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Abstract
The log-rank conjecture, a longstanding problem in communication complexity, has persistently
eluded resolution for decades. Consequently, some recent efforts have focused on potential approaches
for establishing the conjecture in the special case of XOR functions, where the communication
matrix is lifted from a boolean function, and the rank of the matrix equals the Fourier sparsity of
the function, which is the number of its nonzero Fourier coefficients.

In this note, we refute two conjectures. The first has origins in Montanaro and Osborne (arXiv’09)
and is considered in Tsang, Wong, Xie, and Zhang (FOCS’13), and the second is due to Mande and
Sanyal (FSTTCS’20). These conjectures were proposed in order to improve the best-known bound
of Lovett (STOC’14) regarding the log-rank conjecture in the special case of XOR functions. Both
conjectures speculate that the set of nonzero Fourier coefficients of the boolean function has some
strong additive structure. We refute these conjectures by constructing two specific boolean functions
tailored to each.
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1 Introduction

The study of communication complexity seeks to determine the inherent amount of commu-
nication between multiple parties required to complete a computational task. Arguably, the
most outstanding conjecture in the field is the log-rank conjecture of Lovász and Saks [4].
They suggest that the (deterministic) communication complexity of a two-party boolean
function is upper bounded by the matrix rank over R. More precisely,
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▶ Conjecture 1 (Log-rank conjecture [4]). Let f : X × Y → {−1, 1} be an arbitrary two-party
boolean function. Then,

CC(f) ≤ polylog(rank(f)),

where CC(f) is the communication complexity of f and rank(f) is the rank over R of the
corresponding boolean matrix.

It is well-known that log(rank(f)) ≤ CC(f) [7], so a positive resolution to Conjecture 1 would
imply that the communication complexity of two-party boolean functions is determined by
rank, up to polynomial factors.

To date, the best known bound is still exponentially far from that in Conjecture 1. Con-
cretely, Lovett [5] showed that CC(f) ≤ O(

√
rank(f) log rank(f)). Very recently, Sudakov

and Tomon posted a preprint improving the bound to O(
√

rank(f)) [13]. In hopes of gaining
further insight, many researchers have considered the special case of XOR functions, where
f⊕(x, y) := f(x + y) for a boolean function f : Fn

2 → {−1, 1} [8, 15, 14, 12, 2, 6].
The XOR setting has several convenient properties. For example, the eigenvalues of

f⊕ correspond to the Fourier coefficients of f . Thus, rank(f⊕) = |supp(f̂)|, the number of
nonzero coefficients in f ’s Fourier expansion (also known as the Fourier sparsity). Additionally,
Hatami, Hosseini, and Lovett [2] proved a polynomial equivalence between CC(f⊕) and the
parity decision tree complexity of f , denoted PDT(f). Parity decision trees are defined
similarly to standard decision trees, with the extra power that each node can query an
arbitrary parity of input bits. These facts together imply that the log-rank conjecture for
XOR functions can be restated as follows:

▶ Conjecture 2 (XOR log-rank conjecture). Let f : Fn
2 → {−1, 1}. Then,

PDT(f) ≤ polylog(|supp(f̂)|).

The best known bound, due to [14, 12], is PDT(f) ≤ O(
√

|supp(f̂)|), a mere log-factor
improvement on the general case bound by Lovett [5], and matched by the recent bound of
Sudakov and Tomon [13].

1.1 Folding

Folding is a fundamental concept in the analysis of the additive structure of a function’s
Fourier support. Let

S = supp(f̂) = {γ ∈ Fn
2 : f̂(γ) ̸= 0} and S + γ = {s + γ : s ∈ S}.

If (s1, s2), (s3, s4) ∈
(S

2
)

satisfy s1 + s2 = s3 + s4 = γ, we say the pairs (s1, s2) and (s3, s4)
fold in the direction γ.

Analyzing folding directions is useful in constructing efficient PDTs in the context of
Conjecture 2. In particular, when a function f is restricted according to the result of some
parity query γ, all pairs of elements in S that fold in the direction γ collapse to a single term
in the restricted function f |γ ’s Fourier support. Iterating this process until the restricted
function is constant yields a PDT whose depth depends on the number of iterations performed
and, thus, on the size of the folding directions queried. Indeed, this is the general strategy
used to prove the aforementioned closest result to Conjecture 2 [14, 12].
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1.2 Refuting a greedy approach
An approach dating back to [8] seeks to prove Conjecture 2 through the existence of a
single large folding direction. They conjectured that there always exists γ1, γ2 such that
|(S + γ1) ∩ (S + γ2)| ≥ |S|/K for some constant K > 1. This yields the following O(log |S|)-
rounds greedy approach: query γ1 + γ2 and consider the function restricted to the query
response. This restriction decreases the Fourier sparsity by a constant factor, so the function
must become constant in O(log |S|) rounds. This implies the strong upper bound of

PDT(f) ≤ O (log |S|) .

However, O’Donnell, Wright, Zhao, Sun, and Tan [10] constructed a function with
communication complexity Ω(log(|S|)log3(6)); hence one can not take K to be a constant.
Yet to prove the log-rank conjecture, it suffices to take K = O(polylog(|S|)), and this choice
of K remained plausible up to date. Such an approach is mentioned in both [14] and [6], and
a similar approach was used to verify the log-rank conjecture for many cases of functions
lifted with AND (rather than XOR) gadgets [3]. We strongly refute this conjecture.

▶ Theorem 3 (Informal version of Theorem 8). For infinitely many n, there is a function
f : Fn

2 → {−1, 1} such that for S = supp(f̂), it holds

|(S + γ1) ∩ (S + γ2)| ≤ O
(

|S|5/6
)

for all distinct γ1, γ2 ∈ Fn
2 .

▶ Remark 4. Observe that this theorem implies the greedy method cannot obtain a bound
better than PDT(f) = Õ(|S|1/6). In fact, a more careful analysis can rule out bounds better
than PDT(f) = Õ(|S|1/5) (see Remark 15).

The functions used in Theorem 3 are a variant of the addressing function using disjoint
(affine) subspaces. While we believe the specific construction is novel, the concept of using
functions defined with disjoint subspaces has previously appeared in the literature in this
context. Most notably, Chattopadhyay, Garg, and Sherif used XOR functions based on this
idea in the pursuit of stronger counterexamples to a more general version of the log-rank
conjecture [1].

1.3 Refuting a randomized approach
Rather than simply looking for a large folding direction, a recent work of Mande and Sanyal
[6] attempts to address Conjecture 2 through a deeper understanding of the additive structure
of the spectrum of boolean functions. They proposed the following conjecture on the number
of nontrivial folding directions, and showed it would yield a polynomial improvement to the
state-of-the-art upper bound for the XOR log-rank conjecture via a randomized approach.

▶ Conjecture 5 ([6]). There are constants α, β ∈ (0, 1) such that for every boolean function
f : Fn

2 → {−1, 1}, for S = supp(f̂), it holds

Pr
γ1,γ2∈S

[
|(S + γ1) ∩ (S + γ2)| > |S|β

]
≥ α.

In fact, Mande and Sanyal conjectured that one can take β = 1
2 − o(1). The conjecture

might seem plausible given the numerous results on the additive structure of the spectrum of
boolean functions. However, we strongly refute it, as well:

ICALP 2024
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▶ Theorem 6 (Informal version of Theorem 16). For infinitely many n, there is a function
f : Fn

2 → {−1, 1} such that for S = supp(f̂), it holds

Pr
γ1,γ2∈S

[|(S + γ1) ∩ (S + γ2)| > k] = O(1/k) ∀k ≥ 1.

Overview

Some preliminary material is reviewed in Section 2. We prove more precise versions of
Theorem 3 in Section 3 and Theorem 6 in Section 4. Section 5 contains some final thoughts.

2 Preliminaries

Communication complexity

Let f : X × Y → {−1, 1} be an arbitrary function. Additionally, assume two parties are
given an element x ∈ X and y ∈ Y , respectively, which the other party cannot see. The
(deterministic) communication complexity of f , denoted CC(f), is the minimum number of
bits over all assignments (x, y) needed to be exchanged in order to evaluate f , where the
parties may decide on a strategy prior to receiving their inputs.

One can view such a function as an X × Y matrix, where the (x, y) entry takes the value
f(x, y). Thus, it is natural to consider the relationship between linear algebraic measures,
such as matrix rank, and communication complexity, as in Conjecture 1. For a more thorough
treatment of communication complexity, see the excellent book [11].

Decision trees

Decision trees are simple models of computation. The (deterministic) decision tree depth of
a function f : Fn

2 → {−1, 1} is the maximum over all inputs x ∈ Fn
2 of the fewest number of

input bits one must query to correctly evaluate f(x).
Parity decision trees (PDTs) extend the power of “traditional” decision trees by allowing

queries to return the sum modulo two of an arbitrary subset of the bits. They are particularly
relevant in the study of communication complexity, since for functions of the form f⊕(x, y) =
f(x + y) for f : Fn

2 → {−1, 1}, the parity decision tree depth and communication complexity
are equivalent (up to polynomial factors) [2].

Boolean analysis

Every function f : Fn
2 → R has a unique Fourier expansion

f =
∑

α∈Fn
2

f̂(α)χα,

where

χα(x) = (−1)⟨x,α⟩ and f̂(α) = ⟨f, χα⟩ = Ex∈Fn
2
[f(x)χα(x)].

The set supp(f̂) = {α ∈ Fn
2 : f̂(α) ̸= 0} is the Fourier support, occasionally denoted S. Its

size |supp(f̂)| is the Fourier sparsity. In light of Conjecture 2, we are primarily interested in
the relationship between a function’s Fourier sparsity and parity decision tree depth.

In general, a vast array of information about a function can be learned from its Fourier
expansion, and we direct readers to the standard text [9] for additional background. For our
purposes, we will only require the following simple fact. Let V ⊥ = {w : ⟨w, v⟩ = 0 for all v ∈
V } be the orthogonal complement of a subspace V .
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▶ Proposition 7 (See e.g., [9, Proposition 3.12]). If A = V + v ⊆ Fn
2 is an affine subspace of

codimension k, then

1A =
∑

α∈V ⊥

2−kχα(v)χα.

3 One excellent folding direction

A large folding direction implies the existence of a parity query whose answer substantially
simplifies the resulting restricted function. This suggests the following greedy approach
to resolve the XOR log-rank conjecture: if we can always find distinct γ1, γ2 such that
|(S + γ1) ∩ (S + γ2)| ≥ Ω(|S| / polylog(|S|)), then querying γ1 + γ2 and recursing on the
appropriate restriction of f will force f to be constant in polylog(|S|) rounds.

We refute this strategy by proving a precise version of Theorem 3.

▶ Theorem 8. For n = 2k + 7k with k ∈ N≥3, there is a function f : Fn
2 → {−1, 1} such

that for S = supp(f̂), it holds |S| ≥ 26k, and yet |(S + γ1) ∩ (S + γ2)| ≤ 25k+4 for all distinct
γ1, γ2 ∈ Fn

2 .

To build intuition for our construction, we first consider the standard addressing function.

▶ Example 9 (Addressing). Define f : Fk+2k

2 → {−1, 1} by

f(x, y) = (−1)yx =
∑
z∈Fk

2

1z(x) · (−1)yz ,

where x ∈ Fk
2 and y ∈ F2k

2 (and slightly abusing notation by indexing y with vectors).

A greedy approach is sufficient for a PDT to evaluate this function. Simply query
each address bit, then the corresponding addressed bit. Each query eliminates half of the
remaining possible address values, so the PDT has depth k + 1, while the function’s sparsity
is exponential in k. To modify the function to prevent this approach, we encode the address
using subspaces to obfuscate it while maintaining Fourier sparsity.

▶ Example 10 (Subspace addressing). Let A1, . . . , A2k ⊂ F7k
2 be disjoint affine subspaces of

dimension 2k. Define f : F7k+2k

2 → {−1, 1} by

f(x, y) =
{

(−1)yi x ∈ Ai

1 x ̸∈ A1 ∪ · · · ∪ A2k

,

where x ∈ F7k
2 and y ∈ F2k

2 .

We choose Ai’s randomly and show that the resulting function f has the suitable properties
we need with high probability.

▶ Lemma 11. Suppose the random function f is constructed by picking random affine
subspaces A1, · · · , A2k ⊂ F7k

2 as follows: for each i ∈ [2k], choose vectors ai, v1
i , · · · , v2k

i ∈ F7k
2

uniformly and independently, and let Vi = ⟨v1
i , · · · , v2k

i ⟩ and Ai = Vi + ai. Then with
probability 1 − 2−k+2, all of the following hold:
(a) ∀i, dim(Vi) = 2k.
(b) ∀i ̸= j, Ai ∩ Aj = ∅.
(c) ∀i ̸= j, Vi ∩ Vj = {0}.
(d) For all nonzero v ∈ F7k

2 , |{i : v ∈ V ⊥
i }| ≤ 7.

ICALP 2024
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Proof. For brevity, let m = 7k.
(a) Fix i ∈ [2k]. The probability that vectors v1

i , · · · , v2k
i are linearly independent is at least

2m − 1
2m

· 2m − 2
2m

· 2m − 22

2m
· · · · · 2m − 22k−1

2m
≥ (1 − 22k−m)m ≥ 1 − m22k−m.

Hence the probability that there is i ∈ [2k] for which v1
i , · · · , v2k

i are not linearly
independent is at most m23k−m = 7k2−4k ≤ 2−k.

(b) Fix i ̸= j. The probability that Ai ∩ Aj ̸= ∅ is at most 22k22k−m = 24k−m. Hence, the
probability that there are i ̸= j with Ai ∩ Aj ̸= ∅ is at most 22k24k−m = 2−k.

(c) Fix i ≠ j. The probability that Vi ∩ Vj ̸= {0} is at most (22k − 1)22k−m ≤ 24k−m. Hence,
the probability that there are i ̸= j with Vi ∩ Vj ̸= ∅ is at most 22k24k−m = 2−k.

(d) The probability that a fixed nonzero vector v ∈ F7k
2 is orthogonal to at least t subspaces

among V1, · · · , V2k is at most
(2k

t

)
2−2tk ≤ 2−tk. Taking t = 8 and union bounding over all

27k −1 options for v shows that the probability that there is v for which |{i : v ∈ V ⊥
i }| ≥ 8

is at most 2−k.

By the union bound, the probability that any of items (a) to (d) are not satisfied is at
most 4 · 2−k = 2−k+2. ◀

We will assume from now on that f is chosen randomly so that Lemma 11 holds, and set
S = supp(f̂). It remains to prove there is no large folding direction. First, we give a lower
bound on the size of Fourier support of f .

▷ Claim 12. |S| ≥ 26k.

Proof. We can express f as

f(x, y) = 1(A1∪···∪A2k )c(x) +
2k∑

i=1
1Ai(x) · (−1)yi

= 1 −
2k∑

i=1
1Ai(x) +

2k∑
i=1

1Ai(x) · (−1)yi

= 1 +
2k∑

i=1
1Ai

(x) · ((−1)yi − 1).

By Proposition 7, the Fourier support of the function 1Ai
(x) is V ⊥

i ⊂ F7k
2 , and of

1Ai(x) · (−1)yi is V ⊥
i + ei, where ei is the i-th basis vector in the standard basis for F2k

2
embedded in the space F7k

2 × F2k

2 . Since the affine subspaces V ⊥
i + ei are disjoint and also(

V ⊥
i + ei

)
∩

(
V ⊥

i

)
= ∅ the coefficients of characters in V ⊥

i + ei will not be canceled. Hence,
we get that

2k⋃
i=1

(
V ⊥

i + ei

)
⊂ S

and so |S| ≥ 2k · 27k−2k = 26k. ◁

We also need the following claim.

▷ Claim 13. Suppose W1, W2 ⊂ Fn
2 are two linear subspaces such that W1 ∩ W2 = {0}.

Then for all x ∈ Fn
2 ,

|W ⊥
1 ∩ (W ⊥

2 + x)| = 2n−dim W1−dim W2 .
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Proof. Suppose dim(W1) = d1 and dim(W2) = d2. Without loss of generality, assume
that W1 = Fd1

2 × 0d2 × 0n−d1−d2 and W2 = 0d1 × Fd2
2 × 0n−d1−d2 . Note that W ⊥

1 =
0d1 × Fd2

2 × Fn−d1−d2
2 and W ⊥

2 = Fd1
2 × 0d2 × Fn−d1−d2

2 . Pick an arbitrary x = (x1, x2, x3) ∈
Fd1

2 ×Fd2
2 ×Fn−d1−d2

2 . Then W ⊥
2 +(x1, x2, x3) = Fd1

2 ×{x2}×Fn−d1−d2
2 and W ⊥

1 ∩(W ⊥
2 +x) =

0d1 × {x2} × Fn−d1−d2
2 has the claimed size. ◁

Finally, Theorem 8 follows from claim below.

▷ Claim 14. For all distinct γ1, γ2 ∈ F7k+2k

2 , we have

|(S + γ1) ∩ (S + γ2)| ≤ 25k+4.

Proof. First, note that it suffices to prove the claim for all distinct γ1, γ2 ∈ S, since if
s1 + γ1 = s2 + γ2 for s1, s2 ∈ S, it must be that γ1 + γ2 = s1 + s2 ∈ S + S. Pick an arbitrary
non-zero γ = γ1 + γ2 for γ1, γ2 ∈ S. Remember that

|(S + γ1) ∩ (S + γ2)| = |S ∩ (S + γ)| and S ⊆

 2k⋃
i=1

V ⊥
i

 ∪

 2k⋃
i=1

(V ⊥
i + ei)

 .

Hence S ∩ (S + γ) ⊆ A ∪ B ∪ C, where

A =
⋃
i,j

(
V ⊥

i ∩ (V ⊥
j + γ)

)
B =

⋃
i,j

(
V ⊥

i ∩ (V ⊥
j + ej + γ)

)
C =

⋃
i,j

(
(V ⊥

i + ei) ∩ (V ⊥
j + ej + γ)

)
.

Let | · | denote the Hamming weight of a vector. Decompose γ = (γx, γy) where γx ∈ F7k
2

and γy ∈ F2k

2 . Observe that |γy| ≤ 2, since (as noted above) we may assume γ ∈ S + S
without loss of generality.
Case 1: |γy| = 0.

Note that in this case B = ∅ and C =
⋃

i

(
(V ⊥

i + ei) ∩ (V ⊥
i + ei + γx)

)
. Overall, we get

|S ∩ (S + γx)| ≤

∣∣∣∣∣∣
⋃
i,j

(
V ⊥

i ∩ (V ⊥
j + γx)

)∣∣∣∣∣∣ +

∣∣∣∣∣⋃
i

(
(V ⊥

i + ei) ∩ (V ⊥
i + ei + γx)

)∣∣∣∣∣
=

∣∣∣∣∣∣
⋃
i,j

(
V ⊥

i ∩ (V ⊥
j + γx)

)∣∣∣∣∣∣ +

∣∣∣∣∣⋃
i

(
V ⊥

i ∩ (V ⊥
i + γx)

)∣∣∣∣∣
≤

∑
i ̸=j

|V ⊥
i ∩ (V ⊥

j + γx)| + 2
∑

i

|V ⊥
i ∩ (V ⊥

i + γx)|

≤
∑
i ̸=j

|V ⊥
i ∩ (V ⊥

j + γx)| + 2 · 25k · |{i : γx ∈ V ⊥
i }|.

To bound the first term, note that Vi ∩ Vj = {0} for all i ̸= j (by item (c) of Lemma 11).
Using Claim 13 we have that |V ⊥

i ∩ (V ⊥
j + γx)| = 27k−dim(Vi)−dim(Vj) = 27k−2k−2k = 23k.

To bound the second term, by item (d) of Lemma 11, we have that |{i : γx ∈ V ⊥
i }| ≤ 7.

Overall, we get that

|S ∩ (S + γ)| ≤ 22k · 23k + 7 · 25k+1 ≤ 25k+4.

ICALP 2024
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Case 2: |γy| = 1. Suppose γy = ei for some i.
In this case, A = C = ∅ and B = V ⊥

i ∩ (V ⊥
i + ei + γy). Hence,

|S ∩ (S + γ)| ≤ |V ⊥
i ∩ (V ⊥

i + ei + γy)| ≤ |V ⊥
i | = 25k,

Case 3: |γy| = 2. This is similar to Case 2. ◀

▶ Remark 15. We have chosen parameters for simplicity of exhibition; however, by choosing
the original disjoint affine subspaces from F(6+ε)k

2 rather than F7k
2 , a similar analysis rules

out any bounds stronger than PDT(f) = Õ(|S|1/5) resulting from this greedy method.

4 Many good folding directions

Rather than hoping for one large folding direction, [6] sought many nontrivial ones. In this
section, we refute their conjecture (Conjecture 5) with the following quantified version of
Theorem 6.

▶ Theorem 16. For n = 2d − 1 with d ∈ N, there is a function f : Fn
2 → {−1, 1} such that

for S = supp(f̂), it holds

Pr
γ1,γ2∈S

[
|(S + γ1) ∩ (S + γ2)| ≥ 2k+2]

≤ 2−k + 21−d ∀k ≥ 1.

In our construction, |S| = poly(n), which is the primary regime of interest. For larger S, say
of size |S| = exp(nc) for some constant c > 0, the log-rank conjecture is trivially true, since
n < polylog(|S|).

Let T be a full binary decision tree of depth d. There are n = 2d − 1 internal nodes
indexed by [2d − 1], where we query (distinct) xi at node i. Each of the largest depth internal
nodes v is adjacent to two leaves: -1 and 1, corresponding to v = 0 and v = 1, respectively.
Let f : Fn

2 → {−1, 1} be the resulting function. For example, the following decision tree
corresponds to f for n = 7.

x1

x2

x4

-1 1

x5

-1 1

x3

x6

-1 1

x7

-1 1

0 1

As we will soon show, the Fourier support of f corresponds to (subsets of) paths down
the tree, where |(S + γ1) ∩ (S + γ2)| is determined by the lowest common ancestor of the
paths of γ1 and γ2. Since it is overwhelmingly likely the two paths will quickly diverge, we
find |(S + γ1) ∩ (S + γ2)| is typically small.

Suppose the leaves are indexed by [2d]. Then f can be written as∑
i∈[2d]

sign(Li) · 1Li
, (1)

where 1Li denotes the indicator function of the inputs that result in leaf i, and sign(Li) ∈
{−1, 1} is the output at leaf i. Let Pi be the ordered set of coordinates that are queried to
reach the leaf i. Then for input x = (x1, . . . , xn) ∈ Fn

2 , we can write
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1Li
(x) =

∏
t∈Pi

(
1 + (−1)at+xt

2

)
= 1

2d

 ∑
P ⊆Pi

(−1)
∑

j∈P
aj · (−1)

∑
j∈P

xj

 ,

where at ∈ F2 is the output of node t on the path Pi.
To find the Fourier support S = supp(f̂), it remains to determine which terms “survive”

cancellation in Equation (1). Let N (i) be the index of the internal node adjacent to leaf i.
Observe that when N (i) = N (j) for i ̸= j (so sign(Li) = −sign(Lj)),

2d(sign(Li) · 1Li
(x) + sign(Lj) · 1Lj

(x)) = sign(Li)
∑

P ⊆Pi

(−1)
∑

t∈P
at · (−1)

∑
t∈P

xt

− sign(Li)
∑

P ⊆Pj

(−1)
∑

t∈P
at · (−1)

∑
t∈P

xt

= 2 · sign(Li) ·
∑

P ⊆Pi : N (i)∈P

(−1)
∑

t∈P
at · (−1)

∑
t∈P

xt
,

since xN (i) is the only x value that Pi and Pj disagree on. That is, each term in f ’s expansion
must contain N (i) for some i. Moreover, once these cancellations are made, 1Li does not
interact with 1Lj

for N (i) ̸= N (j), since no term can contain both N (i) and N (j). In
summary,

S =
⋃

i∈[2d]

{s : s ⊆ Pi and N (i) ∈ s}.

Let γ1, γ2 ∈ S. By our observation on the structure of S, they have the form γ1 =
α1∪̇{N (i)} and γ2 = α2∪̇{N (j)} for some i, j ∈ [2d]. We are interested in the number of
pairs (β1, β2) ∈ S × S such that γ1 + γ2 = β1 + β2. It will suffice to focus on the setting
N (i) ̸= N (j) since this occurs with overwhelming probability. In this case, the quantity
|(S + γ1) ∩ (S + γ2)| depends only on the depth of the lowest common ancestor of Pi and Pj .

▷ Claim 17. If |(S + γ1) ∩ (S + γ2)| ≥ 2k+2, then the lowest common ancestor of Pi and Pj

is at depth at least k.

Proof. We will show the contrapositive. Suppose the lowest common ancestor a of Pi and Pj

is at depth ℓ < k, and suppose β1, β2 ∈ S satisfy β1 +γ1 = β2 +γ2. Without loss of generality,
assume N (i) ∈ β1 and N (j) ∈ β2. Then β1 and β2 must be a subset of the elements in the
paths Pi and Pj , respectively.

First, consider each element E ∈ Pi ∩ Pj , which is all those above (and including) a. If
E ∈ γ1 + γ2, then E ∈ β1 + β2 only if E is in precisely one of β1, β2. Likewise, if E ̸∈ γ1 + γ2,
then E ̸∈ β1 + β2 only if E is in neither or both of β1, β2. In either case, we have two options
for each E.

Now consider each element E ∈ Pi below a. By assumption, E ̸∈ Pj . Thus, if E ∈ γ1 +γ2,
it must be that E ∈ γ1 and E ̸∈ γ2. For β1 + β2 to contain E, we must likewise have E ∈ β1
and E ̸∈ β2. Similarly, if E ̸∈ γ1 + γ2, it cannot be in γ1 or γ2. Thus, it is not in β1 or β2
either. An identical argument for E ∈ Pj shows that we only have one way to account for
elements in the paths Pi or Pj below a.

Doubling to compensate for the cases where N (j) ∈ β1 and N (i) ∈ β2, we find
the number of options for (β1, β2) ∈ S × S such that β1 + γ1 = β2 + γ2 is at most
2ℓ+2 < 2k+2. ◁
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Theorem 16 follows quickly from the claim. The probability that Pi and Pj have a
common ancestor at depth at least k is at most 2−k, so

Pr
γ1,γ2∈S

[
|(S + γ1) ∩ (S + γ2)| ≥ 2k+2]

≤ Pr
γ1,γ2∈S

[
|(S + γ1) ∩ (S + γ2)| ≥ 2k+2 ∣∣ N (γ1) ̸= N (γ2)

]
+ 21−d

≤ 2−k + 21−d,

where we overload notation by letting N (γ) = N (i) ∈ γ.

5 Conclusion

While the provided functions rule out specific approaches, it is worth noting that neither are
a counterexample to the log-rank conjecture. The subspace addressing function (Section 3)
has a simple PDT: first individually query all 7k address bits, then query the bit to the
corresponding subspace. Since the Fourier sparsity is at least 26k, this is certainly affordable.
While this example refutes a general greedy approach, such an approach works for the decision
tree function (Section 4). Each query of the root variable eliminates half the paths (and thus
reduces the sparsity by two), so iterating this process quickly makes the function constant.
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