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Abstract
We give simply exponential lower bounds on the probabilities of a given strongly Rayleigh distribution,
depending only on its expectation. This resolves a weak version of a problem left open by Karlin-
Klein-Oveis Gharan in their recent breakthrough work on metric TSP, and this resolution leads to a
minor improvement of their approximation factor for metric TSP. Our results also allow for a more
streamlined analysis of the algorithm.

To achieve these new bounds, we build upon the work of Gurvits-Leake on the use of the
productization technique for bounding the capacity of a real stable polynomial. This technique
allows one to reduce certain inequalities for real stable polynomials to products of affine linear
forms, which have an underlying matrix structure. In this paper, we push this technique further
by characterizing the worst-case polynomials via bipartitioned forests. This rigid combinatorial
structure yields a clean induction argument, which implies our stronger bounds.

In general, we believe the results of this paper will lead to further improvement and simplification
of the analysis of various combinatorial and probabilistic bounds and algorithms.
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1 Introduction

The theory of real stable and log-concave polynomials has seen numerous applications in
combinatorics and theoretical computer science (TCS). This includes bounds and approx-
imation algorithms for various combinatorial quantities [18, 11, 7, 28, 5, 8, 2, 15], proofs of
long-standing log-concavity and sampling conjectures related to matroids [1, 3, 4, 14], proofs
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79:2 New Capacity Bounds with Applications to TSP

of the Kadison-Singer conjecture and generalizations [26, 6, 13], an improved approximation
factor for the traveling salesperson problem (TSP) [27, 24, 25], and many more. The power
of these polynomial classes comes from two features: (1) their robustness, shown in the
fact that many natural operations preserve these log-concavity properties, and (2) their
convex analytic properties, which can be used to prove bounds and other analytic statements.
The typical way these polynomials are utilized is by encoding combinatorial objects as real
stable and log-concave polynomials, which essentially allows these operations and convexity
properties to automatically transfer to the combinatorial objects. This idea, while simple,
has led to important breakthroughs in combinatorics, TCS, and beyond.

For example, [18] utilized real stable polynomials to give a new proof of the Van der
Waerden conjecture on the permanent of a doubly stochastic matrix (originally due to [16,
17]). This proof led to a vast generalization of Van der Waerden bound, including an
improved Schrijver’s bound for regular bipartite graphs [18], an analogous bound for mixed
discriminants [19], and an analogous bound for mixed volumes that led to the development of
strongly log-concave polynomials [21, 20]. One reason the original bound was historically so
difficult to prove is a lack of a usable inductive structure coming from the matrices themselves.
One of the key insights of the new proof was to use the simple inductive structure of real
stable polynomials given by partial derivatives. By encoding the matrices as polynomials,
the correct induction becomes straightforward, and the bound follows from a simple calculus
argument.

More recently, the approximation factor improvement for the metric traveling salesperson
problem (TSP) crucially utilized real stable polynomials [24, 25]. The idea is to encode
certain discrete probability distributions related to spanning trees as real stable polynomials.
The coefficients of these polynomials give probabilities of certain graph-theoretic events (e.g.,
the number of edges in a given spanning tree incident on a particular vertex), and analytic
properties of real stable polynomials allow one to lower bound these probabilities. This in
turn implies bounds on the expected cost of the output of a randomized algorithm for metric
TSP.

In this paper, we improve upon the polynomial capacity bounds of [22], and our applica-
tions touch on the two problems discussed above. Specifically, we give:

1. robust coefficient lower bounds for all (not necessarily homogeneous) real stable polyno-
mials,

2. simply exponential lower bounds on probabilities of strongly Rayleigh distributions
(solving a weak version of an open problem of [24]), and

3. a further improvement to the approximation factor for metric TSP (predicted by [22]).
Interestingly, our approach goes in the opposite direction to that discussed above. Our
technical results answer questions regarding real stable polynomials, but to prove these
results we use various graph and matrix structures inherent to the polynomials. In [22],
this was seen in the “productization” technique: bounds on real stable polynomials were
achieved by showing that the worst-case bounds come from polynomials associated to certain
matrices. In this paper, we push this idea further by showing that these worst-case matrices
are bipartite adjacency matrices of forests. This very rigid structure enables a clean induction
argument, which implies stronger polynomial capacity bounds. These new bounds lead
to the applications discussed above, with the strongest bounds implying the metric TSP
improvement.
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2 Main Results

We first state here our main technical results; see Section 3 for any undefined notation.
Our first main result is a non-homogeneous version of Theorem 2.1 of [22] which implies

robust coefficient lower bounds for all real stable polynomials as a direct corollary. Crucially,
these bounds do not depend on the total degree of the polynomial. This was one of the main
barriers to applying the results of [22] to metric TSP.

▶ Theorem 1 (Main non-homogeneous capacity bound). Let p ∈ R≥0[x1, . . . , xn] be a real
stable polynomial in n variables, and fix any κ ∈ Zn with non-negative entries. If p(1) = 1
and ∥κ − ∇p(1)∥1 < 1, then

inf
x1,...,xn>0

p(x)
xκ1

1 · · · xκn
n

≥ (1 − ∥κ − ∇p(1)∥1)n
.

This bound is tight for any fixed κ with strictly positive entries.

▶ Corollary 2 (Main non-homogeneous coefficient bound). Let p ∈ R≥0[x1, . . . , xn] be a real
stable polynomial in n variables, and fix any κ ∈ Zn with non-negative entries. If p(1) = 1
and ∥κ − ∇p(1)∥1 < 1, then

pκ ≥

(
n∏

i=1

κκi
i e−κi

κi!

)
(1 − ∥κ − ∇p(1)∥1)n,

where pκ is the coefficient of xκ in p. The dependence on (1 − ∥κ − ∇p(1)∥1) is tight for
any fixed κ with strictly positive entries.

The above results1 are robust (i.e., resilient to ℓ1 perturbations) versions of the results
utilized to bound various combinatorial and probabilistic quantities, as discussed above.
That said, they are still not quite strong enough to imply an improvement to the metric TSP
approximation factor. To obtain this improvement, we resolve a weak version of an open
problem from [24], which we discuss below. Stronger versions of Theorem 1 and Corollary 2
which imply this result can be found in Section 5.

2.1 Application: Minimum Permanent
Before discussing the application to TSP, we first describe a different application of our
bounds as a sort of prelude. It is at this point well-known that the permanent of any n × n

doubly stochastic matrix is at least n!
nn , and that 1

n1 · 1⊤ is the unique minimizer of the
permanent over all doubly stochastic matrices. On the other hand, a similar tight lower
bound with explicit minimizer is not known for sets of matrices with different row and column
sums. The following then slightly extends what is known in the doubly stochastic case. See
Section 6 for further details.

Given c ∈ Rn
≥0, let Matn(c) denote the set of n × n matrices with non-negative entries,

row sums equal to 1, and columns sums equal to c.

▶ Theorem 3. For all n ≥ 1, there exists ϵn > 0 such that if ∥c − 1∥1 < ϵn then 1
n 1 · c⊤ is

the unique minimizer of the permanent over Matn(c). Specifically, this holds if c1c2···cn

L(c) <

(n−2)n−2nn−1

(n−1)2n−3 , where L(c) is any lower bound on the capacity.

1 Note that these bounds already appear in the arXiv version of [22], but not in the STOC version.
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79:4 New Capacity Bounds with Applications to TSP

The proof utilizes Theorem 1 or results of [22] to guarantee all minimizers of the permanent
lie in the relative interior of Matn(c). The symmetry and multilinearity of the permanent
then imply the minimizer must be the rank-one matrix of Matn(c) described above. See
Section Section 6 for the explicit value of ϵn and the details of the proof. It should be noted
that in proving uniqueness, we were able to avoid usage of the conditions for equality in the
Alexandrov-Fenchel inequalities.

On the other hand, when c is far from 1, the above result can be far from correct. Recall
from [22] that per(M) > 0 for all M ∈ Matn(c) if and only if ∥c − 1∥1 < 2.

▶ Proposition 4. For all n large enough, there exists c such that ∥c − 1∥1 < 2 and a sparse
matrix M ∈ Matn(c) (with linearly many non-zero entries) which has smaller permanent
than that of 1

n 1 · c⊤.

These two results suggest the complexity of the minimizer of the permanent, given the
column sums c. The coefficient bound given above in Corollary 2 is then a lower bound
which generalizes that of the permanent to coefficients of real stable polynomials. (Consider
the coefficient p1 of p(x) =

∏n
i=1
∑n

j=1 mijxj .) Thus Corollary 2 can be seen as a sort
of “smoothing” of the complexities that can occur for minima of the permanent and its
generalizations.

Further, Theorem 3 can generalized to a permanent-like function on rectangular matrices
using Theorem 1, and even beyond that to the mixed discriminant. (For the mixed discrim-
inant, the row sum condition becomes a trace condition, and the column sum condition
becomes an eigenvalue condition.) On the other hand, we can generalize the statement of
Theorem 3 to coefficients of real stable polynomials in general, but we do not yet know how
to prove it.

2.2 Application: Metric TSP
We first recall an important probabilistic bound from [24] used in the analysis of their metric
TSP approximation algorithm (which is a slight modification of the max entropy algorithm
from [27] first studied by [9]). In what follows, we let AS :=

∑
i∈S Ai and κS :=

∑
i∈S κi.

See Section 3 for any undefined notation.

▶ Theorem 5 (Prop. 5.1 of [24]). Let µ be a strongly Rayleigh distribution on [m], let
A1, . . . , An be random variables counting the number of elements contained in disjoint subsets
of [m], and fix κ ∈ Zn with non-negative entries. Suppose for all S ⊆ [n] we have

Pµ [AS ≥ κS ] ≥ ϵ and Pµ [AS ≤ κS ] ≥ ϵ.

Then we have

Pµ [A1 = κ1, . . . , An = κn] ≥ f(ϵ) · Pµ

[
A[n] = κ[n]

]
,

where f(ϵ) ≥ ϵ2n ∏n
i=2

1
max{κi,κ[i−1]}+1 .

In [24], the authors note two things about this bound. First, they note that to apply the
bound it is sufficient to have∣∣Eµ [AS ] − κS

∣∣ < 1 ∀S ⊆ [n], (1)

since this implies a lower bound on Pµ [AS = κS ] for all S ⊆ [n] for strongly Rayleigh
distributions. Second, they note that the bound on f(ϵ) is doubly exponential in n, but they
expect the true dependency to only be simply exponential. They leave it as an open problem
to determine a tight lower bound on f(ϵ).
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In this paper, we further improve the metric TSP approximation factor by resolving a
weak version of this open problem: we give a simply exponential lower bound which depends
tightly on ϵ, under the stronger condition of (1). Concretely, we prove the following.

▶ Theorem 6 (Improved probability lower bound). Let µ be a strongly Rayleigh distribution
on [m], let A1, . . . , An be random variables counting the number of elements contained in
disjoint subsets of [m], and fix κ ∈ Zn with non-negative entries. Suppose for all S ⊆ [n] we
have∣∣Eµ [AS ] − κS

∣∣ ≤ 1 − ϵ.

Then we have

Pµ [A1 = κ1, . . . , An = κn] ≥ ϵn
∏

κi>0

1
e
√

κi
.

The dependence on ϵ is tight for any fixed κ with strictly positive entries.

In fact, we prove stronger versions of this result which more directly depend on the
specific values of (Eµ [AS ] − κS) for all S ⊆ [n]; see Theorem 9 and Corollary 10. These
results are analogous to our main coefficient bound Corollary 2 because the coefficients and
the gradient of probability generating polynomials can be interpreted as the probabilities and
the expectation of the associated distribution. That said, our stronger probabilistic results
require a more delicate analysis of the expectations (gradient) beyond what is required for
Corollary 2. In particular, note that the conditions on the expectations in Theorem 6 are
more general than a bound on the ℓ1 norm of (Eµ [Ai] − κi)n

i=1. See Section 4 for further
details.

Using Theorem 6, we improve the metric TSP approximation factor for the algorithm
given in [24].

▶ Theorem 7. There exists a randomized algorithm for metric TSP with approximation
factor 3

2 − ϵ for some ϵ > 10−34.

This is about a 100 times improvement over the result of [23]. Thus our improvement
in terms of the approximation factor itself may be smaller than anticipated, given that
we were able to improve the probability bound in Theorem 6 from doubly exponential to
simply exponential. The reason for this is that while Theorem 5 was useful in [24] to quickly
determine which events occurred with constant probability (and indeed provided a single
unifying explanation for why one should expect many of their probabilistic bounds to hold),
it gave such small guarantees that [24] resorted to ad hoc arguments instead to give their
final probabilistic bounds.

We show that Theorem 6 alone can be used to give bounds that are comparable to the
ad hod methods of [24] (and, in several important cases, much better) whenever the bounds
came purely from information on the expectations as in (1). Thus, we believe our main
contribution to work on metric TSP is a version of Theorem 5 that is “reasonable” to use,
allowing one to show a similar approximation factor but with a more streamlined proof.

Unfortunately, not all of the bounds in [24] follow from expectation information, and two
of them become bottlenecks for improving the approximation factor after applying Theorem 6
to the other statements. Thus, to demonstrate Theorem 7 we need to sharpen these bounds
using other techniques. For one of these lemmas we show that the existing proof in [24] was
far from tight, and in the other we refine their proof. In particular, using Theorem 6, we
show we can reduce this second lemma to a special case that is possible to analyze more
carefully. See Section 4 for further details.

ICALP 2024



79:6 New Capacity Bounds with Applications to TSP

3 Technical Overview

In this section we discuss the proof strategy of our main capacity and coefficient bounds,
Theorem 1 and Corollary 2, and their stronger forms.

Notation

Given a vector z ∈ RE and a subset S of E, let zS :=
∏

e∈S ze. Let µ : {0, 1}E → R be a
probability distribution over subsets of E. The generating polynomial gµ ∈ R≥0[{ze}e∈E ] of
µ is defined as

gµ(z) :=
∑
S⊆E

µ(S) · zS .

The distribution µ is strongly Rayleigh if gµ is real stable, where a polynomial p ∈
R[z1, . . . , zn] is real stable if p(z) ̸= 0 whenever ℑ(zi) > 0 for all i ∈ [n] (i.e., when all
inputs are in the complex upper half-plane). See [12] for much more on strongly Rayleigh
measures. Further, given a polynomial p ∈ R≥0[x1, . . . , xn] and κ ∈ Zn

≥0, the capacity of p

is defined as

Capκ(p) := inf
x>0

p(x)
xκ

.

Finally, we let pκ denote the coefficient of xκ in p.

Conceptual strategy

We first give an overarching view of the strategy used to prove our main results, as well as
the key similarities and differences compared to that of [22]. The general idea for proving
our bounds is to find a simple and sparse underlying structure for the worst-case inputs. The
space of all real stable polynomials can be complicated, but we show that the worst-case
polynomials for our bounds are far simpler: they are “sparse” products of affine linear
forms. More concretely, we reduce the space of input polynomials (and the corresponding
combinatorial structures) as follows:

real stable polynomials =⇒ products of linears =⇒ sparse products of linears
matroids =⇒ matrices =⇒ forests

The first reduction step uses the idea of productization which was the key idea from [22].
This allows for one to utilize the matrix structure inherent to products of affine linear forms.

The second reduction step is then new to this paper. We first show that we may restrict
to the extreme points of the set of matrices corresponding to products of affine linear forms,
and then we show that these extreme matrices are supported on the edges of forests. This
implies a significant decrease in density of the matrices: general graphs can have quadratically
many edges, whereas forests can only have linearly many. This allows for an intricate but
clean induction on the leaf vertices of these forests, which yields the strongest bounds of this
paper. Additionally, it is this step that allows for bounds which do not depend on the total
degree of the polynomial, and this was a crucial barrier to applying the bounds of [22] to
metric TSP.

3.1 Conceptual Strategy, in More Detail
We now go through the steps of the conceptual strategy described above in more detail. Let
us first restate our main capacity and coefficient bounds.
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▶ Theorem 8 (= Theorem 1 and Corollary 2). Let p ∈ R≥0[x1, . . . , xn] be a real stable
polynomial in n variables, and fix any κ ∈ Zn with non-negative entries. If p(1) = 1 and
∥κ − ∇p(1)∥1 < 1, then

Capκ(p) ≥ (1 − ∥κ − ∇p(1)∥1)n

and

pκ ≥

(
n∏

i=1

κκi
i e−κi

κi!

)
(1 − ∥κ − ∇p(1)∥1)n

,

where Capκ(p) := infx>0
p(x)
xκ is the capacity of p and pκ is the coefficient of xκ in p. The

dependence on (1−∥κ−∇p(1)∥1) in these bounds is tight for any fixed κ with strictly positive
entries.

Analogous bounds required for the metric TSP application then follow from interpreting
desired quantities as the coefficients and gradient of certain real stable polynomials. Spe-
cifically, the strongly Rayleigh probabilities we wish to lower bound are the coefficients of
the corresponding real stable generating polynomial, and the expectations of the associated
random variables are given by the gradient of that polynomial. We leave further details to
Section 4.

We now discuss the proof of Theorem 8. First note that the coefficient bound follows
from the capacity bound. This immediately follows from Corollary 3.6 of [20], which implies

pκ ≥

(
n∏

i=1

κκi
i e−κi

κi!

)
Capκ(p). (2)

Thus what remains to be proven is the capacity bound

Capκ(p) ≥ (1 − ∥κ − ∇p(1)∥1)n
,

which is precisely the bound of Theorem 1, as well as its tightness, which follows from
considering a particular example of p (see Lemma 28).

The remainder of the proof then has four main steps. We also note here that these
proof steps actually imply stronger bounds than Theorem 1, see Corollary 27 for the formal
statement. These stronger bounds are required for the metric TSP application.

Step 1: Reduce to products of affine linear forms via productization

We first generalize the productization technique of [22] to non-homogeneous real stable
polynomials. The upshot of this technique is that it implies it is sufficient to prove Theorem 1
for products of affine linear forms with non-negative coefficients (see Corollary 18). Such
polynomials correspond to d × (n + 1) R≥0-valued matrices with row sums 1 and column
sums α equal the entries of the gradient of the polynomial, via

ϕ : A 7→
d∏

i=1

ai,n+1 +
n∑

j=1
ai,jxj

 .

This gives far more structure to work with, beyond that of real stable polynomials in general.
This part is a straightforward generalization of the analogous result of [22].

ICALP 2024



79:8 New Capacity Bounds with Applications to TSP

Step 2: Reduce to extreme points

The set of R≥0-valued matrices with row sums 1 and column sums α forms a convex polytope
P d

α, and thus the polynomials we now must consider correspond to the points of this polytope
via the map ϕ defined above. Inspired by a result of Barvinok (see Lemma 19), we next show
that the function

A 7→ Capκ(ϕ(A))

is log-concave on the above described polytope. Since we want to minimize the capacity, this
implies we may further restrict to the polynomials associated to the extreme points of the
polytope.

Step 3: Extreme points correspond to bipartitioned forests

Any R≥0-valued matrix A can be interpreted as the weighted bipartite adjacency matrix of
a bipartite graph, where the left vertices correspond to the rows of A and the right vertices
correspond to the columns of A. A matrix A ∈ P d

α being extreme implies the associated
bipartite graph has no cycles. This implies the associated bipartite graph is a forest (see
Lemma 20). The sparsity properties of such matrices implies a simple structure for the
associated polynomials, which is particularly amenable to an intricate but clean induction.2

Step 4: Induction on leaf vertices of the bipartitioned forests

Leaf vertices in the forest corresponding to a given matrix A ∈ P d
α indicate rows or columns

of the matrix A which have exactly one non-zero entry. If a row of A has exactly one
non-zero entry, the induction proceeds in a straightforward fashion, by simply removing the
corresponding row of A and recalculating the column sums (see the d ≥ n + 1 case of the
proof of Theorem 25).

If a column of A (say column i) has exactly one non-zero entry, then the induction is
more complicated. We prove lemmas showing how much the capacity can change after
applying the partial derivative ∂xi (when κi ≥ αi, see Lemma 24) or setting xi to 0 (when
κi < αi, see Lemma 23). Since column i has only one entry, applying ∂xi

corresponds to
removing column i and the row of A which contains the non-zero entry, and setting xi to
0 corresponds to removing column i. After renormalizing the row sums and recalculating
the column sums, the proof again proceeds by induction. (See the proof of Theorem 25 to
see the above arguments presented formally.) Example 29 and Example 30 show that the
distinction between the κi ≥ αi and κi < αi cases is not an artifact of the proof.

Some comments on tightness of the bounds

The main coefficient bound of Corollary 2 is proven via two different bounds, as discussed
at the beginning of this section. That is, one first bounds the coefficient in terms of the
capacity (2) via Corollary 3.6 of [20], and then one bounds the capacity via the steps outlined
above. Thus while the capacity bound (Theorem 1) is tight for κ > 0, the coefficient bound

2 Note that it is already mentioned in [22] that the supports of the extreme points correspond to forests,
but the application of this observation in [22] is somewhat “naive” and kind of brute-force: it was
mainly used to describe an (inefficient) algorithm to compute the capacity lower bound for products of
linear forms, which is not related to main lower bound in this paper. Additionally, its use in [22] is
quite conceputally far from how it could actually be used to improve the TSP approximation factor.
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(Corollary 2) may not be. We note that the coefficient bound is likely close to tight in
the case that (1 − ∥κ − ∇p(1)∥1) is close to 1, but it seems this tightness deteriorates as
(1 − ∥κ − ∇p(1)∥1) gets close to 0. That said, the dependence on (1 − ∥κ − ∇p(1)∥1) in
Theorem 1 and Corollary 2 is tight for κ > 0 by Lemma 28, though there is still potential
for improvement in the more refined capacity bounds; see Section 5.5.

That said, tight coefficient lower bounds in the univariate case can be achieved by directly
applying a bound of Hoeffding, and these lower bounds resemble the coefficient lower bound
of Corollary 2. Thus one can view Corollary 2 as a step towards a multivariate generalization
of Hoeffding’s theorem. It is an interesting question whether or not the techniques used here
can be extended to a full multivariate generalization of Hoeffding’s theorem.

3.2 Example: The Univariate Case

In this section, we demonstrate the proof of Theorem 1 in the univariate case. This will
serve as a sort of proof of concept for the more general proof.

Here we consider real stable non-homogeneous polynomials p ∈ R≥0[x1] such that p(1) = 1
and ∇p(1) = α1, and we define ϵ := 1 − |α1 − κ1| > 0. By Step 1 above, we may assume
that p is of the form

p(x1) =
d∏

i=1
(ai,1x1 + a1,2),

where A is an R≥0-valued d × 2 matrix with row sums 1 and column sums (α1, d − α1). By
Steps 2-3, we may further assume A is the weighted bipartite adjacency matrix of a forest. If
every row of A contains exactly one non-zero entry then p(x1) = xk1

1 , and the result is trivial
in this case. Otherwise, d − 1 rows of M have exactly one non-zero entry (see Lemma 21).
Thus for some k ≤ d − 1 we have

p(x1) = xk
1(ax1 + b),

where a + b = 1 and a + k = α1. Since κ1 ∈ Z≥0 and

ϵ = 1 − |α1 − κ1| = 1 − |a + k − κ1|,

we have that k is equal to either κ1 or κ1 − 1. If k = κ1, then

Capκ1(p) = inf
x1>0

xk
1(ax1 + b)

xk
1

= b and ϵ = 1 − |a + k − κ1| = 1 − a = b.

If k = κ1 − 1, then

Capκ1(p) = inf
x1>0

xk
1(ax1 + b)

xk+1
1

= a and ϵ = 1 − |a + k − κ1| = 1 − (1 − a) = a.

Therefore in both cases we have

Capκ1(p) = ϵ = (1 − |α1 − κ1|),

which proves Theorem 1 in the univariate case and demonstrates the tight dependence on
(1 − ∥κ − ∇p(1)∥1) in this case.

ICALP 2024
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4 Proof of Application: Metric TSP

The following is the strongest probability lower bound, which we will use for the metric TSP
application. In what follows, we let AS :=

∑
i∈S Ai and κS :=

∑
i∈S κi. Note that if∣∣Eµ [AS ] − κS

∣∣ ≤ 1 − ϵ,

then Theorem 6 immediately follows from Theorem 9, Lemma 28, and a standard computation.

▶ Theorem 9 (Strongest form of the probability bound). Let µ be a strongly Rayleigh distribu-
tion on [m], let A1, . . . , An be random variables counting the number of elements contained
in some associated disjoint subsets of [m], and fix κ ∈ Zn

≥0. Suppose for all S ⊆ [n] we have
|Eµ [AS ] − κS | < 1. Define ϵ, δ ∈ Rn

>0 via

δk := 1 + min
S∈([n]

k )
(Eµ [AS ] − κS) and ϵk := 1 − max

S∈([n]
k )

(Eµ [AS ] − κS) .

Then we have

Pµ [A1 = κ1, . . . , An = κn] ≥
n∏

i=1

κκi
i e−κi

κi!
· min

0≤ℓ≤n

ℓ∏
k=1

ϵk

n−ℓ∏
k=1

δk.

Proof. Let q be the probability generating polynomial of µ, and let p be the polynomial
obtained by setting the variables of q associated to Ai to xi for all i ∈ [n], and setting all
other variables to equal 1. Since µ is strongly Rayleigh, p is real stable. Further, p(1) = 1,
∇p(1) = (Eµ [Ai])n

i=1, and Pµ [A1 = κ1, . . . , An = κn] is the xκ coefficient of p. Thus Gurvits’
capacity inequality (2) and Corollary 27 imply the desired result. ◀

We also give a slightly weaker bound which is a bit easier to use in practice. Note that
Theorem 6 also follows from Corollary 10.

▶ Corollary 10. Let µ be a strongly Rayleigh distribution on [m], let A1, . . . , An be random
variables counting the number of elements contained in some associated disjoint subsets of
[m], and fix κ ∈ Zn

≥0. Suppose for all S ⊆ [n] we have |Eµ [AS ] − κS | < 1. Define ϵ ∈ Rn
>0

via

ϵk := 1 − max
S⊆[n]
|S|≤k

∣∣Eµ [AS ] − κS

∣∣
Then we have

Pµ [A1 = κ1, . . . , An = κn] ≥
n∏

i=1

κκi
i e−κi

κi!
·

n∏
k=1

ϵk.

Proof. Follows from Theorem 9; see the proof of Corollary 26 for more details. ◀

The remainder of this section is devoted to demonstrating how one can use the above
results to improve the approximation factor for metric TSP.
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4.1 A Simple Application
We recall some definitions from [24]. There, we have a graph G = (V, E) and a strongly
Rayleigh (SR) distribution µ : 2E → R≥0 supported on spanning trees of G. We let
xe = PT ∼µ [e ∈ T ] and for a set of edges F let x(F ) =

∑
e∈F xe. Furthermore we let

δ(S) = {e = {u, v} | |e ∩ S| = 1}. The guarantee on x is that x ∈ PSub,3 where

PSub :=


x(δ(S)) ≥ 2 ∀ S ⊊ V

x(δ(v)) = 2 ∀v ∈ V

x{u,v} ≥ 0 ∀ u, v ∈ V

(3)

In the algorithm they analyze, one first samples a spanning tree T from µ and then add
the minimum cost matching on the odd vertices of T . Their work involves analyzing the
expected cost of this matching over the randomness of the sampled tree T . Unsurprisingly,
the parity of vertices is therefore very important, as it determines which vertices are involved
in the matching.

In this section, to give some sense of the utility of Theorem 9, we show an application in a
simplified setting. Namely, we show that for any two vertices u, v, except in the special case
that x{u,v} ≈ 1

2 , we have PT ∼µ [|δ(u) ∩ T | = |δ(v) ∩ T | = 2] ≥ Ω(1), i.e. for any two vertices
that do not share an edge of value 1

2 there is a constant probability that they have even
parity simultaneously. This is helpful because (under some conditions on the point x ∈ PSub)
the event that u, v are even simultaneously indicates one can strictly decrease the cost of the
matching proportional to the cost of the edge e.

We now prove PT ∼µ [|δ(u) ∩ T | = |δ(v) ∩ T | = 2] ≥ Ω(1) whenever x{u,v} ̸≈ 1
2 . To do

this, we split into two cases: when x{u,v} ≥ 1
2 + ϵ and when x{u,v} ≤ 1

2 − ϵ.

▶ Lemma 11. Let u, v be two vertices such that x{u,v} ≥ 1
2 + ϵ for some ϵ > 0. Then,

PT ∼µ [|δ(u) ∩ T | = |δ(v) ∩ T | = 2] ≥ ϵ

2e3 .

Proof. Let e = (u, v). For T ∼ µ, let A1 = I[e ∈ T ], A2 = |(δ(u) ∖ {e}) ∩ T |, A3 =
|(δ(v) ∖ {e}) ∩ T |. We are now interested in the event Ai = κi, ∀i for the vector κ = (1, 1, 1)
as this implies |δ(u) ∩ T | = |δ(v) ∩ T | = 2. We have E[A1] = xe, E[A2] = E[A3] = 2 − xe.
Therefore, to apply Theorem 9 we can set:

δ1 = xe, δ2 = 1, δ3 = 2 − xe, ϵ1 = xe, ϵ2 = 2xe − 1, ϵ3 = xe

In this case the worst case is using all of the ϵ terms in the bound, giving e−3x2
e(2xe −1) ≥ ϵ

2e3

as desired. ◀

▶ Lemma 12. Let u, v be two vertices such that x{u,v} ≤ 1
2 − ϵ for some ϵ > 0. Then,

PT ∼µ [|δ(u) ∩ T | = |δ(v) ∩ T | = 2] ≥ 2ϵ

e4 .

Proof. As above, e = (u, v), and for T ∼ µ, let A1 = I[e ∈ T ], A2 = |(δ(u)∖ {e}) ∩ T |, A3 =
|(δ(v) ∖ {e}) ∩ T |. We are now interested in the event Ai = κi, ∀i for the vector κ = (0, 2, 2)
as this implies |δ(u) ∩ T | = |δ(v) ∩ T | = 2. We have E[A1] = xe, E[A2] = E[A3] = 2 − xe.
Therefore, to apply Theorem 9 we can set:

δ1 = 1 − xe, δ2 = 1 − 2xe, δ3 = 1 − xe, ϵ1 = 1 − xe, ϵ2 = 1, ϵ3 = 1 + xe

In this case the worst case is using all of the δ terms in the bound, giving 4e−4(1 − xe)2(1 −
2xe) ≥ 2ϵ

e4 . ◀

3 Technically, a spanning tree plus an edge is sampled, as otherwise one cannot exactly have x ∈ PSub,
but we ignore that here.
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We leave further background about TSP and the proofs of our improved probabilistic
statements to the full version of the paper, as understanding their importance requires some
knowledge of the (highly technical) proof in [24]. However, in the next section we summarize
the new probabilistic bounds we get and their consequences.

4.2 Summary of Probabilistic Bounds and New Approximation Factor
The current bound on the performance of the max entropy algorithm is 3

2 − 4.11 · 10−36.
This is primarily governed by a constant p that is determined by the minimum probability
over a number of events. In [24], p was equal to 2 · 10−10, and these events are described by
the following statements in [24]:
1. Corollary 5.9, which gives a bound of 1.5·10−9. We do not modify this bound, although we

note that Lemma 5.7 can be slightly improved which would lead to a small improvement
here.

2. Lemma 5.21, which gives a bound of 0.005ϵ2
1/2 = 2 ·10−10. We improve this to 0.039ϵ2

1/2 =
1.56 · 10−9.

3. Lemma 5.22, which gives a bound of 0.006ϵ2
1/2 = 2.4 · 10−10. We improve this to

0.038ϵ2
1/2 = 1.52 · 10−9.

4. Lemma 5.23, which gives a bound of 0.005 · ϵ1/2 = 2 · 10−10. We observe here that
arguments already in [24] can be used to give 0.0498ϵ2

1/2 ≥ 1.9 · 10−9.
5. Lemma 5.24, which gives a bound of 0.02ϵ2

1/2 = 8 ·10−10. We improve this to 0.0485ϵ2
1/2 ≥

1.9 · 10−9.
6. Lemma 5.27, which gives a bound of 0.01. This lemma actually uses that the threshold p

is small, and therefore this bound decreases slightly upon raising p. However, as it is quite
far from being the bottleneck in these bounds, we omit the proof that the probability
remains above 1.5 · 10−9.

Therefore, we may increase p to the minimum of all these probabilities, 1.5 · 10−9. Using
statements from [24, 23], the following then holds:

▶ Lemma 13. Let p be a lower bound on the probabilities guaranteed by (1) - (6) for
ϵ1/2 ≤ 0.0002, and suppose p ≤ 10−4. Then given x ∈ PSub, the max entropy algorithm
returns a solution of expected cost at most ( 3

2 − 9.7p2 · 10−17) · c(x).

As we improve the bounds on p to 1.5 · 10−9, an immediate corollary is the following:

▶ Corollary 14. The max entropy algorithm is a 3
2 − 2.18 · 10−34 approximation algorithm

for metric TSP.

Using [25] this guarantee can be made deterministic, as we do not require any modifications
to the algorithm.

In the full version of the paper, we also observe a lower bound on Lemma 5.21 for strongly
Rayleigh distributions of Ω(ϵ2

1/2). The fact that ϵ1/2 ≤ 0.0002 is used in many places in [24]
and thus decreasing it may require more effort. Thus without modifying other parts of the
argument, it may not be possible to improve the bound below 1.5 · 10−31.

In the rest of the paper we prove our main capacity bound.

5 Proofs of the Main Capacity Bounds

In this section we prove the strongest forms of the main capacity bounds, which give Theorem 1
and Corollary 2 as corollaries. See the full version of the paper for any missing proofs. For
this section, we utilize the following notation.
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▶ Definition 15. For n, d ∈ N and α ∈ Rn
≥0, we define the following:

1. NHMatd
n(α) is the set of all R≥0-valued d × (n + 1) matrices with row sums all equal to

1 and column sums equal to α1, . . . , αn, d − ∥α∥1.
2. NHProdd

n(α) is the set of all polynomials of the form

p(x) =
d∏

i=1

ai,n+1 +
n∑

j=1
ai,jxj

 ,

where A ∈ NHMatd
n(α). In this case, we call p the polynomial associated to A. Note

that p(1) = 1 and ∇p(1) = α for all such polynomials.
3. NHStabd

n(α) is the set of all real stable polynomials in R≥0[x1, . . . , xn] of degree at most
d for which p(1) = 1 and ∇p(1) = α. (Recall that a polynomial is stable if it is never
zero when all inputs are in the open complex upper half-plane.)

We also define the following for n ∈ N, α ∈ Rn
≥0, and κ ∈ Zn

≥0:

LNHProd
n (α; κ) := min

d∈N
min

p∈NHProdd
n(α)

Capκ(p).

We now follow the steps of the proof given in Section 3.

5.1 Productization for Non-homogeneous Stable Polynomials
We first show how we can reduce the problem of bounding the capacity to products of
affine linear forms. We recall the main productization result from [22], which gives the
non-homogeneous productization result as an immediate corollary.

▶ Theorem 16 (Thm. 6.2, [22]). Fix n, d ∈ N, u, α ∈ Rn
≥0, and p ∈ R≥0[x1, . . . , xn] of

homogeneous degree d, such that p(1) = 1 and ∇p(1) = α. There exists an R≥0-valued d × n

matrix A such that the rows sums of A are all equal to 1, the column sums of A are given by
α, and p(u) =

∏d
i=1(Au)i.

▶ Corollary 17. Fix n, d ∈ N, u, α ∈ Rn
≥0, and p ∈ NHStabd

n(α). There exists f ∈
NHProdd

n(α) such that p(u) = f(u).

Proof. Let q(x) = xd
n+1 · p

(
x1

xn+1
, . . . , xn

xn+1

)
be the homogenization of p, and define β :=

∇q(1). So q ∈ R≥0[x1, . . . , xn+1] of homogeneous degree d such that q(1) = 1 and
∇q(1) = β = (α1, . . . , αn, d − ∥α∥1). Define un+1 := 1, apply Theorem 16 to q and u,
and dehomogenize to obtain the desired result. ◀

We now use this result to reduce the problem of bounding the capacity to products of
affine linear forms.

▶ Corollary 18. For p ∈ NHStabd
n(α), we have

Capκ(p) ≥ LNHProd
n (α; κ).

Proof. For any x ∈ Rn
≥0, let f ∈ NHProdd

n(α) be such that p(x) = f(x) according to
Corollary 17. With this, we have

Capκ(p) = inf
x>0

p(x)
xκ

≥ inf
x>0

min
d∈N

min
f∈NHProdd

n(α)

f(x)
xκ

= LNHProd
n (α; κ). ◀
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5.2 The Extreme Points of NHMatd
n(α)

The next result implies we can reduce to the extreme points of NHMatd
n(α) to lower bound

LNHProd
n (α; κ).

▶ Lemma 19 (See Thm. 3.1 of [10]). Given κ ∈ Zn
≥0 and α ∈ Rn

≥0, let ϕ : NHMatd
n(α) →

R≥0 be the function which maps M to Capκ(p) where p is the polynomial associated to M .
Then ϕ is log-concave on NHMatd

n(α).

We next describe the extreme points of NHMatd
n(α) via bipartitioned forests.

▶ Lemma 20. Any extreme point of NHMatd
n(α) has support given by a bipartite forest on

d left vertices and n + 1 right vertices.

Proof. Let M be an extreme point of NHMatd
n(α), and suppose its bipartite support graph

G does not give a forest. Then G must contain an even simple cycle. Group the edges of
this cycle into two groups such that the odd edges make up one group, and the even edges
make up the other (with any starting point). Add ϵ > 0 to all matrix entries corresponding
to even edges and subtract ϵ to all matrix entries corresponding to odd edges, to construct
M+ ∈ NHMatd

n(α). Do the same thing, but reverse the signs, to construct M− ∈ NHMatd
n(α).

Thus M = M++M−
2 , contradicting the fact that M is an extreme point. ◀

In what follows, we will also need the following basic graph theoretic result.

▶ Lemma 21. Let G be a bipartite forest on m left vertices and n right vertices such that G

has no vertices of degree 0. Then G has at least m − n + 1 left leaves.

5.3 Capacity Bounds via Induction

Here we complete the proof of Theorem 1. We first give a simple lemma, which bears some
resemblance to the probabilistic union bound.

▶ Lemma 22. Given c ∈ Rd
≥0 such that ci < 1 for all i ∈ [d], we have 1 −

∑d
i=1 ci ≤∏d

i=1(1 − ci).

The next lemma handles the case from Step 4 in Section 3 of setting some variable equal
to 0. To see how these next two lemmas actually are actually used, see Theorem 25 below.

▶ Lemma 23. For n ≥ 1, let p ∈ NHProdd
n(α) be the polynomial associated to a d × (n + 1)

matrix M , and suppose κ ∈ Zn
≥0 such that κn = 0 and αn − κn ≤ 1 − ϵ for some ϵ > 0. Then

there exists q ∈ NHProdd
n−1(β) such that

Capκ(p) ≥ ϵ · Capγ(q),

where γ = (κ1, . . . , κn−1) ∈ Zn−1
≥0 and β ∈ Rn−1

≥0 is such that for all S ⊆ [n − 1] we have∑
j∈S

(αj − κj) ≤
∑
j∈S

(βj − γj) ≤ (αn − κn) +
∑
j∈S

(αj − κj).

The next lemma handles the case from Step 4 in Section 3 of taking the partial derivative
with respect to some variable.
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▶ Lemma 24. For n ≥ 1, let p ∈ NHProdd
n(α) be the polynomial associated to a d × (n + 1)

matrix M such that column n has exactly one non-zero entry, and suppose κ ∈ Zn
≥0 is such

that κn = 1 and κn − αn ≤ 1 − ϵ for some ϵ > 0. Then there exists q ∈ NHProdd−1
n−1(β) such

that

Capκ(p) ≥ ϵ · Capγ(q),

where γ = (κ1, . . . , κn−1) ∈ Zn−1
≥0 and β ∈ Rn−1

≥0 is such that for all S ⊆ [n − 1] we have∑
j∈S

(κj − αj) ≤
∑
j∈S

(γj − βj) ≤ (κn − αn) +
∑
j∈S

(κj − αj).

We now combine the lemmas above to prove our strongest capacity lower bound for
polynomials in NHProdd

n(α).

▶ Theorem 25. Fix any κ ∈ Zn
≥0, α ∈ Rn

≥0, and ϵ, δ ∈ Rn
>0 such that

max
S∈([n]

k )

∑
j∈S

(αj − κj) ≤ 1 − ϵk and max
S∈([n]

k )

∑
j∈S

(κj − αj) ≤ 1 − δk

for all k ∈ [n]. Then

Capκ(p) ≥ min
0≤ℓ≤n

ℓ∏
k=1

ϵk

n−ℓ∏
k=1

δk

for every p ∈ NHProdd
n(α).

The next result gives the bound which we will use in Section 4 to prove Theorem 6,
the simply exponential improvement to the probability bound used for the metric TSP
application.

▶ Corollary 26. Fix any κ ∈ Zn
≥0 and α ∈ Rn

≥0 such that ϵ ∈ Rn
>0 can be defined via

ϵk := 1 − max
S⊆[n]
|S|≤k

∣∣∣∣∣∣
∑
j∈S

(κj − αj)

∣∣∣∣∣∣
for all k ∈ [n]. Then Capκ(p) ≥

∏n
k=1 ϵk for every p ∈ NHProdd

n(α).

By Corollary 18, the above results hold for all p ∈ NHStabd
n(α), and we state this formally

now.

▶ Corollary 27. Theorem 25 and Corollary 26 hold for all p ∈ NHStabd
n(α).

5.4 Proving Theorem 1 and Theorem 2
We now complete the proof of Theorem 1, and thus also of Corollary 2. Fix p ∈ NHStabd

n(α).
Thus

1 − max
S⊆[n]
|S|≤k

∣∣∣∣∣∣
∑
j∈S

(κj − αj)

∣∣∣∣∣∣ ≥ 1 − ∥κ − α∥1

and Corollary 27 (via Corollary 26) imply

Capκ(p) ≥ (1 − ∥κ − α∥1)n,

which completes the proof. The tightness claim follows from Lemma 28.
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5.5 Examples and Tightness
The δ parameters in Theorem 25 are tight, and this is shown in Example 29. However, the ϵ

parameters are not, as shown in Example 30. Example 29 also demonstrates tightness of the
dependence on the error parameter for some of our results, and we state this formally now.

▶ Lemma 28. The dependence on (1 − ∥κ − ∇p(1)∥1) in Theorem 1 and Corollary 2 and
the dependence on ϵ in Theorem 6 are all tight for any fixed κ > 0.

Proof. Define α1 := κ1 − (1 − ϵ) > 0 and αi := κi ≥ 1 for all i ≥ 2. Let p be the polynomial
described by Example 29, given explicitly by

p(x) =
(

n∏
i=1

xκi−1
i

)
·

(
n−1∏
i=1

(ϵxi + (1 − ϵ)xi+1)
)

· (ϵxn + (1 − ϵ)).

Then κ is a vertex of of the Newton polytope of p. Thus

pκ = Capκ(p) =
n∏

k=1

1 −
k∑

j=1
(κj − αj)

 = ϵn = (1 − ∥κ − ∇p(1)∥1)n.

To see that p can be the probability generating polynomial for some random variables
associated to a strongly Rayleigh distribution (as in Theorem 6), note that the polarization of
p is real stable and gives the probability generating polynomial for such a strongly Rayleigh
distribution. ◀

▶ Example 29. Fix any κ ∈ Zn
≥0 and α ∈ Rn

≥0 such that κj − αj ≥ 0 for all j ∈ [n] and
∥κ − α∥1 < 1. Thus κj ≥ 1 for all j ∈ [n]. For d = ∥κ∥1, consider the matrix M = [ A

B ],
where A is the (∥κ∥ − n) × (n + 1) matrix given by

A =


1κ1−1e⊤

1
1κ2−1e⊤

2
...

1κn−1e⊤
n

 ,

and B is the n × (n + 1) matrix for which

bkk = 1 −
k∑

j=1
(κj − αj), bk,k+1 =

k∑
j=1

(κj − αj),

for all k ∈ [n] and bij = 0 otherwise. Note that every row sum of A is equal to 1, and the
row sums of B are given by

n∑
j=1

bkj = 1 −
k∑

j=1
(κj − αj) +

k∑
j=1

(κj − αj) = 1

for all k ∈ [n]. The column sums of M are then given by

d∑
i=1

mik = (κk − 1) + 1 −
k∑

j=1
(κj − αj) +

k−1∑
j=1

(κj − αj) = κk − (κk − αk) = αk
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for all k ∈ [n]. Thus M ∈ NHMatd
n(α). Let p be the polynomial associated to M , and let

q be the polynomial associated to B. We then have Capκ(p) = Cap1(q). Note that 1 is a
vertex of the Newton polytope of q, and thus

Capκ(p) = Cap1(q) =
n∏

k=1
bkk =

n∏
k=1

1 −
k∑

j=1
(κj − αj)

 .

By possibly permuting the variables to put κj − αj in non-increasing order, this is precisely
the lower bound guaranteed by Theorem 25.

▶ Example 30. Consider the case that κ = 0 and ∥α∥1 < 1. Given any d, let M be any
extreme point of NHMatd

n(α). Then the column sum of column n + 1 of M is equal to
d −

∑n
j=1 αj > d − 1. Since every row sum equals 1, all entries of column n + 1 of M are

strictly positive. Since M is an extreme point, this further implies that each column of M

has at most 1 positive entry except column n + 1. Letting p be the polynomial associated to
M , there exists a partition S1 ⊔ · · · ⊔ Sk = [n] such that

p(x) =
k∏

i=1

∑
j∈Si

αjxj

+

1 −
∑
j∈Si

αj

 .

Thus by Lemma 22,

Cap0(p) = p0 =
k∏

i=1

1 −
∑
j∈Si

αj

 ≥ 1 −
n∑

j=1
αj .

By Lemma 19, this gives a lower bound on the capacity of every p ∈ NHProdd
n(α). However,

this lower bound is strictly better than the one guaranteed by Theorem 25.
As a note, this can be partially remedied by removing all κj = 0 columns at the same

time (i.e., adjusting Lemma 23 to remove many columns at once). However, it is currently
unclear how to inductively do this correctly.

6 Uniqueness of Permanent Minimizers

In this section, let Matn(c) be the set of n × n matrices with non-negative entries and rows
sums 1 and column sums c > 0, let pM (x) :=

∏n
i=1
∑n

j=1 mijxj be the real stable polynomial
associated to a given M ∈ Matn(c), and let L(c) be any lower bound on Cap1(pM ) over all
M ∈ Matn(c) (e.g., as given by Theorem 1 above or the results of [22]).

We now prove Theorem 3 via Theorem 32 below. We note that the argument in the
proof of Theorem 32 given below can be made into a general statement about minimizers of
quadratic forms. And further, the same argument given here applies to mixed discriminants,
as mentioned in Section 2.

▶ Lemma 31. If (n−2)n−2nn−1

(n−1)2n−3 > c1c2···cn

L(c) , then all minimizers of the permanent over over
Matn(c) have all strictly positive entries.

Proof. Note that the rank-one matrix 1
n 1 · c⊤ has all strictly positive entries and permanent

equal to n!
nn

∏n
i=1 ci. Thus, to obtain a contradiction, let us assume that there exists

M ∈ Matn(c) with at least one zero entry such that per(M) ≤ n!
nn

∏n
i=1 ci. By the main

result of [18], we have

n!
nn

n∏
i=1

ci ≥ per(M) ≥
(

n − 2
n − 1

)n−2 (n − 1)!
(n − 1)n−1 · L(c),
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which after rearranging implies

(n − 2)n−2nn−1

(n − 1)2n−3 >

(
n − 2
n − 1

)n−2
nn−1

(n − 1)n−1 ,

which is a contradiction. ◀

▶ Theorem 32. If (n−2)n−2nn−1

(n−1)2n−3 > c1c2···cn

L(c) , then the rank-one matrix 1
n 1 · c⊤ is the unique

minimizer of the permanent over Matn(c).

Proof. Let M be a minimizer of the permanent over Matn(c). Thus every entry of M is
positive by Lemma 31. We will show that every pair of rows of M must be equal, which
immediately implies M = 1

n 1 · c⊤.
Let P ⊂ R2×n be the convex polytope given by the first two rows of all matrices in

Matn(c) with rows 3 through n equal to those of M . Thus by positivity, (m1, m2) is in the
relative interior of P where mi is the ith row of M . Let f(u, v) be defined as the permanent
of the matrix M with the first two rows replaced by (u, v). Since M minimizes the permanent
and (m1, m2) is contained in the relative interior of P , the necessary conditions on the
minimum given by Lagrange multipliers implies

∇f(m1, m2) =
(
per(M(i,j))

)
i∈[2],j∈[n] = (ai + bj)i∈[2],j∈[n]

for some ai, bj , where M(i,j) is the matrix M with row i and column j deleted. That is, the
gradient of f points in a direction orthogonal to P at (m1, m2).

By row symmetry of the permanent, we also have that ∇f(m2, m1) = (a′
i + bj)i∈[2],j∈[n],

where a′
1 = a2 and a′

2 = a1. By row multilinearity of the permanent, we thus have

∇f(t · m1 + (1 − t) · m2, (1 − t) · m1 + t · m2) = (t · ai + (1 − t) · a′
i + bj)i∈[2],j∈[n]

for all t ∈ R. If m1 ̸= m2 then the gradient of f is orthogonal to P at all points on a line in
P through M , and thus the permanent is minimized at all these points. At least one such
point (on the boundary of P ) has a zero entry, which contradicts Lemma 31. Therefore it
must be that m1 = m2. Applying this argument to every pair of rows of M implies the
desired result. ◀

We now give the example which proves Proposition 4.

▶ Example 33. Fix t > 0 and n ∈ N, and define ϵ := 1
n1+t . Further define α ∈ Rn

>0 and
c ∈ Rn+1

>0 via

α :=
(
1−ϵ, 1−ϵ, . . . , 1−ϵ) ∈ Rn

>0 and c :=
(
1+α1, α2, α3, . . . , αn,

n∑
j=1

(1−αj)
)

∈ Rn+1
>0 .

Note that ∥c − 1∥1 = 1 + (n − 2)ϵ + 1 − nϵ = 2(1 − ϵ) < 2. We first have

per
(

1
n + 11 · c⊤

)
= (n + 1)!

(n + 1)n+1 (2 − ϵ)(1 − ϵ)n−1nϵ = n!
n(1+t)n

· 2 − n−1−t

1 − n−1−t
· (n1+t − 1)n

nt(n + 1)n
.

Now consider the (n + 1) × (n + 1) matrix with diagonal entries

1,

1∑
j=1

(1 − αj),
2∑

j=1
(1 − αj), · · · ,

n∑
j=1

(1 − αj),
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subdiagonal entries to obtain row sums 1 and column sums c, and zero entries elsewhere.
Note that M ∈ Matn+1(c). The matrix M is upper-triangular, and thus we have

per(M) =
n∏

k=1

k∑
j=1

(1 − αj) =
n∏

k=1
(kϵ) = n! · ϵn = n!

n(1+t)n
.

We then further have

2 − n−1−t

1 − n−1−t
· (n1+t − 1)n

nt(n + 1)n
≈ 2n(n−1)t · (n − n−t)n

(n + 1)n
≥ 2n(n−1)t · (n − 1)n

(n + 1)n
> 1,

which implies per(M) < per
(

1
n+1 1 · c⊤

)
for large enough n.
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