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Abstract
In the classical prophet inequality setting, a gambler is given a sequence of n random variables
X1, . . . , Xn, taken from known distributions, observes their values in adversarial order and selects
one of them, immediately after it is being observed, aiming to select a value that is as high as
possible. The classical prophet inequality shows a strategy that guarantees a value at least half of
the value of an omniscience prophet that always picks the maximum, and this ratio is optimal.

Here, we generalize the prophet inequality, allowing the gambler some additional information
about the future that is otherwise privy only to the prophet. Specifically, at any point in the process,
the gambler is allowed to query an oracle O. The oracle responds with a single bit answer: YES
if the current realization is greater than the remaining realizations, and NO otherwise. We show
that the oracle model with m oracle calls is equivalent to the Top-1-of-(m + 1) model when the
objective is maximizing the probability of selecting the maximum. This equivalence fails to hold
when the objective is maximizing the competitive ratio, but we still show that any algorithm for the
oracle model implies an equivalent competitive ratio for the Top-1-of-(m + 1) model.

We resolve the oracle model for any m, giving tight lower and upper bound on the best possible
competitive ratio compared to an almighty adversary. As a consequence, we provide new results as
well as improvements on known results for the Top-1-of-m model.
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1 Introduction

The field of optimal stopping theory concerns optimization settings where one makes decisions
in a sequential manner, given imperfect information about the future, in a bid to maximize
a reward or minimize a cost. A canonical setting in this area is the prophet inequality
[18, 19]. In these settings, a gambler is presented with rewards X1, . . . , Xn, one after the
other, drawn independently from known distributions. Upon seeing a reward Xi, the gambler
must immediately make an irrevocable decision to either accept Xi, in which case the process
ends, or to reject Xi and continue, losing the option to select Xi in the future. The goal of
the gambler is to maximize the selected reward comparing against a prophet who knows all
realizations in advance and selects the maximum realized reward. Throughout, we assume,
without loss of generality, that X1, . . . , Xn are continuous random variables.
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81:2 Oracle-Augmented Prophet Inequalities

The performance of the gambler can be measured in terms of several objectives. A
common metric used in the literature is the competitive ratio, which is also known as the
Ratio of Expectations (RoE) (see Definition 1.1). Another common distinction is between the
case in which the given distributions are different and the case in which they are identical.
For the former, Krengel et al. [18, 19] showed an optimal strategy that is 1/2-competitive.
In this setting, the optimal competitive ratio can be achieved by simple, single-threshold
algorithms [21, 17]. For IID and non-IID random variables, Hill and Kertz [15] initially gave
a (1 − 1/e)-competitive algorithm. This was improved to ≈ 0.738 [1] and later ≈ 0.745 [7],
which is tight, due to a matching upper bound [15, 16].

Another relevant metric, introduced by Gilbert and Mosteller [12] for IID random vari-
ables, is that of maximizing the Probability of selecting the Maximum realization (Pmax) -
see Definition 1.2. For this objective and IID random variables, Gilbert and Mosteller [12]
gave an algorithm that achieves a probability of ≈ 0.58, which is the best possible. Later,
Esfandiari, Hajiaghayi, Lucier and Mitzenmacher [9] studied the same objective for general
random variables, obtaining a tight probability equal to 1/e when the random variables arrive
in adversarial order and 0.517 when the random variables arrive in random order. The latter
case was recently improved to the tight ≈ 0.58 by Nuti [20], showing that the IID setting is
not easier than the non-IID setting with random order. In this paper, we introduce a new
model as a means to study variations of both the IID and the general settings, for both the
RoE and Pmax objectives.

A setting that is related to ours is the Top-1-of-m model, formally introduced by Assaf
and Samuel-Cahn [3] for IID random variables, although it had been studied initially by
Gilbert and Mosteller [12]. In this setting, the algorithm is allowed to select m ≥ 1 values,
but the value it gets judged by is the maximum selected value. Gilbert and Mosteller
[12] gave numerical approximations of the Pmax objective for 2 ≤ m ≤ 10, using a simple,
single-threshold algorithm. Later, Assaf and Samuel-Cahn [3] studied the RoE objective for
general distributions and gave an elegant and simple (1 − 1/m+1)-competitive algorithm. This
was improved [2] by bounding the competitive ratio of the optimal algorithm by a recursive
differential equation. They gave numerical approximations for 2 ≤ m ≤ 5, but studying the
asymptotic nature of the constants for large m turned out to be difficult. Ezra et al. [11] later
revisited the problem and gave a new algorithm for large m that is 1 − O

(
e−m/6

)
-competitive

for the same problem. This improves the error term from [2] from linear in m to exponential
in m. Harb [14] recently improved this into a 1 − e

−mW0
( m√

m!
m

)
-competitive algorithm,

where W0 is the Lambert-W function1, and improved the lower bound for m = 2 separately.
However, the asymptotic nature of this function is difficult to analyze.

Model

We introduce a new model that generalizes the standard prophet inequality setting, and
analyze it as a means to obtain new results and improvements in the Top-1-of-m model. Our
model allows the algorithm some information about the future that is otherwise privy only to
the prophet. Specifically, at any point in the process, upon seeing a reward Xi, the algorithm
is allowed to query an oracle O. The oracle O responds with a single bit answer: YES if
the current realization is larger than the remaining realizations, i.e., Xi > maxn

j=i+1 Xj and
NO otherwise. In other words, the oracle O informs the algorithm it should select Xi, or
reject it, because there is a reward coming up that is at least as good. Clearly, with no

1 The Lambert-W function is W0(x) defined as the solution y to the equation yey = x.
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queries available, one recovers the classical prophet inequality setting, whereas with n− 1
queries, the strategy of using a query on every Xi, for i = 1, . . . , n− 1, leads to the algorithm
selecting the highest realization always. Thus, this model interpolates nicely between the
two extremes of full or no information about the future.

In this paper, we consider the following different settings.

▶ Definition 1.1 (Competitive Ratio). The competitive ratio or Ratio of Expectations is
denoted by RoE. Specifically, for an instance I of a prophet inequality setting, we denote
by RoE(x, I) the competitive ratio of an optimal algorithm for I. An algorithm ALG is
α-competitive, for α ∈ [0, 1], if E[ALG] ≥ α · E[maxi Xi], and α is called the competitive
ratio.

▶ Definition 1.2 (Probability of Selecting the Maximum). The Probability of selecting the
Maximum realization is denoted by Pmax. An algorithm ALG achieves a Pmax of α if it
returns a value v such that P[v = Z] ≥ α, where Z = max {X1, . . . , Xn}. In some works (for
example [12]), the notation PbM has also been used.

▶ Definition 1.3 (IID Setting). We use the term IID to refer to the setting where X1, . . . , Xn

are independent and identically distributed random variables. We use non-IID to refer to the
more general setting where X1, . . . , Xn are independent, but not necessarily identical.

▶ Definition 1.4 (Prophm). We use Prophm to refer to the Top-1-of-m model, in which
the algorithm can choose up to m values, and its payoff is the maximum of the chosen values.
We use Om refers to our oracle model where the algorithm has access to m oracle calls, and
can only select one value.

Note that the model Prophm+1 is comparable to Om, since in the former the algorithm
can choose m+ 1 values, where as the later can ask the oracle m times and then choose an
item. To help distinguish between the different settings, we denote each model as M(x, y, z),
where

x is either Prophm or Om with m ∈ N,
y is either IID or non-IID, and
z is either Pmax or RoE.

Our Contributions
In this paper, we study the oracle model for independent random variables following identical
or general distributions with the Pmax and RoE objectives and make the following contribu-
tions:

(I) We establish an equivalence between the oracle model and the Top-1-of-m model for
the Pmax objective.

(II) We show that this equivalence fails to hold for the RoE objective. However, we show
that guarantees for RoE in the oracle model translate to guarantees in the Top-1-of-m
model, thus further motivating our study of the oracle model.

(III) We resolve the oracle model M(Om, non-IID,RoE) by presenting a single-threshold
algorithm. Our algorithm achieves a competitive ratio of 1 − e−ξm = 1 − Oe−m/e

for general m, where ξm is the unique positive solution2 to the equation 1 − e−ξm =

2 In Section 3, we prove that there is indeed a unique positive solution.
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Γ(m+1,ξm)
m!

3. Furthermore, we show that this lower bound is optimal by showing a
construction that yields an equal upper bound. Since we showed that lower bound
guarantees for M(Om, non-IID,RoE) also hold for the M(Prophm+1, non-IID,RoE)
setting, this strictly improves the current state of the art bounds of [14], even though
the guarantees are obtained in the weaker oracle model.

(IV) We give a single-threshold algorithm for the M(Om, IID,Pmax) model that achieves a
1 − O(m−m/5) probability of selecting the maximum, as well as providing an upper
bound that is asymptotically (almost) tight. To the best of our knowledge, this is
the first result for the Pmax objective and general m in the well studied Top-1-of-m
model. Our algorithm achieves a probability of ≈ 0.797 even with m = 1 calls to the
oracle, a significant improvement on the ≈ 0.58 achieved without oracle calls [12].

As discussed earlier, the main motivation behind our oracle model comes from our first two
results which relate it to the Top-1-of-m model.

Equivalence of Models for Pmax

▶ Theorem 1.5. The M(Om, y,Pmax) model is equivalent to the M(Prophm+1, y,Pmax)
model, where y = IID or non-IID. In other words, for every prophet inequality instance, the
probability achieved by the best-possible algorithm in the M(Om, y,Pmax) model is the same
as the one achieved by the best-possible algorithm in the M(Prophm+1, y,Pmax) model.

In Section 2 and Theorem 1.5, we establish the equivalence between the M(Om, y,Pmax)
and M(Prophm+1, y,Pmax) models, for y = IID or non-IID. In other words, the best
algorithms in these models achieve the same probability of selecting the maximum.

This result might not seem that surprising due to the apparent similarity of the two
models. However, thinking about the Top-1-of-m setting from the viewpoint of oracle calls
allows for a different perspective that we exploit in our analysis. Furthermore, such intuition
can sometimes be wrong, as our next result shows.

Difference of Models for RoE

▶ Theorem 1.6. For every m ≥ 1, and for all input instances J (of IID or non-IID
variables), we have RoE(Om,J ) ≤ RoE(Prophm+1,J ), Furthermore, for every m ≥ 1, there
exists an input instance I with m + 2 non-IID random variables, such that RoE(Om, I) ≤
(1 − 1/2m+1)RoE(Proph2, I).

Perhaps more surprisingly, our oracle model and the Top-1-of-m model stop being
equivalent when one considers the RoE objective, with the oracle model being strictly weaker.

In Section 2, we show Theorem 1.6, which gives a prophet inequality instance, and an al-
gorithm A for M(Prophm+1, non-IID,RoE), such that no algorithm for M(Om, non-IID,RoE)
can achieve the same competitive ratio as that of A. Furthermore, we show that any algorithm
for M(Om, y,RoE) can be modified to an algorithm for M(Prophm+1, y,RoE) that achieves
an equal or greater competitive ratio.

Bounding the Performance of the Oracle Model

▶ Theorem 1.7. For every m ≥ 1, let αm = 1 − e−ξm , where ξm is the unique positive
solution to the equation 1−e−ξm = Γ(m+1,ξm)

m! . For any finite sequence X of non-IID variables,
one can compute a value τ , such that the single-threshold algorithm (with initial threshold τ)
has competitive ratio ≥ αm.

3 Γ(n, x) =
∫∞

x
tn−1e−t dt denotes the upper incomplete gamma function.
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m 1 − e−ξm m 1 − e−ξm

1 0.682 9 0.986
2 0.791 10 0.990
3 0.861 11 0.993
4 0.907 12 0.995
5 0.937 13 0.997
6 0.957 14 0.998
7 0.971 15 0.998
8 0.980

Figure 1.1 The value of 1 − e−ξm , for m = 1, . . . , 15.

After establishing the relationship between our oracle model and the Top-1-of-m model,
we turn our attention to upper and lower bounds for the oracle model. First, for the
non-IID setting and the RoE objective, we present a simple, single-threshold algorithm
achieving a competitive ratio that approaches 1 exponentially fast with respect to m. Even
though our algorithm is for the oracle model, for which weaker guarantees are expected due
to Theorem 1.6, it improves upon the best-known guarantee for the Top-1-of-m setting,
due to Harb [14]. Our algorithm relies on two techniques; sharding and Poissonization,
introduced by [14] for the analysis of threshold-based algorithms for prophet inequalities. As
an added benefit, the algorithm’s analysis is easy to understand.

Specifically, in Section 3, Theorem 1.7, we show that there is a constant ξm, such that for
the oracle model M(Om, non-IID,RoE), there exists an algorithm with competitive ratio at
least 1 − e−ξm . As m → +∞, this behaves as 1 − e−m/e+o(m). The competitive ratio plot for
m = 1, . . . 15 is shown in Figure 1.1.

Matching Upper Bound

▶ Theorem 1.8. For any m ≥ 1 and δ > 0, there exists an input instance I such that for
any algorithm, we have RoE(A) ≤ 1 − e−ξm + δ.

In addition, we provide a construction for every m that gives a matching upper bound
to the competitive ratio, thus resolving the problem for the case of general distributions
and the RoE objective. The construction we have is perhaps of independent interest in
the design of counterexamples for other settings, as it combines and generalizes standard
counterexamples of prophet inequalities.

In Section 3 and Theorem 1.8, we show that for any δ > 0, there exists an instance
of M(Om, non-IID, z), where z = RoE or Pmax, in which no single-threshold algorithm can
achieve a

(
1 − e−ξm + δ

)
-competitive ratio or select the maximum realization with probability

at least
(
1 − e−ξm + δ

)
.

Intuitively, the above follows since an algorithm for the oracle model performs poorly
when, every time it uses an oracle call and gets a YES answer, the next value it sees that is
at least the queried value is roughly equal, and thus the oracle call was used without any real
gain. The idea behind the worst-case for this setting is to have what is essentially a Poisson
random variable with rate ξm, providing the algorithm with several non-zero values, each
roughly the same. By carefully selecting ξm in order to equate the probability of having no
non-zero values and the probability of having more than m non-zero values, we are forcing
the algorithm to use a query for every non-zero realization, thus rendering the oracle calls as
useless as possible.

ICALP 2024
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Model Lower Bound Upper Bound
Prev. Best Current Best Prev. Current Best

RoE, General Setting 1 − O
(
e−m/6

)
[11] 1 − e−m/e+o(m) - 1 − e−m/e+o(m)

single-threshold

Pmax, IID Setting ≈ 0.58 [12] ≈ 0.797 (m = 1)
1 − O

(
m−m/5

) - 1 − O
(
m−m

)
Figure 1.2 State of the art.

The IID Setting

▶ Theorem 1.9 (see [13] for proof). For sufficiently large m,n, there exists an algorithm for
the M(Om, IID,Pmax) model that selects the maximum realization with probability at least
1 − O

(
m−m/5

)
.

Next, we turn our attention to the IID setting with m oracles calls and the Pmax objective.
We present a simple, single-threshold algorithm that selects the maximum realization with
probability that approaches 1 in a super-exponential fashion. As a warm-up, we first present
the analysis for m = 1 before generalizing it to all m.

Specifically, in Section 4, Theorem 1.9, we show that for M(Om, IID,Pmax), one can select
the maximum realization with probability at least 1 − O

(
m−m/5

)
.

▶ Theorem 1.10 (see [13] for proof). There exists an instance of M(Om, IID,Pmax) for which
no algorithm can select the maximum realization with probability greater than 1 − O(m−m).

We also present, in Section 4, Theorem 1.10, an upper bound on the probability of success
that is asymptotically tight, up to small multiplicative constants in the exponent. Because
of Theorem 1.5, both upper and lower bounds on the probability of success carry over in the
Top-1-of-m settings as well. Figure 1.2 contains a summary of our results for the oracle
model in the different settings.

1.1 Additional related work

We have already mentioned the works of Gilbert and Mosteller [12], Esfandiari, Hajiaghayi,
Lucier and Mitzenmacher [9] and Nuti [20] for the Pmax objective. Related work includes
the study of order-aware algorithms by Ezra, Feldman et al. [10], algorithms with fairness
guarantees by Correa et al. [6] and algorithms with a-priori information of some of the
values by Correa et al. [4]. In addition to these, Esfandiari et al. [9] study a related but
distinct variant to ours. They relax the objective to allow the return of one out of the top
k realizations, and show exponential upper and lower bounds. Their model, however, is
incomparable to ours.

Organization

In Section 2 we relate our model to Top-1-of-m model of Assaf and Samuel-Cahn [3]
and prove the reductions. In Section 3 we present our tight algorithm for the non-IID
setting. Section 4 contains our algorithms and upper bounds for the IID setting. Due to
space constraints, some of the proofs as well as background information on concentration
inequalities that we use for our results can be found in the full version [13].
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2 Reductions

To motivate our oracle model, we start by establishing an equivalence between M(Om, y,Pmax)
and M(Prophm+1, y,Pmax), for both the y = IID and y = non-IID case (see Theorem
1.5 below). We also show that, perhaps surprisingly, this equivalence does not hold for
the RoE objective; lower bound guarantees for M(Om, y,RoE) translate to guarantees for
M(Prophm+1, y,RoE) (Theorem 1.6), but not the converse. Later, we use this result to
improve the best-known lower bound guarantees on M(Prophm+1, y,RoE).

2.1 The Pmax objective

▶ Lemma 2.1. Fix an instance of the prophet problem. Let A be an algorithm for this
instance in M(Om, y,Pmax), where y = IID or non-IID. Then, there exists an algorithm
B for tor this instance in M(Prophm+1, y,Pmax), with black-box access to A, such that
Pmax(B) ≥ Pmax(A).

Proof. The idea is for B to simulate A’s behavior by selecting each realization that A decides
to query. Initially, B starts with an empty set S of selected values. Whenever B is presented
with a realization Xi, it feeds it to A. If A decides to select Xi or expend a query for Xi,
regardless of the outcome of the query, B always selects Xi into S, otherwise B decides not
to select Xi. By induction, S contains exactly all the realizations that were queried by A
as well as at most one more realization that might have been selected by A if it run out of
queries. Therefore, |S| ≤ m+ 1.

Observe that A succeeds if and only if it selects the maximum, and it only selects a
realization Xi if (i) it chose to expend a query on Xi, or (ii) when it observed Xi it run
out of queries. In both cases, by the description of B, we know that Xi ∈ S, and thus the
probability that B succeeds is at least Pmax(A). ◀

▶ Lemma 2.2 (see [13] for proof). Fix an input instance of the prophet problem. Fix an
algorithm B for M(Prophm+1, y,Pmax), where y = IID or non-IID. Then, there exists an
algorithm A for M(Om, y,Pmax), with black-box access to B, such that such that Pmax(A) ≥
Pmax(B).

Combining the above two lemmas, we get the following result.

▶ Theorem 1.5. The M(Om, y,Pmax) model is equivalent to the M(Prophm+1, y,Pmax)
model, where y = IID or non-IID. In other words, for every prophet inequality instance, the
probability achieved by the best-possible algorithm in the M(Om, y,Pmax) model is the same
as the one achieved by the best-possible algorithm in the M(Prophm+1, y,Pmax) model.

2.2 For the RoE objective Om ≤ Prophm+1

We demonstrate that the Prophm model strictly surpasses the Om for non-IID random
variables.

▶ Definition 2.3. For two integers i ≤ j, let Ji : jK = {i, i+ 1, . . . , j}.

▶ Lemma 2.4. For m = 1, there exists an input instance I with 3 non-IID random variables,
such that RoE(O1, I) ≤ 3

4 RoE(Proph2, I).

ICALP 2024
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Proof. For a fixed ε > 0, consider the input instance I of three independent random variables
X1, X2, X3, where

X1 = 1 w.p. 1, X2 =
{

1 + ε w.p. 1
2 − ε

0 otherwise
, and X3 =

{
1
ε w.p. ε

0 otherwise
.

We have that

E
[
max {X1, X2, X3}

]
= 1
ε
ε+ (1 + ε)(1 − ε)

(
1
2 − ε

)
+ 1(1 − ε)

(
1
2 + ε

)
= 2 −O(ε).

For small ε, an algorithm B that is optimal for the Proph2 model in this instance is to select
X1, ignore X2 and then select X3 if it is non-zero. This yields

E[B] = 1(1 − ε) + 1/ε · ε = 2 − ε.

However, the optimal A for the oracle model queries O at X1. With probability
(1 − ε)(1/2 + ε), it stops and select X1, getting a value of 1. Otherwise, it continues, with no
oracle calls left. It ignores X2 and select X3. Thus,

E[A] = 1
(

1
2 + ε

)
(1 − ε) + 1

ε
ε = 3

2 + ε

2 − ε2.

The competitive ratios of A is RoE(O1, I) =
3
2 + ε

2 − ε2

2 −O(ε) = 3
4 +O(ε) → 3

4 , as ε → 0, whereas

the competitive ratio of B, as ε → 0, is

RoE(Proph2, I) = 2 − ε

2 +O(ε) = 1 −O(ε) → 1. ◀

The above example, appropriately generalized for m > 1 by having random variables

X1 = 1 w.p. 1, Xi =
{

1 + (i− 1)ε w.p. 1
2 − ε

0 w.p. 1
2 + ε

, for i = 2, . . . ,m+ 1, and

Xm+2 =
{

1
ε w.p. ε

0 w.p. 1 − ε
,

shows that the gap between RoE(Om, I)) and RoE(Prophm+1, I)) is at most 1 − 1/2m+1 for
general m. The analysis of this example for general m is similar to the m = 1 case. We do
not present it here as, even though this example is very simple, this gap is not the tightest
possible. For a tighter gap between the competitive ratio of the two models, see the example
in the proof of Theorem 1.8.

▶ Lemma 2.5. For any input instance I, we have RoE(Prophm+1, I) ≥ RoE(Om, I), for
IID or non-IID variables.

Proof. Let A be the algorithm in M(Om,RoE, I) realizing the maximum RoE for I. We
construct an algorithm B ∈ M(Om,RoE, I).

The algorithm B simulates A’s behavior by selecting each realization that A decides to
query. Initially, B starts with an empty set S. Whenever B is presented with a realization Xi,
it feeds it to A. If A decides to return Xi, or performs an oracle query for Xi, the algorithm
B adds Xi to S.
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Observe that the algorithm A stops as soon as an oracle query returns NO. Thus, the
simulation B of A, assumes the oracle always answers YES (i.e., a larger value is coming up
in the future). (i.e., the simulation replaces a call to the oracle by a function that always
returns YES), as this enables it (potentially) to save more values into the available slots, thus
increasing its RoE.

The set S contains exactly all the realizations that were queried by A, as well as at most
one additional realization returned by A. Therefore, |S| ≤ m+ 1.

Every possible sequence of realizations A queried (or selected to return) are in S. Therefore,
if VA is the value returned by A and VB is the value returned by B, we have VB ≥ VA, which
readily implies that RoE(B) ≥ RoE(A). ◀

▶ Theorem 1.6. For every m ≥ 1, and for all input instances J (of IID or non-IID
variables), we have RoE(Om,J ) ≤ RoE(Prophm+1,J ), Furthermore, for every m ≥ 1, there
exists an input instance I with m + 2 non-IID random variables, such that RoE(Om, I) ≤
(1 − 1/2m+1)RoE(Proph2, I).

3 The non-IID settings

By Theorem 1.6, any guarantees we provide for the oracle model with the RoE objective
can be directly translated to guarantees for the Top-1-of-m model, improving upon the
previous work on this model [3, 2, 11, 14]. We provide a simple, single-threshold algorithm
that resolves the RoE objective in the oracle model.

3.1 The exponent sequence
▶ Definition 3.1 (Exponent Sequence). For every m ≥ 1, let ξm denote the unique positive
solution to the following equation:

1 − e−ξm = Γ(m+ 1, ξm)
m! ,

where Γ(m+ 1, x) =
∫∞

t=x
tme−t dt denotes the upper incomplete gamma function. We call

the sequence {ξm}m∈N the exponent sequence.

We show below that the optimal competitive ratio of M(Om, non-IID,RoE) is exactly 1−e−ξm .
It is known that, for x ≥ 0 and an integer m+ 1 > 0, we have

Γ(m+ 1, x) = m! e−x
m∑

k=0

xk

k! ≤ m!e−xex ≤ m!. (3.1)

As such, the above equation on the value of ξm, becomes

1 − e−ξm = e−ξm

m∑
k=0

(ξm)k

k! ⇐⇒
∞∑

k=m+1

(ξm)k

k! = 1.

This readily implies that the exponent sequence is monotonically increasing, and m/e2 ≤
ξm ≤ m.

▶ Definition 3.2. Let qk+1(x) = Γ(k+1,x)
k! = e−x

∑k
j=0

xj

j! . This implies qm+1(ξm) = 1−e−ξm .

▶ Lemma 3.3. q′
m+1(x) = −e−x xm

m! .
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Proof. As (e−x)′ = −e−x, we have q′
m+1(x) = −e−x +

∑m
j=1

(
e−x xj−1

(j−1)! − e−x xj

j!

)
= −e−x +

e−x − e−x xm

m! = −e−x xm

m! . ◀

▶ Lemma 3.4 (see [13] for proof). For all m ≥ 1, we have (m!)1/m
< ξm < ((m+ 1)!)1/m+1.

▶ Remark 3.5. Setting ν(x) = ν(m,x) = Γ(m+1,x)
m! , and arguing as in Lemma 3.4, we have

ν′(x) < 0, which readily implies that ν(x) is monotonically decreasing.

Stirling’s formula applied to Lemma 3.4 readily implies the following.

▶ Lemma 3.6. We have lim
m→∞

ξm

m
= 1
e
.

▶ Lemma 3.7 (see [13] for proof). For all k,m ≥ 0 integers, we have

f(k,m) =
k∑

j=1

ξj
m

j! −
m+k∑

j=m+1

ξj
m

j! ≥ 0.

3.2 Background: Sharding, poissonization, and stochastic dominance
For a sequence of random variables X = X1, . . . , Xn, let |α ≤ X ≤ β| = |{i | α ≤ Xi ≤ β}|
denote the number of realizations in this sequence falling in the interval [α, β].

3.2.1 Sharding
For the lower bound, we use poissonization and sharding [14]. Given random variables
X1, . . . , Xn with cdfs F1, . . . , Fn, instead of sampling Xi from Fi, we instead replace it with
a sequence of K independent random variables Hi = Yi,1, . . . , Yi,K , such that maxj Yi,j

has the same distribution as Xi. Specifically, the cdf of Yi,j , for all j, is F 1/K

i . Thus, the
distribution of max {Yi,1, . . . , Yi,K} is the same as Xi. This creates a new sequence of Kn
samples S = H1 · H2 · · · · · Hn, where · is the concatenation operator. Observe that for any
α ≥ 0 and integer t, we have

P[|X ≥ α| > t] < P[|S ≥ α| > t].

Intuitively, this implies that, for threshold algorithms, an instance consisting of S instead of
X can only generate worse results. We emphasize that this sharding technique is done only
for analysis purposes.

3.2.2 Poissonization
▶ Definition 3.8 (Poisson Distribution). A random variable X has Poisson distribution with
rate λ, denoted by X ∼ Pois(λ), if P[X = i] = λke−λ/k!. Conveniently, E[X] = V[X] = λ.

The purpose of the sharding is to be able to bound quantities of the form P[|β ≤ S ≤ τ | = t].
As K grows, the underlying random variable |β ≤ S ≤ τ | has a binomial distribution that
converges to a Poisson distribution.

▶ Observation 3.9. For c ∈ (0, 1], we have, using L’Hôpital’s rule, that limx→∞ x(1−c1/x) =
limx→∞

1−exp(log(c)/x)
1/x = limx→∞

log(c) exp(log(c)/x)/x2

−1/x2 = − log c, where log = loge.
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Let τ be a threshold such that
∑n

i=1
∑K

j=1 P[Yi,j ≥ τ ] = c for some constant c to be
determined shortly. We can rewrite this into the following.

n∑
i=1

K
(

1 − P[Xi ≤ τ ]1/K
)

= c. (3.2)

The limit of Eq. (3.2), as K → +∞, is
∑n

i=1 − logP[Xi ≤ τ ] = c, by Observation 3.9.
Equivalently, for Z = max {X1, . . . , Xn}, we have

e−c = exp
( n∑

i=1
logP[Xi ≤ τ ]

)
=

n∏
i=1

P[Xi ≤ τ ] = P[X1, . . . , Xn ≤ τ ] = P[Z ≤ τ ].

In particular, the distribution of the number of indices j, such that Yi,j ≥ τ can be well
approximated with a Poisson distribution. Specifically, let Vi,j = 1 ⇐⇒ Yi,j ≥ τ , and
consider the sum Vi =

∑K
j=1 Vi,j . The variable Vi ∼ bin(K,ψi), where ψi = 1−P[Xi ≤ τ ]1/K .

Let λi = ψiK, and consider the random variable Ui ∼ Pois(λi) (i.e., Ui has a Poisson
distribution with rate λi). Intuitively, Vi and Ui have similar distributions. Formally, Le
Cam theorem implies that for any set T ⊆ {0, 1, . . . ,K}, we have |P[Vi ∈ T ] − P[Ui ∈ T ]| ≤
2Kψ2

i = 2λ2
i /K ≤ 2c2/K, by Eq. (3.2). The later quantity goes to zero as K increases.

Thus, we get a variable Ui with a Poisson distribution for each shard sequence Hi, with
rate λi, where Ui models the number of times we encounter in Hi values larger than τ .
Thus, Uτ =

∑
i Ui models the total number of times in the splintered sequence S that

values encountered are larger than τ . The variable Uτ has a Poisson distribution with rate
λτ =

∑n
i=1 λi.

3.2.3 The distribution in a range
Repeating the same process with a bigger threshold β > τ , would yield a similar Poisson
random variable Uβ with a lower rate λβ . The quantity ∆ = Uτ − Uβ is the number of
values in S in the range [τ, β]. Furthermore, ∆ has a Poisson distribution with rate λτ − λβ .
Specifically, P[|β ≤ S ≤ τ | = t] = P[∆ = t].

The key to our analysis is that the variables ∆ and Uβ are independent (in the limit as
K increases).

3.2.4 Stochastic dominance
A standard observation is that for a non-negative random variable X, we have that E[X] =∫∞

x=0 P[X ≥ x] dx. Thus, for Z = max {X1, . . . , Xn}, and for an algorithm A, if one can
guarantee that there is c ∈ [0, 1], such that for all ν ≥ 0, P[A ≥ ν] ≥ cP[Z ≥ ν], then

E[A] =
∫ ∞

0
P[A ≥ x] dx ≥ c

∫ ∞

0
P[Z ≥ x] dx ≥ cE[Z] ,

and thus c is a lower bound on the competitive ratio of A. This argument is used in several
results on prophet inequalities and is often referred to as majorizing A with Z.

3.3 An optimal single-threshold algorithm
Here, we describe a single-threshold algorithm that achieves the optimal competitive ratio in
the oracle model.
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▶ Definition 3.10 (Single-Threshold Algorithm). A single threshold algorithm for Om sets a
threshold τ , and starts observing the sequence. Whenever it encounters a realization > τ , the
algorithm stops and queries the oracle whether all the values remaining in the suffix of the
sequence are of value ≤ τ . If the oracle returns YES, the algorithm accepts the current value
and stops. Otherwise, it raises its threshold to τ = Xi and continues. If the oracle runs out
of oracle calls, it selects the first value encountered after the last oracle call that is bigger
than τ (which exists, since all oracle calls returned NO).

While technically, the querying threshold of the algorithm might change during its execution,
we call the algorithm a single-threshold algorithm since it uses a single-threshold to decide
whether to query the oracle or not, and this threshold does not change with i, unlike for
example the optimal DP for the IID prophet inequality or the prophet secretary model. Our
oracle model is quite different than most other prophet inequality models in the sense that
the algorithm has some knowledge of the (true) future. Of course, any algorithm that knows
that the maximum of Xi+1, . . . , Xn is larger than Xi would be wasting queries if it expended
them on some Xj < Xi for j > i, and thus the spirit of it being a single-threshold algorithm
to decide whether to query the oracle or not remains.

▶ Theorem 1.7. For every m ≥ 1, let αm = 1 − e−ξm , where ξm is the unique positive
solution to the equation 1−e−ξm = Γ(m+1,ξm)

m! . For any finite sequence X of non-IID variables,
one can compute a value τ , such that the single-threshold algorithm (with initial threshold τ)
has competitive ratio ≥ αm.

Proof. Let X = X1, . . . , Xn, and Z = maxi Xi. The threshold τ is the e−ξm quantile of the
maximum, i.e. P[Z ≤ τ ] = e−ξm . We use A(X) to denote the result of running the algorithm
on X.

As suggested in Section 3.2.1 (for the analysis), we imagine running the algorithm on
the splintered sequence S. Somewhat counterintuitively, imagine first generating S, and
computing Xi = maxj Yi,j , see Section 3.2.1. Thus, max S = max X. For the sequence S, let
S≥τ denote the subsequence of elements of S that their values are above τ . Observe that
X≥τ is a subsequence of S≥τ . Thus, we analyze the algorithm performance on S.

Let β ∈ [0, τ ]. The probability the algorithm selects a value above β is equal to the
probability it selects any value. Thus,

P[A(X) ≥ β] = P[A ≥ τ ] = P[Z ≥ τ ] = 1 − e−ξm ≥
(
1 − e−ξm

)
P[Z ≥ β]. (3.3)

For β ∈ [τ,+∞), let P[Z ≤ β] = e−q > e−ξm , implying P[Z ≥ β] = 1 − e−q. By sharding
and Poissonization, the number of shards in the range [τ, β] (resp. ≥ β) is a Poisson random
variable ∆ (resp. Uβ) with rate ξm − q (resp. q), see Section 3.2.3. Critically, Uβ and ∆ are
independent. Consider the event of there being at most m values in the range [τ, β], and
there being at least one value in [β,+∞). The value A(X) ≥ β in that case. Hence, by the
independence of ∆ and Uβ , we have

P[A(X) ≥ β]
P[Z ≥ β] ≥ P[(Uβ ≥ 1) ∩ (0 ≤ ∆ ≤ m)]

P[Z ≥ β] = P[Uβ ≥ 1]
P[Z ≥ β] P[0 ≤ ∆ ≤ m] = P[0 ≤ ∆ ≤ m].

Now, we have

P[0 ≤ ∆ ≤ m] =
m∑

i=0
e−(ξm−q) (ξm − q)i

i! = Γ(m+ 1, ξm − q)
m! ≥ Γ(m+ 1, ξm)

m! = 1 − e−ξm .

by Eq. (3.1), Remark 3.5 and Definition 3.1.
The above implies that, for any β ≥ 0, we have P[A(X) ≥ β] ≥ (1 − e−ξm)P[Z ≥ β],

Namely, RoE(A) ≥ 1 − e−ξm . ◀
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3.4 A matching upper bound for single-threshold algorithms
To this end, we present an input sequence for which no algorithm can do better for the
oracle that answers if Xi > maxn

j=i+1 Xj . Our upper bound is with respect to the strongest
possible form of adversary, the almighty adversary, who knows from the beginning all possible
realizations as well as the outcome of any random coins tossed by the algorithm.

Input instance

The input instance I consists of n+ 2 random variables, for sufficiently large n. Each of these
random variables can have only two values – either zero or some positive value. Specifically,
for ε > 0 sufficiently small, let

X1 = 1, Xi =
{

1 + ε(i− 1) w.p. ξm

n

0 otherwise
, for i ∈ J2 : n+ 1K , and

Xn+2 =
{

1
ε w.p. ε
0 otherwise

.

By Lemma 3.6, we have ξm ≈ m/e and as such, the expected number of non-zero entries in
this sequence is (roughly) m/e+ 1.

▶ Lemma 3.11. For Z = maxi Xi, we have E[Z] = 2 as ε → 0.

Proof. Let Z ′ = maxi∈Jn+1KXi. Observe that Z ′ = 1. As such, for Z = max(Z ′, Xn+2), we
have E[Z] = E[maxi Xi] = (1/ε)ε+ (1 − ε)E[Z ′] −−−→

ε→0
2. ◀

Next, we will need the following result on the approximation of a binomial distribution
by a Poisson distribution, known as Le Cam’s theorem ([5, 8]).

▶ Theorem 3.12 (Le Cam’s theorem). Let X1, . . . , Xn be independent Bernoulli random
variables, with pi = P[Xi = 1], for i ∈ JnK. Let S =

∑
i Xi and λ =

∑
i pi. Then S has a

Poisson binomial distribution with expectation λ. Furthermore, let Y ∼ Poisλ. Then we have
n∑

i=0
|P[S = i] − P[Y = i]| =

n∑
i=0

∣∣∣∣P[S = i] − e−λλ
i

i!

∣∣∣∣ ≤ 2
n∑

i=1
p2

i .

▶ Observation 3.13. Let X̂i be an indicator variable for the event that Xi = 1. For sufficiently
large n, ∇ =

∑n+1
i=2 X̂i has a binomial distribution that can be well approximated by a Poisson

distribution (Theorem 3.12) with rate ξm. That is, lim
n→∞

P
[
∇ = k

]
= e−ξm

(ξm)k

k! .

Observe that limn→∞ P[∇ ≤ k] =
∑k

i=0 e
−ξm (ξm)i

i! = qk+1(ξm). In the analysis to follow,
we assume n → ∞.

▶ Theorem 1.8. For any m ≥ 1 and δ > 0, there exists an input instance I such that for
any algorithm, we have RoE(A) ≤ 1 − e−ξm + δ.

Proof. First, we discuss the strategy that the adversary adopts: the adversary first observes
all values. Suppose k nonzero values show up from X2, ..., Xn at indices U = {i1, ..., ik}, and
all other n − k values from X2, . . . , Xn+1 at indices B = {̂i1, . . . , în−k} are zero. One can
easily see that it is optimal for the adversary to provide the random variables in the order
Xσ(1), . . . , Xσ(n+2) where σ is defined as σ(1) = 1, σ(j) = ij , j = 2, . . . , k + 1, σ(j) = îj and
finally σ(n+ 2) = n+ 2. In other words, the adversary stacks all the k non zero values from
X2, . . . , Xn+1 starting from index 2 to index k + 1.
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Now we consider an algorithm for this setting. The algorithm is aware of the adversary’s
strategy and thus knows that it will observe Xσ(1) = X1, then a stream of k ones (where
k is unknown), then n− k zeros, and finally Xσ(n+2) = Xn+2. The algorithm has a simple
decision to make in the beginning; it either queries at X1 and if the answer is NO it continues
to Xσ(2), . . . Xσ(n+1) with m − 1 oracle calls, or it can just proceed to Xσ(2), . . . Xσ(n+1)
with m oracle calls. Thus, the only difference in the two cases is that in the former, it
has only m − 1 oracle calls for Xσ(2), . . . , Xσ(n+1) but it gets an expected reward of 1 if
Xσ(2) = · · · = Xσ(n+2) = 0, and in the later case, it has m oracle calls for Xσ(2), . . . , Xσ(n+1),
but it gets 0 reward if Xσ(2) = · · · = Xσ(n+2) = 0.

Let k be the number of non-zeros in X2, . . . , Xn+1 (i.e., Xσ(k+1) is the last 1). When
the algorithm observes the stream of approximate ones from Xσ(2), ..., Xσ(n+1), it needs to
decide indices S ⊆ J2 : n+ 1K , |S| ≤ m where it will expend the oracle call. Clearly, it is
suboptimal to use the oracle at a 0 value, since regardless, the algorithm will receive a value
of 0 in the end if it fails. Consider what happens if the algorithm decides to query at index
i ∈ J2 : n+ 1K with Xσ(i) = 1. If Xσ(i+1) = . . . Xσ(n+1) = 0, then the algorithm gets on
expectation 1/ε · ε+ (1 − ε) · 1 −−−→

ε→0
2 reward on expectation. However, if Xσ(i+1) > 0, then

the oracle will return NO because Xσ(i) ̸> max(Xσ(i+1), . . . , Xσ(n+2)). On the other hand, if
the algorithm does not query at index k + 1 (i.e., (k + 1) ̸∈ S), then the algorithm gets on
expectation E

[
Xσ(n+2)

]
= E[Xn+2] = 1/ε · ε = 1.

Hence, the crucial observation is that an algorithm starting at Xσ(2) that uses its query
calls at indices S ⊆ J2 : n+ 1K gets on expectation 2 if and only if (k + 1) ∈ S, and 1
otherwise. Thus, for algorithm A1 that skips Xσ(1) and uses its oracles at indices S, |S| = m,
it satisfies

E[A1] = 2 ·
∑

i≥0,(i+1)∈S

e−ξm
ξi

m

i! + 1 ·
∑

i≥0,(i+1)/∈S

e−ξm
ξi

m

i!

=
∑
i≥0

e−ξm
ξi

m

i! +
∑

i≥0,(i+1)∈S

e−ξm
ξi

m

i!

= 1 +
∑

(i+1)∈S

e−ξm
ξi

m

i!

On the other hand, for algorithm A2 that uses its oracle at Xσ(1) and uses its remaining
oracles at indices S′ ∈ J2 : n+ 1K , |S′| = m− 1, it gets an extra benefit of getting a reward
with expected value 2 (as ε → 0) if Xσ(2) = · · · = Xσ(n+1) = 0. Hence, it satisfies

E[A2] =
(
e−ξm · 2

)
+

2 ·
∑

i≥0,(i+1)∈S′

e−ξm
ξi

m

i!

+

1 ·
∑

i≥1,(i+1)/∈S′

e−ξm
ξi

m

i!


=

∑
i≥0

e−ξm
ξi

m

i!

+ e−ξm +
∑

(i+1)∈S′

e−ξm
ξi

m

i!

= 1 + e−ξm +
∑

(i+1)∈S′

e−ξm
ξi

m

i! .

First, we show that the expression
∑

(i+1)∈S e
−ξm ξi

m

i! subject to S ⊆ J2 : n+ 1K , |S| = m

is maximized for S∗ = J2 : m+ 1K. Note that it is easy to verify that for a Poisson distribution
with rate λ, its probability mass function e−λλi/i! is increasing for i < λ, and decreasing
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after i > λ. Hence, the optimal S∗ = Jk : k +m− 1K for some k ≥ 2 that “covers” the rate
ξm (this is the region with the most mass for a Poisson distribution). The optimal choice of
k is k = 2 because

m∑
i=1

e−ξm
ξi

m

i! −
k+m−2∑
i=k−1

e−ξm
ξi

m

i! =
k−2∑
i=1

e−ξm
ξi

m

i! −
m+k−2∑
i=m+1

e−ξm
ξi

m

i! ≥ 0,

where the last inequality holds by Lemma 3.7. Similarly, k = 2 is optimal for when |S| = m−1.
Hence, we get the inequalities

E[A1] ≤ 1 +
m∑

i=1
e−ξm

ξi
m

i! = 1 + qm+1(ξm) − e−ξm ,

E[A2] ≤ 1 + e−ξm +
m−1∑
i=1

e−ξm
ξi

m

i! = 1 + qm(ξm).

Thus, we have

max(E[A1] ,E[A2]) ≤ 1 − e−ξm + qm(ξm) + e−ξm max
{

1, ξ
m
m

m!

}
But recall from Lemma 3.4 that ξm

m ≥ m!, thus

max(E[A1] ,E[A2]) ≤ 1 − e−ξm + qm(ξm) + e−ξm · ξ
m
m

m!
= 1 − e−ξm + qm+1(ξm)
= 2
(
1 − e−ξm

)
.

Therefore, the competitive ratio of every algorithm is

RoE ≤
2
(
1 − e−ξm

)
2 = 1 − e−ξm . ◀

4 The IID settings

Motivated by the early work of [12] for the Top-1-of-m model, in this section we study the
IID setting and the Pmax objective. As a warm-up, we take a look at the IID setting with the
Pmax objective and the case of m = 1, providing a simple, single-threshold algorithm.

4.1 A single-threshold algorithm for m = 1
Our single-threshold algorithm Ap for M(O1, IID,Pmax) selects a threshold τ equal to the
pth quantile of the given distribution D, for some p ∈ [0, 1]. In other words, τ is set such
that p = P[Xi ≥ τ ]. The first time the algorithm observes a realization above τ , it queries
the oracle to see whether the realization should be selected or not. If it continues, it simply
accepts the first value encountered above the observed realization on which it queried O.

▶ Lemma 4.1. There exists p ∈ [0, 1] such that Ap selects the maximum realization with
probability at least 0.797 in the M(O1, IID,Pmax) model for large n.

Proof. Let Y be the total number of realizations above τ , and i1 < i2 < · · · < iY be the
indices of the random variables above τ , i.e. Xit > τ , for t = 1, . . . , Y . Furthermore, let rt

be the rank of Xit
in X = {Xi1 , . . . , XiY

}, i.e. the number k such that Xit
is the kth largest

number in X , and Z be the maximum realization of X1, . . . , Xn.
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Xi1 is the first realization we observe above τ . Notice that if r1 = 1 or r1 = 2 then the
algorithm always selects the maximum realization Z. In other words, given that Y = 1 or
Y = 2, the algorithm selects Z with probability 1. Consider the case Y > 2. Again, if r1 ≤ 2,
the algorithm selects Z with probability 1. Otherwise, if r1 > 2, the algorithm returns Z if
and only if for all realizations above τ that appear after Xi1 and are also larger than Xi1 ,
the first to encounter is Z. In other words, for the algorithm to succeed in this case, it must
be that among the r1 − 1 values of rank smaller than r1, the first one in the arrival order is
the element of rank 1. Since the random variables are IID, the probability of this event is
exactly 1/r1−1.

Let j be the first index such that Xij
> Xi1 , and α(Y ) = P[A selects Z | Y ]. Conditioned

on Y ≥ 3, the probability that the algorithm selects Z is

α(Y | Y ≥ 3) = P[r1 = 1] + P[r1 = 2] +
Y∑

t=3
P[r1 = t]P[rj = 1 | r1 = t]

= 2
Y

+
Y∑

t=3

P[rz = 1 | r1 = t]
Y

= 1
Y

(
2 +

Y∑
t=3

P[rz = 1 | r1 = t]
)

= 1
Y

(
2 +

Y∑
t=3

1
t− 1

)
= 1
Y

(
1 +

Y −1∑
t=1

1
t

)

= 1
Y

(1 +HY −1),

where Hn denotes the nth harmonic number. Recall also that α(Y | Y = 1) = α(Y | Y = 2) =
1.

Next, we estimate P[Y = i], by approximating Y with a Poisson distribution via Le Cam’s
theorem. Let δi =

∣∣∣(n
i

)
pi(1 − p)n−i − e−np (np)i

i!

∣∣∣. The idea is to set p such that np = q,
where q ≥ 1 is a fixed constant. We know that P[Y = i] =

(
n
i

)
pi(1 − p)n−i, and thus, by

Theorem 3.12, we have
∞∑

i=0
δi =

∞∑
i=0

∣∣∣∣∣P[Y = i] − e−np (np)i

i!

∣∣∣∣∣ =
∞∑

i=0

∣∣∣∣∣P[Y = i] − e−q (q)i

i!

∣∣∣∣∣ ≤ 2qp
max {1, q} ≤ 2p = 2q

n
.

Overall, the probability that A selects Z is

α(Y ) =
n∑

i=0
P[Y = i] · α(Y | Y = i)

= P[Y = 1] +
n∑

i=2
P[Y = i] · α(Y | Y = i)

≥ np(1 − p)(n−1) +
n∑

i=2

(
e−q q

i

i! − δi

)
· α(Y | Y = i),

where the last inequality follows by the definition of δi. Thus,

α(Y ) = q(1 − q/n)(n−1) +
n∑

i=2
e−q q

i

i! · α(Y | Y = i) −
n∑

i=2
δi · α(Y | Y = i)

≥ q(1 − q/n)(n−1) +
n∑

i=2
e−q q

i

i!
1 +Hi−1

i
−

n∑
i=2

δi

≥ q(1 − q/n)(n−1) + e−q
n∑

i=2

qi(1 +Hi−1)
i! · i

− 2q
n
. (4.1)

◀
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It is easy to see that simply setting q = 2, which corresponds to p = 2/n and τ being the
2/nth quantile of D, yields α(Y ) > 0.5801 for all n ≥ 20. Thus, our simple single-threshold
algorithm, augmented with a single oracle call, beats, even for small n, the optimal algorithm
for the IID prophet inequality which uses different thresholds per distribution and achieves a
probability of success approximately 0.5801 [12].

Since the worst-case probability of ≈ 0.5801 by [12] is achieved for n → ∞, one might be
interested in the asymptotic behavior of the probability of our algorithm, α(Y ), for large n.
It is not too difficult to see after some calculations that, as n → ∞, Eq. (4.1) is maximized
for q ≈ 2.435, yielding α(Y ) ≈ 0.798.

4.2 A single-threshold algorithm for general m

As we saw in the previous section, even for a simple, single-threshold algorithm, the analysis
of the winning probability gets tedious quickly. In this section, we generalize our single-
threshold algorithm to the case of general m, and use the fact that the maximum of a
uniformly random permutation of n values changes O(logn) times with high probability to
obtain a guarantee on the winning probability that is super-exponential with respect to m.

As before, our algorithm selects a threshold τ such that p = P[X ≥ τ ] and every time the
algorithm observes a realization above τ , it uses an oracle query and asks O if the realization
should be selected or not. If not, then it updates the threshold to the new higher value. If
the algorithm runs out of oracle calls, then it selects the first element above the current
threshold τ that is encounters, if any. In other words, the algorithm uses the oracle calls
greedily for all realizations above τ .

▶ Theorem 1.9 (see [13] for proof). For sufficiently large m,n, there exists an algorithm for
the M(Om, IID,Pmax) model that selects the maximum realization with probability at least
1 − O

(
m−m/5

)
.

4.3 An (almost) tight upper bound
Given that we have a simple, single-threshold algorithm for the M(Om, IID,Pmax) setting, a
reasonable question to ask is how far it is from being optimal. As we show in this section,
the algorithm is asymptotically almost optimal.

▶ Theorem 1.10 (see [13] for proof). There exists an instance of M(Om, IID,Pmax) for which
no algorithm can select the maximum realization with probability greater than 1 − O(m−m).

5 Conclusion

In this work, we improved on the known results for the Top-1-of-m model, for both the RoE
and Pmax objectives, via the lens of a simple prophet inequality augmented with oracle calls.
All our results hold with respect to the strongest possible adversary, the almighty adversary.
A weaker, offline, adversary is forced to select the order of distributions upfront, given only
access to the same information as the algorithm. For such an adversary, one can do very
slightly better than Theorem 1.8 – see the full version [13] for more details.

Our oracle choice was motivated by our efforts to reformulate the Top-1-of-m model in
order to improve upon the current known bounds. We mention a few other oracle models
that are interesting and could potentially be useful in analyzing other prophet inequality
settings: (i) the oracle can predict a range for the maximum value, but formalizing this
in a more general setting turns out to be difficult without assuming something about the
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support of each random variable, (ii) the algorithm can ask the oracle if there is a value that
is greater than c ·Xi, for some constant c. This latter oracle is more powerful, as it doesn’t
exhibit the same limitations that our oracle model has in the example of Theorem 1.8. We
leave exploring more complex oracle models for future work.

Finally, there are subtle differences between an oracle that answers queries of the formXi >

max {Xi+1, . . . , Xn} and one that answers queries of the form Xi ≥ max {Xi+1, . . . , Xn};
in particular, the > oracle is weaker than the ≥ oracle. We refer the reader to the full
version [13] for a discussion on this topic.
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