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Abstract
We study the geometric knapsack problem in which we are given a set of d-dimensional objects
(each with associated profits) and the goal is to find the maximum profit subset that can be packed
non-overlappingly into a given d-dimensional (unit hypercube) knapsack. Even if d = 2 and all input
objects are disks, this problem is known to be NP-hard [Demaine, Fekete, Lang, 2010]. In this paper,
we give polynomial time (1 + ε)-approximation algorithms for the following types of input objects in
any constant dimension d:

disks and hyperspheres,
a class of fat convex polygons that generalizes regular k-gons for k ≥ 5 (formally, polygons with
a constant number of edges, whose lengths are in a bounded range, and in which each angle is
strictly larger than π/2),
arbitrary fat convex objects that are sufficiently small compared to the knapsack.

We remark that in our PTAS for disks and hyperspheres, we output the computed set of objects,
but for a Oε(1) of them we determine their coordinates only up to an exponentially small error.
However, it is not clear whether there always exists a (1 + ε)-approximate solution that uses only
rational coordinates for the disks’ centers. We leave this as an open problem which is related to
well-studied geometric questions in the realm of circle packing.
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8:2 Approx. Schemes for Geom. Knapsack for Packing Spheres and Fat Objects

Figure 1 Left: The squares are stacked compactly inside the knapsack. Middle: The pentagons
cannot be stacked as tightly inside the knapsack as the squares. Right: The space in the corner
(striped area) cannot be covered by any large circle.

1 Introduction

One of the cornerstones of geometry is the problem of packing circles and spheres into a
container, e.g., a square or a hypercube. It dates back to the 17th century when Kepler
conjectured his famous bound on the average density of any packing of spheres in the
three-dimensional Euclidean space [27]. The problem has been investigated, for example, by
Lagrange [11] who solved it in the setting of two dimensions, by Hales and Ferguson [24]
who proved Kepler’s original conjecture, and by Viazovska [39] who studied the problem in
dimension 8 and was awarded the Fields medal in 2022 for her work.

A natural corresponding optimization question is the geometric knapsack problem, where
we are given a set of d-dimensional objects for some constant d ∈ N, e.g., circles or
(hyper-)spheres, but possibly also other shapes (like squares, pentagons, hexagons, etc.
for the case of d = 2) with each of them having a given profit. The goal is to find the
subset of maximum total profit that can be packed non-overlappingly into a given square
or (hyper-)cube. In this work, we consider the translations of the objects but do not allow
rotations.

Geometric knapsack is a natural mathematical problem and it is well-motivated by prac-
tical applications in several areas, including radio tower placement [38], origami design [30],
cylinder pallet assembly [8, 17], tree plantation [38], cutting industry [38], bundling tubes or
cables [40], layout of control panels [8], or design of digital modulation schemes [36].

The problem is known to be NP-hard, already for d = 2 and if all input objects are
axis-aligned squares or disks [14, 2]. This motivates designing approximation algorithms for it.
For hypercubes in any constant dimension d, there is a polynomial time (1+ε)-approximation
algorithm known for any constant ε > 0 [26], i.e., a polynomial time approximation scheme
(PTAS). Thus, this is the best possible approximation guarantee, unless P=NP.

However, for other classes of (fat) objects, the best known results either have approximation
ratios that are (far) from their respective lower bounds or they require resource augmentation,
i.e., increase in the size of the given knapsack. One intuitive reason for this is that axis-aligned
squares and cubes can be stacked nicely without wasting space and the resulting coordinates
are well-behaved, while for more general shapes this might not be the case, see Figure 1.
For circles, the best known result is a (3 + ε)-approximation [35] but the best known lower
bound is only NP-hardness. Still, the membership in NP is wide open for the following
question: given a set of n circles of O(1) number of different sizes, decide whether they can
be packed into a unit square. It is also open whether packing circles into a square knapsack
is ∃R-complete or not [1]. Even for n unit circles. we do not know the exact value of the
smallest size squares that can pack them. See [37] for the current status of upper and lower
bounds for n ≤ 1000.
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There is a PTAS in any constant dimension d for this case, but it requires resource
augmentation [9]. For triangles, there is a O(1)-approximation algorithm (assuming it is
allowed to rotate the triangles arbitrarily) whose precise approximation ratio is not explicitly
specified [33]. Also for this case, it is still possible that there is a PTAS. On the other hand,
there are settings of geometric knapsack that do not admit a PTAS, e.g., axis-parallel cuboids
in three dimensions [12].

Furthermore, in practical applications (e.g., loading cargo into a truck or cutting pieces
out of raw material like cloth or metal) the objects do not necessarily all have the same shape.
For example, Bennell and Oliveira [6] consider a mix of different shapes of objects (their
primary objects are circles, rectangles, regular polygons, and convex polygons). However,
the previous papers in the theoretical literature for geometric knapsack mostly assume that
all input objects are of the same type, e.g., only squares, only circles, or only rectangles, etc.
Thus, from a theoretical point of view, it is interesting to see how the problem behaves when
the input objects might be of different types.

This raises the following natural question that we study in this paper:

What are the best approximation ratios we can achieve for the geometric knapsack problem,
depending on the type of the input objects? For which type of objects does a PTAS exist?

1.1 Our contribution
In this paper, we present a polynomial time (1 + ε)-approximation algorithm for geometric
knapsack problem for packing d-dimensional spheres into d-dimensional hypercube knapsack,
for any constant dimension d ≥ 2. For spheres, there is a complication that possibly any
(near-)optimal packing for a given instance require irrational coordinates. Therefore, our
output consists of a set of spheres that can be packed non-overlappingly inside the given
knapsack and whose profit is at least (1 + ε)−1w(OPT), where w(OPT) denotes the profit
of the optimal solution OPT. Moreover, for all but at most Oε(1) spheres, our algorithm
outputs the precise (rational) coordinates of the packing. 1 For the other Oε(1) spheres
it outputs them up to an exponentially small error in each dimension. We remark that
there are related packing problems for which it is known that irrational coordinates are
sometimes necessary and that computing them is ∃R-complete (and hence possibly even
harder than NP-hardness) [1]. On the other hand, if we knew that there always exists a
(1 + ε)-approximate solution in which all coordinates are rational with only a polynomial
number of bits, our algorithm would find such coordinates in polynomial time. We stress
that our returned set of spheres is always guaranteed to fit into the given knapsack with
appropriate (possibly irrational) coordinates but without resource augmentation.

Our second result is a polynomial time (1 + ε)-approximation algorithm for the geometric
knapsack problem for wide classes of convex geometric polygons. Our first result is a PTAS
for a class of fat convex polygons which generalizes pentagons, hexagons, and regular k-gons
for constant k > 4 (see Figure 2). Formally, we require for each polygon that the angle
between any two adjacent edges is at least π/2 + δ for some constant δ > 0 and that each
polygon has a constant number of edges with similar lengths (up to a constant factor). Note
that in contrast to many prior results, we allow that each input object has a different shape,
e.g., with a different number of edges, different angles formed by them, and a different
orientation. Also, the polygons may differ arbitrarily in size.

1 The notation Oε(f(n)) means that the implicit constant hidden in big-O notation can depend on ε.

ICALP 2024
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Figure 2 Packing of fat convex polygons in a knapsack.

If each input object is sufficiently small compared to the knapsack, we obtain even a
polynomial time (1 + ε)-approximation for arbitrary fat convex objects in any constant
dimension d. We remark that for other packing problems like one-dimensional Knapsack or
Bin Packing, near-optimal solutions can easily be achieved via greedy algorithms if the
input objects are sufficiently small. Even for sufficiently small d-dimensional axis-aligned
hypercuboids, it is known that simple algorithms like NFDH [13, 4] has negligible wasted
space. However, for other geometric objects this is much harder since we might not be able
to place the input objects compactly without wasting space. For example, classical result by
Thue [11] showed that one can pack at most π

2
√

3 ≈ 0.9069 fraction of the total area, even in
the case of packing of unit circles. Furthermore, for circles and other similar convex objects,
irrational coordinates may arise in the packing and the optimal solution may use a very
complicated packing to minimize the wasted space.

1.2 Our techniques

We discuss now the techniques of our results, starting with our PTAS for spheres. To compute
our packing, we first enumerate all the large spheres in the optimal solution, i.e., the spheres
whose radius is at least a constant fraction of the side length of the knapsack. Also, we guess
their placement up to a polynomially small error, which yields a small range of possible
placements for each of them. Note that we cannot guess these coordinates precisely, since we
cannot even exclude that they are irrational. However, we guarantee that such coordinates
exist, by solving a system of polynomial equations exactly in polynomial time.

Next, we want to place small spheres into the remaining part of the knapsack. Unfortu-
nately, we do not know precisely which part of the knapsack is available for them since we
do not know the precise coordinates of the large spheres. Thus, there is some area of the
knapsack that is maybe used by the large spheres in our packing; however, potentially, the
optimal solution uses it for placing small spheres. Our key insight is that this area is small
compared to the area that is for sure not used by large spheres in the optimal solution. Using
the fact that objects are spheres, we show that some area in each corner of the knapsack
cannot be covered by any large sphere in any solution and whose size is at least a constant
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fraction of the knapsack (see the bottom-left empty corner in Figure 1). We use this area to
compensate the fact that we do not know the precise coordinates of our large spheres and we
waste space because of this.

When we select and pack the small spheres, we define a constant number of (small)
identical knapsacks that fit into the given knapsack together with the large spheres and into
which we place our small spheres. For the remaining task of placing the small spheres, we
argue that it is sufficient to have an algorithm that uses resource augmentation, i.e., that
increases the size of each knapsack by a factor of 1 + ε (in each dimension). Thus, on a high
level, we reduce the problem of packing arbitrary spheres into one knapsack to the problem
of packing small spheres into a constant number of knapsacks with resource augmentation.

This remaining problem can be solved via an algorithm in [9]; however, we present a
more general routine that works even for arbitrary convex fat objects. Also, it is arguably
simpler than the corresponding algorithm in [9]. On a high level, we prove that there is a
well-structured solution based on a hierarchical decomposition of the knapsacks into grid
cells. The grid cells are partitioned such that each placed object P is contained in a constant
number of grid cells whose size is comparable to P . Importantly, these grid cells are used
exclusively by P and not by any other placed object (not even partially). This allows us to
devise a dynamic program (DP) that computes the optimal structured packing of this type.
Our DP has a subproblem for each combination of a level (corresponding to a size range of
the input objects) and a number of available grid cells corresponding to this level. Given
such a subproblem, it suffices to enumerate a polynomial number of possibilities for selecting
and placing objects of this level, which reduces the given subproblem to a subproblem
corresponding to the next level. This DP might have applications in other related packing
problems.

In our algorithm for fat convex polygons (with the properties described above), we extend
our algorithm for spheres as follows. For the guessed large polygons, we compute their
coordinates exactly in polynomial time. Here, we use the (known) fact that there exists
a placement for them that corresponds to an extreme point solution of a suitable linear
program, which has rational coordinates. Then, intuitively we use the condition for the
polygons’ angles to ensure that the large objects leave a certain area of the knapsack empty.
We use this empty area in a similar way as in the setting of circles. Again, we place the
small objects into a constant number of knapsacks under resource augmentation, using our
new subroutine described above.

If all input objects are sufficiently small compared to the size of the knapsack (formally,
we assume that each of them fits in a smaller knapsack with side length Θ(ε)) there are no
large objects and, hence, we can omit the step of enumerating them. In particular, we do
not need the conditions of the polygons’ edges anymore. Since the input objects are so small,
we can show that by losing a factor of 1 + ε in the approximation ratio, we may pretend
that we have resource augmentation available. Hence, we can directly call our subroutine for
small objects under resource augmentation.

We leave it as an open question to determine whether irrational coordinates are sometimes
necessary for optimal or (1 + ε)-approximate solutions for geometric knapsack for spheres.
If yes, it would be interesting to determine the best possible approximation ratio one can
achieve with rational coordinates only. Note that this question is related to the well-studied
problem of determining the size of the smallest knapsack needed to pack a given number
of unit circles. For that problem, it is known that for some number of unit circles the
smallest knapsack has irrational edge lengths [18]. On the other hand, recall that if rational
coordinates with a polynomial number of bits always suffice, our algorithm for spheres can
compute the coordinates of all returned spheres of our (1 + ε)-approximation algorithm
exactly.

ICALP 2024
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1.3 Other related work
For geometric knapsack for axis-parallel rectangles (i.e., when d = 2), the best known
polynomial time algorithm has an approximation ratio of 17/9 + ε [19]. There is a pseudo-
polynomial time algorithm with a ratio of 4/3 + ε [20] and a pseudo-polynomial time
approximation scheme if we require guillotine-separable packing [28] . If it is allowed to
rotate the rectangles by 90 degrees, there is also a polynomial time (1.5 + ε)-approximation
algorithm known [19]. Moreover, the problem admits a QPTAS if the input data are quasi-
polynomially bounded integers [3]. For the setting of packing circles, there is a PTAS under
resource augmentation in one dimension, assuming that the profit of each circle equals its area,
due to Lintzmayer, Miyazawa, and Xavier [31]. This was improved to the above mentioned
PTAS under resource augmentation in one dimension for spheres with arbitrary profits in
any constant dimension d, due to Chagas, Dell’Arriva, and Miyazawa [9]. In addition, there
have been many attempts to develop heuristics and other optimization methods on circle
packing, see e.g., [38, 25, 32].

A related problem is the geometric bin packing problem in which we want to place a given
set of geometric objects into the smallest number of unit size bins. For the settings of squares
or (hyper-)cubes [4] or skewed rectangles [29], the problem admits an asymptotic PTAS. In
the case of general rectangles, the best known result is an asymptotic 1.405-approximation [5]
but an asymptotic PTAS cannot exist unless P = NP [12]. Maximum independent set in
geometric intersection graphs [10, 34, 21] is another well-studied related problem.

In a recent paper, Abrahamsen, Miltzow, and Seiferth [1] developed a framework to show
that for many combinations of allowed pieces, containers, and motions, the resulting packing
problem is ∃R-complete. For example, they showed that it is ∃R-complete problem to decide
if a set of convex polygons with at most seven corners each can be packed into a square if
arbitrary rotations are allowed. However, it is not known if the setting of packing circles into
a square knapsack is ∃R-complete.

There is also a large body of work on questions about the optimal packings of unit circles
into unit squares or equilateral triangles. We refer to [15, 16, 22, 25] for an overview.

1.4 Organization of this paper
In Section 2, we discuss the PTAS when the input items are sufficiently small fat convex
objects. In Section 3, we give our algorithm for spheres. In Section 4, we consider the case of
convex polygons. Finally, in Section 5 we end with conclusions. Due to space constraints,
many proofs have been omitted. The corresponding lemmas and theorems are marked
with (⋆). Please see the full version of the paper for the complete proofs.

2 PTAS under Resource Augmentation

In this section we present a PTAS when the input items are fat convex objects, and we are
allowed to increase the size of the given knapsack by a factor of 1 + ε in each dimension.
Chagas et al. [9] presented a PTAS for circles with resource augmentation in one dimension.
Their result is based on a combination of multiple integer programs with variables for different
configurations for packing parts of the given knapsack. Our result is arguably simpler and
purely based on dynamic programming.

Let Pi be a two-dimensional convex object and let rout
i (Pi) and rin

i (Pi) be the radius of the
smallest circle containing Pi and the radius of the largest circle contained in Pi, respectively.
We will drop Pi when it is clear from the context. We say that Pi is f -fat if rout

i /rin
i ≤ f for

some value f ≥ 1. In the remainder of this section, we prove the following theorem.



P. Acharya, S. Bhore, A. Gupta, A. Khan, B. Mondal, and A. Wiese 8:7

P
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py

θ
θ
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P ′

Λ
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Figure 3 Line Ψ separates the two f -fat and convex objects P and P ′. We construct line Υ such
that it has intersects no common grid cells with line Ψ. We proceed to shrink the two objects P, P ′

by a factor of 1 + ε such that they cannot intersect the space between lines Υ and Ψ.

▶ Theorem 1. Let f ≥ 1, ε > 0, and d ∈ N be constants. Given a set of d-dimensional f -fat
convex input objects, there exists a polynomial time algorithm that can pack a subset of them
with a total profit of w(OPT) into a knapsack K ′ := [0, 1 + ε]d, where w(OPT) is the optimal
profit that can be packed into a knapsack K := [0, 1]d.

For simplicity, we first describe our algorithm in the setting where d = 2. Given a packing
of a set of f -fat objects P = {P1, P2, . . . , Pn} in our knapsack K = [0, 1] × [0, 1], we want to
show that there is also a structured packing of these objects into an augmented knapsack
K ′ = [0, 1 + ε] × [0, 1 + ε], defined via a discrete grid. Let δcell > 0 be a constant to be
defined later such that 1/δcell ∈ N. We place a two-dimensional grid inside K ′ such that
each grid cell has an edge length of δcell. Let G denote the set of all resulting grid cells. We
assume first that each object Pi ∈ P is δlarge-large, meaning that rin(Pi) ≥ δlarge for some
given constant δlarge > 0. We say that our given packing for P is discretized if there is a
partition of G into sets {GP1 , GP2 , . . . , GPn

} such that for each Pi ∈ P, we have that Pi is
contained in the union of the cells in GPi

. Therefore, each object Pi ∈ P has “its own” set of
grid cells GPi that contain Pi and that do not intersect with any other object Pj ∈ P \ {Pi}.

We show that for an appropriate choice of δcell, there is a discretized packing for P in
K ′, i.e., if we can increase the size of our knapsack K by a factor of 1 + ε in each dimension.

▶ Lemma 2. For each f ≥ 1, ε > 0, and δlarge > 0, there is a value δcell > 0 such
that for any set of δlarge-large f-fat convex objects P that can be placed nonoverlappingly
inside a knapsack K = [0, 1] × [0, 1], there is a discretized packing for P inside knapsack
K ′ = [0, 1 + ε] × [0, 1 + ε] based on a grid in which each edge of each grid cell has a length of
δcell.

Proof. Let P, P ′ ∈ P be two f -fat convex δlarge-large objects packed inside the knapsack.
Then by separating hyperplane theorem for convex objects [7], we know that there is a line Ψ
containing a point pv on the boundary of P , and Ψ separates P from P ′ (see Figure 3). Now,
intuitively, increasing the size of the knapsack by a factor of 1 + ε is equivalent to shrinking
the objects in P by a factor of 1 + ε. So, we want to find the right constraints such that
after shrinking P and P ′ do not share any grid cell. Let the center of the incircle (of radius
rin) contained in P be pc and the line joining pc and pv be Λ. Let the foot of the image of
the point pc on line Ψ be the point pz. Now the length of line segment pcpz := |pcpz|≥ rin

ICALP 2024
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P

pc

Ψ

Υ

P ′

py

Figure 4 P, P ′ are shrunk so that they cannot intersect the space between the lines Υ and Ψ.

and |pcpv|≤ 2frin, due to fatness. Hence, the angle θ between Ψ and Λ is at least sin−1( 1
2f ).

Consider points px on Ψ and py on Λ such that |pxpy|=
√

2δcell and the line Υ joining px, py

is parallel to the line joining pcpz. Then any point on Ψ does not share a gridcell with any
point on Υ. Also, |pypv|≤ 2

√
2fδcell. Now we want to shrink P by (1 + ε) factor keeping pc

at the same position such that the shrunk version of P lies completely within one side of Υ
(see Figure 4). After shrinking, pcpv gets smaller by ε|pcpv|≥ εrin ≥ εδlarge. Now we choose
δcell such that δcell ≤ ε

2
√

2f
· δlarge. Thus we satisfy ε|pcpv|≥ εδlarge ≥ 2

√
2fδcell ≥ |pypv|

and this ensures that the shrunk down version of P and P ′ do not share any grid cell. We
assign each polygon to the grid cells that it intersects with. Hence this process leads to a
discretization such that the no grid cell is intersected by two polygons. ◀

Next, we argue that there is also a structured packing for fat objects that are not
necessarily all (relatively) large. Let δlarge, δcell, δsmall > 0 be constants to be defined later
(they will depend on ε which will denote the amount by which we increase the size of our
knapsack). We place now a hierarchical two-dimensional grid with multiple levels. We
define that the whole knapsack K is one grid cell of level 0 of side length δc,0 := 1. For
each level ℓ ≥ 1, we define grid cells whose edges all have a length of δc,ℓ := δcellδc,(ℓ−1).
Recursively, for each ℓ ≥ 1 we partition each grid cell of level ℓ − 1 into 1/δ2

cell grid cells of
level ℓ with side length δc,ℓ each. Similarly as before, we want that there is a partition of
the grid cells such that for each object P ∈ P there is a set of grid cells GP that contain P

and that are disjoint from the grid cells GP ′ for each object P ′ ∈ P \ {P}. Also, we want
that all grid cells in GP are of the same level, that their size is comparable to the size of P ,
and that the number of grid cells in GP is bounded. To ensure this, we group the objects
P ∈ P according to their respective values rin(P ) which we use as a proxy for their sizes.
Formally, we define δsmall,0 := 1 and for each level ℓ ≥ 1 we define δlarge,ℓ := δlargeδc,(ℓ−1)
and δsmall,ℓ := δsmallδc,(ℓ−1). For each level ℓ we define

Lℓ to be all objects P ∈ P with rin(P ) ∈ (δlarge,ℓ, δsmall,(ℓ−1)]; intuitively, they are “large”
for level ℓ,
Mℓ to be all objects P ∈ P with rin(P ) ∈ (δsmall,ℓ, δlarge,ℓ].

Note that our grid and the sets Lℓ and Mℓ depend on the (initial) choice of δlarge, δsmall and
δcell. In the next lemma, we show via a shifting argument that there are choices for these
values such that the total area of the objects in

⋃
ℓ Mℓ is very small. This will allow us later

to pack them separately via a simple greedy algorithm. In particular, these choices are from
a set of Oε(1) candidate values D, and thus we will be able to guess them later easily.
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▶ Lemma 3 (⋆). Let f ≥ 1. There is a global set D with |D|≤ Oε(1) such that for any set
of f -fat convex objects P that can be packed in a knapsack K = [0, 1] × [0, 1], there are values
δlarge, δsmall, δcell > 0 that are all contained in D such that for the resulting hierarchical grid
and the corresponding sets {Lℓ, Mℓ}ℓ we have that the total area of all objects in

⋃
ℓ Mℓ is

bounded by ε.

We generalize now our notion of discretized packings. Intuitively, like before, we require
that there is a partition of the grid cells such that for each object P ∈ P there is a set of
grid cells GP that contain P and that are disjoint from the grid cells GP ′ for each object
P ′ ∈ P \ {P}. Formally, we define that our packing of P is discretized if

for each level ℓ and for each object P ∈ P ∩ Lℓ there is a set of O(1/δ2
cell) grid cells GP of

level ℓ such that P is contained in GP , and there is a single grid cell of level ℓ − 1 that
contains all grid cells in GP , and
for any two objects P, P ′ ∈ P (not necessarily of the same level) and for any two grid
cells C ∈ GP and C ′ ∈ G′

P their relative interiors are disjoint.
We show that by increasing the size of our knapsack by a factor of 1 + ε, there is a discretized
packing for all objects in

⋃
ℓ Lℓ. As mentioned above, we will pack the objects in

⋃
ℓ Mℓ

separately later.

▶ Lemma 4. Let each f ≥ 1 and ε > 0. There is a global set D with |D|≤ Oε(1) such
that for any set of f-fat objects P that can be placed non-overlappingly inside a knapsack
K = [0, 1] × [0, 1], there is a choice for the grid with parameters δlarge, δsmall, δcell > 0 such
that all these values are contained in D and there is a discretized packing for P ∩ (

⋃
ℓ Lℓ)

inside an (augmented) knapsack [0, 1 + O(ε)] × [0, 1 + O(ε)].

Proof. We start with the given packing of P in K and do a sequence of refinements which
leads to our discretized packing for P ∩

⋃
ℓ Lℓ. First, we use the increased size of the knapsack

to ensure that for each level ℓ and any two objects P, P ′ ∈ Lℓ, the distance between P and
P ′ is at least 2δc,ℓ. Intuitively, increasing the size of the knapsack by a factor of 1 + ε is
equivalent to shrinking the objects in P by a factor of 1 + ε. Therefore, we can achieve this
required minimum distance of 2δc,ℓ by choosing δcell appropriately according to the multiple
constraints given in the proof of Lemma 2.

Next, we would like that for each level ℓ, each object in P ∩ Lℓ is contained in a grid
cell of level ℓ − 1. This might not be the case, however, via a shifting argument (giving
the grid a random shift) we can argue that this is the case for almost all objects in P.
The probability that an object in level ℓ intersects a grid line from level ℓ − 1 is at most
8δsmall,ℓ−1/δcell,ℓ−1 = 8δsmall/δcell. Let this probability be smaller than ε2/2, leading to a
constraint δsmall ≤ ε2δcell/16 on the choice of δcell, δsmall. Then the total area of intersecting
objects must also be smaller than ε2 as the area of all packed objects can be at most the
area of the augmented knapsack. Thus we can easily pack these intersected objects into
extra space that we gain via increasing the size of the knapsack (i.e., for a second time).

After this preparation, we process the objects P ∈ P level by level and define their
corresponding sets GP , starting with the highest level. Consider a level ℓ. For each object
P ∈ P of level ℓ we define GP to be the set of all grid cells of level ℓ that intersect with P .
Due to our minimum distance between any two objects in P of level ℓ, for any two different
objects P, P ′ ∈ P of level ℓ we have that GP ∩ GP ′ = ∅. Now it could be that a cell C ∈ GP

for some P ∈ P intersects not only with P , but also with another object P ′ ∈ P of some
deeper level ℓ′ > ℓ. We call such a cell C problematic; recall that we wanted the cells in GP

to be used exclusively by P . Therefore, we move all objects P ′ ∈ P of some level ℓ′ > ℓ that
intersect a problematic grid cell in GP . We pack them into extra space that we gain due to
resource augmentation. We do this operation for all levels ℓ.
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In the process above, we move objects that intersect problematic grid cells. We need to
argue that the total area of these moved objects is small compared to the size of the knapsack
and that, therefore, we can pack them into additional space that we gain due to our resource
augmentation. In particular, we need to argue this globally, over all levels. The key insight is
that if we define a set GP for some object P ∈ P as above, then each problematic cell C ∈ GP

must intersect the boundary of P and, since P is fat, the number of problematic cells C ∈ GP

is very small compared to the number of cells C′ ∈ GP that are contained in P and, thus, for
sure not problematic.

By the classical Barbier’s theorem, we know the perimeter of a convex set P of level ℓ is at
most π · diameter(P ) ≤ 2πrout ≤ 2πfrin. A curve of length δcell,ℓ is bound to be contained
inside a circle of radius δcell,ℓ. This implies that this curve can intersect at most 9 grid cells
as any circle of radius δcell,ℓ can be bounded in a 3 × 3 grid square. Hence, the number of
grid cells (of level ℓ) N1 that the perimeter can intersect is at most 18πfrin/δcell,ℓ. On the
other hand, P completely contains at least grid cells of area π(rin −2δcell,ℓ)2, i.e., the number
of such gridcells N2 is at least π(rin−2δcell,ℓ)2

(δcell,ℓ)2 . We need N1 ≤ εN2. Equivalently, we want

to show, δcell,ℓ ≤ ε
18f · (rin−2δcell,ℓ)2

rin . For this we impose the condition that δlarge ≥ 72f
ε δcell.

Then, ε
18f · (rin−2δcell,ℓ)2

rin ≥ ε
18f · (rin/2)2

rin ≥ ε
18f · δlarge,ℓ

4 ≥ δcell,ℓ.
Using this, we derive a global argumentation, stating that the total area of all problematic

grid cells over all objects of all levels is at most an ε-fraction of the area of the knapsack.
Also, if an object P ′ of some level ℓ′ intersects a problematic grid cell C of some level ℓ < ℓ′,
then P ′ is very small compared to C. Thus, the total area of these objects intersecting a
problematic grid cell C is essentially the same as the area of C. Thus, we can pack all these
objects into our additional space due to resource augmentation.

Finally, we can afford to increase the space of our knapsack such that this additional
space is even by a constant factor larger than the total area of the objects we need to pack
into it. Therefore, it is easy to find a discretized packing for them in this extra space. ◀

Algorithm. Now we describe our algorithm. First, we correctly guess (i.e., by brute-force
enumeration of all possible cases) the values δlarge, δsmall, δcell > 0 from set D due to
Lemma 4. Note that we still do not know

⋃
ℓ Lℓ or

⋃
ℓ Mℓ, i.e., which objects are there in the

optimal packing. So, for each level ℓ we define L̃ℓ to be all input objects P with rin(P ) ∈
(δlarge,ℓ, δsmall,(ℓ−1)] and M̃ℓ to be all input objects P with rin(P ) ∈ (δsmall,ℓ, δlarge,ℓ].

Then, we compute an optimal discretized packing via a dynamic program. Intuitively,
our DP computes an optimal subset of

⋃
ℓ L̃ℓ for which there is a discretized packing. We

introduce a DP-cell DP[ℓ, m] for each combination of a level ℓ and a value m ∈ {1, ..., n}.
This cell corresponds to the subproblem of packing a maximum profit subset of the objects in
L̃ℓ, L̃ℓ+1, L̃ℓ+2, . . . . via a discretized packing into at most m grid cells of level ℓ − 1, i.e., with
side length δc,(ℓ−1) each. Recall that each object in L̃ℓ is relatively large compared to the
grid cells of level ℓ − 1. Therefore, we can pack only constantly many items from L̃ℓ into each
of these m grid cells of level ℓ − 1. Therefore, there are only constantly many options how
the set GP of an object P ∈ L̃ℓ in the optimal solution to our subproblem can look like. We
say that a configuration is a partition of a grid cell of level ℓ − 1 into sets of grid cells of level
ℓ. Each grid cell of level ℓ − 1 contains O(1/δ2

cell) many grid cells of level ℓ. Hence, there are
only constantly many configurations. We assume two configurations to be equivalent if they
are identical up to translation by an integral multiple of δc,(ℓ−1), i.e., by an integral multiple
of the edge length of a grid cell of level ℓ − 1. Denote by C the total number of resulting
equivalence classes. We guess in time mO(C) ≤ nO(C) how many grid cells have each of the
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at most C configurations (up to equivalences). Then, we assign the items in L̃ℓ into the grid
cells according to this guess. We can do this by weighted bipartite matching. For each object
P ∈ L̃ℓ, each possible configuration G′, and each set in the partition of G′, we can check
easily whether P fits into G′. In the bipartite graph, one side will contain the objects in L̃ℓ

and other side will contain the sets in the partition of G′. If P fits into set Q in the partition
of G′, then there is an edge with edge cost as w(P ). Our guess yields a certain number m′

of empty grid cells of level ℓ + 1 into which we need to pack items in L̃ℓ+1, L̃ℓ+2, . . . . We
assign these items according to the solution in the DP-cell DP[ℓ + 1, min{m′, n}]. Note that
there are at most n items and, hence, we never need more than n grid cells of level ℓ + 1.
Also, since our input data is polynomially bounded, the number of classes L̃i is bounded
by nO(1). Thus, our DP runs in time nO(C).

Additionally, we pack medium objects from the set
⋃

ℓ M̃ℓ separately in a strip of the
form [0, 1] × [1, 1 + O(ε)]. We select the most profitable subset of

⋃
ℓ M̃ℓ (up to a factor of

1 + ε) whose total area is bounded by ε (see Lemma 3). We replace each of these objects by
the smallest square that contains it, which increases its area only by a constant factor. We
can pack these squares efficiently into a (slightly larger) strip [0, 1] × [1, 1 + O(ε)] using the
NFDH algorithm [13]. This yields the following lemma.

▶ Lemma 5. (⋆) In polynomial time we can compute a set P ′ ⊆
⋃

ℓ M̃ℓ and a non-overlapping
placement of P ′ inside [0, 1] × [1, 1 + O(ε)] such that w(P ′) is at least the profit of any subset
of

⋃
ℓ M̃ℓ whose total area is at most ε.

One can easily extend our algorithm above to any constant dimension d. This completes
the proof of Theorem 1. A consequence is that we obtain a polynomial time (1 + ε)-
approximation without resource augmentation if all input objects are small, i.e., if rout(P ) ≤ ε

for each given object P ∈ P. Using this property, we can argue that there is a (1 + ε)-
approximate solution in which only the area [0, 1 − Θ(ε)] × [0, 1 − Θ(ε)] of the knapsack is
used. Thus, we can use the free space for the resource augmentation that is required by our
algorithm due to Theorem 1.

▶ Theorem 6. (⋆) Let d ∈ N be a constant. There is a polynomial time (1 + O(ε))-
approximation for the geometric knapsack problem if the set of input objects P consists of
convex fat d-dimensional objects such that rout(P ) ≤ ε for each P ∈ P.

3 Spheres

In this section we present our (1 + ε)-approximation algorithm for the case of d-dimensional
spheres. Let C = {C1, C2, . . . , Cn} be a set of n number of d-dimensional hyperspheres.
We denote the radius and profit of each hypersphere Ci ∈ C by ri and wi. For an object
Ci we denote its volume (or area in 2-dimension) to be a(Ci). For a collection of objects
A, we define its volume and profit to be a(A) :=

∑
Ci∈A a(Ci) and w(A) :=

∑
Ci∈A w(Ci),

respectively. We are given a unit knapsack K := [0, 1]d.
We first consider the case of circles, i.e., d = 2. Let OPT be an optimal solution and

COPT be the circles in OPT. Let ε ∈ (0, 1/2] be a constant and assume that 1/ε ∈ N. First,
we want to classify the input circles into small and large circles such that each large circle is
much larger than any small circle. Due to the following lemma, we can do this such that we
can ignore all circles that are neither large nor small by losing only a factor of 1 + ε. We will
use this standard shifting argument throughout the paper.

▶ Lemma 7 (⋆). There is a set of global constants ε(0), ..., ε(1/ε) ⩾ 0 such that ε(j) = (ε(j−1))24

for each j ∈ {1, ..., 1/ε} and a value k ∈ {1, ..., 1/ε − 1} with the following property: if we
define εlarge := ε(k) and εsmall := ε(k+1), then sum of profits of all circles Ci in OPT with
radii εsmall ≤ ri ≤ εlarge is at most ε · w(OPT).

ICALP 2024
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We guess the value k ∈ {0, ..., 1/ε − 1} due to Lemma 7. We define that a circle Ci ∈ C is
large if ri > εlarge and small if ri ⩽ εsmall. Also, note that εsmall = ε24

large.

3.1 Guessing large circles
We observe that in OPT there can be only a constant number of large circles since each large
circle covers a constant fraction of the available area in the knapsack.

▶ Proposition 8 (⋆). Any feasible solution can contain at most (1/ε)Ok(1) large circles.

We guess a feasible solution of the large circles in OPT that satisfy the packing constraints
in time n(1/ε)Ok(1) , denote them by C∗

L. In related problems, like the two-dimensional knapsack
problem with squares or rectangles, one can easily guess the correct placement of the guessed
large circles (assuming rational input data). For packing circles, it is not clear that if there
is a packing in which the centers of the circles are placed at rational coordinates. However,
in the following section, when we pack polygons, we can guarantee that there is an optimal
solution in which the corner of each polygon has a rational coordinate.

Therefore, instead we first guess for each circle Ci ∈ C∗
L an estimate for its placement

in OPT. Denote by x̂
(1)
i , x̂

(2)
i ∈ [0, 1] the coordinates of the center of Ci in OPT. We guess

values x̃
(1)
i , x̃

(2)
i ∈ {0, ε

n , 2ε
n , ..., 1} such that x̂

(1)
i ∈ [x̃(1)

i , x̃
(1)
i + ε

n ) and x̂
(2)
i ∈ [x̃(2)

i , x̃
(2)
i + ε

n ).
Note that there are only O(n2/ε2) possibilities for each Ci ∈ C∗

L, and hence only n(1/ε)Ok(1)

possibilities overall for all circles Ci ∈ C∗
L.

Given these guessed values x̃
(1)
i , x̃

(2)
i for each circle Ci ∈ C∗

L, we verify that our guess was
correct or not, i.e., confirm that there exists, indeed a corresponding placement for each
circle Ci ∈ C∗

L such that the circles in C∗
L do not overlap. Therefore, we define a system of

quadratic inequalities that describes the problem of finding such a placement. We require
that this placement is consistent with our guesses x̃

(1)
i , x̃

(2)
i for each Ci ∈ C∗

L.

max{x̃
(1)
i , ri} ⩽ x

(1)
i ⩽ min

{
x̃

(1)
i + ε

n
, 1 − ri

}
∀Ci ∈ C∗

L

max{x̃
(2)
i , ri} ⩽ x

(2)
i ⩽ min

{
x̃

(2)
i + ε

n
, 1 − ri

}
∀Ci ∈ C∗

L (1)

(x(1)
i − x

(1)
j )2 + (x(2)

i − x
(2)
j )2 ⩾ (ri + rj)2 ∀Ci, Cj ∈ C∗

L

x
(1)
i , x

(2)
i ⩾ 0 ∀Ci ∈ C∗

L

Let |C∗
L|=: t. Then, the above system has 2t variables and k := O(t2) constraints. It is

not clear how to compute a solution to this system in polynomial time. It is not even clear
whether it has a solution in which each variable has a rational value. However, in polynomial
time, we can decide whether it has a solution (without computing the solution itself) using
an algorithm from [23].

Note that the set of solutions satisfying system (1) is a semi-algebraic set in the field of
real numbers. Thus, whether a given set of circles can be packed or not (the decision problem)
reduces to a decision problem of whether this semi-algebraic set is nonempty or not. Here,
each constraint i ∈ [k] in (1) can be written as a function fi(x(1)

1 , x
(2)
1 , . . . , x

(1)
t , x

(2)
t ) ⩾ 0 where

each fi ∈ Q[x(1)
1 , x

(2)
1 , . . . , x

(1)
t , x

(2)
t ] is a polynomial with rational coefficients of degree at

most two. Thus deciding the circle packing problem is equivalent to deciding the truth of the
following formula: F := (∃x

(1)
1 )(∃x

(2)
1 ) . . . (∃x

(1)
t )(∃x

(2)
t ) ∧k

i=0 fi(x(1)
1 , x

(2)
1 , . . . , x

(1)
t , x

(2)
t ) ⩾ 0.

To solve this decision problem, we use the following result.
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▶ Theorem 9 ([23]). Let f1, f2, . . . , fk ∈ Q[x(1)
1 , x

(2)
1 , . . . , x

(1)
t , x

(2)
t ] be polynomials with

absolute value of any coefficient to be represented by M bits and maximum degree ∆. There
is an algorithm that decides whether the formula F := (∃x

(1)
1 )(∃x

(2)
1 ) . . . (∃x

(1)
t )(∃x

(2)
t ) ∧k

i=0
fi(x1, y1, . . . , xn, yn) ⩾ 0 is true, with a running time of MO(1)(k∆)O(t2).

If it is true, the algorithm also returns polynomials f, g1, h1, . . . , gt, ht ∈ Q[x] with coef-
ficients of bit size at most MO(1)(k∆)O(t) and maximum degree kO(t), such that for a root
x of f(x), the assignment x

(1)
1 = g1(x), x

(2)
1 = h1(x), . . . , x

(1)
t = gn(x), x

(2)
t = hn(x) satisfies

the formula F .
Moreover, for any rational α > 0, it returns values x̄

(1)
1 , x̄

(2)
1 . . . , x̄

(1)
t , x̄

(2)
t ∈ Q such that

|x̄(1)
i −x

(1)
i |⩽ α and |x̄(2)

i −x
(2)
i |⩽ α, for 1 ⩽ i ⩽ t, in time at most (log(1/α)M)O(1)(k∆)O(t2).

We crucially use here that our system has only constantly many variables and con-
straints, i.e., in (1), we have that ∆, k, t are constants and that M is polynomially bounded
in n. From Theorem 9, we see that in polynomial time we can decide whether (1) has a
solution.

If the system (1) does not have a solution, then we reject this guessed combination of
C∗

L and values x̃
(1)
i , x̃

(2)
i for each circle Ci ∈ C∗

L. We assume in the following that it has a
solution. Observe that the guessed values x̃

(1)
i , x̃

(2)
i yield an estimate for x̂

(1)
i , x̂

(2)
i up to a

(polynomially small) error of ε/n.

3.2 Placing small circles
We want to select small circles from C and place them inside the knapsack, so that they do not
overlap with each other or with the circles in C∗

L. To this end, we define εcell := ε12
large (i.e.,

εsmall = ε12
largeεcell = ε2

cell) to subdivide the knapsack into a grid with 1/ε2
cell square grid cells

of side length εcell . Our choice of parameters ensures that each small circle is small compared
to each grid cell and each large circle is big compared to each grid cell. Formally, for each ℓ, ℓ′ ∈
{0, 1, . . . , 1

εcell
−1} we define a grid cell Gℓ,ℓ′ := [ℓ ·εcell, (ℓ+1) ·εcell)× [ℓ′ ·εcell, (ℓ′ +1) ·εcell).

We define the set of all grid cells by G := {Gℓ,ℓ′ : ℓ, ℓ′ ∈ {0, 1, . . . , 1/εcell − 1}}.
We say that a placement of a circle Ci ∈ C∗

L is legal if its center is placed at a point
(x(1)

i , x
(2)
i ) such that max{x̃

(s)
i , ri} ⩽ x

(s)
i ⩽ min

{
x̃

(s)
i + ε

n , 1 − ri

}
for each s ∈ {1, 2}. We

show that there is a structured packing with near-optimal profit in which each small circle is
contained in a grid cell that does not intersect with any large circle in C∗

L in any legal packing
of them. This will allow us to decouple the remaining problem for the small circles from the
large circles, even though we do not know the exact placement for the latter. Moreover, in
each grid cell the small circles use only a reduced area of size (1 − ε)εcell × (1 − ε)εcell. Let
C∗

S denote the small circles in OPT.

▶ Lemma 10. In polynomial time, we can compute a set of grid cells Gw such that no grid
cell in Gw intersects with any circle Ci ∈ C∗

L for any legal placement of Ci. Moreover, there
is a set of small circles CS ⊆ C∗

S such that w(CS) ⩾ (1 − ε)w(C∗
S) and the circles in CS can be

packed non-overlappingly inside |Gw| grid cells of size (1 − ε)εcell × (1 − ε)εcell each.

We will prove Lemma 10 later in Section 3.3. Using it, we compute an approximation to the
set CS via Theorem 1.

We pack the computed circles into our grid cells Gw, denote them by C′
S . In particular,

they do not intersect any of the large circles in C∗
L in any legal placement of them. Our

solution (corresponding to the considered guesses) consists of C∗
L ∪ C′

S . Recall that we can
guarantee that these circles can be packed non-overlappingly inside the knapsack. Also, for
the circles in C′

S we computed their placement exactly and for the circles in C∗
L we computed

their placement up to our polynomially small error of ε/n. In Appendix A we show how to
reduce this error to an exponentially small error.
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STL
W

STR
W

SBL
W SBR

W

Figure 5 Partitioning grid cells into white, black and gray cells. Later corner regions
SBL

W , ST L
W , SBR

W , ST R
W are used to to pack items in gray cells.

3.3 Structural packing for small circles
In this section, we prove Lemma 10. First, we show that intuitively almost every small circle
in C∗

S is contained inside some grid cell. Formally, we show that the total area of all other
small circles in C∗

S is small. For any set S of circles or grid cells, we define a(S) to be the
total area of the elements in S.

▶ Lemma 11 (⋆). Let Ccut ⊆ C∗
S be the set of all small circles in C∗

S that intersect more than
one grid cell. We have that a(Ccut) ⩽ 8εsmall/εcell ⩽ εε2

large/64.

We will repack the circles in Ccut later such that each of them is contained inside one
single grid cell. Thus, for each small circle Ci ∈ COPT \ Ccut there is a grid cell Gℓ,ℓ′ for some
ℓ, ℓ′ ∈ {0, 1, ..., 1/εcell − 1} such that Ci is contained in Gℓ,ℓ′ in OPT. When we select and
place small circles, we must be careful that they do not intersect any large circles from C∗

L.
One difficulty for this is that we do not know the precise coordinates of the large circles.
Therefore, we place small circles only into grid cells that do not overlap with any large circle
from C∗

L in any legal placement of them. Formally, we partition the cells in G into three
types: white, gray, and black cells (see Figure 5).

▶ Definition 12. Let Gℓ,ℓ′ ∈ G for some ℓ, ℓ′ ∈ {0, 1, ..., 1/εcell − 1}. The cell Gℓ,ℓ′ is
white if Gℓ,ℓ′ does not intersect with any circle Ci ∈ C∗

L for any legal placement of Ci,
black if Gℓ,ℓ′ is contained in some circle Ci ∈ C∗

L for any legal placement of Ci,
gray if Gℓ,ℓ′ is neither white nor black.

The gray cells are problematic for us since a gray cell might be (partially) covered by a large
circle in C∗

L but we do not know by how much (and which part of the cell). Therefore, we
do not place any small circles into gray cells. However, OPT might place small circles into
these cells (and obtain the profit of these circles). On the other hand, we can show that
the number of gray cells is very small, only a small fraction of all grid cells can be gray. In
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order to do this, we use the fact that the values x̃
(1)
i , x̃

(2)
i for each circle Ci ∈ C∗

L estimate
the placement of each large circle relatively accurately, and that the grid cells are relatively
small. This allows us to prove that almost all cells are black or white. Also, we can compute
all gray cells efficiently. Let Gg ⊆ G denote the set of all gray grid cells in G.

▶ Lemma 13 (⋆). The total area of gray cells a(Gg) is at most εε2
large/5. We can compute

Gg in polynomial time.

Unfortunately, it is not sufficient for us that there are only few gray cells. It might be
that almost all cells are either gray or black and, hence, we need to place most of the selected
small circles into gray cells (in order to obtain an (1 + ε)-approximate solution).

However, we can show that this is not the case. We prove that the number of white cells
(which we can safely use for small circles) is at least by a factor 1/ε larger than the number
of gray cells. To show this, we exploit the geometry of the circles. In each corner of the
knapsack, there are cells that cannot intersect with any large circle, simply because the grid
cells are small compared to the large circles and because of the shape of the large circles (see
the corner regions in Figure 5). Hence, these grid cells are white. Let Gw ⊆ G denote the set
of all white grid cells in G.

▶ Lemma 14 (⋆). The total area of white grid cells a(Gw) is at least ε2
large/4. We can

compute Gw in polynomial time.

Using Lemmas 11, 13, and 14, we show that there is a (1 + ε)-approximate solution in
which each small circle is contained in some white cell; in particular, no small circle is placed
inside a gray cell. To prove this, we delete all small circles in the O(ε|Gw|) white grid cells
with the smallest total profit among all white cells and place all circles from gray cells and
all circles from Ccut into those.

▶ Lemma 15 (⋆). There is a set C′
S ⊆ C∗

S of small circles with p(C′
S) ⩾ (1 − ε)p(C∗

S) such
that there is a packing for C′

S using the grid cells in Gw only.

We complete the proof of Lemma 10 by applying the following lemma to CS := C′′
S which

shows that we can sacrifice a factor of 1 + O(ε) to be able to use resource augmentation
when we pack the small circles.

▶ Lemma 16 (⋆). There is a set of small circles C′′
S ⊆ C′

S such that w(C′′
S) ≥ (1 − ε)w(C′

S)
and it is possible to place the circles in C′′

sml non-overlappingly inside |Gw| square knapsacks
of size (1 − ε)εcell × (1 − ε)εcell each.

3.4 Higher dimensions
Our techniques from the previous section extend directly to the problem of packing hyper-
spheres in any (constant) dimension d which yields our main theorem for the setting of
packing (hyper-)spheres.

▶ Theorem 17 (⋆). Let d ∈ N be a fixed constant. For the geometric knapsack problem
with d-dimensional hyperspheres, there is a polynomial time algorithm that computes a set
of hyperspheres C̃ with p(C̃) ⩾ (1 − ε)OPT that can be placed non-overlappingly inside the
knapsack. For all but Oε(1) hyperspheres in C̃ we compute the precise coordinate of the
corresponding packing; for the other Oε(1) circles we compute an estimate of the packing
with an additive error of at most 1

2n/ε in each dimension.
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4 Polygons

In this section, we adjust our techniques from the previous sections to obtain a PTAS for the
case that each input object is a fat and convex polygon with at most a constant number of
edges whose lengths differ by at most a constant factor, and such that each angle between
adjacent edges is larger than π/2. These objects generalize regular polygons with greater
than 4 sides.

Formally, we assume that we are given a set P = {P1, P2, . . . , Pn} of n polygons that are
(f, α, q, t)-well-behaved, i.e., for each polygon Pi ∈ P we assume that

Pi is fat, i.e., rout
i /rin

i ≤ f for some (global) constant f ≥ 1, where rout
i and rin

i is the
radius of the smallest circle containing Pi and the radius of the largest circle contained in
P , respectively,
the angle between any two consecutive edges of Pi is at least π/2 + α, for some (global)
constant α > 0,
Pi has at most q edges for some (global) constant q such that the lengths of any two of
its edges differ at most by a factor of t.

For example, regular pentagons are (2, π/10, 5, 1)-well-behaved. For each polygon Pi ∈ P
we denote by wi its profit, and for a set of polygons P ′ ⊆ P we denote by w(P ′) :=

∑
Pi∈P′ wi

their total profit. For any object C we define its area to be a(C), and for any collection of
objects A we denote their total area by a(A) :=

∑
Pi∈A a(Pi). We want to pack a subset of

P non-overlappingly into the unit knapsack K := [0, 1]2. We do not allow rotations in our
packing.

Let ε > 0. We require that ε < g(f, α, q, t) for a function g to be defined later. In
contrast to the case with hyperspheres, we show that we can compute each coordinate of
our packing exactly. We classify each polygon Pi ∈ P as large or small according to the
respective value rin

i . For this, we define values εlarge and εsmall. For technical reasons, we
need that εsmall ≤ h(εlarge) for some decreasing function h : R → R to be defined later.

▶ Lemma 18. (⋆) There is a set of global constants ε(0), ..., ε(1/ε) ⩾ 0 such that ε(j) =
h(ε(j−1)) for each j ∈ {0, ..., 1/ε − 1} and a value k ∈ {0, ..., 1/ε − 1} with the following
properties. If we define εlarge := ε(k) and εsmall := ε(k+1), then by losing a factor of 1 + ε

in our approximation guarantee, we can assume that each polygon Pi ∈ P satisfies that
rin

i ≤ εsmall or rin
i > εlarge.

We guess the value k ∈ {0, ..., 1/ε − 1} due to Lemma 18 and define that a polygon
P ∈ P is large if rin

i ≥ ε(k−1) = εlarge and small if rin
i < ε(k) = εsmall. We discard all input

polygons that are neither large nor small. Similar to the case of hyperspheres, we guess the
large polygons in OPT. Since they are fat, there can be only constantly many of them.

▶ Proposition 19. Any feasible solution can contain at most (1/ε)O(1) large polygons.

We now calculate the placement of the large polygons using a linear program. Define P∗
L

to be the set of large polygons in OPT. Note that, since they are convex polygons instead of
circles or hyperspheres, we can compute an exact placement of the polygons with rational
coordinates. For this, we use the following approach, which was also noted by Abrahamsen et
al. in [1]. Consider the placement of the polygons P∗

L in OPT. Each side e of each polygon
Pi ∈ P∗

L is contained in a line {x : aex = be} for some vector ae and a scalar be. For each
corner vertex v of each polygon Pj ∈ P∗

L, we have that aex ≥ be or aex ≤ be (or both); we
guess which of these cases applies. Let vi be a special vertex for each polygon Pi defined as
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a vertex with the least value of x
(1)
i . Then, the coordinates (x(1)

i , x
(2)
i ) of the special vertex

vi of each polygon Pi ∈ P∗
L satisfy a system of linear inequalities defined as follows. There

are three types of inequalities:
Positivity constraints: x

(1)
i , x

(2)
i ≥ 0, ∀Pi ∈ P∗

L

Packing constraints: ∀Pi, Pj ∈ P∗
L any vertex v in polygon Pj ̸= Pi cannot lie inside Pi.

A vertex v lies inside polygon Pi if it satisfies the inequalities described above.
Container constraints: ∀Pi ∈ P∗

L, 0 ≤ x
(1)
i ≤ ai and bi ≤ x

(2)
i ≤ 1 − ci, where ai, bi, and

ci can be calculated exactly in constant time for a given polygon. They represent the
maximum value of x

(1)
i,v − x

(1)
i , maximum value of x

(2)
i − x

(2)
i,v , and maximum value of

x
(2)
i,v − x

(2)
i , where x

(1)
i,v , x

(2)
i,v vary over all vertices v of polygon Pi.

From Proposition 19, we know that there can only be at most (1/ε)O(1) large polygons
in OPT. We take all possible subsets P∗

L of this size and smaller from the set P, which is
polynomial in number. We compute a feasible solution of packing of these subsets P ∗

L to it
which is easy since it has only Oε,k,f,α,t,q(1) variables and constraints for each subset for
polynomially many subsets, by using the ellipsoid method.

Now for each guessed large subset P ∗
L, we compute a near-optimal packing of the small

polygons P ∗
S . Our goal is to pack the small polygons in the bin with only a loss of ε-fraction

of profit, corresponding to the guessed P ∗
L. We then return the solution P ∗

L ∪ P ∗
S which

has maximum weight over all guessed values of P ∗
L initially and claim that this packing is

near-optimal.
In order to pack small polygons, we need a corresponding version of Lemma 10. We

define grid cells again similarly such that εcell is much smaller compared to εlarge and εsmall

is much smaller compared to εcell. Intuitively, since our input polygons are well-behaved,
we can prove that a certain amount of space is not used by the large polygons, similar to
Lemma 14. To ensure this, we require that ε is sufficiently small, which in particular also
yields a bound on εcell. Using this, we show that there are many grid cells that are disjoint
from any large polygon (similarly as the white grid cells in Section 3).

▶ Lemma 20. (⋆) There is a function g : R4
≥0 → R≥0 such that if all given polygons are

(f, α, q, t)-well-behaved and ε < g(f, α, q, t) then
in polynomial time we can compute a set of grid cells Gw such that no grid cell in Gw

intersects with any polygon Pi ∈ P∗
L,

there is a set of small polygons PS ⊆ P∗
S such that w(PS) ≥ (1 − O(ε))w(P∗

S) for the
optimal packing of large polygons, and
the polygons in PS can be packed non-overlappingly inside |Gw| grid cells that have size
(1 − ε)εcell × (1 − ε)εcell each.

We can prove Lemma 20 with similar techniques as we used in the proof of Lemma 10. In
order to select and place the small polygons, we use the algorithm due to Theorem 1.

Let P ∗
S denote our computed solution for the small polygons. We return the solution

P̃ = P ∗
L ∪ P ∗

S which has maximum weight over all initially guessed combinations for the
polygons in P ∗

L and their approximate coordinates.

▶ Theorem 21. For any constants f, q ≥ 1 and t, α > 0 there is a PTAS for the geometric
knapsack problem for (f, α, q, t)-well-behaved polygons.

5 Conclusion

We almost settle the approximability of the geometric knapsack problem in the setting of
packing spheres into a hypercube knapsack. However, it remains an open problem whether
rational coordinates always suffice in an optimal packing. If not, it would be an interesting

ICALP 2024
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question to determine the best approximation ratio one can obtain if we allow only rational
coordinates for the centers of the circles (while the optimal packing has no such restrictions).
It would be also interesting to obtain a PTAS for the case of d-dimensional fat convex
objects. Another interesting but difficult open question is whether the case of convex but
not necessarily fat input objects in the plane admits a PTAS. The best known result for
this setting is only an O(1)-approximation in quasi-polynomial time (assuming polynomially
bounded integral input data [33]). Already for the special case of axis-parallel rectangles, it
is open whether a PTAS exists.
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A Improving the precision of the large spheres

Recall that for each large circle Ci ∈ C∗
L we guessed its center in the optimal packing up to a

polynomial error of ε
n . We improve this to only an exponential error of at most 1

2n/ε . To do
this, we apply Theorem 9 with α := Θ( 1

2n/ε ). This yields more precise estimates x̄
(1)
i , x̄

(2)
i for

each Ci ∈ C∗
L. There is an important subtlety though: for our guessed coordinates x̃

(1)
i , x̃

(2)
i

we can assume that they differ from the coordinates of OPT by at most our polynomial
error of ε

n . For the new estimates x̄
(1)
i , x̄

(2)
i we can not guarantee this: our subroutine from

Theorem 9 possibly returns a solution that is (close to) feasible for the large circles, but not
(close to) a solution that is feasible for the large and for the small circles. Because of this, we
guessed the estimates x̃

(1)
i , x̃

(2)
i for each Ci ∈ C∗

L, so that we can assume that these estimates
really correspond to OPT and not just to some arbitrary solution to (1).

If it were true that there is always a (1 + ε)-approximate solution in which the center
of each circle has rational coordinates that can be encoded with a polynomially bounded
number of bits, then we could choose α appropriately to compute it. More precisely, we
could compute a range for each coordinate that contains only one rational number with a
bounded number of bits, and we could compute this number afterward.
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