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Abstract
Fault-tolerant Consensus is about reaching agreement on some of the input values in a limited time
by non-faulty autonomous processes, despite of failures of processes or communication medium. This
problem is particularly challenging and costly against an adaptive adversary with full information.
Bar-Joseph and Ben-Or (PODC’98) were the first who proved an absolute lower bound Ω(

√
n/ log n)

on expected time complexity of Consensus in any classical (i.e., randomized or deterministic) message-
passing network with n processes succeeding with probability 1 against such a strong adaptive
adversary crashing processes.

Seminal work of Ben-Or and Hassidim (STOC’05) broke the Ω(
√

n/ log n) barrier for consensus
in the classical (deterministic and randomized) networks by enhancing the model with quantum
channels. In such networks, quantum communication between every pair of processes participating
in the protocol is also allowed. They showed an (expected) constant-time quantum algorithm for a
linear number of crashes t < n/3.

In this paper, we improve upon that seminal work by reducing the number of quantum and
communication bits to an arbitrarily small polynomial, and even more, to a polylogarithmic number
– though, the latter in the cost of a slightly larger polylogarithmic time (still exponentially smaller
than the time lower bound Ω(

√
n/ log n) for the classical computation models).
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1 Introduction

Consensus is about making a common decision among the processes’ initial input values in a
limited time by every non-faulty process, despite the faulty behaviour of some of the players.
Since its introduction by Pease, Shostak and Lamport [31] (JACM’80), who ruled out trivial
solutions (such as always deciding on the same bit), fault-tolerant Consensus has constantly
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been among foundation problems in distributed computing. This problem has been studied
in synchronous/asynchronous and deterministic/randomized computation models and under
various fault-tolerant or adversarial models: Fail-Stop (crashes) and Byzantine, Static and
Adaptive, Computationally Bounded and Unbounded Adversaries - just to name a few (see
Section 2.1 for related work).

While the landscape of Consensus problem under the classic model of computation is
well-developed, much less is known if we allow for quantum computation. The seminal work
of Ben-Or and Hassidim [9] (albeit a short 5-pager in STOC’05) broke the Ω(

√
n/ log n)

rounds time barrier for classic computing by employing quantum computing to further use
the power of randomization in distributed computing. They showed an (expected) constant-
time quantum algorithm for a linear number of crashes t < n/3, however, the algorithm is
inefficient in terms of communication bits and, even more importantly, in terms of the number
of quantum bits (qubits), as it uses Ω(n) of them per process. Since then no algorithm has
managed to reduce the quantum resources needed to solve Consensus. Because generating,
maintaining and sending quantum bits is extremely costly (today’s quantum devices use less
than 500 qubits), thus the main question of our paper emerges naturally:

Could the number of qubits be substantially reduced without harming the time complexity?

1.1 Distributed setting
We consider a quantum synchronous message-passing model (c.f., [6]), consisting of n syn-
chronous processes (also called players), each with common clock (a clock tick is called a
round or a step) and unique id from the known set P = [n] = {1, . . . , n}.

Between any pair of processes we assume the existence of a quantum channel being able
to transmit reliable1 messages caring quantum bits, qubits. For the sake of completeness, we
also augment the model by classic point-to-point channels between any pair of processes. In
each round, a process can send (personalized) quantum and classic messages to any selected
subset of other processes. After multicasting messages, in the same round a process receives
messages that were just sent to it by other processes, and performs local computation, which
involves both quantum and classic bits.2

Processes are prone to crash failures, also called fail-stops. A crashed process permanently
stops any activity, including sending and receiving messages.

We model crashes as incurred by a full-information adversary (the same as in [7, 9]) that
knows the algorithm, the exact pure quantum state (see Section 3) and the classic state of
the system at any point of an execution, and has an unbounded computational power. The
adversary decides which processes to fail and when. The adversary is also adaptive – it can
make a decision on-line based on its current full-knowledge of the system. However, the
adversary does not know the future computation, which means that it does not know future
random bits drawn by processes.

As for the quantum part, the adversary can apply no quantum operation to the system, but
it is aware of all quantum and classic changes of state that the network undergoes. If a process
is crashed by the adversary, we assume that its quantum bits are not destroyed (in particular,
entangled qubits in other processes do not collapse but maintain their entanglement), however
they cannot be used in further computation.

1 Messages are not lost nor corrupted while in transit.
2 Local computation also decides what messages to send in the next round and to whom.
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Failures are not clean – when a process crashes when attempting to multicast a message,
then some of the recipients may receive the message and some may not; this aspect is
controlled by the adversary. A t-adversary is additionally restricted by the the number
of crashed processes being smaller than t; if t = n then the n-adversary is also called an
unbounded adversary (note that even in such case, at least one process must survive for
Consensus to make sense). Throughout the paper, we will be calling the adversary described
above “adaptive”, for short.

Consensus problem. each process p has its own initial value inputp and has to output a
(common) decision value, so that the following conditions hold: validity – decision must be
on an input value of some process; agreement – no two processes decide on different values;
and termination – each process eventually decides on some value, unless it is faulty. All those
three requirements must hold with probability 1. We focus on binary Consensus, in which
initial values are in {0, 1}.

Correctness and complexity – in terms of time (the number of rounds needed for all
processes to terminate) and the number of quantum bits (qubits) and communication bits –
are analyzed and maximized (worst-case) against an adaptive adversary.

We say that a random event occurs with high probability (whp for short), if its probability
could be made 1−O(n−c) for any sufficiently large positive constant c by linear scaling of
parameters.

2 Our Results

In this work, we focus on improving quantum bits’ and communication complexities (without
harming time complexity) of quantum algorithms solving Consensus problem with probability
1 against an adaptive full-information adversary capable of causing processes’ crashes. We
observe that the maximum, per process, number of communication bits in Consensus problem
is Ω(n), therefore one can only hope to improve amortized communication complexity (per
process), see the full version of the paper.3

Our first main result is a quantum algorithm that solves Consensus in expected constant
number of rounds and amortized number of qubits and classical communication bits per
process being an arbitrarily low polynomial. This directly improves, by a polynomial factor,
on the result of Ben-Or and Hassidim [9], which required Θ(n) qubits and communication
bits, amortized per process. The detailed description of the algorithm and the proof of its
correctness is presented in Section 4.

▶ Theorem 1. For any ϵ > 0, there is an algorithm solving consensus against an adaptive
n/3-adversary in expected O(1) rounds while using O(nϵ) qubits and communication bits
(amortized) per process, w.h.p.

To achieve this result, we give improved protocols for several existing tools that have been
historically used in consensus algorithms. Combining all our advancements together provides
a tighter approach to the general problem of consensus.

Our first technique is a new quantum implementation of a weak global coin.

▶ Definition 2 ([9]). Let C be a protocol for n players (with no input), where each player i

outputs a (classical) bit vi ∈ {0, 1}. We say that the protocol C is a t-resilient weak global coin
protocol (or computes a weak global coin, for short) with fairness ρ > 0, if for any adaptive
t-adversary and any value b ∈ {0, 1}, with probability at least ρ, vi = b for all good players i.

3 All omitted proofs and materials can be found in the full version of the paper, under the link given in
“Related Version” on page 1.
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We show a 1
3 -resilient weak global coin that works in constant, O

( 1
ϵ

)
, time, uses an arbitrarily

small polynomial number of bits O(nϵ), amortized per process (for any chosen constant
ϵ > 0), and results in all non-faulty processes returning the same value with a non-zero
constant probability, c.f., Theorem 12. The main idea behind our improvement is to couple a
quantum protocol for selecting a leader in the system, proposed in [9], with generalized sparse
patterns of fault-tolerant communication induced on random graphs, which in a classical
version (i.e., non-quantum) was firstly used in [23].

Our second technical result is a deterministic algorithm for counting, which returns, in
constant time, a count of the number of input 1 (or 0, resp.) among the processes. Specifically,
our algorithm solves the following problem.

▶ Definition 3 (Fuzzy Counting [23]). A Fuzzy Counting is a distributed problem in which
every active process is required a number between the initial and the final number of active
processes. The notion of “being active” usually depends on the goal of the counting, e.g., all
non-faulty processes, non-faulty processes with initial value 1, etc.

The authors of [23] provided an algorithm to this problem that works in O(log3 n) rounds
and uses O(log7 n) communication bits per process. By employing random graphs of
asymptotically larger degree than those in [23], we generalize this result by showing a solution
that works in constant time. As consequence of this improvement a tradeoff between the
number of rounds and the communication complexity arises. Our protocol is faster than
the one in [23], but on the other hand it uses a polynomial, yet of an arbitrarily small
degree, number of communication bits, amortized per process. On the way to achieve this
result, we also propose a new solution to Gossip – a distributed problem in which every
non-faulty process, despite the presences of the adversary, have to collect inputs of every
other non-faulty processes.4 The novelty in this approach is that our solution, by exploiting
similar properties of random graphs to the approach used for generating a weak global coin,
we can solve Gossip in constant time O

( 1
ϵ

)
while using only O(nϵ) bits per processes, for any

constant 1 > ϵ > 0. The formal statement of the Gossip algorithm is provided in Theorem 13
and the analysis of our implementation of a weak global coin can be found in the Section 5
and the analysis of our implementation of Fuzzy Counting in Section 6.

Although constant-time algorithms cannot low (sub-polynomial) amortized communication
complexity, we show that our main algorithm could be re-instantiated in such a way that
it uses only a polylogarithmic number of qubits and classical communication bits to solve
consensus in just a polylogarithmically larger number of rounds (see Section 4, and technical
counterpart Theorem 7 for more details).

▶ Theorem 4. There is an algorithm solving consensus against an unbounded adaptive
adversary in polylogarithmic number of rounds, in expectation, while using a polylogarithmic
number of qubits and communication bits (amortized) per process, whp.

We believe that the newly developed techniques could be also applied to other types of
failures, after failure-specific modifications. For example, although message omission failures
require linear amortized communication per process (c.f., [22]), one could still use a small
polynomial or even a polylogarithmic number of qubits (together with a linear number of
classic communication bits) per process, if qubits are handled according to our techniques
while some additional classic communication bits are introduced to handle message omissions.
We leave details to follow-up work.

4 The main difference between Gossip and Fuzzy Counting is that the latter allows for aggregating
information, i.e. counting the number of 1’s in the system vs collecting a set of identifiers of these active
processes that start with 1.
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2.1 Previous and Related Work

Consensus in the classic (non-quantum) model. Bar-Joseph and Ben-Or [7] (see also
their extended version [8]) proved a lower bound O(

√
n

log n ) on expected time complexity
of consensus against an adaptive adversary. They also complemented it by time-optimal
randomized algorithm. Their algorithm uses expected O( n3/2

log n ) number of communications
bits, amortized per process, which has been recently improved by Hajiaghayi et al [23] to
O(
√

n) (while maintaining the almost-optimal round complexity O(
√

n log n)).
Fisher and Lynch [19] proved a lower bound f + 1 on deterministic consensus with f

crashes (that actually occurred, i.e., f < t), thus separating deterministic solutions from
randomized. Regarding communication complexity, Amdur, Weber and Hadzilacos [3] showed
that the amortized number of messages per process is at least constant, even in some failure-
free execution. Dwork, Halpern and Waarts [18] found a solution with O(log n) messages per
process, but requiring an exponential time, and later Galil, Mayer and Yung [20] developed
a message-optimal algorithm working in super-linear O(n1+ε) time, for any 0 < ε < 1
and any f < n. They also improved the communication further to a constant number
of communication bits per process, but the resulting algorithm was exponential in the
number of rounds. Chlebus and Kowalski [11] showed that consensus can be solved in
O(f + 1) time and with O(log2 f) messages if only the number n− f of non-faulty processors
satisfies n − f = Ω(n). It was later improved in [12] to O(f + 1) time and O(polylog n)
number of communication bits. All the abovementioned communication complexities are
amortized per process.

Quantum consensus. To the best of our knowledge, almost all previous papers on quantum
consensus concentrated on assuring feasibility of the problem against strong Byzantine
adversaries, c.f., [14, 24, 26], or on optimizing time complexity, including the work of Ben-Or
and Hassidim [9] achieving constant time against an adaptive adversary.

In recent years, the primary application of (classical) consensus has been in the synchron-
ization of distributed blockchains. A blockchain algorithm based on asymmetric quantum
encryption was proposed in [34]. Blockchain algorithms often use leader election as an
important subroutine. Quantum algorithms for leader election in anonymous networks, a
problem intrinsically unsolved in the classical setting, has been considered in [32, 29]. [36]
implemented the first algorithm for the anonymous leader election problem on a quantum
computer. A more thorough study of challenges arising from practical implementations of
quantum distributed networks is a pending, but unresolved issue [17]. The dynamics of
quantum consensus and gossip over a contiguous space was studied in [28].

Sparse quantum communication has been considered by Chlebus, Kowalski and Stro-
jnowski in [13], in the context of solving some version of consensus, but their protocols work
correctly only with some probability smaller than 1 and for a specific number of failures
corresponding to the probability of success. Another difference is that they used quantum
operations to encode the classical inputs in quantum registers and used it to directly solve
consensus. In this paper, we show another, more-efficient approach, in which we first create
a quantum, weak global coin and later employ this tool to the state-of-the-art framework of
solving consensus based on the common coin. Other distributed computing problems, not
necessarily fault-prone, were also analyzed in quantum models, c.f., [10, 33, 35]. Finally, the
readers interested in more broad treatment of quantum consensus are referenced to a recent
survey [27].

ICALP 2024
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More efficient classic randomized solutions against weak adversaries. Whenever weaker
oblivious adversaries are considered, randomness itself proved to be enough in reducing
time complexity to a constant. Chor, Merritt and Shmoys [15] developed constant-time
algorithms for consensus against an oblivious adversary – that is, the adversary who knows the
algorithm but has to decide which process fails and when before the execution starts. Their
solution, however, requires a linear number of communication bits per process. Gilbert and
Kowalski [21] gave a randomized consensus algorithm that achieves optimal communication
complexity of O(1) amortized communication bits per process while terminating in O(log n)
time w.h.p., as long as the number of crashes f < n/2.

Classic consensus in more demanding models. Dolev and Reischuk [16] and Hadzilacos
and Halpern [22] proved the Ω(f + 1) lower bound on the amortized message complexity
per process of deterministic consensus for omission or (authenticated) Byzantine failures.
However, under some limitation on the adversary and requiring termination only whp, the
sublinear expected communication complexity O(

√
n polylog n) per process can be achieved

even in case of Byzantine failures, as proved by King and Saia [25]. Such limitations are
apparently necessary to achieve subquadratic time complexity for Byzantine failures, c.f.,
Abraham et al. [1]. Asynchrony also implies large communication – Aspnes [4] proved a lower
bound Ω(n/ log2 n) on communication complexity per process. The complexity bounds in
this setting have been later improved, see e.g., [5, 2].

3 Technical Preliminaries

Quantum model of computation. We provide a short review of those parts of the quantum
model of computing that are relevant to our results. The reader can find a comprehensive
introduction to quantum computing in e.g. [30]. We use only the pure state of qubits. A pure
state of a single qubit is a vector in a 2-dimensional Hilbert space H. A pure quantum state
of d qubits, denoted |x⟩, is a vector of 2d-dimensional Hilbert space H⊗d = H⊗ . . .⊗H. In
our paper, we use only the standard computational basis of the Hilbert space, which consists
of vectors {|b1 . . . bd⟩ : b1 . . . , bd ∈ {0, 1}d}, to describe the system. Therefore, any state |x⟩
can be expressed as |x⟩ =

∑2d−1
i=0 αi |i⟩, with the condition that

∑
i |αi|2 = 1, since quantum

states can be only normalized vectors.
Transitions, or equivalently – changes of states of a quantum system, are given by

unitary transformations on the Hilbert space of d qubits. These unitary transformations
are called quantum gates. These operations are exhaustive in the sense that any quantum
computation can be expressed as a unitary operator on some Hilbert space. There are
small-size sets of quantum gates working on two-dimensional space that are universal – any
unitary transformation on a 2d-dimensional quantum space can be approximated by a finite
collection of these universal gates. In our applications, any quantum algorithm computation
run by a process requires a polynomial (in n) number of universal gates.

Finally, an important part of quantum computation is also a quantum measurement.
Measurements are performed with respect to a basis of the Hilbert space – in our case, this
is always the computational basis. A complete measurement in the computational basis
executed on a state |x⟩ =

∑2d−1
i=0 αi |i⟩ leaves the state in one of the basis vectors, |i⟩, for

i ∈ {0, 1}d, with probability α2
i . The outcome of the measurement is a classic register of d bits,

informing to which vector the state has been transformed. It is also possible to measure only
some qubits of the system, which is called a partial measurement. If A describes the subset of
qubits that we want to measure and B is the remaining part of the system, then the partial
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measurement is defined by the set of projectors {Πi = |i⟩A ⟨i|A ⊗ IB | for i ∈ {0, 1}d}.5 In
the former, a subscript refers to the part of the system on which the object exists, I denotes
the identity function, while ⟨i| is a functional of the dual space to the original Hilbert space
(its matrix representation is the conjugate transpose of the matrix representation of |i⟩). If
before the measurement the system was in a state |x⟩AB then, after the measurement, it
is in one of the states {Πi |x⟩AB | for i ∈ {0, 1}d}, where state Πi |x⟩AB is achieved with
probability ⟨x|AB Πi |x⟩AB.6 We would like to note that, similarly to all other quantum
operations, measurements are local in our model. The result of a measurement is visible only
to the process that performed this measurement; however, any quantum operation in some
process may affect quantum bits stored in some other process.

Graph notations. Let G = (V, E) denote an undirected graph. Let W ⊆ V be a set of
nodes of G. We say that an edge (v, w) of G is internal for W if v and w are both in W .
We say that an edge (v, w) of G connects the sets W1 and W2, or is between W1 and W2,
for any disjoint subsets W1 and W2 of V , if one of its ends is in W1 and the other in W2.
The subgraph of G induced by W , denoted G|W , is the subgraph of G containing the nodes
in W and all the edges internal for W in G. A node adjacent to a node v is a neighbor of v

and the set of all the neighbors of a node v is the neighborhood of v. N i
G(W ) denotes the set

of all the nodes in V that are of distance at most i from some node in W in graph G. In
particular, the (direct) neighborhood of v is denoted NG(v) = N1

G(v).
The following combinatorial properties are of utter importance in the analysis of our

algorithms. Graph G is said to be ℓ-expanding, or to be an ℓ-expander, if any two subsets
of ℓ nodes each are connected by an edge. Graph G is said to be (ℓ, α, β)-edge-dense if, for
any set X ⊆ V of at least ℓ nodes, there are at least α|X| edges internal for X, and for any
set Y ⊆ V of at most ℓ nodes, there are at most β|Y | edges internal for Y . Graph G is said
to be (ℓ, ε, δ)-compact if, for any set B ⊆ V of at least ℓ nodes, there is a subset C ⊆ B of at
least εℓ nodes such that each node’s degree in G|C is at least δ. We call any such set C a
survival set for B.

4 Consensus Algorithm

The very high-level description of our consensus algorithm CheapQuantumConsensus
is as follows. Each process starts by setting its preferred value (the value which it would
like to decide for now) to the input bit. Then, the processes repeatedly use the counting
procedure FastCounting, specified in Section 6, to compute the number of preferred 0’s
and 1’s stored by processes that have not crashed yet, see line 3. Due to the definition of
Fuzzy Counting, the outcomes of FastCounting can be slightly different across processes,
but by no more than the number of crashes. Depending on the outcome, each process may
change its preferred value to the dominating one (among the received preferred values),
decide if the domination is substantial, or run the quantum common coin procedure, if
the number of preferred 0’s and 1’s are very close to each other – see lines 14-17 in the
pseudocode of CheapQuantumConsensus in Figure 1; all lines involving communication
are underlined. Repeating the entire process (i.e., counting) for a constant number of rounds
and then calculating the weak global coin and updating the decision either deterministically
or based on the global coin, guarantees to produce one preferred value in all correct processes
with probability 1, provided strong enough protocol for computing the global coin.

5 We follow the standard notation in quantum computing and skip writing normalizing factors.
6 Πi |x⟩AB and ⟨x|AB Πi |x⟩AB are simply linear operations on matrices and vectors.

ICALP 2024
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In general, this type of framework is well-known for solving consensus and was proposed
first by Bar-Joseph and Ben-Or [8] in the context of classical randomized computation against
an adaptive adversary. However, for classical randomized computation the limitation of
this approach is in the fact that any weak global coin obtained so far can tolerate at most
O(
√

n) crashes to guarantee constant fairness of the coin. In contrast, by employing quantum
communication we propose a new quantum protocol that computes a weak global coin with
constant fairness even when a linear number of processes crash.

Besides this improvement, we also propose two new techniques for sparse classical and
quantum communication, employed in lines 3 and 18 of the pseudocode in Figure 1: fast and
communication-efficient counting and, as mentioned before, fast and quantum-communication-
efficient weak global coin, respectively. Both these techniques use parameters x, d, α, which,
roughly speaking, correspond to the density of random communication graphs used in these
algorithms. The detailed performance formulas of these algorithms, with respect to those
parameters, are stated in Theorems 12 and 14.

In the heart of these two techniques lies a crucial observation: consensus (as well as
common coin and counting) could be achieved quickly even if many processes do not directly
exchange messages, but use some carefully selected sparse set of communication links instead.
This way, instead of creating qubits for each pair of processes, we could do it only per some
pairs corresponding to some communication links to be used. This set of links, modeled
as an evolving communication graph, needs to be maintained adaptively and locally by
processes throughout the execution – otherwise, an adaptive adversary would learn it and
design crashes to separate processes and prevent consensus.

Algorithm’s description. Each process p stores its current choice in bp (which is initialized
to p’s input). The value bp at the end of the algorithm indicates p’s decision. Now, processes
use O(1) (in expectation) phases to update their values bp such that eventually every process
keeps the same decision. To do so, in a round r every process p calculates the number of
processes whose current choice is 1 and the number of processes whose current choice is 0,
denoted Or

p and Zr
p respectively. Based on these numbers, process p: either sets bp to 1, if

the number Or
p is large enough; or it sets bp to 0 if the number Zr

p is large; or it replaces bp

with a random bit if the numbers of zeros and ones are close to each other. If for generating
the random bit, in line 18, processes use a quantum implementation of a weak global coin
(implemented with CheapQuantumCoin algorithm, specified in Section 5), they will all
have the same value bp with constant probability unless more than third of alive processes
crash. Assuming the presence of the adaptive adversary, this could not be achieved quickly if
using classical communication only. Once it happens with the help of the quantum weak
global coin, the conditional statements in lines 14-17, run in the next iteration of the “while”
loop, guarantee that once the majority of processes have the same value bp, the system
converges to this value in at most 2 phases. Since the probability of this event is constant
(guaranteed by the quantum weak global coin combined), the expected number of phases
before the consensus algorithm terminates is constant. That reasoning holds, assuming that
at most 1/3 fraction of processes crashed (we will generalize it to any t ≤ n at the end of
this section).

As mentioned earlier, the major improvement in the above protocol comes from using novel
techniques for counting and weak global coin. For the former, we use the FastCounting
algorithm (Theorem 14), which, with the choice of parameters given in line 3, works in
O

(( 1
ϵ

)4
)

rounds and uses O
(
n1+3ϵ log2 n

)
(classic) communication bits in total. Similarly,

the CheapQuantumCoin algorithm (Theorem 12), executed in line 18, terminates in
O

(( 1
ϵ

)3
)

rounds and uses O
(

n1+2ϵ log2 n
)

both quantum and classical bits; we need to
divide the communication formulas by n to obtain the complexity amortized per process.
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Algorithm 1 CheapQuantumConsensus for process p.

input: P, p, inputp

1 bp ← inputp ; r ← 1 ; decided← FALSE ;
2 while TRUE do
3 participate in FastCounting(P, p, bp) (run with parameters

x = nϵ, d = log n, α = nϵ) that counts the processes who have bp = 1 and the
processes who have bp = 0; let Or

p, Zr
p be the numbers of ones and zeros (resp.)

returned by FastCounting;
4 Nr

p ← Zr
p + Or

p;
5 if (Nr

p <
√

n/ log n) then
6 1) send bp to all processes; 2) receive all messages sent to p in round r + 1;
7 3) implement a deterministic protocol for

√
n/ log n rounds;

8 end
9 if decided = TRUE then

10 diff ← Nr−3
p - Nr

p ;
11 if (diff ≤ Nr−2

p /10) then STOP;
12 else decided ← FALSE;
13 end
14 if Or

p > (7Nr
p − 1)/10 then bp ← 1, decided ← TRUE;

15 else if Or
p > (6Nr

p − 1)/10 then bp ← 1;
16 else if Or

p < (4Nr
p − 1)/10 then bp ← 0, decided ← TRUE;

17 else if Or
p < (5Nr

p − 1)/10 then bp ← 0;
18 else set bp to the output of CheapQuantumCoin(P, p) executed with

parameters d = log n, α = nϵ ;
19 r ← r + 1;
20 end
21 return bp ; /* p outputs final decision */

Algorithm’s analysis. To analyze the CheapQuantumConsensus algorithm we first recall
a combinations of lemmas from [8].

▶ Lemma 5 (Lemmas 4.1, 4.2, 4.3 in [8]). If all processes have the same value at the beginning
of an iteration of the main while loop, then the algorithm returns the decision after at most
two iterations.

▶ Theorem 6. For any ϵ > 0, the CheapQuantumConsensus algorithm solves Consensus
against n/3-adversary in O

(( 1
ϵ

)4
)

rounds in expectation while using O(n3ϵ) qubits and
communication bits per process (amortized), whp.

Proof. First, we argue for correctness. Compared to the protocol of Bar-Joseph and Ben-
Or [8], which works for an arbitrary number of failures t ≤ n, we changed the method of
deriving random coin, c.f., line 18. Observe that even if CheapQuantumCoin fails to meet
conditions of t-resilient coin flip, it always outputs some bit in every non-faulty process. Thus,
regardless of the number of crashes the output could be an output of local coin flips with a
non-zero probability. Since Bar-Josephs’s and Ben-Or’s algorithm works with probability
1 (see Theorem 3 in [8]), thus CheapQuantumConsensus also achieves correctness with
probability 1.
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Next, we estimate the expected number of phases (i.e. the number of iterations of the
main while loop). We consider only good phases, i.e. phases in which the adversary crashed at
most 1

10 fraction of processes that were correct at the beginning of this iteration. Note, that
there can be at most 1

3 / 1
10 < 4 ”bad” phases. Let x be the number of non-faulty processes

at the beginning of some good phase. We consider the following cases:
Case a) There exists a process that in this iteration executes line 15 or line 14. In this case,
all other processes have to execute line 14, 15 or line 18, since the number of ones counted
in different processes may differ by x

10 at most. All processes that in this iteration execute
CheapQuantumCoin will set bp to 1 with probability 1

4 at least. What follows, in the next
iteration all processes will start with bp set to 1, and by Lemma 5 the algorithms will decide
within two next phases.
Case b) There exists a process that in this phase executes line 16 or line 17. Similarly to the
previous case, we observe that all other processes have to execute line 17 or line 18, since,
again, the number of ones counted in different processes may differ by x

10 at most. Therefore
the same arguments apply but know the final decision will be 0.
Case c) None of processes executes one of lines 14, 15, 16, or 17. Thus, all processes
participated in CheapQuantumCoin in line 18. By Theorem 12, with probability at least
1
4 , all processes will set value bp to the same value. Thus, again by applying Lemma 5, we
get that the algorithms will decide within the two next phases.

We showed that if a good phase happens, then the algorithm terminates within 2 next
iterations with probability at least 1

4 . Since there can be at most 4 bad iterations, thus we can
calculate the expected number of iterations as follows: E(#iterations) =

∑∞
i=4 i

( 1
4
)i = O(1).

Executing a single phase takes O
(( 1

ϵ

)4
)

rounds, which is the round complexity of the
FastCounting algorithm and an upper bound of the time complexity of the CheapQuan-
tumCoin algorithm, therefore the algorithm terminates in O

(( 1
ϵ

)4
)

rounds in expectation.
Similarly, by taking the upper bounds on the communication complexity of the algorithms
FastCounting and CheapQuantumCoin we get that the expected number of amortized
communication bits used by the algorithm is O(n3ϵ). ◀

Handling arbitrary number of crashes. Consider O(log n) repetitions of the main loop
(phases) of the CheapQuantumConsensus algorithm. If during these phases, the processes
with value bp = 1 become a large majority (at least 6

10 fraction of alive processes), then, as
discussed before, every process will decide within the next two rounds. The same holds if
processes with value bp = 0 start to overpopulate by a ratio of 6

10 all non-faulty processes.
On the other hand, if the cardinalities of the two groups with different values bp are close to
each other, then the processes execute the CheapQuantumCoin algorithm. It outputs a
random bit (the same in every participating process), under the assumption that at least a 2

3
fraction of processes that started this phase as non-faulty have not crashed during this phase.
However, in these O(log n) phases there must be at least one phase in which the property of
a 2

3 fraction of processes survive holds. In what follows, we argue that if the adversary can
crash arbitrarily many processes, but smaller than n, then the expected number of phases
should still be O(log n). Now, to obtain the algorithm stated in Theorem 4, we make two
more adjustments to the original CheapQuantumConsensus algorithm. In lines 3 and 18,
processes execute the algorithms FastCounting and CheapQuantumCoin, respectively,
with parameters x, d, α set as follows: x = 2, d = log n, α = log n. This corresponds to the use
of a sparse graph for communication (of degree roughly O(log n)). In consequence, the time
complexity of the FastCounting algorithm increases to O(log4 n), but the communication
complexity decreases to O(log8 n) amortized per process. The details of the implementation
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of the FastCounting algorithm are presented in Section 6, and performance follows from
putting the aforementioned parameters to the formulas in Theorem 14. Similarly, the
time complexity of the CheapQuantumCoin algorithm increases to O(log3 n), but the
communication complexity (both quantum and classical) decreases to O(log7 n) amortized
per process. Formally:

▶ Theorem 7. The modified version of the CheapQuantumConsensus algorithm solves
Consensus against any adversary in O(log5 n) rounds in expectation while using O(log8 n)
qubits and communication bits per process (amortized), whp.

Proof. For correctness, we argue exactly the same as in the proof of the previous Theorem.
We also define good and bad phases, with only this difference that now the number of bad
phases is at most O(log n) since the adversary has the full power of crashing an arbitrary
number of processes. This being said we get that, by the very same reasoning, the expected
number of phases is

E(ITE) =
∞∑

i=log n

i

(
1
4

)i

= Θ(log n) .

By examining the time and bits complexity of the algorithms FastCounting and
CheapQuantumCoin (c.f. Theorems 14, 12) with parameters x = 2, d = log n, α = log n,
we get a single phase lasts O(log4 n) rounds and contributes O(n log7 n) bits to the total
communication complexity. The latter, after dividing by n, gives the sought complexity
amortized per process. Thus, the theorem follows. ◀

5 Qubit-and-Communication Efficient Quantum Common Coin

In this section, we design a new t-resilient weak global coin, for t < n, with the help of
quantum communication and computation.

On a high level, our protocol CheapQuantumCoin chooses a leader process uniformly
at random and all other processes agree on the random bit proposed by the leader. Quantum
phenomena are used to hide the random choices of the leader and its output from the adaptive
adversary when processes communicate with each other. The idea was first proposed in [9],
yet there are key differences between that work and our algorithm. Instead of all-to-all
communication, which required large number of qubits, we use a sequence of random graphs
of node degrees d, dα1, . . . , dαk, respectively, where d, α ∈ Ω(log n) and k = ⌈log n/ log α⌉
are some integer parameters. The vertices of these graphs correspond to processes and edges
correspond to communication links – each process communicates with neighbors in one of
the graphs at a time. If the graph is chosen properly (i.e., so that there is no situation in
which too many processes use denser graphs), it reduces the communication complexity but
simultaneously imposes a new challenge. Mainly, the communication procedure has to now
assure the delivery of quantum bits between every two non-faulty processes regardless of
the pattern of crashes. For instance, if only one random graph of degree d was used then
the adversary could easily isolate any vertex using only O(d) crashes (i.e., by crashing all
its neighbors). Hence, strictly speaking, assuring such delivery is not possible while using a
sparse communication graph as relays, but we show that a certain majority could still come up
with a common coin value based only on their exchanges with neighbors in the communication
graphs; they could later propagate their common value to other processes by adaptively
controlling their (increasing) set of neighbors, taken from subsequent communication graphs
of increasing density. A thorough analysis shows that in this way it is possible to achieve the
same quantum properties that are guaranteed by Ben-Or’s and Hassidim’s global coin [9],
and at the same time reducing the quantum communication by a polynomial factor.
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Algorithm’s description. We now describe the CheapQuantumCoin algorithm. Its
pseudocode is presented in Figure 2. It takes as input: a process name p and two integers, d

and α. The two latter parameters are used to determine communication patterns between
non-faulty processes, and their choice determines the complexity of the algorithm.

As mentioned before, processes use the quantum equivalent of a procedure in which
processes draw random names from the range [1, . . . , n3] and decide on a random bit proposed
by the process with the largest name.7 We view the quantum part of the algorithm as a
quantum circuit on the joint space of all qubits ever used by different processes. Due to the
distributed nature of the system, not all quantum operations are allowed by the quantum
circuit. That is, (i) any process can perform arbitrary unitary gates on its part of the system,
(ii) unitary gates on qubits of different processes might be performed but must be preceded
by quantum communication that sends qubits involved in the operation to a single process.
The communication can be either direct or via relays. We use the following unitary gates to
simulate the classical algorithm of the leader election in the quantum distributed setting:
Hadamard gate, CNOT and Pairwise_CNOT gates, and F_CNOT and Controlled_Swap gates.
(Although they are all standard quantum gates, a thorough description of these gates can be
found in the full version.)

Let us now explain how all the gates listed above work together. As mentioned in the
description of the Hadamard gate, after line 2 ends, the main registers of the system are in
the state of being a uniform superposition of all vectors of the computational basis. Starting
from this point, the composition of all gates applied to different registers along the execution
can be viewed as a single unitary gate on the entire system, consisting of the qubits that any
process ever created. Note that the unitary transformation might be different depending on
the failure in communication, i.e., a failure in the delivery of some block of qubits between
two processes may result in abandoning gates involving these qubits, but for a moment
let us assume that the links are reliable. Since the unitary transformation is linear, it is
enough to consider how it affects the vectors of the computational basis. However, all the
gates described above behave on the computational basis as their classical equivalents. More
precisely, let |x⟩ be a vector from the computational basis spanning the whole circuit. Let p

be the process whose main register has the largest8 value in the state |x⟩. From the point
of view of this register, the following happens in the algorithm. In each round, p creates
an entangled state on 6 log n + 2 qubits (see point (2)) that has the same qubits on its
new block of 3 log n + 1 qubits as it has on the main register. Then, it propagates the new
block to its neighbors (lines 9- 12). The neighbors compare the content of received qubits
and exchange them with their main register if their content is smaller (gates F_CNOT and
Controlled_Swap in lines 16- 17). This operation is then repeated (k + 2)2(γα + 1) times
on the set of links defined by some random evolving graphs, see the later paragraph about
adaptive communication pattern. In the end, the processes who, either directly or via relays,
received the content of the largest main register, have the same value in their main register.
Therefore, the result of the measurement in line 27 must be the same in all these processes.

Assume now that we are able to achieve bidirectional quantum communication between
any pair of processes of an τ fraction of the entire system, regardless of the (dynamic) actions
of the adversary, for some constant 0 ≤ τ ≤ 1. From the above, the algorithm transforms any
vector whose largest main register is one of the registers of the τ fraction of the processes to a

7 Note that the latter procedure cannot be used against an adaptive adversary, as it could crash such a
leader.

8 The probability of a tie is polynomially small.
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vector such that the processes from the τ fraction have the same values in the main registers.
The initial state of the system is a uniform superposition which is a linear combination of
all vectors from the computational basis. From this perspective, the normalized sum of
coefficients of these vectors of the superposition that have the property that the largest
register is one of the registers of the τ fraction is τ − o(1).9 Thus, we get that the probability
of measuring the same values in the processes of the τ fraction is at least τ − o(1) and we
can claim the following lemma.

▶ Lemma 8. Let A be a set of correct processes such that any pair of them was connected by
quantum communication either directly or by relays. Then the probability that all processes
from A output the same bit from the algorithm CheapQuantumConsensus is at least
|A|
n − o(1).

Adaptive communication pattern. As explained, we not only need that communication
should be efficient in terms of the number of qubits and classical bits, but also it should be
such that any two correct processes of a large fraction of the entire system are connected by
a short path of the correct process so that quantum registers can be relayed. Let d, α be
two integer parameters. We define k =

⌈
log(n/d)

log α

⌉
, γα = log n

log α , and δα = 2
3 α. Initially, each

process p draws independently k + 1 sets Np(d),Np(dα1), . . . ,Np(dαk), where a set Np(dαi),
for 0 ≤ i ≤ k, includes each process from P with probability dαi

n .
Communication is structured into (k + 2)2 epochs, see line 4. Each epoch consists of

2(γα + 1) communication rounds, also called testing rounds. They are scheduled in γα + 1
iterations within the loop “for” in line 7, each iteration containing two communication rounds
(underlined in the pseudocode): sending/receiving inquiries in line 9 and sending/receiving
responses in line 12. In the testing rounds of the first epoch, a process p sends inquiries
to processes in set Np(d). The inquired processes respond by sending in the next round
(line 12) their current classical state and specially prepared, in line 6, quantum register.
However, if in a result of crashes p starts receiving less than δα responses per round, it
switches its communication neighborhood from Np(d) to the next, larger set, Np(d · α). A
similar adaptation to a crash pattern is continued in the remaining epochs.

Process p stores the cardinally of the set being inquired in an epoch in the variable
degreep (initialized to d in line 2). For the purpose of testing rounds, p copies the value
degreep to a variable adaptive_degreep (line 6). In every testing round, p adapts its
variable adaptive_degreep to the largest value x ≤ adaptive_degreep such that it received
at least δa responses from processes that have their variable adaptive_degree at least x

(loop “while” in line 19). If p had to decrease the value adaptive_degreep in testing rounds
of an epoch, it then increases the main variable degreep by the factor α before the next
epoch, see line 24. The latter operation formally encodes the intuition that the process p

expected to have δα non-faulty neighbors with their values of degree at least as big as its
own, but due to crashes it did not happen; Therefore, p increases the number of inquired
processes, by adopting the next, larger neighborhood set Np(·), randomly selected, in order
to increase the chance of communication with the majority of non-faulty processes in the
next epoch. On the other hand, the adaptive procedure of reducing adaptive_degree in
testing rounds of a single epoch helps neighbors of p to estimate correctly the size of the

9 The o(1) part contributes to the normalized sum of these vectors that correspond to having more than
one largest register.
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Algorithm 2 CheapQuantumCoin for process p.
input: p, two parameters: d, α

1 For 0 ≤ i ≤
⌈ log(n/d)

log α

⌉
: Np(dαi)← a set of processes such that each process is chosen

independently with probability dαi

n
;

2 degreep ← d, γα ← log n
log α

, δα ← 2
3 log n ;

3 |Leader⟩p |Coin⟩p ← H⊗3 log n+1 |00 . . . 0⟩ (a gate on 3 log n + 1 qubits) ;
4 for i = 1 to (k + 2)2 ; /* iter. of epochs */
5 do
6 adaptive_degree← degreep ;
7 for j = 1 to γα + 1 ; /* iter. of testing rounds */
8 do
9 send to each process in Np(degreep): an inquire bit 1 ;

10 I ← the set of processes who sent an inquire bit to p ;
11 ∀q∈I : |B⟩q ← Pairwise_CNOT

(
|LeaderCoin⟩p , |0 . . . 0⟩

)
;

12 send to each process q ∈ I: a quantum message containing first 3 log n+1 bits of |Bq⟩,
and a classical message containing adaptive_degreep ;

13 R ← the set of processes who responded to p’s inquires ;
14 foreach q ∈ R do
15 |CLeader⟩q |CCoin⟩q ← received quantum bits from q, |S⟩ ← |0⟩;
16 F_CNOT|Leader⟩p>|CLeader⟩q

(
|Leader⟩p , |CLeader⟩q , |S⟩

)
;

17 Controlled_Swap
(
|LeaderCoin⟩p , |CLeaderCCoin⟩q , |S⟩

)
;

18 end

19 while |{q ∈ R : adaptive_degreeq ≥ adaptive_degreep}| < δα and
adaptive_degreep ≥ d ; /* adapting #neighbors during testing */

20 do
21 adaptive_degreep ←

1
α

adaptive_degreep ;
22 end
23 end
24 if adaptive_degreep < degreep then
25 degreep ← min{degreep · α, dαk} ; /* neighborhood for next epoch grows */
26 end
27 bp ← be the last bit of the result of measuring |Leader⟩p |Coin⟩p in the computational basis;
28 return bp ; /* p outputs random bit */

neighborhood that process p is using in the current testing round, which might be much
smaller than the value degreep from the beginning of the epoch. This, in turn, calibrate the
value of adaptive_degree of the neighbors of p, and this calibration can propagate to other
processes of distance up to γα from p in the next iterations of testing rounds.

Analysis. Let us define graphs G(dαi), for 0 ≤ i ≤ k, as the union of random sets
∪p∈PNp(dαi). The probability distribution of the graph G(dαi) is the same as the ran-
dom graph G(n, y) for y = dαi

n . Chlebus, Kowalski and Strojnowski [12] showed in their
Theorem 2, applied for k = 64n

dαi−1 , that the graph G(dαi) has the following properties, whp:
(i) it is ( n

dαi−1 )-expanding, which follows from ( n
dαi−1 , 2

3
n

dαi−2 , 4
3

n
dαi−2 )-edge-expanding

property,
(ii) it is ( n

dαi−1 , 1
3 α, 2

3 α)-edge-dense,
(iii) it is (16 n

dαi−1 , 3/4, 2
3 α)-compact,

(iv) the degree of each node is at most 21
20 dαi.
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Since the variable degreep takes values in the set {d, dα1, . . . , dαk}, the pigeonhole
principle assures that eventually p will participate in an epoch in which degreep has not
been increased. In the most severe scenario, p will use the set Np(dαk), which consists of all
other processes – because it contains each process, as a neighbor of p, with probability 1.
The (γα, δα)-dense-neighborhood property of random graphs composed from neighborhoods
N (degreep) implies that p will then contact a majority of other non-faulty processes via at
most γα + 1 intermediate processes (during testing rounds). Formally, the following holds:

▶ Lemma 9. If a process p does not change its variable degreep at the end of an epoch i,
then at the beginning of epoch i there exists a (γα, δα)-dense-neighborhood of p in the graph
G(degreep) consisting of non-faulty processes with variable degree being at least degreep in
the epoch i, whp.

On the other hand, (16n/dαi−1, 3/4, 2α/3)-compactness of the (random) graph composed
of processes that have the variable degree at least dαi, guarantees that the total number
of processes that use sets N (dαi) during the epoch i is at most n

αi−2 , which amortizes
communication complexity.

▶ Lemma 10. For any integer i, such that 0 ≤ i ≤ k, at the beginning of each epoch there is
at most 16n

dαi−2 processes with the variable degree greater than dαi, whp.

In the above proof of Lemma 10, we use the fact that a suitable set C of processes that
have been correct throughout the whole epoch exists. We may choose this set and argue
about it after the epoch, as the communication pattern in the algorithm is deterministic.
Hence, in any round of the epoch, processes in C have at least as many non-faulty neighbors
in the communication graph as they have neighbors from set C. We use this number of
neighbors in C as a lower bound to argue about the behavior of variables degree; therefore,
our arguments do not depend on the behavior of processes outside of C and whether/when
some of them fail during the epoch.

▶ Lemma 11. Any two non-faulty processes p and q were connected by a quantum path of
communication during the run of the algorithm.

The above lemmas yield the following result.

▶ Theorem 12. For two integer parameters d, α ∈ Ω(log n), the algorithm QuantumCoin-
Flip generates a weak global coin, provided that at most 1

3 -fraction of initially non-faulty
processes have crashed. It terminates in O

(( log n
log α

)3
)

rounds and with high probability uses

O
(( log n

log α

)4
dα2 log n

)
both quantum and classical communication bits (amortized) per process.

Proof of Theorem 12. Let H ⊆ P be the set of initially non-faulty processes. Assume
that at least 2

3 |H| of them remains non-faulty during the execution of the algorithm. By
Lemma 11, any pair of processes from H is connected by quantum communication, therefore
applying Lemma 8 to this set, give that there is at least 2

3 − o(1) (which is greater than 1
2

for sufficiently large n) probability that all non-faulty processes return the same output bit.
Since 0 and 1 are equally likely, thus the probabilistic guarantee on the weak global coin
follows.

The number of rounds is deterministic and upper bounded by O(k2 · γα) =
O

(( log(n/d)
log α

)2 log n
log α

)
= O

(( log n
log α

)3
)

. To bound the communication complexity, assume that
each graph G(dαi), for 0 ≤ i ≤ k, satisfies the desired expanding properties listed in the
description of the algorithm. This, by the union bound argument, holds whp. By Lemma 10
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at the beginning of each epoch there are at most 16n
dαi−2 processes that inquire more than

dαi other processes in testing rounds of this epoch, for each 0 ≤ i ≤ k. Since each message
uses at most O(log n) bits and qubits, thus a single testing round in an epoch adds at most∑k

i=0
16n

dαi−2 ·dαi ≤ 16kdα2 ·n log n qubits and bits to communication complexity. Since there
is exactly O

(( log n
log α

)3
)

testing rounds, thus the O
(( log n

log α

)4
dα2 · n log n

)
upper bound on the

total communication complexity of the algorithm follows. Dividing the latter by n we receive
amortized formula per process. ◀

6 Constant-Time Communication-Efficient Fuzzy Counting

Although generating a weak global coin in a constant number of rounds against an adaptive
adversary requires quantum communication (due to the lower bound by Ben-Or and Bar-
Joseph [7]), the CheapQuantumCoin algorithm, even without quantum communication,
achieves few other goals. As discussed in the previous section, its random communication
pattern guarantees, whp, that any additional classical message, also called a rumor, of a
non-faulty process can be conveyed to any other non-faulty process if added to every classical
message sent/received in line 12. Even more, assume that there is a set of x messages/rumors
M = {m1, . . . , mx}, distributed as inputs among some subset of processes (one message
from M per process). If processes always convey all the known rumors from set M when
using classical communication (avoiding repetition), then they solve a Gossip problem, whp,
i.e., every rumor mi given to a non-faulty process, for 1 ≤ i ≤ x, is known at the end
of the protocol to every other non-faulty process. Observe that processes resign from the
quantum content of communication for this purpose, and instead of log n bits (or qubits)
per message, they use |M | bits, where |M | denotes the number of bits needed to encode all
rumors from M . Finally, if processes work in a model where the names of other processes
are commonly known, they can withdraw from using random communication. Instead, they
can use a deterministic family of graphs G(dαi), for the same choice of parameters d and
α. The proof of existence of such graphs, using the probabilistic argument, was described
in [12] (Theorem 2). In such case, the set Np(dαi) is the neighborhood of process p in the
deterministic graph G(dαi). (Processes compute the same copies of graphs G locally in the
beginning of the algorithm.) The above augmentation of the algorithm, together with the
proof of Theorem 12, from which we take the upper bound on the number of messages send
and the upper bound on the number of rounds, gives:

▶ Theorem 13. For integer parameters d, α ∈ Ω(log n), there is a deterministic algorithm

that solves the gossip problem in O

((
log n
log α

)3
)

rounds using O

((
log n
log α

)4
dα2 · (|M |+ log n)

)
communication bits per process (amortized), where |M | is the number of bits needed to encode
all rumors in M .

Generalized Fuzzy Counting. In this part, we refine the state-of-art method of solving
the Fuzzy Counting problem (c.f. Definition 3), even deterministically, and propose a new
recursive algorithm with any branching factor x, called FastCounting. We prove the
following:

▶ Theorem 14. For any 2 ≤ x ≤ n and δ, α ∈ Ω(n), the FastCounting determ-
inistic algorithm solves the Fuzzy Counting problem in O

(
log n
log x

( log n
log α

)3
)

rounds, using

O
(

log n
log x

( log n
log α

)4
dα2 · x log n

)
communication bits (amortized) per process.
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Obviously, the constant-time is achieved in Theorem 14 when x, α = nϵ, for a constant
ϵ ∈ (0, 1). In this case, the number of rounds is O

(( 1
ϵ

)4
)

, while the communication
complexity is O(n3ϵ log2 n) (amortized) per process. In our approach, we generalize the
method of Hajiaghayi et al. [23] to denser communication graphs of certain properties, which
allows us to achieve constant running time. The constant running time is the key feature of
the algorithm, since it is used in the implementation of (expected) constant-round quantum
consensus protocol CheapQuantumConsensus. The main difference between ours and the
state-of-art approach is a different Gossip protocol used in the divide-and-conquer method.

The FastCounting algorithm is recurrent. It takes as an input the following values: P
is the set of processes on which the algorithm is executed; p is the name of a process which
executes the algorithm; ap ∈ {0, 1} denotes if p is active (ap = 1) or not; and parameters
x, d, α, where x is the branching factor and d, α steer the density of the communication
graph in the execution. Knowing the set P of n processes, FastCounting splits the set
into x disjoint groups of processes, each of size between

⌊
n
x

⌋
and

⌈
n
x

⌉
. Name these groups

P1, . . . ,Px. The groups are known to each participating process. The algorithm then makes
x parallel recursive calls on each of these groups. As a result, a process p from a group
Pi, for 1 ≤ i ≤ x, gets the number of the active processes in its group Pi. In the merging
step, all processes execute Gossip algorithm, proposed in Theorem 13, with parameters
d, α, where the input rumors are the numbers calculated in the recursive calls. To keep the
communication small, when processes learn new rumors they always store at most one rumor
corresponding to each of the x groups. This way, the number of bits needed to encode all
rumors is O(x log n). Let r1, . . . , rℓ be the rumors learned by process p from the execution
of the Gossip algorithm. The final output of p is the sum

∑ℓ
i=1 ri. The pseudocode of the

algorithm can be found in the full version.

7 Future Work

We believe that the outcome of our work effectively establishes the foundation for the efficient
integration of classical fault-tolerant distributed and quantum computing. We show that
in the basic model of failures, crash failures, a fundamental problem of reaching consensus
fast is feasible with only polylog n qubit communication. An immediate open question
arises whether such performance improvement is possible in the case of more severe failures,
such as omissions, authenticated Byzantine, or even full Byzantine. Another interesting
idea is to approach the communication bound from the lower bound side. We believe that
investigating even conditional lower bounds on the minimal quantum communication needed
to solve various distributed problems, foremost the Consensus problem, could lead to many
breakthroughs in both distributed and quantum realms.
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