete discovery problems
and establish the following connection with their rainbow variants.

Meta theorem: For an optimization problem Π, if the weighted Rainbow-Π prob-
lem (parameterized by solution size k) admits an FPT algorithm, then Π-Discovery
(parameterized by solution size k) admits an FPT algorithm in the token sliding model.

FPT algorithms for the Weighted Rainbow Shortest Path problem [1], Weighted
Rainbow Matching problem [19], and the Weighted Rainbow Vertex/Edge Cut
problem (which we provide in this paper) immediately imply FPT algorithms for the discovery
variants parameterized by k (in the token sliding model). We demonstrate the power of our
meta theorem by using it to show that Vertex/Edge Cut Discovery is FPT with respect
to parameter k in the sliding model. For Shortest Path Discovery and Matching
Discovery, we then give more intuitive and direct FPT algorithms, which also achieve
better running times. We conclude by studying the parameterized complexity of all hard
problems (not covered by the meta-theorem) when parameterized by either k or b, obtaining
the following results.

Shortest Path Discovery, Matching Discovery, and Vertex/Edge Cut Dis-
covery are FPT when parameterized by solution size k in the token sliding model.
Furthermore, Vertex/Edge Cut Discovery is FPT when parameterized by k in the
token jumping model.
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Table 1 Overview of our results.

Spanning Tree Shortest Path Matching Vertex/Edge Cut
Discovery
Add/Rem. in P in P in P in P

Discovery
Jumping in P in P in P NP-c., FPT[k],

W[1]-hard[b]
Discovery

Sliding in P NP-complete,
FPT[k], FPT[b]

NP-c., FPT[k],
W[1]-hard[b]

NP-c., FPT[k],
W[1]-hard[b]

Rainbow in P [6] NP-complete NP-complete
on paths [25]

NP-complete [3],
NP-c. on planar

Red-Blue in P in P in P NP-c., FPT[k],
W[1]-hard[b]

Shortest Path Discovery is FPT, while Matching Discovery and Vertex/Edge
Cut Discovery are W[1]-hard when parameterized by the budget b in the token sliding
model. Furthermore, Vertex/Edge Cut Discovery is W[1]-hard when parameterized
by the budget b in the token jumping model.

1.2 Related work

The solution discovery framework is closely related to the combinatorial reconfiguration
framework, introduced by Ito et al. [21] and studied widely since then. In the reconfiguration
variant of a problem we are given an initial solution S and a target solution T and the
question is whether S can be transformed into T by a sequence of reconfiguration steps
(e. g., token additions/removals, token jumps, or token slides) such that each intermediate
configuration also constitutes a solution.

The Minimum Spanning Tree Reconfiguration problem by edge exchanges, i.e.,
token jumps, was first studied by Ito et al. [21]. They showed that the problem is in P by
extending the exchange property of matroids to the reconfiguration of weighted matroid
bases. Shortest Path Reconfiguration was introduced by Kamiński et al. [23] and
shown to be PSPACE-complete by Bonsma [4]. Reconfiguration of perfect matchings was
studied by Ito et al. [22]. The Vertex Cut Reconfiguration and Minimum Vertex
Cut Reconfiguration problems were studied by Gomes et al. [18, 17]. For further related
work on reconfiguration problems we refer the reader to the surveys of van den Heuvel [20],
Nishimura [28], and Bousquet et al. [5].

Rainbow spanning trees have been investigated by Broersma and Li [6]. They characterize
graphs in which there exists a rainbow spanning tree via matroid intersection. The question
to decide whether a graph contains a rainbow path has been studied in the classical and
influential work of Alon et al. [1] that introduced the color coding technique. In the related
Rainbow s-t-Connectivity problem the question is to decide whether there exists a
rainbow path between s and t, that is, a path on which no color repeats [31]. To the best of
our knowledge the Rainbow Shortest Path problem has not been studied in the literature.
We refer the reader to [7] for more background. The Rainbow Matching problem is
NP-complete, even when restricted to properly edge-colored paths [25]. The Rainbow
s-t-Cut problem is known to be NP-complete [3] on general graphs. We show that this
problem remains NP-complete even if we restrict it to the class of planar graphs.

ICALP 2024
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We furthermore consider red-blue variants of our base problems. Graphs are now vertex
(resp. edge) colored with colors red and blue. We are given two integers k and b and the
question is whether there exists a solution of size k using at most b blue vertices (resp. edges).
To the best of our knowledge these problem variants have not been studied in the literature,
however, variants where we have a cardinality constraint on both colors are related, but
seem to be more difficult to solve. For example in the Color Constrained Matching
problem [29] we are given a 2-edge-colored graph (colors red and blue) and two parameters k
and w and we search for a matching of size k with at most w blue and at most w red edges.
This problem is known to be at least as hard as the Exact Matching problem [29] (via
a logarithmic-space reduction), which was introduced in [30]. Here, where we are given a
red-blue edge-colored graph and a parameter b and the question is whether there exists a
perfect matching with exactly b blue edges. The complexity of Exact Matching has been
open for more than 40 years [26].

2 Preliminaries

We denote the set of non-negative integers by N and the set of non-negative reals by R+.
For k ∈ N we define [k] = {1, 2, . . . , k} with the convention [0] = ∅.

Graphs. We consider finite and loopless graphs. An undirected simple graph G consists
of its vertex set V (G) and edge set E(G), where E(G) is a subset of all two element sets
of V (G). Similarly, the edge set E(G) of a directed simple graph is a subset of pairs of its
vertices. In a multigraph we allow E(G) to be a multiset. We assume our graphs to be
undirected and simple if not stated otherwise. We denote an edge connecting vertices u and v
by uv. Observe that uv = vu for every undirected edge uv ∈ E(G). A sequence v1, . . . , vq

of pairwise distinct vertices is a path of length q − 1 if vivi+1 ∈ E(G) for all 1 ≤ i < q. We
write Pq for the path of length q. The distance distG(u, v) (or simply dist(u, v) if G is clear)
between two vertices u, v ∈ V (G) is the length of a shortest path starting in u and ending
in v in G. A graph is d-degenerate if it can be reduced to the empty graph by iterative
removal of vertices of degree at most d. For example, forests are 1-degenerate. A graph is
bipartite if its vertices can be partitioned into two parts A,B such that no edge has both its
endpoints in the same part. Equivalently, a graph is bipartite if it does not contain cycles of
odd length. For a vertex subset S ⊆ V (G), we denote by G[S] the subgraph of G induced
by S, i.e., the graph with vertex set S and edge set {uv ∈ E(G) | u, v ∈ S}. Likewise, for
an edge subset M ⊆ E(G), we denote by G[M ] the graph with edge set M and vertex set
{u, v | uv ∈ M}.

An edge coloring φ : E(G) → C is a function mapping each edge e ∈ E(G) to a color
φ(e) ∈ C. Similarly, a vertex coloring assigns colors to vertices. An edge-weight function is a
function w : E(G) → R+, and similarly a vertex-weight function assigns weights to vertices.
We denote colored weighted graphs by tuples (G,w, φ). The weight of a set of vertices/edges
is the sum of the weights of its elements.

Solution discovery. Let G be a graph. A configuration of G is either a subset of its vertices
or a subset of its edges. We formalize the notions of token moves. In the unrestricted
token addition/removal model2, a configuration C ′ can be obtained (in one step) from C,
written C ⊢ C ′, if C ′ = C ∪ {x} for an element x /∈ C, or if C ′ = C \ {x} for an element

2 Recall that this definition differs from the definition in [13].
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x ∈ C. In the token jumping model, a configuration C ′ can be obtained (in one step) from C

if C ′ = (C \ {y}) ∪ {x} for elements y ∈ C and x /∈ C. In the token sliding model, a
configuration C ′ can be obtained (in one step) from C if C ′ = (C \ {y}) ∪ {x} for elements
y ∈ C and x /∈ C if x and y are neighbors in G, that is, if x, y ∈ V (G), then xy ∈ E(G);
and if x, y ∈ E(G), then x ∩ y ̸= ∅. If C ′ can be obtained from C (in any model), we write
C ⊢ C ′. A discovery sequence of length ℓ in G is a sequence of configurations C0C1 . . . Cℓ

of G such that Ci ⊢ Ci+1 for all 0 ≤ i < ℓ.
Let Π be a vertex (resp. edge) selection problem, i.e., a problem defined on graphs such

that a solution consists of a subset of vertices (resp. edges) satisfying certain requirements.
The Π-Discovery problem is defined as follows. We are given a graph G, a subset S ⊆ V (G)
(resp. S ⊆ E(G)) of size k (which at this point is not necessarily a solution for Π), and a
budget b (as a non-negative integer). The goal is to decide whether there exists a discovery
sequence C0C1 . . . Cℓ in G for some ℓ ≤ b such that S = C0 and Cℓ is a solution for Π.

Note that for discovery problems in the token sliding model we can always assume that
b ≤ kn, where n is the number of vertices in the input graph. This follows from the fact that
each token will have to traverse a path of length at most n to reach its target position. For
discovery problems in the token jumping model we can always assume b ≤ k, as it is sufficient
to move every token at most once. Similarly, for the unrestricted token addition/removal
model we can always assume that b ≤ n for vertex selection problems and b ≤ m for edge
selection problems, where m is the number of edges in the input graph. As k is trivially
upper-bounded by n for vertex selection problems (resp. m for edge selection problems), all
solution discovery variants we consider are in NP and thus proving NP-hardness suffices to
prove NP-completeness.

Parameterized complexity. A parameterized problem is a language L ⊆ Σ∗ × N, where Σ
is a fixed finite alphabet. For an instance (x, κ) ∈ Σ∗ × N, κ is called the parameter. The
problem L is called fixed-parameter tractable, FPT for short, if there exists an algorithm that
on input (x, κ) decides in time f(κ) · |(x, κ)|c whether (x, κ) ∈ L, for a computable function f
and constant c.

The W-hierarchy is a collection of parameterized complexity classes FPT ⊆ W[1] ⊆
W[2] ⊆ . . .. It is standard to assume that the inclusion FPT ⊆ W[1] is strict. Therefore,
showing intractability in the parameterized setting is usually accomplished by establishing
an FPT-reduction from a W-hard problem.

Let L,L′ ⊆ Σ∗ × N be parameterized problems. A parameterized reduction from L to L′

is an algorithm that, given an instance (x, κ) of L, outputs an instance (x′, κ′) of L′ such that
(x, κ) ∈ L ⇔ (x′, κ′) ∈ L′, κ′ ≤ g(κ) for some computable function g, and the running time
of the algorithm is bounded by f(κ) · |(x, κ)|c for some computable function f and constant c.
We refer to the textbooks [9, 12, 14] for extensive background on parameterized complexity.

3 Spanning trees

A spanning tree in a connected graphG is a subset of edges E′ ⊆ E(G), where |E′| = |V (G)|−1
and G[E′] is a tree containing all vertices of G. In the Spanning Tree problem we are
given a graph G and the goal is to compute a spanning tree in G.

ICALP 2024
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3.1 Rainbow minimum spanning trees
We reduce the problem of discovering spanning trees in the sliding model to the problem
of finding (weighted) rainbow spanning trees. A spanning tree T ⊆ E(G) in a weighted
edge-colored multigraph (G,w, φ) is a rainbow spanning tree if every edge in T has a distinct
color, i.e., ∀e, e′ ∈ T we have φ(e) = φ(e′) if and only if e = e′. In the Rainbow Minimum
Spanning Tree (Rainbow MST) problem, we are given (G,w, φ) and the goal is to
compute a rainbow spanning tree of minimum total weight in G, or report that no such
rainbow spanning tree exists. The Rainbow Spanning Tree (Rainbow ST) problem can
be defined similarly, i. e., by dropping the weights or assuming that all weights are uniform.

Rainbow spanning trees and their existence have been discussed by Broersma and Li [6].
In our reduction we will construct an instance of Rainbow Minimum Spanning Tree that
trivially guarantees the existence of at least one rainbow spanning tree. We show that we
can find a Rainbow MST efficiently, even in multigraphs. The proof of the theorem uses
arguments similar to those presented in [6] and builds on matroid intersection.

▶ Theorem 1. The Rainbow Minimum Spanning Tree problem in weighted edge-colored
multigraphs can be solved in polynomial time.

3.2 Spanning tree discovery
In the Spanning Tree Discovery (STD) problem in the token sliding model, we are given
a graph G, an edge subset S ⊆ E(G) with |S| = |V (G)| − 1 as a starting configuration, and
a non-negative integer b. The goal is to decide whether there is a spanning tree of G that
can be discovered (starting from S) using at most b token slides.

▶ Theorem 2. The Spanning Tree Discovery problem in the token sliding model can be
solved in polynomial time.

In the full version of the paper we show that the weighted discovery problem, i.e., where
we seek a spanning tree of minimum weight, can also be solved in polynomial time.

4 Shortest paths

A shortest path between two vertices of a graph G, say s and t, is a path connecting s and t
of minimum length. In the Shortest Path problem we are given a graph G and s, t ∈ V (G)
and the goal is to compute a shortest path between s and t in G.

4.1 Rainbow shortest paths
In the Rainbow Shortest Path (Rainbow SP) problem we are given a vertex-colored
graph (G,φ) and two vertices s, t ∈ V (G). A shortest path P from s to t in G is a rainbow
shortest path if every vertex in P has a distinct color, i. e., ∀v, v′ ∈ V (P ), we have φ(v) = φ(v′)
if and only if v = v′. The Rainbow Shortest Path problem asks for a rainbow shortest
path P from s to t in G (one can similarly define the edge-colored variant of the problem).

Rainbow paths have been studied in the literature before, specifically in relation to the
rainbow vertex-connection or edge-connection number of a graph. We refer the reader to [7]
for more details. In the following theorem, we show that the extra rainbow requirement
makes the problem a lot harder than the base problem, even on very restricted families of
graphs. To do so, we describe a reduction from the NP-complete [15] Hamiltonian Path
problem to the Rainbow Shortest Path problem.
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▶ Theorem 3. The Rainbow Shortest Path problem is NP-complete on the class of
2-degenerate bipartite graphs.

Proof. The fact that the problem is in NP is immediate. We show NP-hardness by a
reduction from the Hamiltonian Path problem, which is known to be NP-complete [15].
Given an instance G of Hamiltonian Path, where G is a graph with n vertices denoted by
V (G) = {v1, . . . , vn}, we construct an instance (H,φ, s, t) of Rainbow Shortest Path as
follows. See Figure 1 for an illustration.

s

V1
ai

V2

W1
. . .

Vn

t

bi

Figure 1 An illustration of the hardness reduction for the Rainbow Shortest Path problem.

First, H consists of two vertices s and t. For every pair i, j ≤ n we add a new vertex vi,j

in H. We define Vi = {vi,j | j ≤ n}. Then, for every i < n and e ∈ E(G) we add a new
vertex wi,e and define Wi = {wi,e | e ∈ E(G)}. Finally, for every i ≤ n we add new vertices ai

and bi. We define A = {ai | i ≤ n} and B = {bi | i ≤ n}. We connect the vertices as
follows. For every i ≤ n, we insert the edges {s, ai}, {ai, v1,i}, {vn,i, bi}, and {bi, t}. Finally,
for every i < n and e = {vj , vℓ} we insert the edges {vi,j , wi,e} and {wi,e, vi+1,ℓ}. We assign
all vertices in A the same color, all vertices in B the same new color, all vertices {vi,j | i ≤ n}
the same new color (this set represents all copies of a vertex v ∈ V (G)), all vertices in Wi

the same new color, all vertices in B the same new color, and s and t receive two fresh new
colors. This finishes the construction of the instance (H,φ, s, t).

Observe that H is indeed bipartite and 2-degenerate; all vertices of the form wi,j are of
degree two. Their removal results in a forest, which is 1-degenerate. Bipartiteness follows
from the fact that there are no edges in G[S], G[T ], G[Vi], nor G[Wi].

We show that G contains a Hamiltonian path if and only if (H,φ, s, t) is a yes-instance
of Rainbow Shortest Path. Observe that every shortest s-t-path in H consists of s,
exactly one of the vertices ai ∈ A, exactly one vertex from every Vi and one from every Wi,
exactly one of the vertices bi ∈ B and t. Hence, there is no path of length less than 2n+ 2
and every such path of length 2n+ 2 is exactly of this form.

Now assume that G contains a Hamiltonian path vi1vi2 . . . vin
. We pick the following

vertices in H. We pick ai1 and bin , the vertices vj,ij , and, for every j < n, we pick the
vertices wj,e where e = {vij

, vij+1}. It is not hard to see that these vertices indeed form a
rainbow shortest path from s to t in H.

Conversely, assume that (H,φ, s, t) is a yes-instance of Rainbow Shortest Path. By
the above observations, every shortest path must be of the same form (picking vertices from
the same sets). As every rainbow shortest path cannot contain two copies of the same vertex
from V (G) the claim follows, finishing the proof. ◀

4.2 Shortest path discovery
In the Shortest Path Discovery (SPD) problem in the token sliding model we are given
a graph G, two vertices s, t ∈ V (G), a starting configuration S ⊆ V (G) with |S| = k, which
is equal to the number of vertices on a shortest path between s and t (including s and t),
and a non-negative integer b. The goal is to decide whether we can discover a shortest path
between s and t (starting from S) using at most b token slides. We denote an instance of
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Shortest Path Discovery by a tuple (G, s, t, S, b). We show that the Shortest Path
Discovery problem is NP-complete even when restricted to 2-degenerate bipartite graphs
by a minor modification of the reduction from the Hamiltonian Path problem to the
Rainbow Shortest Path problem.

▶ Theorem 4. The Shortest Path Discovery problem in the token sliding model is
NP-complete on the class of 2-degenerate bipartite graphs.

In fact, since Hamiltonian Path remains NP-complete on cubic planar graphs, it turns
out that the class of all graphs arising in the reduction of Theorem 4 is not only 2-degenerate
but also has bounded expansion.

It remains an interesting open problem to determine whether Shortest Path Discovery
is polynomial-time solvable on classes of graphs excluding a topological minor, or even on
planar graphs. Next, we show that the problem is fixed-parameter tractable with respect to
the parameter k as well as the parameter b.

▶ Theorem 5. The Shortest Path Discovery problem in the token sliding model is
fixed-parameter tractable with respect to parameter k.

Proof. Let (G, s, t, S, b) be an instance of SPD. For every v ∈ V (G) we compute its distance
to s and delete v if the distance is larger than k. We enumerate the tokens in S as
s0, s1, . . . , sk−1 such that token si shall slide to a vertex at distance i from s. There are k!
such enumerations. Now we orient and assign weights to the edges of G to obtain a weighted
directed graph H. If uv is an edge such that distG(s, u) = i and distG(s, v) = i + 1, then
we orient the edge as (u, v) and assign it weight distG(si+1, v), that is, the cost of moving
token si+1 to vertex v. We delete all edges that did not receive a weight, that is, all edges
that connect vertices at the same distance from s.

Since H contains only edges between vertices of distance i to distance i + 1 from s,
an s-t-path in H corresponds to a shortest s-t-path in G. Furthermore, by definition of
the weights, a shortest s-t-path P (with respect to the weights) corresponds exactly to the
discovery of a shortest path in G where token si slides to the vertex of P which is at distance i
from s. We can therefore simply compute a shortest s-t-path in H and verify whether its
weight is at most b− distG(s, s0). Since H is a DAG we can compute such a path in time
O(n+m) and, consequently, the full algorithm runs in time O(k!(n+m)). ◀

▶ Theorem 6. The Shortest Path Discovery problem in the token sliding model is
fixed-parameter tractable with respect to parameter b.

Proof. Let (G, s, t, S, b) be an instance of SPD. Let us call the vertices at distance i from s

the vertices at level i. If we can discover a solution with budget b, then it must be the case
that all but at most b tokens of S are already in their correct positions. In particular, there
can be at most b many levels that do not contain a token from S and at most b many levels
containing two or more tokens (and each level can contain at most b+ 1 many tokens). We
call levels not containing exactly one token very bad levels. Now, for a level i containing
exactly one token on vertex v (not a very bad level), we say that i is a bad level whenever
one of the following is true:

i− 1 ≥ 0, level i− 1 contains exactly one token on vertex u, and uv /∈ E(G); or
i+ 1 ≤ dist(s, t) + 1, level i+ 1 contains exactly one token on vertex w, and vw /∈ E(G).
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Note that we can have at most b very bad levels and at most 3b bad levels (every 3 bad levels
require at least one unit of the budget); otherwise we can reject the instance. Each bad or
very bad level contains at most b+ 1 tokens and at most b tokens do not belong to a level
between s and t. Hence, the total number of tokens that potentially have to move is so far
5b(b+ 1) = 5b2 + 5b (located on at most 5b levels).

We call a level that is neither bad nor very bad a good level. Note that we can group the
good levels into at most 5b+ 1 groups of consecutive levels. Moreover, the tokens of each
group form a path. We denote those paths by P1, . . . , Pq, for q ≤ 5b+ 1. Consider some Pi

with at least 2b+ 1 many vertices, say Pi = v1 . . . vℓ for ℓ ≥ 2b+ 1. Let vx be a vertex of Pi

such that ℓ+ 1 ≤ x ≤ ℓ− (b+ 1). In other words, there are at least b vertices preceding and
at least b vertices succeeding vx in Pi. In what follows we assume, without loss of generality,
that the token on vx does not move whenever vx belongs to the final shortest path between s
and t. This is a safe assumption because if any other token must pass via vx to reach its
destination we simply swap the roles of both tokens. In other words, getting a token on vx

does not consume any units of the budget. We claim that in a shortest discovery sequence
of at most b token slides the token on vertex vx does not move. This follows from the fact
that otherwise it must be the case that either all tokens on vy, 1 ≤ y < x, or all tokens
on vz, ℓ ≥ z > x, must move. However, as there are at least b tokens to move in either
case this contradicts the fact that our discovery sequence slides no more than b tokens. To
prove that either every token before or after vx must move in a shortest discovery sequence
we aim towards a contradiction. Assume that the token at level x moves but there are
two levels y < x and z > x such that the tokens on level y and z do not move. Since the
subpath between levels y and z is already a path connecting vy and vz (going through vx),
the movement of the token at level x can be ignored, contradicting our assumption of a
shortest discovery sequence. Since at most b tokens can move, and by symmetry, we conclude
that at most 2b many tokens on the two boundaries of Pi can move. We call the tokens on
good levels that are not at distance at most b from some boundary of a Pi fixed tokens. Note
that the number of tokens that are not fixed is at most 10b2 + 2b.

Putting it all together, we conclude that the set of tokens that can potentially move has
size at most 15b2 + 7b. We can now proceed just as in the proof of Theorem 5 to obtain the
required algorithm for parameter b; we can now guess the subset of tokens that move as well
as the level each moving token will occupy. ◀

5 Matchings

A matching in a graph G is a set of edges M ⊆ E(G) such that each vertex v ∈ V (G)
appears in at most one edge in M . In the Matching problem we are given a graph G and
an integer k and the goal is to compute a matching of size k in G.

5.1 Rainbow matchings
We show NP-hardness of the Matching Discovery problem via a reduction from the
Rainbow Matching problem. Let (G,φ) be an edge-colored graph. A matching M ⊆ E(G)
is said to be a rainbow matching if all edges in M have pairwise distinct colors. Formally,
the Rainbow Matching problem is defined as follows. Given an edge-colored graph (G,φ)
and an integer k, decide whether there exists a rainbow matching of size k in G.

▶ Theorem 7 ([25]). The Rainbow Matching problem is NP-complete, even when restricted
to properly edge-colored paths.
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5.2 Matching discovery
In the Matching Discovery problem in the token sliding model we are given a graph G,
a starting configuration S ⊆ E(G) of size k, and a non-negative integer b. The goal is to
decide whether we can discover a k-sized matching M (starting from S) using at most b
token slides. Recall that a token on some edge e can only slide (in one step) to some edge e′

such that e and e′ are adjacent, i.e., share a vertex. We denote an instance of Matching
Discovery by a tuple (G,S, b). We first show that the Matching Discovery problem is
NP-complete even on restricted graph classes.

▶ Theorem 8. The Matching Discovery problem in the token sliding model is NP-hard
on 2-degenerate bipartite graphs.

Furthermore, we show intractability of the problem when parameterized by the budget.
This result is established by a parameterized reduction from the W[1]-hard Multicolored
Clique problem and is the technically most demanding contribution of the paper.

▶ Theorem 9. The Matching Discovery problem in the token sliding model is W[1]-hard
when parameterized by b, even on the class of 3-degenerate graphs.

On the positive side, we next show that the Matching Discovery problem is fixed-
parameter tractable with respect to parameter k + b. Then we show that for any instance of
the problem one can bound b by a (quadratic) function of k, which implies fixed-parameter
tractability of the problem parameterized by k alone. We start with some relevant definitions.

Let d(t, w) denote the minimum number of slides token t has to slide in order to become
incident to vertex w. For an integer i ∈ {1, . . . , b} and a token t ∈ S, let Y i

t = {w ∈
V (G) | d(t, w) = i − 1} and Zi

t = {w ∈ V (G) | d(t, w) = i}. Let Gi
t denote the graph

G[Y i
t ∪ Zi

t ] − E(G[Zi
t ]).

▶ Theorem 10. The Matching Discovery problem in the token sliding model parameterized
by both the number of tokens k and the budget b is fixed-parameter tractable.

Proof Sketch. Let (G,S, b) be an instance of the Matching Discovery problem, where
|S| = k. The algorithm proceeds as follows. We first guess a set S′ ⊆ S of tokens that will
slide form their original positions. If such a guess leaves any overloaded vertices, i.e., vertices
incident to more than one token, we ignore the guess and proceed to the next one. Note that
this guessing procedure requires O(2k) time in the worst case. Next, for each r ∈ {0, 1, . . . , b}
and for a fixed S′, we guess a partition of r over the tokens in S′. In other words, we try all
possible ways of distributing the budget r over the tokens in S′.

Now, for a fixed subset S′, a fixed r, and a fixed distribution D of r over the tokens
of S′, let ri be the budget allocated to a token ti ∈ S′ under D. The algorithm computes
the sets Y ri

ti
and Zri

ti
for each ti ∈ S′. The next step is to produce a set of candidate target

edges for each ti, which we denote by Ti. To do so, we run a maximum matching algorithm
in the graph Gri

ti
− (S \ S′). Roughly speaking, we show that it is enough to retain O(k2)

edges of the matching in Gri
ti

− (S \ S′); which also implies a bound on the size of Ti. Once
the candidate sets have been constructed, the algorithm exhaustively checks whether it can
reach a valid matching in the graph G where each token ti ∈ S′ moves to some edge in Ti.
The algorithm declares a no-instance if no valid matching is found during the exhaustive
search; otherwise we have a yes-instance. ◀

Finally, using the notion of augmenting paths, we show that the algorithm of Theorem 10
is also a fixed-parameter tractable algorithm for parameter k alone by proving that k upper
bounds the parameter b.
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▶ Lemma 11. In any yes-instance (G,S, b) of the Matching Discovery problem in the
sliding model, b can be upper bounded by 2(k2 + k), where k = |S|.

Combining Theorem 10 with Lemma 11 we get the following result.

▶ Corollary 12. The Matching Discovery problem in the token sliding model is fixed-
parameter tractable with respect to parameter k.

6 Vertex/edge cuts

Let G be a graph and s and t vertices of G. A vertex s-t-cut is a set of vertices C ⊆ V (G)
such that every s-t-path contains a vertex of C. Likewise, an edge s-t-cut is a set of edges
C ⊆ E(G) such that every s-t-path contains an edge of C. In the Vertex Cut (resp. Edge
Cut) problem we are given a graph G, vertices s, t and an integer k and the goal is to
compute a vertex s-t-cut (resp. edge s-t-cut) of size k.

6.1 Rainbow vertex/edge cut
Given an edge-colored graph (G,φ) with vertices s, t ∈ V (G), the Rainbow Vertex Cut
problem asks whether there exists a vertex s-t-cut C ⊆ V (G) such that all vertices in C

have pairwise different colors. Such a cut is called a rainbow vertex s-t-cut. Likewise, the
Rainbow Edge Cut problem asks whether there exists an edge s-t-cut C ⊆ E(G) such
that all edges in C have pairwise different colors. The Rainbow Edge Cut problem is
known to be NP-complete [3, Theorem 5.5]. We start by showing that the problem remains
NP-complete on planar graphs.

▶ Theorem 13. The Rainbow Edge Cut problem is NP-complete on planar graphs.

Proof. Containment in NP is clear as Rainbow Edge Cut on general graphs is in NP.
Hence we focus on the hardness proof. We present a reduction from Rainbow Matching
on paths. Let (P, κ) be an instance of Rainbow Matching where P is a path on n vertices
denoted by v1, . . . vn and the edges are colored with colors from a color set C.

We construct an instance (G,ψ : E(G) → C′) of Rainbow s-t-Cut as follows. The new
color set is C′ = C ∪ {black} ∪ {ci | i ≤ n− 2}, that is, C′ uses the colors from C as well as
n− 2 fresh colors and the color black.

Let us describe the construction of G in detail; see Figure 2 for an illustration. In
the first step, G consists of κ disjoint copies of P , which we call P1, . . . , Pκ. Let the
vertices of Pj be called vj,1 . . . vj,n. Additionally, we add two fresh vertices s and t. For
every j < κ, insert a set Lj of n − 1 fresh vertices, and call them uj,1, . . . , uj,n−1. Hence,
V (G) =

⋃
j≤κ V (Pj) ∪

⋃
j<κ V (Lj) ∪ {s, t}.

Now we connect s and t with a black edge, which enforces that this black edge must be
part of every (rainbow) s-t-cut. Hence, any other black edge may not be part of any rainbow
s-t-cut of G. We connect s and t to the vertices in Pj and Lj as follows. For every j ≤ κ

we insert the edges {s, vj,1} and {vj,n, t}, which are colored black. Likewise, for every j < κ

we insert the edges {s, uj,1} and {uj,n−1, t}, which are also colored black. Finally, for every
j < κ and i ≤ n − 2, we insert the edge {vj,i, uj,i} which is colored black and the edges
{uj,i, vj,i+1} and {uj,i, vj+1,i+2}, which are colored ci. This finishes the construction.

We claim that P has a rainbow matching of size κ if and only if G admits a rainbow
s-t-cut. Assume that P has a rainbow matching M = {e1, . . . , eκ} of size κ. Without loss
of generality, we assume that the edges in M are ordered with respect to the vi, i.e., if
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Figure 2 Illustration of the hardness reduction for Rainbow s-t-Cut on planar graphs.

ei = {vℓi
, vℓi+1} and i < j, then ℓi < ℓj . We claim that the set C that consists of the black

edge {s, t}, the copy of ei in Pi, and the obvious edges connecting the Pi and Lj is a rainbow
s-t-cut of G. To be precise, we have

C = {s, t} ∪ {{vi,ℓi
, vi,ℓi+1}, {ui,ℓi

, vi,ℓi+1} | i ≤ κ} ∪
⋃
i≤κ

{{ui,j , vi,j+2} | ℓi < j ≤ ℓi+1 − 2}.

Observe that C is a cut by construction (see Figure 2), and that no two edges in C have
the same color, as M is a rainbow matching, and for every j < κ and i ≤ n− 2 at most one
of the edges {vj,i, uji

} and {uji
, vj+1,i+2} is contained in C.

Now assume that G admits a rainbow s-t-cut. As s and t are directly connected, every
rainbow s-t-cut C for G must contain {s, t}. Furthermore, by construction C contains exactly
one edge from every Pj , say the edge {vj,ℓi

, vj,ℓi+1}, as no other black edge is part of C.
We claim that M = {{vℓi , vℓi+1} | {vj,ℓi , vj,ℓi+1} ∈ C for some j ≤ κ} is a rainbow matching
of P . Obviously, M is rainbow, as C is rainbow. To show that M is indeed a matching,
observe that for all ℓi ̸= ℓj we have |ℓi − ℓj | ≥ 2, that is, M does not contain two (copies
of) consecutive edges of P . To see this, assume for the sake of contradiction that there are
i ̸= j such that |ℓi − ℓj | ≤ 1. Let j1 < j2 be such that {vj1,ℓi

, vj1,ℓi+1} and {vj2,ℓj
, vj2,ℓj+1}

are contained in C. By construction, C must also contain {uj1,ℓi
, vj1,ℓi+1} and can hence

not contain {uj1,ℓi
, vj1+1,ℓi+2}, as they share the same color. This however implies that

{vj2,ℓj , vj2,ℓi+1} cannot be contained in C, a contradiction. This finishes the proof. ◀

We reuse the ideas of the proof of Theorem 13 combined with standard tricks for
edge/vertex cuts, e.g., subdivision of edges, to obtain the following corollary.

▶ Corollary 14. The Rainbow Vertex Cut problem is NP-complete on planar graphs.

The following theorem is one of two main ingredients required for establishing the fixed-
parameter tractability of the discovery variants of cut problems parameterized by k, the
other being the aforementioned meta-theorem, which is formally stated in Section 7. In what
follows, we consider weighted variants of the rainbow problems, where in addition to finding
a rainbow cut of size k it is also required that it has weight at most b.



M. Grobler et al. 76:15

▶ Theorem 15. The Weighted Rainbow Vertex/Edge Cut problem is fixed-parameter
tractable when parameterized by k.

Proof Sketch. We present an FPT algorithm for the Weighted Rainbow Vertex Cut
problem. The tractability of Weighted Rainbow Edge Cut follows by considering the
vertex cut version in the line graph of the input graph.

We use the treewidth reduction theorem [27, Theorem 2.15], which essentially states that
for every colored and weighted graph G and integer k we can efficiently compute a graph H
of low treewidth that preserves all minimal vertex s-t-cuts of size at most k. Hence, it is
sufficient to find a minimum weight rainbow vertex s-t-cut of size at most k in H.

To do so, we apply the optimization version of Courcelle’s Theorem as presented in [2, 8].
In our case we conclude a running time of f(k) · n2 where f is some computable function
and n = |V (H)| ≤ |V (G)|. ◀

6.2 Vertex/edge cut discovery
In the Vertex Cut Discovery problem in the token sliding model we are given a graph G,
vertices s, t ∈ V (G), a starting configuration S ⊆ V (G) of size k and a non-negative integer b.
The goal is to decide whether we can discover a vertex cut separating s and t in G (starting
from S) using at most b token slides. Similarly, in the Edge Cut Discovery problem,
we are given a graph G, vertices s, t ∈ V (G), a starting configuration S ⊆ E(G) of size k
and a non-negative integer b. The goal is again to decide whether we can discover an edge
cut separating s and t in G (starting from S) using at most b token slides. We denote an
instance of Vertex Cut Discovery resp. Edge Cut Discovery by a tuple (G, s, t, S, b).
We always use k to denote the size of S.

We prove that Vertex Cut Discovery in the token sliding model is NP-hard, fixed-
parameter tractable with respect to parameter k and W[1]-hard with respect to parameter b.
We show that these observations translate to Edge Cut Discovery as well. We start
by proving hardness via a reduction from the Clique problem, which is NP-hard and its
parameterized variant is W[1]-hard with respect to the solution size [11].

▶ Theorem 16. The Vertex Cut Discovery problem in the sliding model is NP-hard and
W[1]-hard with respect to parameter b on 2-degenerate bipartite graphs.

Proof Sketch. We show NP-hardness by a reduction from the Clique problem. The reduc-
tion is both a polynomial time reduction as well as a parameterized reduction, showing both
claimed results. Let (G, κ) be an instance of the Clique problem.

We construct the following graph H (see Figure 3 for an illustration). We add two
vertices s and t in H where s has κ pendent vertices, which we collect in a set named Z. For
every vertex u ∈ V (G), we add a vertex xu in H, which we connect with s, and for every
e ∈ E(G) we add a vertex ye in H, which we connect with t. Let X denote the set of the
xu and Y denote the set of the ye. For every vertex u ∈ V (G) and for each edge e ∈ E(G)
incident with u, connect xu and ye via a 1-subdivided edge (that is, a path with one interval
vertex). Furthermore, we add

(
κ
2
)

disjoint paths P1, . . . , P(κ
2), each with a single internal

vertex, connecting s and t. We denote the internal vertex of Pi by pi. This completes the
construction of H. We define the initial configuration S as Z ∪ Y and b = 2κ+ 2

(
κ
2
)
. ◀

▶ Corollary 17. The Edge Cut Discovery problem in the token sliding model is NP-hard
and W[1]-hard with respect to parameter b on 2-degenerate bipartite graphs.

Finally, combining Theorem 15 and Theorem 19 (Section 7), we get the following result:

▶ Theorem 18. The Vertex/Edge Cut Discovery problem in the token sliding model is
fixed-parameter tractable with respect to parameter k.
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Figure 3 An illustration of the hardness reduction for the Vertex Cut Discovery problem.

7 Tractability via rainbow problems

In this section, we establish an algorithmic meta-theorem showing tractability of discovery
problems in the token sliding model (when parameterized by k) via the tractability of
(weighted) rainbow variants of optimization problems. We utilize the color-coding technique
introduced by Alon et al. [1] along with FPT algorithms for the rainbow problems to design
FPT algorithms for the discovery problems parameterized by k.

Let Π be an optimization problem and (G, k) be an instance of Π. In the Rainbow-Π
problem we assume that G is either a vertex-colored graph or an edge-colored graph. The
parameter k refers to the solution size to be optimized. We consider problems that seek to
optimize the selection of edges or vertices, but not both. For instance, the rainbow variants
for shortest paths and vertex cuts are vertex selection problems whereas for spanning trees,
matchings and edge cuts we have edge selection problems. For a vertex (or edge) selection
problem, the Weighted Rainbow-Π problem refers to the weighted variant where the input
graph G additionally has weights on the edges (or vertices) and we seek a solution of weight
at most b (amongst all solutions satisfying the cardinality constraint k).

▶ Theorem 19. For an optimization problem Π, if the Weighted Rainbow-Π problem
parameterized by k admits an FPT algorithm, then the Π-Discovery problem in the token
sliding model parameterized by k admits an FPT algorithm.

Proof Sketch. Without loss of generality, assume that the problem Π is an edge selection
problem. Let (G,S ⊆ E(G), b) be an instance of the Π-Discovery problem. Let C be a
palette of k colors, and π : C → S be a bijection. We color the edges E(G) \ S uniformly at
random using C, yielding an edge coloring φ : E(G) → C. Now we define a weight function
w : E(G) → R+ such that for each e ∈ E(G) we have w(e) = dist(e, π(φ(e))). Intuitively,
the weight function denotes the cost of moving a token from the initial configuration to an
edge with the same color. Observe that the weights of the edges in the initial configuration
are zero and they are colored using piece-wise distinct colors. Now we have an edge-colored
graph (G,φ). We claim that if (G,φ, k, b) is a yes-instance of the Weighted Rainbow-Π
problem, then (G,S, b) is a yes-instance of the Π-Discovery problem in the token sliding
model. Intuitively speaking, the color-coding step allows us to transforms the discovery
problem into a weighted rainbow problem.



M. Grobler et al. 76:17

The rest of the proof consists of showing that if (G,S, b) is a yes-instance of the Π-
Discovery problem, then the probability that (G,φ, k, b) is a yes-instance of the Weighted
Rainbow-Π problem is at least e−k. We then derandomize the algorithm using the technique
introduced by Alon et al. [1]. Instead of a random coloring φ, we construct an (m− k, k)-
perfect hash family F such that for every X ⊆ E(G) \ S with |X| = k, there is a function
f ∈ F such that every element of X is mapped to a different element in C (color palette as a
k-sized set). The family F can be constructed deterministically in time O(2O(k) logm) [1]. ◀

8 The jumping and addition/removal models

We now turn to the token jumping and unrestricted token addition/removal models. Recall
that in these models we are no longer restricted to sliding tokens along edges.

8.1 Token jumping

We first define the red-blue variant of a vertex (resp. edge) selection problem and show that
it is always at least as hard as the solution discovery variant in the token jumping model.

Let Π be an arbitrary vertex (resp. edge) selection problem. An instance of the Red-
Blue-Π problem consists of a graph G whose vertices (resp. edges) are either colored red
or blue, as well as two non-negative integers k and b. If Π is the decision variant of a
minimization/maximization problem, the goal is to decide whether there exists a solution
X ⊆ V (G) (resp. X ⊆ E(G)) of Π of size k such that the number of blue elements in X is at
most b. We denote an instance of Red-Blue-Π by (G, k, b).

▶ Corollary 20. Let Π be an arbitrary vertex (resp. edge) selection problem. Then the
following results hold in the token jumping model:
1. If Red-Blue-Π is in P, then so is Π-Discovery.
2. If Red-Blue-Π is in FPT with respect to k or b, then so is Π-Discovery.
3. If Π-Discovery is NP-hard, then so is Red-Blue-Π.
4. If Π-Discovery is W[1]-hard with respect to k or b, then so is Red-Blue-Π.

We remark that the other direction does not trivially hold, i. e., we can in general not
consider an instance of Red-Blue-Π as an instance of Π-Discovery, as the number of red
vertices/edges might exceed the bound k on the solution size. Nevertheless, we show that
Red-Blue Spanning Tree, Red-Blue Shortest Path and Red-Blue Matching are
in P, implying that their discovery variants in the token jumping model are in P as well,
whereas Vertex/Edge Cut Discovery is NP-hard in the token jumping model, implying
that Red-Blue Vertex/Edge Cut Discovery is NP-hard as well.

▶ Proposition 21. Red-Blue Spanning Tree, Red-Blue Shortest Path, and Red-
Blue Matching can be solved in polynomial time. Hence, Spanning Tree Discovery,
Shortest Path Discovery, and Matching Discovery in the token jumping model can
be solved in polynomial time.

▶ Proposition 22. The Vertex/Edge Cut Discovery problem in the token jumping
model is NP-complete. Hence, the Red-Blue Vertex/Edge Cut problem is NP-complete.

▶ Theorem 23. The Weighted Red-Blue Vertex/Edge Cut problem is fixed-parameter
tractable when parameterized by k.
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8.2 Unrestricted token addition/removal
Obviously, every spanning tree of a connected graph G has size |V (G)| − 1 by definition.
Hence, the Spanning Tree Discovery problem in the unrestricted token addition/removal
model can easily be reduced to the token jumping model by halving the budget b (rounded
down). To see this, note that any solution to the Spanning Tree Discovery problem in
the unrestricted token addition/removal model adds and removes the same number of tokens.
Furthermore, the order in which we add or remove tokens from the initial configuration S

does not matter. Thus, we assume that the first modification step to S is a token removal,
followed by a token addition, followed by removals/additions in alternating order. This can
easily be simulated by jumps.

Similarly, the length of a shortest s-t-path in a graph G is a fixed number for fixed s and t.
Hence, the same argument as above boils the Shortest Path Discovery problem in the
unrestricted token addition/removal model down to the Shortest Path Discovery problem
in the token jumping model. When it comes to Matching Discovery and Vertex/Edge
Cut Discovery, the unrestricted token addition/removal model allows for two natural
variations on the problems. On one hand, and in tune with the rest of the paper, if we
impose solutions of size exactly |S| then it is not hard to see that the addition/removal model
becomes again equivalent to the jumping model.

▶ Corollary 24. The Spanning Tree Discovery, Shortest Path Discovery, Match-
ing Discovery, and Vertex/Edge Cut Discovery problems in the unrestricted token
addition/removal model can be solved in polynomial time.

Alternatively, if we drop the constraints on solution size and allow solutions of any size
then the problems become considerably different. In particular, the Matching Discovery
problem becomes equivalent to asking for a smallest subset of S whose removal (from S)
results in a matching. Similarly, the Vertex/Edge Cut Discovery problem becomes
equivalent to the problem of computing a smallest subset of vertices whose addition to S
results in a cut between s and t. We show that, even in the relaxed setting, both problems
remain polynomial-time solvable.

▶ Proposition 25. The (Relaxed) Matching Discovery problem in the unrestricted
token addition/removal model can be solved in polynomial time.

▶ Proposition 26. The (Relaxed) Vertex/Edge Cut Discovery problem can be solved
in the unrestricted token addition/removal model in polynomial time.

Conclusion and future work

We contribute to the new framework of solution discovery via reconfiguration with complexity
theoretic and algorithmic results for solution discovery variants of polynomial-time solvable
problems. While we can employ the efficient machinery of Weighted Matroid Intersec-
tion for the Spanning Tree Discovery problem, all other problems under consideration
are shown to be NP-complete, namely, Shortest Path Discovery, Matching Discovery,
and Vertex/Edge Cut Discovery. For the latter problems, we provide a full classification
of tractability with respect to the parameters solution size k and transformation budget b.

We expect further research on this new model capturing the dynamics of real-world
situations as well as constraints on the adaptability of solutions. It seems particularly
interesting to investigate directed and/or weighted versions of the studied problems. Notice
that all base problems that we studied remain polynomial-time solvable in the presence of
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edge weights and for cost functions summing the total weight of the solution (spanning tree,
path, matching, cut). Interestingly, our result on the Spanning Tree Discovery problem
can be generalized to the weighted setting with a clever adaptation of the reduction. For
other problems the hardness results clearly hold, but we leave the existence of FPT algorithms
for future work. Another challenge is the design of efficient algorithms that can compute
approximate solutions with respect to the solution size/value or with respect to the allowed
transformation budget. We note, without proof, that the hardness reduction for the Vertex
Cut Discovery problem (Theorem 16) can be adjusted to give a n1−ε-inapproximability of
the optimal transformation budget.
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