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Abstract
We prove that isomorphism of tournaments of twin width at most k can be decided in time
kO(log k)nO(1). This implies that the isomorphism problem for classes of tournaments of bounded or
moderately growing twin width is in polynomial time. By comparison, there are classes of undirected
graphs of bounded twin width that are isomorphism complete, that is, the isomorphism problem for
the classes is as hard as the general graph isomorphism problem. Twin width is a graph parameter
that has been introduced only recently (Bonnet et al., FOCS 2020), but has received a lot of attention
in structural graph theory since then. On directed graphs, it is functionally smaller than clique
width. We prove that on tournaments (but not on general directed graphs) it is also functionally
smaller than directed tree width (and thus, the same also holds for cut width and directed path
width). Hence, our result implies that tournament isomorphism testing is also fixed-parameter
tractable when parameterized by any of these parameters.

Our isomorphism algorithm heavily employs group-theoretic techniques. This seems to be
necessary: as a second main result, we show that the combinatorial Weisfeiler-Leman algorithm
does not decide isomorphism of tournaments of twin width at most 35 if its dimension is o(n).
(Throughout this abstract, n is the order of the input graphs.)
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1 Introduction

The tournament isomorphism problem (TI) was recognized as a particularly interesting
special case of the graph isomorphism problem (GI) early-on. Already in 1983, Babai and
Luks [3] proved that TI is solvable in time nO(log n); it took 33 more years for Babai [2] to
prove that the general GI is in quasi-polynomial time. An important fact that makes TI
more accessible than GI is that tournaments always have solvable automorphism groups.
This is a consequence of the observation that the automorphism groups of tournaments
have odd order and the famous Feit-Thompson Theorem [18] stating that all groups of
odd order are solvable. However, even Babai’s powerful new machinery did not help us to
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78:2 Isomorphism for Tournaments of Small Twin Width

improve the upper bound for TI, as one might have hoped. But TI is not only special from a
group-theoretic perspective. Another remarkable result, due to Schweitzer [42], states that
TI reduces to the problem of deciding whether a tournament has a nontrivial automorphism;
the so-called rigidity problem. It is an open question whether the same holds for general
graphs.

While there is an extensive literature on GI restricted to classes of graphs (see [25]
for a recent survey), remarkably little is known for restrictions of TI. Ponomarenko [40]
proved that TI is in polynomial time for tournaments whose automorphism group contains a
regular cyclic subgroup, and recently Arvind, Ponomarenko, and Ryabov [1] proved that TI
is in polynomial time for edge-colored tournaments where at least one edge color induces a
(strongly) connected spanning subgraph of bounded degree (even fixed-parameter tractable
when parameterized by the out-degree). While both of these results are very interesting
from a technical perspective, they consider classes of tournaments that would hardly be
called natural from a graph-theoretic point of view. Natural graph parameters that have
played a central role in the structural theory of tournaments developed by Chudnovsky,
Seymour and others [13, 14, 15, 16, 19] are cut width and path width. The more recent
theory of structural sparsity [20, 21, 36, 37] highlights clique width and twin width. Here twin
width is the key parameter. Not only is it functionally smaller than the other parameters,
which means that if cut width, path width, or clique width is bounded, then twin width is
bounded as well, it is also known [23] that a class of tournaments has bounded twin width
if and only if it has a property known as monadic dependence (NIP). Dependence is a key
property studied in classical model theory. A class of graphs is monadically dependent if
and only if all set systems definable in this class by a first-order transduction have bounded
VC dimension. This property seems to characterize precisely the graph classes that are
regarded as structurally sparse. Since twin width of graphs and binary relational structures
has been introduced in [11], it received a lot of attention in algorithmic structural graph
theory [5, 6, 7, 8, 9, 10, 21, 22, 23, 29, 44]. (We defer the somewhat unwieldy definition
of twin width to Section 2.3.) Our main result states that tournament isomorphism is
fixed-parameter tractable when parameterized by twin width.

▶ Theorem 1.1. The isomorphism problem for tournaments of twin width at most k can be
solved in time kO(log k) · nO(1).

Interestingly, isomorphism testing for undirected graphs of bounded twin width is as hard
as the general GI. This follows easily from the fact that an Ω(log n)-subdivision of every
graph with n vertices has bounded twin width [5]. Once more, this demonstrates the special
role of the tournament isomorphism problem, though here the reason is not group-theoretic,
but purely combinatorial.

Note that the dependence on the twin width k of the algorithm in Theorem 1.1 is
subexponential, so our result implies that TI is in polynomial time even for tournaments
of twin width 2O(

√
log n). Since twin width is functionally smaller than clique width, our

result implies that TI is also fixed-parameter tractable when parameterized by clique width.
Additionally, we prove that the twin width of a tournament is functionally smaller than
its directed tree width, a graph parameter originally introduced in [31]. Since the directed
tree width of every directed graph is smaller than its cut width or directed path width,
the same also holds for these two parameters. Hence, TI is fixed-parameter tractable also
when parameterized by directed tree width, directed path width or cut width. To the best
of our knowledge, this was not known for any of these parameters. The fact that twin
width is functionally smaller than directed tree width, directed path width and cut width on
tournaments is interesting in its own right, because this result does not extend to general
directed graphs (for any of the three parameters).
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Our proof of Theorem 1.1 heavily relies on group-theoretic techniques. In a nutshell, we
show that bounded twin width allows us to cover a tournament by a sequence of directed
graphs that have a property resembling bounded degree sufficiently closely to apply a group-
theoretic machinery going back to Luks [33] and developed to great depth since then (see,
e.g., [2, 3, 27, 35, 38]). Specifically, we generalize arguments that have been introduced by
Arvind et al. [1] for TI on edge-colored tournaments where at least one edge color induces a
spanning subgraph of bounded out-degree.

Yet one may wonder if this heavy machinery is even needed to prove our theorem, in
particular in view of the fact that on many natural graph classes, including, for example,
undirected graphs of bounded clique width [26], the purely combinatorial Weisfeiler-Leman
algorithm is sufficient to decide isomorphism (see, e.g., [24, 32]). We prove that this is not
the case for tournaments of bounded twin width.

▶ Theorem 1.2. For every k ≥ 2 there are non-isomorphic tournaments Tk and T ′
k of

order |V (Tk)| = |V (T ′
k)| = O(k) and twin width at most 35 that are not distinguished by the

k-dimensional Weisfeiler-Leman algorithm.

We remark that it was known before that the Weisfeiler-Leman algorithm fails to decide
tournament isomorphism. Indeed, Dawar and Kopczynski (unpublished) proved that for every
k ≥ 2 there are non-isomorphic tournaments Uk and U ′

k of order |V (Uk)| = |V (U ′
k)| = O(k)

that are not distinguished by the k-dimensional Weisfeiler-Leman algorithm. Theorem 1.2
strengthens this result by constructing tournaments where additionally the twin width is
bounded by a fixed constant.

The paper is organized as follows. After introducing the necessary preliminaries in
Section 2, Theorem 1.1 is proved in Sections 3 and 4. First, we give our main combinatorial
arguments in Section 3. After that, the mainly group-theoretic isomorphism algorithm of
Theorem 1.1 is presented in Section 4. Theorem 1.2 is proved in Section 5. Finally, in
Section 6 we compare twin width to other width measures for directed graphs. All omitted
proofs can be found in the full version.

2 Preliminaries

2.1 Graphs

Graphs in this paper are usually directed. We often emphasize this by calling them “digraphs”.
However, when we make general statements about graphs, this refers to directed graphs and
includes undirected graphs a special case (directed graphs with a symmetric edge relation).
We denote the vertex set of a graph G by V (G) and the edge relation by E(G). The vertex set
V (G) is always finite and non-empty. The edge relation is always anti-reflexive, that is, graphs
are loop-free, and there are no parallel edges. For a digraph G and a vertex v ∈ V (G), we
denote the set of out-neighbors and in-neighbors of v by N+(v) and N−(v), respectively. Also,
the out-degree and in-degree of v are denoted by deg+(v) := |N+(v)| and deg−(v) := |N−(v)|,
respectively. Furthermore, E+(v) and E−(v) denote the set of outgoing and incoming edges
into v, respectively. For X ⊆ V (G), we write G[X] to denote the subgraph of G induced
on X. For two sets X, Y ⊆ V (G) we write EG(X, Y ) := {(v, w) ∈ E(G) | v ∈ X, w ∈ Y } to
denote the set of directed edges from X to Y .

Let G be an undirected graph. A directed graph G⃗ is an orientation of G if, for every
undirected edge {v, w} ∈ E(G), exactly one of (v, w) and (w, v) is an edge of G⃗, and there
are no other edges present in G⃗. A tournament is an orientation of a complete graph.

ICALP 2024



78:4 Isomorphism for Tournaments of Small Twin Width

A tournament T is regular if deg+(v) = deg+(w) for all v, w ∈ V (T ). In this case,
deg+(v) = deg−(v) = |V (G)|−1

2 for all v ∈ V (T ). This implies that every regular tournament
has an odd number of vertices.

Let G1, G2 be two graphs. An isomorphism from G1 to G2 is a bijection φ : V (G1) →
V (G2) such that (v, w) ∈ E(G1) if and only if (φ(v), φ(w)) ∈ E(G2) for all v, w ∈ V (G1).
We write φ : G1) ∼= G2 to denote that φ is an isomorphism from G1 to G2. Also, Iso(G1, G2)
denotes the set of all isomorphisms from G1 to G2. The graphs G1 and G2 are isomorphic if
Iso(G1, G2) ̸= ∅. The automorphism group of G1 is Aut(G1) := Iso(G1, G1).

An arc coloring of a digraph G is a mapping λ : (E(G) ∪ {(v, v) | v ∈ V (G)}) → C for
some set C of “colors”. An arc-colored graph is a triple G = (V, E, λ), where (V, E) is a graph
an λ an arc coloring of (V, E). Isomorphisms between arc-colored graphs are required to
preserve the coloring.

2.2 Partitions and Colorings
Let S be a finite set. A partition of S is a set P ⊆ 2S whose elements we refer to as parts,
such that any two parts are mutually disjoint, and the union of all parts is S. A partition P
refines another partition Q, denoted by P ⪯ Q, if for all P ∈ P there is some Q ∈ Q such
that P ⊆ Q. We say a partition P is trivial if |P| = 1, which means that the only part is S,
and it is discrete if |P | = 1 for all P ∈ P.

Every mapping χ : S → C, for some set C, induces a partition Pχ of S into the sets χ−1(c)
for all c in the range of χ. In this context, we think of χ as a “coloring” of S, the elements
c ∈ C as “colors”, and the parts χ−1(c) of the partition as “color classes”. If χ′ : S → C ′

is another coloring, then we say that χ refines χ′, denoted by χ ⪯ χ′, if Pχ ⪯ Pχ′ . The
colorings are equivalent (we write χ ≡ χ′) if χ ⪯ χ′ and χ ⪯ χ′, i.e., Pχ = Pχ′ .

2.3 Twin Width
Twin width [11] is defined for binary relational structures, which in this paper are mostly
directed graphs. We need one distinguished binary relation symbol Ered that plays a special
role in the definition of twin width. Following [11], we refer to elements of Ered as red edges.
For every structure A, we assume the relation Ered(A) to be symmetric and anti-reflexive,
that is, the edge relation of an undirected graph, and we refer to the maximum degree of
this graph as the red degree of A. If Ered(A) is not explicitly defined, we assume Ered(A) = ∅
(and the red degree of A is 0).

Let A = (V (A), R1(A), . . . , Rk(A)) be a binary relational structure, where V (A) is a
non-empty finite vertex set and Ri(A) ⊆ (V (A))2 are binary relations on V (A) (possibly,
Ri = Ered for some i ∈ [k]). We call a pair (X, Y ) of disjoint subsets of V (A) homogeneous if
for all x, x′ ∈ X, and all y, y′ ∈ Y it holds that

(i) (x, y) ∈ Ri(A) ⇔ (x′, y′) ∈ Ri(A) and (y, x) ∈ Ri(A) ⇔ (y′, x′) ∈ Ri(A) for all i ∈ [k],
and

(ii) (x, y) /∈ Ered(A) and (y, x) /∈ Ered(A).
For a partition P of V (A), we define A/P to be the structure with vertex set V (A/P) := P
and relations

Ri(A/P) :=
{

(X, Y ) ∈ P2 ∣∣ (X, Y ) is homogeneous and X × Y ⊆ Ri(A)
}

for all Ri ̸= Ered, and

Ered(A/P) :=
{

(X, Y ) ∈ P2 ∣∣ (X, Y ) is not homogeneous and X ̸= Y
}

.
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A contraction sequence for A is a sequence of partitions P1, . . . , Pn of V (A) such that
P1 = {{v} | v ∈ V (A)} is the discrete partition, Pn = {V (A)} is the trivial partition, and for
every i ∈ [n − 1] the partition Pi+1 is obtained from Pi by merging two parts, i.e., there are
distinct P, P ′ ∈ Pi such that Pi+1 = {P ∪ P ′} ∪ (Pi \ {P, P ′}). The width of a contraction
sequence P1, . . . , Pn of A is the minimum k such that for every i ∈ [n] the structure A/Pi

has red degree at most k. The twin width of A, denoted by tww(A), is the minimum k ≥ 0
such that A has a contraction sequence of width k.

Note that red edges are introduced as we contract parts of the partitions. However, the
structure A we start with may already have red edges, which then have direct impact on its
twin width. In particular, the twin width of a graph G may be smaller than the twin width
of the structure Gred obtained from G by coloring all edges red. This fact is used later.

We also remark that for our isomorphism algorithms, we never have to compute a
contraction sequence of minimum width or the twin width.

We state two simple lemmas on basic properties of twin width.

▶ Lemma 2.1 ([11]). Let A be a binary relational structure and X ⊆ V (A). Then
tww(A[X]) ≤ tww(A).

▶ Lemma 2.2. Let A be a structure over the vocabulary τ . Then there is a linear order <

on V (A) such that tww(A, <) = tww(A).

2.4 Weisfeiler-Leman
In this section, we describe the k-dimensional Weisfeiler-Leman algorithm (k-WL). The
algorithm has been originally introduced in its 2-dimensional form by Weisfeiler and Leman
[46] (see also [45]). The k-dimensional version, coloring k-tuples, was introduced later by
Babai and Mathon (see [12]).

Fix k ≥ 2, and let G be a graph. For i ≥ 0, we describe the coloring χk,G
(i) of (V (G))k

computed in the i-th iteration of k-WL. For i = 0, each tuple is colored with the isomorphism
type of the underlying ordered induced subgraph. So if H is another graph and v̄ =
(v1, . . . , vk) ∈ (V (G))k, w̄ = (w1, . . . , wk) ∈ (V (H))k, then χk,G

(0) (v̄) = χk,H
(0) (w̄) if and only if,

for all i, j ∈ [k], it holds that vi = vj ⇔ wi = wj and (vi, vj) ∈ E(G) ⇔ (wi, wj) ∈ E(H). If
G and H are arc-colored, then the colors are also taken into account.

Now let i ≥ 0. For v̄ = (v1, . . . , vk) we define

χk,G
(i+1)(v̄) :=

(
χk,G

(i) (v̄), Mi(v̄)
)

where

Mi(v̄) :=
{{(

χk,G
(i) (v̄[w/1]), . . . , χk,G

(i) (v̄[w/k])
) ∣∣∣ w ∈ V (G)

}}
and v̄[w/i] := (v1, . . . , vi−1, w, vi+1, . . . , vk) is the tuple obtained from v̄ by replacing the i-th
entry by w (and {{. . . }} denotes a multiset).

Clearly, χk,G
(i+1) ⪯ χk,G

(i) for all i ≥ 0. So there is a unique minimal i∞ ≥ 0 such that
χk,G

(i∞+1) ≡ χk,G
(i∞) and we write χk,G := χk,G

(i∞) to denote the corresponding coloring.
The k-dimensional Weisfeiler-Leman algorithm takes as input a (possibly colored) graph G

and outputs (a coloring that is equivalent to) χk,G. This can be done in time O(k2nk+1 log n)
[30].

Let H be a second graph. The k-dimensional Weisfeiler-Leman algorithm distinguishes
G and H if there is a color c ∈ C such that∣∣∣{v̄ ∈ (V (G))k

∣∣∣ χk,G(v̄) = c
}∣∣∣ ̸=

∣∣∣{w̄ ∈ (V (H))k
∣∣∣ χk,H(w̄) = c

}∣∣∣.
We write G ≃k H to denote that k-WL does not distinguish between G and H.

ICALP 2024
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A graph G is k-WL-homogeneous if for all v, w ∈ V (G) it holds that χk,G(v, . . . , v) =
χk,G(w, . . . , w).

2.5 Group Theory
For a general background on group theory we refer to [41], whereas background on permutation
groups can be found in [17]. Also, basics facts on algorithms for permutation groups are
given in [43].

Basics for Permutation Groups. A permutation group acting on a set Ω is a subgroup
Γ ≤ Sym(Ω) of the symmetric group. The size of the permutation domain Ω is called the
degree of Γ. If Ω = [n] := {1, . . . , n}, then we also write Sn instead of Sym(Ω). For A ⊆ Ω
and γ ∈ Γ let γ(A) := {γ(α) | α ∈ A}. The set A is Γ-invariant if γ(A) = A for all γ ∈ Γ.

Let θ : Ω → Ω′ be a bijection. We write Γθ := {γθ | γ ∈ Γ} for the set of bijections from Ω
to Ω′ obtained from concatenating a permutation from Γ and θ. Note that (γθ)(α) = θ(γ(α))
for all α ∈ Ω.

A set S ⊆ Γ is a generating set for Γ if for every γ ∈ Γ there are δ1, . . . , δk ∈ S such that
γ = δ1 . . . δk. In order to perform computational tasks for permutation groups efficiently the
groups are represented by generating sets of small size (i.e., polynomial in the size of the
permutation domain). Indeed, most algorithms are based on so-called strong generating sets,
which can be chosen of size quadratic in the size of the permutation domain of the group
and can be computed in polynomial time given an arbitrary generating set (see, e.g., [43]).

Group-Theoretic Methods for Isomorphism Testing. In this work, we shall be interested
in a particular subclass of permutation groups. Let Γ be a group and let γ, δ ∈ Γ. The
commutator of γ and δ is [γ, δ] := γ−1δ−1γδ. The commutator subgroup [Γ, Γ] of Γ is
the unique subgroup of Γ generated by all commutators [γ, δ] for γ, δ ∈ Γ. Note that
[Γ, Γ] is a normal subgroup of Γ. The derived series of Γ is the sequence of subgroups
Γ(0) ⊵ Γ(1) ⊵ Γ(2) ⊵ . . . where Γ(0) := Γ and Γ(i+1) := [Γ(i), Γ(i)] for all i ≥ 0. A group Γ is
solvable if there is some i ≥ 0 such that Γ(i) is the trivial group (i.e., it only contains the
identity element). The next theorem follows from the Feit-Thompson Theorem stating that
every group of odd order is solvable.

▶ Theorem 2.3. Let T be a tournament. Then Aut(T ) is solvable.

Next, we state several basic group-theoretic algorithms for isomorphism testing.

▶ Theorem 2.4 ([3, Theorem 4.1]). There is an algorithm that, given two tournaments T1
and T2, computes Iso(T1, T2) in time nO(log n).

Note that Iso(T1, T2) may be of size exponential in the number of vertices of T1 and T2.
However, if T1 and T2 are isomorphic (i.e., Iso(T1, T2) ̸= ∅), we have Iso(T1, T2) = Aut(T1)φ
where φ ∈ Iso(T1, T2) is an arbitrary isomorphism from T1 to T2. Hence, the set Iso(T1, T2)
can be represented by a generating set for Aut(T1) of size polynomial in |V (T1)| and a single
element φ ∈ Iso(T1, T2). Let us stress at this point that all isomorphism sets computed by
the various algorithms discussed in this work are represented in this way.

Let G1 and G2 be two (colored) directed graphs. Also let Γ ≤ Sym(V (G1)) be a
permutation group and let θ : V (G1) → V (G2) be a bijection. We define

IsoΓθ(G1, G2) := Iso(G1, G2) ∩ Γθ = {φ ∈ Γθ | φ : G1 ∼= G2}
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and AutΓ(G1) := IsoΓ(G1, G1). Note that AutΓ(G1) ≤ Γ and, if IsoΓθ(G1, G2) ̸= ∅, then
IsoΓθ(G1, G2) = AutΓ(G1)φ where φ ∈ Iso(G1, G2) is an arbitrary isomorphism from G1
to G2.

▶ Theorem 2.5 ([3, Corollary 3.6]). Let G1 = (V1, E1, λ1) and G1 = (V2, E2, λ2) be two
arc-colored directed graphs. Also let Γ ≤ Sym(V1) be a solvable group and θ : V1 → V2 a
bijection. Then IsoΓθ(G1, G2) can be computed in polynomial time.

3 Small Degree Partition Sequences

In the following, we design an isomorphism test for tournaments of twin width k which runs
in time kO(log k)nO(1). On a high level, the algorithm essentially proceeds in three phases.
First, we use well-established group-theoretic methods going back to [3, 33] to reduce to
the case where both input tournaments are 2-WL-homogeneous (without increasing the
twin width). In the second step, we identify a substructure of an input tournament T (that
is 2-WL-homogeneous) that has some kind of bounded-degree property. More concretely,
we apply the 2-dimensional Weisfeiler-Leman algorithm and compute a sequence of colors
c1, . . . , cℓ in the image of the 2-WL coloring χ2,T so that the subgraph induced by all edges
with a color from c1, . . . , cℓ has a certain type of bounded-degree property. After that, we
rely on the computed bounded-degree structure to determine isomorphisms based on the
group-theoretic graph isomorphism machinery. Similar tools have also been used in [1] to solve
isomorphism of k-spanning tournaments. However, as we shall see below, the bounded-degree
property guaranteed by the second step is weaker than the notion of k-spanning tournaments,
which requires us to further extend the methods from [1].

In this section, we implement the second phase and prove the key combinatorial lemma
(Lemma 3.6) underlying our isomorphism algorithm. Our arguments rely on the notion of
mixed neighbors for a pair of vertices. For a pair v, w ∈ V (T ) of vertices we let

M(v, w) :=
(

N−(v) ∩ N+(w)
)

∪
(

N+(v) ∩ N−(w)
)

. (1)

We call the elements of M(v, w) the mixed neighbors of (v, w), and we call md(v, w) :=
|M(v, w)| the mixed degree of (v, w). The following simple observation links the mixed degree
to twin width.

▶ Observation 3.1. There is an edge (v, w) ∈ E(T ) such that md(v, w) ≤ tww(T ).

Proof. Let k := tww(T ) and let P1, . . . , Pn be a contraction sequence of T of width k. Let
{v, w} be the unique 2-element part in P2. Then md(v, w) = md(w, v) ≤ k, and either
(v, w) ∈ E(T ) or (w, v) ∈ E(T ). ◀

In the following, let GT be the directed graph with vertex set V (GT ) := V (T ) and edge
set E(GT ) := {(v, w) ∈ E(T ) | md(v, w) ≤ tww(T )}. The next lemma implies that GT has
maximum out-degree at most 2 · tww(T ) + 1.

▶ Lemma 3.2. Suppose k ≥ 1. Let T be a tournament and let v ∈ V (T ). Also let

W := {w ∈ N+(v) | md(v, w) ≤ k}.

Then |W | ≤ 2k + 1.

ICALP 2024
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Proof. Let ℓ := |W |. The induced subtournament T [W ] has a vertex w of in-degree at least
(ℓ − 1)/2. Since md(v, w) ≤ k and (v, w′) ∈ E(T ) for all w′ ∈ W , we have

|{w′ ∈ W | (w′, w) ∈ E(T )}| ≤ k.

Thus ℓ−1
2 ≤ k, which implies that |W | = ℓ ≤ 2k + 1. ◀

So GT is a subgraph of T of maximum out-degree d := 2 · tww(T ) + 1. We remark that
similar arguments also show that GT has maximum in-degree at most d (technically, this
property is not required by our algorithm, but it is helpful for the following explanations).
Now, first suppose that GT is strongly connected. Then the edges of GT define a (strongly)
connected spanning subgraph of maximum degree 2d (in-degree plus out-degree). In this
situation, we can directly use the algorithm from [1] to test isomorphism in time dO(log d)nO(1).

So suppose GT is not strongly connected. If T is 2-WL-homogeneous, then GT is also
not weakly connected (i.e., the undirected version of GT is not connected). In this case,
the basic idea is to identify further edges to be added to decrease the number of connected
components while keeping some kind of bounded-degree property.

In the following, let Q be a partition of V (T ) that is non-trivial, that is, has at least two
parts. The reader is encouraged to think of Q as the partition into the (weakly) connected
components of GT , but the following results hold for any non-trivial partition Q. We call an
edge (v, v′) ∈ E(T ) cross-cluster with respect to Q if it connects distinct Q, Q′ ∈ Q. For a
cross-cluster edge (v, v′) with Q ∋ v, Q′ ∋ v′, we let

MQ(v, v′) :=
{

Q′′ ∈ Q \ {Q, Q′}
∣∣ Q′′ ∩ M(v, v′) ̸= ∅

}
and mdQ(v, v′) := |MQ(v, v′)|.

The next two lemmas generalize Observation 3.1 and Lemma 3.2.

▶ Lemma 3.3. Let T be a tournament and suppose Q is a non-trivial partition of V (T ).
Then there is a cross-cluster edge (v, w) ∈ E(T ) such that mdQ(v, w) ≤ tww(T ).

Proof. Let k := tww(T ) and let P1, . . . , Pn be a contraction sequence of T of width k. Note
that P1 refines Q and Pn does not refine Q, because Q is nontrivial. Let i ≥ 1 be minimal
such that Pi+1 does not refine Q.

Let P, P ′ ∈ Pi denote the parts merged in the step from Pi to Pi+1. Since Pi refines
Q, there are Q, Q′ ∈ Q such that P ⊆ Q and P ′ ⊆ Q′. Moreover, Q ̸= Q′, because Pi+1
does not refine Q. We pick arbitrary elements v ∈ P and w ∈ P ′ such that (v, w) ∈ E(T )
(if (w, v) ∈ E(T ), we swap the roles of P and P ′). Then (v, w) is a cross-cluster edge with
respect to Q.

Let P1, . . . , Pk′ be a list of all P ′′ ∈ Pi+1 \ {P ∪ P ′} such that the pair (P ∪ P ′, P ′′) is not
homogeneous. Then k′ ≤ k by the definition of twin width. Since Pi\{P, P ′} = Pi+1\{P ∪P ′}
and Pi refines Q, there are Q1, . . . , Qk′ ∈ Q such that Pi ⊆ Qi for all i ∈ [k′].

Now let Q′′ ∈ Q \ {Q, Q′, Q1, . . . , Qk′}. Suppose for contradiction that Q′′ ∩ M(v, w) ̸= ∅,
and pick an element w′ ∈ Q′′∩M(v, w). Then there is a P ′′ ∈ Pi\{P, P ′, P1, . . . , Pk′} = Pi+1\
{P ∪ P ′, P1, . . . , Pk′} such that w′ ∈ P ′′. But then the pair (P ∪ P ′, P ′′) is not homogeneous,
which is a contradiction. So Q′′ ∩M(v, w) = ∅. This implies that MQ(v, w) ⊆ {Q1, . . . , Qk′}.
In particular, mdQ(v, w) ≤ k′ ≤ k. ◀

▶ Lemma 3.4. Suppose k ≥ 1. Let T be a tournament and let Q be a non-trivial partition
of V (T ). Also let Q ∈ Q and v ∈ Q. Let

W := {Q′ ∈ Q \ {Q} | ∃w ∈ Q′ : (v, w) ∈ E(T ) ∧ mdQ(v, w) ≤ k}.

Then |W| ≤ 2k + 1.
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. . .

Figure 1 The figure shows part of a tournament T . The colors c1 and c2 are shown in blue and
green, respectively. Also, the parts of the partition Q1 are highlighted in gray. Note that only green
edges, which are outgoing from the middle part, are shown.

The proof is very similar to the proof of Lemma 3.2.

Proof. Let ℓ := |W| and suppose W = {Q1, . . . , Qℓ}. For every i ∈ [ℓ] pick an element
wi ∈ Qi such that (v, wi) ∈ E(T ) and mdQ(v, wi) ≤ k. We define W := {w1, . . . , wℓ}. Then
there is some w ∈ W such that

|{w′ ∈ W | (w′, w) ∈ E(T )}| ≥ ℓ − 1
2 ,

because the induced subtournament T [W ] has a vertex of in-degree at least (ℓ − 1)/2.
Since mdQ(v, w) ≤ k and (v, w′) ∈ E(T ) for all w′ ∈ W , it follows that

|{w′ ∈ W | (w′, w) ∈ E(T )}| ≤ k.

Thus ℓ−1
2 ≤ k, which implies that |W| = ℓ ≤ 2k + 1. ◀

Now, suppose we color all edges (v, w) of T with md(v, w) ≤ tww(T ) using the color
c1 = blue (see Figure 1). Let Q1 be the partition into the (weakly) connected components of
the graph induced by the blue edges and suppose that Q1 is non-trivial. We can compute
isomorphisms between the different parts of Q1 using the algorithm from [1]. Next, let
us color all cross-cluster edges (v, w) ∈ E(T ) with mdQ(v, w) ≤ tww(T ) using the color
c2 = green. Then every vertex has outgoing green edges to at most 2 tww(T ) + 1 other
parts of Q1 (see Lemma 3.4). However, since a vertex may have an unbounded number of
green neighbors in a single part, the out-degree of the graph induced by the green edges
may be unbounded. So it is not possible to use the algorithm from [1] as a black-box on
the components induced by blue and green edges. Luckily, the methods used in [1] can be
extended to work even in this more general setting (see Section 4). So if the graph induced
by the blue and green edges is connected, then we are again done. Otherwise, we let Q2
denote the partition into (weakly) connected components of the graph induced by the blue
and green edges. Now, we can continue in the same fashion identifying colors c3, c4, . . . and
corresponding partitions Q3, Q4, . . . until the graph induced by all edges of colors c1, . . . , cℓ

is eventually connected.
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Below, we provide a lemma that computes the corresponding sequence of partitions and
edge colors using 2-WL. To state the lemma in its cleanest form, we restrict our attention to
tournaments that are 2-WL-homogeneous. Recall that a tournament T is 2-WL-homogeneous
if for all v, w ∈ V (T ) is holds that χ2,T (v, v) = χ2,T (w, w).

We also require another piece of notation. For a directed graph G and a set of colors
C ⊆ {χ2,G(v, w) | (v, w) ∈ E(G)} we write G[C] for the directed graph with vertex set
V (G[C]) := V (G) and edge set

E(G[C]) := {(v, w) ∈ E(G) | χ2,G ∈ C}.

To prove Lemma 3.6 we need the following lemma about the connected components of the
graphs G[C].

▶ Lemma 3.5. Let G be a 2-WL-homogeneous graph, and let C a set of colors in the range of
χ2,G. Then the weakly connected components of G[C] equal the strongly connected components
of G[C].

▶ Lemma 3.6. Let T be a 2-WL-homogeneous tournament of twin width tww(T ) ≤ k. Then
there is a sequence of partitions {{v} | v ∈ V (T )} = Q0, . . . , Qℓ = {V (T )} of V (T ) where
Qi−1 refines Qi for all i, and a sequence of colors c1, . . . , cℓ in the range of χ2,T such that
(1) Qi is the partition into the strongly connected components of T [{c1, . . . , ci}] for every

i ∈ [ℓ], and
(2) for every i ∈ [ℓ] and every v ∈ V (T ) it holds that∣∣{Q ∈ Qi−1

∣∣ ∃w ∈ Q : χ2,T (v, w) = ci

}∣∣ ≤ 2k + 1.

Moreover, there is a polynomial-time algorithm that, given a tournament T and an integer
k ≥ 1, computes the desired sequences Q0, . . . , Qℓ and c1, . . . , cℓ or concludes that tww(T ) >

k.

Proof. We set Q0 = {{v} | v ∈ V (T )} and inductively define a sequence of partitions and
colors as follows. Let i ≥ 0 and suppose we already defined partitions Q0 ≺ · · · ≺ Qi and
colors c1, . . . , ci. If Qi = {V (T )}, we set ℓ := i and complete both sequences. Otherwise,
there is a cross-cluster edge (vi+1, wi+1) with respect to Qi such that mdQi

(vi+1, wi+1) ≤ k

by Lemma 3.3. We set ci+1 := χ2,T (vi+1, wi+1) and define Qi+1 to be the set of weakly
connected components of T [c1, . . . , ci+1]. By Lemma 3.5, these are also the strongly connected
components.

First observe that Qi ≺ Qi+1 since (vi+1, wi+1) is a cross-cluster edge with respect to
Qi, and vi+1, wi+1 are contained in the same part of Qi+1 by Lemma 3.5. Also, Property
1 is satisfied by definition. For Property 2 note that every edge (v, w) ∈ E(T ) such that
χ2,G(v, w) = ci+1 is a cross-cluster edge with respect to Qi. So Property 2 follows directly
from Lemma 3.4.

Finally, it is clear from the description above that Q0 ≺ · · · ≺ Qℓ and c1, . . . , cℓ can be
computed in polynomial time, or we conclude that tww(T ) > k. ◀

4 The Isomorphism Algorithm

Based on the structural insights summarized in Lemma 3.6, we now design an isomorphism
test for tournaments of small twin width.

The strategy of our algorithm is the following. We are given two tournaments T1 and T2,
and we want to compute Iso(T1, T2). First, we reduce to the case where both T1 and T2 are
2-WL-homogeneous.
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Towards this end, we start by applying 2-WL and, for j = 1, 2, compute the coloring
χ2,Tj . If 2-WL distinguishes the two tournaments, we can immediately conclude that they
are non-isomorphic and return Iso(T1, T2) = ∅.

So suppose that 2-WL does not distinguish the tournaments. Then T1 is 2-WL-
homogeneous if and only if T2 is 2-WL-homogeneous.

If the Tj are not 2-WL-homogeneous, we rely on the following standard argument. Let
c1, . . . , cp be the vertex colors. For i ∈ [p] and j = 1, 2, let Pj,i be the set of all v ∈ V (Tj)
such that χ2,Tj (v, v) = ci. We recursively compute the sets Λi := Iso(T1[P1,i], T2[P2,i]) for all
i ∈ [p]. Note that this is possible since tww(T1[P1,i]) ≤ tww(T1) and tww(T2[P2,i]) ≤ tww(T2)
for all i ∈ [p] by Lemma 2.1. If there is some i ∈ [p] such that Λi = ∅, then T1 and T2
are non-isomorphic, and we return Iso(T1, T2) = ∅. Otherwise, the set Λi is a coset of
Γi := Aut(T1[P1,i]) for all i ∈ [p], i.e., Λi = Γiθi for some bijection θi : P1,i → P2,i. As
the automorphism group of a tournament, Γi is solvable (see Theorem 2.3). Moreover,
since the color classes P1,i are invariant under automorphisms of T1, the automorphism
group Γ := Aut(T1) is a subgroup of the direct product

∏
i Γi, which is also a solvable

group. Also, Iso(T1, T2) ⊆ Γθ where θ : V (T1) → V (T2) is the unique bijection defined via
θ(v) := θi(v) for all v ∈ V (T1), where i ∈ [p] is the unique index such that v ∈ P1,i. So
Iso(T1, T2) = IsoΓθ(T1, T2) can be computed in polynomial time using Theorem 2.5.

So we may assume that T1 and T2 are 2-WL-homogeneous. In this case, we apply
Lemma 3.6 and obtain colors c1, . . . , cℓ and, for j = 1, 2, a partition sequence {{v} | v ∈
V (Tj)} = Qj,0, . . . , Qj,ℓ = {V (Tj)} where Qj,i−1 refines Qj,i for all i ∈ [ℓ].

Now, we iteratively compute for i = 0, . . . , ℓ the sets Iso(Tj [Q], Tj′ [Q′]) for all j, j′ ∈ {1, 2}
and all Q ∈ Qj,i and Q′ ∈ Qj′,i. For i = 0 this is trivial since all parts have size 1. So suppose
i > 0 and consider some elements j, j′ ∈ {1, 2} and Q ∈ Qj,i, Q′ ∈ Qj′,i. For simplicity,
let us assume that j = 1 and j′ = 2. Our goal is to compute Iso(T1[Q], T2[Q′]). To do so,
we exploit that we already computed all isomorphisms between all pairs of subgraphs of
T1[Q] and T2[Q′] induced by sets R ∈ Q1,i−1 ∪ Q2,i−1 and for which R ⊆ Q or R ⊆ Q′. The
next lemma describes the key subroutine of the main algorithm which achieves this goal.
Note that, on the last level ℓ, we compute the set Iso(T1, T2) since Qj,ℓ = {V (Tj)} for both
j ∈ {1, 2}.

To state the lemma, we need additional terminology. Let T = (V, E, λ) be an arc-colored
tournament. A partition Q of V is λ-definable if there is a set of colors C ⊆ {λ(v, w) | v =
w ∨ (v, w) ∈ E} such that

v ∼Q w ⇐⇒ λ(v, w) ∈ C

for all v, w ∈ V such that v = w or (v, w) ∈ E. We also say that Q is λ-defined by C. If Q
is λ-defined by C then we can partition the colors in the range of λ into the colors in C,
which we call intra-cluster colors, and the remaining colors, which we call cross-cluster colors.
Note that if a color c is intra-cluster, then for all (v, w) ∈ E with λ(v, w) = c it holds that
v, w ∈ Q for some Q ∈ Q, and if c is cross-cluster, then for all (v, w) ∈ E with λ(v, w) = c it
holds that (v, w) is a cross-cluster edge, that is, v ∈ Q and w ∈ Q′ for distinct Q, Q′ ∈ Q.

▶ Lemma 4.1. There is an algorithm that, given
(A) an integer d ≥ 1;
(B) two arc-colored tournaments T1 = (V1, E1, λ1) and T2 = (V2, E2, λ2);
(C) a set of colors C and for j = 1, 2 a partition Qj of Vj that is λj-defined by C;
(D) a color c∗ that is cross-cluster with respect to Qj for j = 1, 2 and

for every v ∈ Vj it holds that∣∣{Q ∈ Qj

∣∣ ∃w ∈ Q : (v, w) ∈ Ej ∧ λj(v, w) = c∗}∣∣ ≤ d;
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for

Fj :=
{

(Q, Q′) ∈ Q2
j

∣∣ Q ̸= Q′, ∃w ∈ Q, w′ ∈ Q′ : (w, w′) ∈ Ej ∧ λj(w, w′) = c∗}
the directed graph Gj = (Qj , Fj) is strongly connected;

(E) Iso
(
Tj [Q], Tj′ [Q′]

)
for every j, j′ ∈ {1, 2} and every Q ∈ Qj, Q′ ∈ Qj′ ,

computes Iso(T1, T2) in time dO(log d) · nO(1).

The proof builds on the algorithmic ideas presented in [1]. Since it is quite lengthy and
technical, we only present a rough idea of the proof; the details can be found in the full
version.

Proof Idea. The algorithm fixes an arbitrary vertex r1 ∈ V1 and for every r2 ∈ V2 computes
the set Iso((T1, r1), (T2, r2)) of all isomorphisms φ ∈ Iso(T1, T2) such that φ(r1) = r2. Observe
that Iso(T1, T2) is the union over all these sets.

The central idea is to iteratively compute larger and larger sets W1,i ⊆ V1 and W2,i ⊆ V2
such that
(I.1) there is some Wj,i ⊆ Qj such that Wj,i =

⋃
Q∈Wj,i

Q, and
(I.2) φ(W1,i) = W2,i for every φ ∈ Iso((T1, r1), (T2, r2))
and compute the set Iso((T1[W1,i], r1), (T2[W2,i], r2)). Initially, we set W1,0 := R1 and
W2,0 := R2 where R1 and R2 are the unique parts of Q1 and Q2 containing r1 and r2,
respectively. Note that the set Iso((T1[W1,0], r1), (T2[W2,0], r2)) can easily be computed from
Item E.

Now suppose we already computed Iso((T1[W1,i], r1), (T2[W2,i], r2)) for some W1,i ⊆ V1
and W2,i ⊆ V2 satisfying (I.1) and (I.2). Consider a vertex u ∈ W1,i that has an outgoing
edge of color c∗ to a vertex outside of W1,i. Note that, if W1,i ≠ V1, such a vertex exists by
the second part of Item D. We call such a vertex a boundary vertex. Let U1,i denote the
set of boundary vertices. For a boundary vertex u ∈ U1,i let Lu

1,i+1 denote the set of all
parts Q ∈ Q1 that are outside of W1,i and contain a vertex v ∈ Q such that (u, v) ∈ E1 and
λ1(u, v) = c∗. Also, we define Lu

1,i+1 :=
⋃

Q∈Lu
1,i+1

Q. A visualization is given in Figure 2.
Note that |Lu

1,i+1| ≤ d by the first part of Item D.
For every boundary vertex u ∈ U1,i we construct an isomorphism-invariant tournament

T̃ u
1,i+1 with vertex set Lu

1,i+1. Roughly speaking, for two distinct Q, Q′ ∈ Lu
1,i+1, in order to

decide whether to add (Q, Q′) or (Q′, Q) to the edge set of T̃ u
1,i+1, we take a majority vote

on the edges between Q and Q′ in T1 (if there is a tie, we need to invoke further rules; see
the full version for details).

Since |Lu
1,i+1| ≤ d, the automorphism group of T̃ u

1,i+1 can be computed in time dO(log d)

by Theorem 2.4. Also, for each Q ∈ Lu
1,i+1, the automorphism group of T [Q] is given as part

of the input (see Item E). By taking a wreath product, we obtain a solvable permutation
group Γ ≤ Sym(Lu

1,i+1) such that Aut(T1[Lu
1,i+1]) ≤ Γ. Using Theorem 2.5, this allows us to

compute Aut(T1[Lu
1,i+1]) and, more generally, compute the isomorphism sets between the

corresponding subgraphs for different boundary vertices u, u′ ∈ V1 ∪ V2.
Now, we extend W1,i by all sets Lu

1,i+1, u ∈ U1,i, to obtain the next layer W1,i+1
(actually, for technical reasons, the final proof proceeds in a slightly different manner); the
set W2,i+1 is defined analogously. To compute the desired isomorphism set, we proceed
as follows. For simplicity, first suppose that all sets Lu

1,i+1, u ∈ U1,i, are pairwise disjoint.
Then, we can again take a wreath product to obtain a solvable permutation group ∆ ≤
Sym(W1,i+1 \ W1,i) such that Aut(T1[W1,i+1], r1) ≤ Aut(T1[W1,i], r1) × ∆. Using Theorem
2.5, this allows us to compute Aut(T1[W1,i+1], r1). Similarly, we can also compute the set
Iso((T1[W1,i+1], r1), (T2[W2,i+1], r2)).
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r1

u

u′

Lu
1,i+1

Lu′

1,i+1

...

...

Figure 2 The figure shows the sets W1,i (orange), U1,i (blue) and Lu
1,i+1 computed in the proof

sketch of Lemme 4.1. The color c∗ is shown in green and gray regions depict parts of the partition Q1.

To cover the case that not all sets Lu
1,i+1, u ∈ U1,i, are pairwise disjoint, we use the

following trick. For each vertex v ∈ W1,i+1 \ W1,i let µ(v) denote the number of boundary
vertices u ∈ U1,i such that v ∈ Lu

1,i+1. We replace each v ∈ W1,i+1 \ W1,i with µ(v) copies of
the vertex; each copy is associated with one of the corresponding boundary vertices. Now,
we can proceed as in the previous case to compute the set of isomorphisms. Afterwards,
we rely on group-theoretic algorithms from [35] to “merge” the different copies of the same
vertex again to finally obtain the group Iso((T1[W1,i+1], r1), (T2[W2,i+1], r2)).

Note that the second part of Item D guarantees that we can continue this process until
eventually W1,i = V1 and W2,i = V2, at which point we have computed the desired set
Iso((T1, r1), (T2, r2)). ◀

Building on the subroutine from Lemma 4.1, we can now design an isomorphism test for
tournaments of bounded twin width following the outline given above.

▶ Theorem 4.2. There is an algorithm that, given two tournaments T1 and T2 and an integer
k ≥ 1, either concludes that tww(T1) > k or computes Iso(T1, T2) in time kO(log k) · nO(1).

5 The WL-Dimension of Tournaments of Bounded Twin Width

In this section, we prove Theorem 1.2. To prove that the WL algorithm on its own is
unable to determine isomorphisms between tournaments of bounded twin width, we adapt
a construction of Cai, Fürer and Immerman [12]. Towards this end, we first describe a
construction of directed graphs with large WL dimension, and then argue how to translate
those graphs into tournaments while preserving their WL dimension.

In the following, let G be a connected, 3-regular (undirected) graph. Let Gred denote the
structure obtained from G be replacing every edge with a red edge and let t := tww(Gred).

Let us remark at this point that the Cai-Fürer-Immerman construction [12] replaces each
vertex in G with a certain gadget, and those gadgets are connected along the edges of G. In
order to bound the twin width of the resulting graph, we start with a graph G for which the
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twin width of Gred is bounded.1 This is because the connections between gadgets are not
homogeneous, so when contracting all gadgets in a contraction sequence, we obtain precisely
the graph Gred which allows to “complete” the contraction sequence using that Gred has
bounded twin width.

Now, let us formally describe the construction of tournaments with large WL dimension.
By Lemma 2.2 there is some linear order < on V (G) such that tww(Gred, <) = t. Also, let G⃗

be an arbitrary orientation of G.
Recall that for every v ∈ V (G) we denote by E+(v) the set of outgoing edges and E−(v)

the set of incoming edges in G⃗. Also, we write E(v) to denote the set of incident (undirected)
edges in G. For a ∈ Z3 we define

Ma(v) :=
{

f : E(v) → Z3

∣∣∣ ∑
(v,w)∈E+(v)

f({v, w}) −
∑

(w,v)∈E−(v)

f({v, w}) = a (mod 3)
}

We also define Fa(v) to contain all pairs (f, g) ∈ (Ma(v))2 such that, for the minimal element
w ∈ NG(v) (with respect to <) such that f(vw) ̸= g(vw), it holds that

f(vw) + 1 = g(vw) (mod 3).

Observe that, for every distinct f, g ∈ Ma(v), either (f, g) ∈ Fa(v) or (g, f) ∈ Fa(v).
Let α : V (G) → Z3 be a function. We define the graph CFI3(G⃗, <, α) with vertex set

V (CFI3(G⃗, <, α)) :=
⋃

v∈V (G)

{v} × Mα(v)(v)

and edge set

E(CFI3(G⃗, <, α)) :=
{

{(v, f)(w, g)}
∣∣∣ vw ∈ E(G) ∧ f(vw) = g(vw)

}
∪

{
((v, f)(v, g))

∣∣∣ (f, g) ∈ Fα(v)(v)
}

.

Observe that CFI3(G⃗, <, α) is a mixed graph, i.e., it contains both directed and undirected
edges. Also, we color the vertices of CFI3(G⃗, <, α) using the coloring λ : V (CFI3(G⃗, <, α)) → C

defined via λ(v, f) := v for all (v, f) ∈ V (CFI3(G⃗, α)), i.e., each set Mα(v)(v) forms a color
class under λ.

Now fix an arbitrary vertex u0 ∈ V (G). For every i ∈ Z3 we define the mapping
αi : V (G) → Z3 via αi(u0) := i and αi(w) := 0 for all w ∈ V (G) \ {u0}.

▶ Lemma 5.1. CFI3(G⃗, <, α0) ̸∼= CFI3(G⃗, <, α1).

Now, we analyse the WL algorithm on the graphs CFI3(G⃗, <, α) for different functions
α : V (G) → Z3. We write tw(G) to denote the tree width of G.

▶ Lemma 5.2. Let k be an integer such that tw(G) ≥ k + 1. Also let α, β : V (G) → Z3 be
two functions. Then CFI3(G⃗, <, α) ≃k CFI3(G⃗, <, β).

Together, Lemmas 5.1 and 5.2 provide pairs of non-isomorphic graphs that are not
distinguished by k-WL assuming tw(G) > k. Next, we argue how to turn these graphs into
tournaments.

1 We remark that, since G has maximum degree 3, the twin width of Gred is actually bounded in the twin
width of G. However, we feel it is more convenient to directly bound the twin width of Gred.
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We define the tournament T = T (G⃗, <, α) with vertex set

V (T ) := V (CFI3(G⃗, <, α)) =
⋃

v∈V (G)

{v} × Mα(v)(v)

and edge set

E(T ) :=
{

((v, f)(v, g))
∣∣∣ (f, g) ∈ Fα(v)(v)

}
∪

{
((v, f)(w, g))

∣∣∣ v < w ∧ {(v, f)(w, g)} /∈ E(CFI3(G⃗, <, α))
}

∪
{

((w, g)(v, f))
∣∣∣ v < w ∧ {(v, f)(w, g)} ∈ E(CFI3(G⃗, <, α))

}
.

It can be shown that the relevant properties are preserved by this translation.

▶ Lemma 5.3. Let α, β : V (G) → Z3 be two functions. Then T (G⃗, <, α) ∼= T (G⃗, <, β) if and
only if CFI3(G⃗, <, α) ∼= CFI3(G⃗, <, β).

▶ Lemma 5.4. Let k ≥ 2 be an integer such that tw(G) ≥ k + 1. Also let α, β : V (G) → Z3
be two functions. Then T (G⃗, <, α) ≃k T (G⃗, <, β).

To prove Theorem 1.2, we also need to bound the twin width of the resulting graph.
Recall that t := tww(Gred) where Gred denotes the version of G where every edge is red.

▶ Lemma 5.5. For every function α : V (G) → Z3 it holds that tww(T (G⃗, <, α)) ≤ max(35, t).

Proof. Throughout the proof, we define M(v) := Mα(v)(v) for every v ∈ V (G). Since G is
3-regular, we have that |M(v)| = 9 for every v ∈ V (G). So |V (T (G⃗, <, α))| = 9 · |V (G)|. Also
note that (M(v), M(w)) is homogeneous for all distinct v, w ∈ V (G) such that {v, w} /∈ E(G).

We construct a partial contraction sequence as follows. Let n := |V (G)|. We define
P1, . . . , P8n+1 arbitrarily such that P8n+1 = {M(v) | v ∈ V (G)}. Since G is 3-regular and
|M(v)| = 9 for every v ∈ V (G), we conclude that (T (G⃗, <, α))/Pi has red degree at most
4 · 9 − 1 = 35 for every i ∈ [8n + 1]. Now observe that

tww((T (G⃗, <, α))/P8n+1) ≤ tww(Gred, <) = t.

It follows that tww(T (G⃗, <, α)) ≤ max(35, t) as desired. ◀

With Lemma 5.5 in hand, we apply the construction T (G⃗, <, α) to a 3-regular base
graph G which has tree width linear in the number of vertices, but the twin width of Gred

is bounded. The existence of such graphs has already been observed in [5]. More precisely,
the following theorem follows from combining the arguments from [5, Lemma 5.1] and the
results from [4, 34].

▶ Theorem 5.6. There is a family of 3-regular graphs (Gn)n≥1 such that |V (Gn)| = O(n),
tww(Gred

n ) ≤ 6 (where Gred
n denotes the version of Gn where all edges are turned into red

edges), and tw(Gn) ≥ n for every n ≥ 1.

Now, we are ready to give a proof for Theorem 1.2.

▶ Theorem 5.7. For every k ≥ 2 there are non-isomorphic tournaments Tk and T ′
k such that

(1) |V (Tk)| = |V (T ′
k)| = O(k),

(2) tww(Tk) ≤ 35 and tww(T ′
k) ≤ 35, and

(3) Tk ≃k T ′
k.

ICALP 2024
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Proof. Let k ≥ 2. Let Gk+1 be the 3-regular graph obtained from Theorem 5.6. Note that
tw(Gk+1) ≥ k + 1.

We also fix an arbitrary orientation G⃗k+1 of Gk+1 and let Gred
k+1 denote the version of Gk+1

where every edge is replaced by a red edge. We have t := tww(Gred
k+1) ≤ 6 by Theorem 5.6.

By Lemma 2.2 there is some linear order < on V (Gk+1) such that tww(Gred
k+1, <) ≤ t ≤ 6.

Now fix an arbitrary u0 ∈ V (Gk+1). For p ∈ Z3 we define the mapping αp : V (Gk+1) → Z3
via αp(u0) = p and αp(w) = 0 for all w ∈ V (Gk+1) \ {u0}. We define Tk := T (G⃗k+1, <, α0)
and T ′

k := T (G⃗k+1, <, α1). We have |V (Tk)| = |V (T ′
k)| = 9 · |V (Gk+1)| = O(k). Also,

tww(Tk) ≤ 35 and tww(T ′
k) ≤ 35 by Lemma 5.5. Finally, Tk ̸∼= T ′

k by Lemmas 5.1 and 5.3,
and Tk ≃k T ′

k by Lemma 5.4. ◀

6 Twin Width is Smaller Than Other Widths

In this section, we compare twin width with other natural width parameters of tournaments. If
f, g are mappings from (directed) graphs to the natural numbers, we say that f is functionally
smaller than g on a class C of graphs if for every k there is a k′ such that for all graphs
G ∈ C, if g(G) ≤ k then f(G) ≤ k′. We write f ≾C g to denote that f is functionally smaller
than g on C. We omit the subscript C if C is the class of all digraphs.

Natural width measures for directed graphs are cut width, directed path width, directed tree
width, and clique width. On the class of tournaments twin width turns out to be functionally
smaller than all of these. For clique width, it has already been shown in [11] that twin width
is functionally smaller than clique width on undirected graphs; the proof easily extends to
arbitrary binary relational structures and hence to tournaments.

We start by giving definitions for the other width measures. Let G be a digraph. For a
linear order ≤ on V (G) and a vertex v ∈ V (G), we let S≤(v) := {w ∈ V (G) | w ≤ v} be the
set of all vertices smaller than or equal to v in ≤. Let s≤(v) := |EG(S≤(v), V (G) \ S≤(v))|
be the number of edges from S≤(v) to its complements. The width of ≤ is maxv∈V (G) s≤(v),
and the cut width ctw(G) is the minimum over the width of all linear orders of V (G).

A directed path decomposition of a digraph G is a mapping β : [p] → 2V (G), for some p ∈ N,
such that for every vertex v ∈ V (G) there are ℓ, r ∈ [p] such that v ∈ β(t) ⇐⇒ ℓ ≤ t ≤ r,
and for all edges (v, w) ∈ E(G) there are ℓ, r ∈ [p] with ℓ ≤ r such that v ∈ β(r) and w ∈ β(ℓ).
The sets β(t), t ∈ [p], are the bags of the decomposition. The width of the decomposition is
maxt∈[p] |β(t)| − 1, and the directed path width dpw(G) is the minimum width of a directed
path decomposition of G.

A digraph R is a rooted directed tree if there is a vertex r0 ∈ V (R) such that for every
t ∈ V (R) there is a unique directed walk from r0 to t. Note that every rooted directed tree
can be obtained from an undirected tree by selecting a root r0 and directing all edges away
from the root. For t ∈ V (R) we denote by Rt the unique induced subgraph of R rooted at t.

Let G be a digraph. A directed tree decomposition of G is a triple (R, β, γ) where R is a
rooted directed tree, β : V (R) → 2V (G) and γ : E(R) → 2V (G) such that
(D.1) {β(t) | t ∈ V (R)} is a partition of V (G), and
(D.2) for every (s, t) ∈ E(R) the set γ(s, t) is a hitting set for all directed walks that start

and end in β(Rt) :=
⋃

t′∈V (Rt) β(t′) and contain a vertex outside of β(Rt).
For t ∈ V (R) we define Γ(t) := β(t) ∪

⋃
(s,s′)∈E(t) γ(s, s′) where E(t) denotes the set of edges

incident to t. The width of (R, β, γ) is defined as

width(R, β, γ) := max
t∈V (R)

|Γ(t)| − 1.

The directed tree width dtw(G) is the minimum width of a directed tree decomposition of G.
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Let us first recall the following well-known inequalities.

▶ Proposition 6.1. For all digraphs G, it holds that dtw(G) ≤ dpw(G) ≤ ctw(G).

The proposition implies that dtw ≾ dpw ≾ ctw. It can be shown that tww ̸≾ ctw and
hence tww ̸≾ dpw and tww ̸≾ dtw on the class of all digraphs. In contrast, it turns out
that on the class of tournaments, twin width is functionally smaller than directed tree
width. Actually, this even holds for the larger class of semi-complete graphs. A digraph G is
semi-complete if for all distinct v, w ∈ V (G) at least one of the pairs (v, w), (w, v) is an edge.
Note that every tournament is semi-complete.

▶ Theorem 6.2 ([28, Proposition 5]). Let G be a semi-complete graph. Then

dpw(G) ≤ 4(dtw(G) + 2)2 + 7(dtw(G) + 2) − 1.

▶ Theorem 6.3. Let G be a semi-complete graph. Then tww(G) ≤ dpw(G).

In combination, we get that tww(G) ≤ 4(dtw(G) + 2)2 + 7(dtw(G) + 2) − 1 for every
semi-complete graph G. In particular

tww ≾S dtw, (2)

where S denotes the class of all semi-complete digraphs. This inequality is strict even on
tournaments, that is, dtw ̸≾T tww where T denotes the class of all tournaments.

7 Conclusion

We prove that the isomorphism problem for classes of tournaments of bounded (or slowly
growing) twin width is in polynomial time. Many algorithmic problems that can be solved
efficiently on (classes of) tournaments can also be solved efficiently on (corresponding classes
of) semi-complete graphs, that is, directed graphs where for every pair (v, w) of vertices at
least one of the pairs (v, w), (w, v) is an edge (see, e.g., [39]). Contrary to this, we remark
that isomorphism of semi-complete graphs of bounded twin width is GI-complete: we can
reduce isomorphism of oriented graphs to isomorphism of semi-complete graphs by replacing
each non-edge by a bidirectional edge. This reduction preserves twin with.

Classes of tournaments of bounded twin width are precisely the classes that are considered
to be structurally sparse. Formally, these are the classes that are monadically dependent,
which means that all set systems definable over the tournaments in such a class have
bounded VC dimension. The most natural set systems definable within a tournament are
those consisting of the in-neighbors of the vertices and of the out-neighbors of the vertices.
Bounded twin width implies that the VC dimension of these two set systems is bounded, but
the converse does not hold. It is easy to see that the VC dimensions of the in-neighbors and
out-neighbors systems as well as the set system consisting of the mixed neighbors of all edges
are within a linear factor of one another. As a natural next step, we may ask if isomorphism
of tournaments where the VC-dimension of these systems is bounded is in polynomial time.
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