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Abstract
The k-Opt algorithm is a local search algorithm for the Traveling Salesman Problem. Starting with
an initial tour, it iteratively replaces at most k edges in the tour with the same number of edges
to obtain a better tour. Krentel (FOCS 1989) showed that the Traveling Salesman Problem with
the k-Opt neighborhood is complete for the class PLS (polynomial time local search) and that the
k-Opt algorithm can have exponential running time for any pivot rule. However, his proof requires
k ≫ 1000 and has a substantial gap. We show the two properties above for a much smaller value of
k, addressing an open question by Monien, Dumrauf, and Tscheuschner (ICALP 2010). In particular,
we prove the PLS-completeness for k ≥ 17 and the exponential running time for k ≥ 5.
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1 Introduction

The well-known Traveling Salesman Problem (TSP) consists of finding a spanning cycle
of an edge weighted complete graph, such that the total edge weight of the cycle is the
smallest possible. A popular heuristic for this problem is a local search algorithm called
k-Opt. Starting with an arbitrary tour, it iteratively replaces at most k edges in the tour
with the same number of edges, as long as the resulting tour has smaller total edge weight.
We define TSP/k-Opt to be the problem of finding a local optimum for a TSP instance with
the k-Opt algorithm.

A fundamental question in the area of local search algorithms is to determine the number
of iterations a given local search algorithm may need in the worst case. A local search
algorithm with a specified pivot rule has the is-exp property if there exist problem instances
and initial solutions for which the local search algorithm requires an exponential number of
iterations. For example, it is well known that the Simplex algorithm for linear programming
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has the is-exp property for many different pivot rules [12, 9, 1, 6]. For TSP, Chandra, Karloff,
and Tovey [2] showed that TSP/k-Opt has the is-exp property. This even holds for Euclidean
TSP with the 2-Opt neighborhood [5].

For the Simplex algorithm it is not known whether there exists a pivot rule that guarantees
a polynomial number of iterations. This is one of the most important open problems in the
area of linear programming. Contrary to this Krentel [13] proved in 1989 that for sufficiently
large values of k, TSP/k-Opt exhibits the all-exp property, that is, the k-Opt algorithm
requires an exponential number of iterations to find a local optimum, for all possible pivot
rules and for infinitely many pairs of a TSP instance and an initial tour. Krentel estimated
that his proof yields a value for k between 1,000 and 10,000. By using a straight forward way
to implement some missing details in Krentel’s proof it was recently shown that his proof
yields the value 14,208 for k [8].

Following Krentel’s paper there have been claims in other papers [10, 22] through private
communication with Krentel that a careful analysis of the original proof can bring down the
value to k = 8 and conceivably to k = 6. However, there has been no available written proof
for these claims. In fact, up to date, the 1989 paper of Krentel [13] is the only paper on the
topic. Consequently, Monien, Dumrauf, and Tscheuschner [16] posed an open question on
the complexity of TSP/k-Opt for k ≪ 1000.

In this paper, we show that TSP/k-Opt has the all-exp property for much smaller k:

▶ Theorem 1. TSP/k-Opt has the all-exp property for k ≥ 5.

Our proof of Theorem 1 is based on a new reduction from the bounded degree Max-Cut
problem to TSP (see Section 3) which involves the construction of so called parity gadgets
(see Section 3.1). With a first such approach we are able to prove the all-exp property
of TSP/k-Opt for k ≥ 13 (see Section 4). To lower the value of k additional ideas are
required. First, we exploit the structure of a recent construction of Michel and Scott [15] of a
degree-four bounded Max-Cut instance with the all-exp property under the flip neighborhood.
Second, we show how to use global properties of our overall reduction to relax some local
conditions on our parity gadgets. Combining these two ideas we achieve the value k ≥ 9
(see Section 5). To arrive at our final result for k ≥ 5 we have to modify the construction
of Michel and Scott [15]. Moreover, we have to combine our parity gadgets with so called
double gadgets and use a labeling scheme to assign different gadgets at different places in the
reduction. These results we present in Section 6.

The second main contribution of our paper is a proof of the following result:

▶ Theorem 2. TSP/k-Opt is PLS-complete for k ≥ 17.

The complexity class PLS and the notion of PLS-completeness (for definitions see Section 2)
were introduced in 1988 by Johnson, Papdimitriou, and Yannakakis [11] to capture the
observation that for many NP-hard problems it is not only difficult to compute a global
optimum but even computing a local optimum is also hard. Examples of such problems
are the Maximum Satisfiability problem [14], Max-Cut [21], and Set Cover [3]. The PLS-
completeness of a problem means that a polynomial time algorithm to find a local optimum
for that problem would imply polynomial time algorithms for finding a local optimum for all
problems in PLS.

The PLS-completeness of TSP/k-Opt was proved by Krentel [13] for k ≫ 1000. However,
his proof has a substantial gap as he assumes that edges of weight infinity cannot occur in a
local optimum. We present in Section 7 the first rigorous proof for the PLS-completeness of
TSP/k-Opt and at the same time drastically lower the value of k from Krentel’s k ≫ 1000 [13]
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to k ≥ 17. Our proof uses several of the ideas used in our proof for Theorem 1. But in this
case we need to take more care on the order in which the parity gadgets are plugged together
in our construction. In addition, we show in Lemma 14 how to assign specific weights to the
non-edges in our construction to prove that no local optimum can contain such an edge. We
achieve this by defining a weight assignment that exploits the special structure of the TSP
instance resulting from our PLS-reduction. This is the first rigorous proof of such a result
for the k-Opt algorithm and there seems not to be a generic way to prove it for arbitrary
TSP instances (as for example those constructed by Krentel [13]).

2 Preliminaries

2.1 Local search problems and the class PLS
A local search problem P is an optimization problem that consists of a set of instances DP ,
a finite set of (feasible) solutions FP (I) for each instance I ∈ DP , an objective function
fP that assigns an integer value to each instance I ∈ DP and solution s ∈ FP (I), and a
neighborhood NP (s, I) ⊆ FP (I) for each solution s ∈ FP (I). The size of every solution
s ∈ FP (I) is bounded by a polynomial in the size of I. The goal is to find a locally
optimal solution for a given instance I; that is, a solution s ∈ FP (I), such that no solution
s′ ∈ NP (s, I) yields a better objective value than fP (s, I). Formally, this means, for all
s′ ∈ NP (s, I), fP (s, I) ≤ fP (s′, I) if P is a minimization problem, and fP (s, I) ≥ fP (s′, I) if
P is a maximization problem.

A standard local search algorithm for an instance I proceeds as follows. It starts with
some initial solution s ∈ FP (I). Then it iteratively visits a neighbor with better objective
value, until it reaches a local optimum. If a solution has more than one better neighbor, the
algorithm has to choose one by some prespecified rule, often referred as a pivot rule.

A local search problem P has the all-exp property, if there are infinitely many pairs of
an instance I of DP and an initial solution s ∈ FP (I), for which the standard local search
algorithm always needs an exponential number of iterations for all possible pivot rules.

A local search problem P is in the class PLS [11], if there are three polynomial time
algorithms AP , BP , CP such that

Given an instance I ∈ DP , AP returns a solution s ∈ FP (I);
Given an instance I ∈ DP and a solution s ∈ FP (I), BP computes the objective value
fP (s, I) of s; and
Given an instance I ∈ DP and a solution s ∈ FP (I), CP returns a neighbor of s with
strictly better objective value, if it exists, and “locally optimal”, otherwise.

A PLS-reduction from a problem P ∈ PLS to a problem Q ∈ PLS is a pair of polynomial-time
computable functions h and g that satisfy:
1. Given an instance I ∈ DP , h computes an instance h(I) ∈ DQ; and
2. Given an instance I ∈ DP and a solution sq ∈ FQ(h(I)), g returns a solution sp ∈ FP (I)

such that if sq is a local optimum for h(I), then sp is a local optimum for I.
A problem Q ∈ PLS is PLS-complete [11] if for every problem P ∈ PLS, there exists a PLS
reduction from P to Q.

2.2 TSP/k-Opt
A spanning cycle, a Hamiltonian cycle, or a tour of an undirected graph is a cycle that
contains all vertices of the graph.

ICALP 2024
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A TSP instance is a tuple (G,w), where G is a complete undirected graph (V,E), and
w : E → R≥0 is a function that assigns a nonnegative weight to each edge of G. The goal
is to find a tour of G that minimizes the sum of edge weights in the tour. The definition
of the class PLS requires that we have a polynomial time algorithm to find some solution.
For complete graphs such an algorithm certainly exists. If the graph is not complete then
because of the NP-completeness of the Hamiltonian cycle problem we do not know such an
algorithm.

A swap is a tuple (E1, E2) of subsets E1, E2 ⊆ E, |E1| = |E2|. We say that it is a swap
of |E1| edges. If |E1| ≤ k for some k, then we call it a k-swap. Performing a swap (E1, E2)
from a subgraph G′ of G refers to the act of removing E1 from G′ and adding E2 to G′. We
also call it swapping E1 for E2 in G′. Given a tour τ , a swap (E1, E2) is improving for τ , if
after swapping E1 for E2 in τ , we obtain a tour with lower total edge weight.

A (k-)swap sequence is a sequence L = (S1, . . . , Sℓ), such that each Si is a (k-)swap. For
a tour τ , we denote by τL the subgraph obtained from τ by performing S1, . . . , Sℓ in their
order in L. L is improving for a tour τ if each Si is an improving (k-)swap for τ (S1,...,Si−1).

The local search problem TSP/k-Opt corresponds to TSP with the k-Opt neighborhood
(that is, the neighbors of a tour τ are those that can be obtained from τ by an improving
k-swap). The k-Opt algorithm is then the standard local search algorithm for this problem,
and an execution of the algorithm corresponds to an improving k-swap sequence.

2.3 Max-Cut/Flip
A Max-Cut instance is a tuple (G,w), where G is an undirected graph (V,E) and w : E → R
is a function assigning weights to the edges of G. A cut (V1, V2) of G is a partition of the
vertices of G into two disjoint sets V1 and V2. The cut-set of a cut (V1, V2) is the set of
edges xy ∈ E such that x ∈ V1 and y ∈ V2. The goal of Max-Cut is to find a cut that
maximizes the value of the cut, that is the total weight of the edges in the cut-set.

Given a Max-Cut instance and an initial cut, the flip of a vertex is a move of that vertex
from a set of the cut to the other. The flip of a vertex is improving, if it results in an increase
in the value of the cut. For a cut σ, its flip neighborhood is the set of all cuts obtained
from σ by an improving flip. The Max-Cut/Flip problem is the local search problem that
corresponds to the Max-Cut problem with the flip neighborhood. We call its standard local
search algorithm the Flip algorithm. A flip sequence is a sequence (v1, . . . , vℓ) of vertices of
G. A flip sequence is improving, if flipping the vertices in the order in the sequence increases
the value of the cut at every step. In other words, an improving flip sequence corresponds to
an execution of the Flip algorithm.

Monien and Tscheuschner [17] showed the all-exp property for Max-Cut/Flip even for
graphs with bounded degree.

▶ Theorem 3 ([17, 15]). Max-Cut/Flip has the all-exp property, even when restricted to
instances where all vertices have degree at most four.

Michel and Scott [15] recently presented an alternative proof for Theorem 3. Interestingly,
their construction is highly structured and exhibits a unique property: With a suitable initial
cut, there is exactly one (maximal) improving flip sequence, and this sequence has exponential
length. We rely on this particular construction and especially the unique property to achieve
the low value of k in Theorem 1.

Note that Theorem 3 is tight with respect to the maximum degree, since the Flip algorithm
on graphs with maximum degree at most three always terminates after a polynomial number
of iterations [20].
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3 The main reduction

In this section, we describe the main reduction to TSP/k-Opt from Max-Cut/Flip.
Let (H,w) be a Max-Cut instance. In order to avoid confusion with the vertices and

edges in the TSP instance later on, we use H-vertices and H-edges for the vertices and edges
of H. We denote by n and m the number of H-vertices and H-edges, respectively.

We construct from H the corresponding TSP instance as follows. We start with a cycle
of 3(n+m) edges. We assign n+m edges of this cycle to each of the n H-vertices and the
m H-edges, such that any two assigned edges have distance at least two on the cycle.

xℓ xr

x1 x′
1 x2 x′

2 x3 x′
3

Figure 1 The first-set edge xℓxr and the second-set path (xℓ, x1, x′
1, x2, x′

2, x3, x′
3, xr) of an

H-vertex x of degree three. The dashed edges are gateways. The other edges of the second-set path
are doors.

Next, in the cycle consider an edge that is assigned to an H-vertex x. (Refer to Figure 1
for an illustration of the following concepts.) We label the two incident vertices of this edge
xℓ and xr, representing the left and the right vertex of the edge. Let d(x) be the degree of x
in H. We add a new path of length 2d(x) + 1 to connect xℓ and xr. We call this new path
the second-set path of x, while we call the original edge that was assigned to x the first-set
edge of x. The idea is that the tour can connect xℓ and xr either via the first-set edge or via
the second-set path. This simulates whether the H-vertex x is in the first set or second set
of the cut for the Max-Cut problem. Let xℓ, x1, x

′
1, . . . , xd(x), x

′
d(x), xr be the labels of the

vertices along the second-set path. For i ∈ {1, . . . , d(x)}, we call the edge xix
′
i a gateway

of x. The other edges of the second-set path are called the doors of x. In other words, we
have alternating doors and gateways along the path, with doors at both ends of the path.

For each H-edge xy, we call the edge in the cycle of length 3(n+m) assigned to xy the
xy-edge. We remove a gateway of x, a gateway of y, and the xy-edge, and we connect the six
incident vertices of the three removed edges by a parity gadget.

The purpose of this parity gadget is to simulate the contribution of the weight of edge xy
to the objective of the Max-Cut problem, based on whether x and y are in the same set. We
will formally define the parity gadget in Section 3.1.

Finally, for each H-vertex x, we assign an XOR gadget to the first-set edge of x and
the door of x incident to xr. The purpose of the XOR gadget is to make sure that we can
simulate only one flip in H by a k-swap in the new graph. The formal definition of the XOR
gadget and its assignment are discussed in Section 3.2.

Let G be the resulting graph after all the operations above (see Figure 2 for an example).
Except for certain edges in the parity gadgets, which we will specify later, the other edges
have weight zero, including the edges in the XOR gadgets, the initial cycle, and the doors.
As a TSP instance requires a complete graph, we add the remaining edges with weight ∞
to obtain the final graph G∞. However, if we start with a tour with a finite total weight,
the k-Opt algorithm will never visit a tour that uses an edge with weight ∞. Hence, for the
remaining of the reduction, we will argue based only on G.

ICALP 2024
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4

3

1 2

d

bc

a

a b c d

1

2 3

4

Figure 2 An example of our reduction from a Max-Cut instance (left figure) to a TSP instance
(right figure). The parity gadgets are indicated by the blue circles attached to three edges each. The
XOR gadgets are indicated by red boxes attached to two edges each.

3.1 Parity gadgets

In this section, we specify the parity gadgets, formally defined as follows.

▶ Definition 4 (Parity Gadget). A parity gadget is an edge weighted graph containing at least
six distinct vertices labeled X,X ′, Y, Y ′, Z, Z ′ that satisfies the following two properties. First
there exist at least the following four possibilities to cover the vertices of the parity gadget by
vertex disjoint paths with endpoints in the set {X,X ′, Y, Y ′, Z, Z ′}:
(1) A {Z,Z ′}-path;
(2) An {X,X ′}-path and a {Z,Z ′}-path;
(3) A {Y, Y ′}-path and a {Z,Z ′}-path; or
(4) An {X,X ′}-path, a {Y, Y ′}-path and a {Z,Z ′}-path.
The four possibilities are called subtour (1), subtour (2), subtour (3), and subtour (4)
(see Figure 3 for an example). We require that in these four cases the cover is unique. A
parity gadget may allow more than these four possibilities to cover the vertices by vertex
disjoint paths with all endpoints in the set {X,X ′, Y, Y ′, Z, Z ′}. Any such cover is called a
subtour as long as Z and Z ′ are endpoints of some path(s) in this cover.

We require in addition if X and X ′ are in the set of endpoints, then there must exist an
{X,X ′}-path in the cover. We require the same for the vertices Y and Y ′.

Second, the edges of a parity gadget must allow a partition into three subsets, the same-set
edges, the different-set edges, and the remaining edges. The same-set edges have the same
weight, which we call the same-set weight. Similarly, the different-set edges have the same
different-set weight. The remaining edges have weight zero.

We require that subtours (1) and (4) contain exactly one same-set edge and no different-set
edge, and that subtours (2) and (3) contain exactly one different-set edge and no same-set
edge. See Figure 3 for an example.

As explained before, a parity gadget is used to replace a gateway XX ′ of an H-vertex x,
a gateway Y Y ′ of an H-vertex y, and the xy-edge ZZ ′. The vertices X, X ′, Y , Y ′, Z, and
Z ′ are part of the parity gadget, and the gadget is connected with the rest of G via exactly
one incident edge to each of these vertices. We call these six incident edges the external edges
of the gadget. We define the internal edges as the edges within the parity gadget. Further,
we say that the gadget is related to the H-vertices x and y.
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X

Y

Z X ′

Y ′Z′

X

Y

Z X ′

Y ′Z′

(1)

X

Y

Z X ′

Y ′Z′

(2)

X

Y

Z X ′

Y ′Z′

(3)

X

Y

Z X ′

Y ′Z′

(4)

X

Y

Z X ′

Y ′Z′

X

Y

Z X ′

Y ′Z′

X

Y

Z X ′

Y ′Z′

Figure 3 An example of a parity gadget (left figure). The next four figures show the four
possibilities, subtour (1)–(4), to cover the vertices of the parity gadget by disjoint paths (red edges
and red endpoints). The right three figures show additional subtours. The dashed edges are the
same-set edges, the dotted edges are the different-set edges, and the solid edges are the remaining
edges.

By construction, the removed edge ZZ ′ was originally part of a path of length five,
say (Z1, Z2, Z, Z

′, Z3, Z4). Since Z2 and Z3 have degree two in G, any tour of G has to
contain Z2Z and Z ′Z3. Therefore, the tour can only contain exactly one internal edge
incident to Z and one incident to Z ′ (which may coincide). This is the reason why in the
definition of a parity gadget the set {Z,Z ′} appears in all four cases.

A subtour containing an {X,X ′}-path (i.e., subtour (2) or subtour (4)) represents that
the corresponding H-vertex x is in the second set of the cut; otherwise, x is in the first set.
When such a subtour occurs in the gadget, we say the gadget uses an {X,X ′}-path. We
have a similar representation and notation for the {Y, Y ′}-path.

By definition of a parity gadget the total weight of the tour edges within a parity gadget
is the same-set weight, when x and y are in the same set of the cut, and it is the different-set
weight, when they are in different sets.

Next, a parity gadget is an (rx, ry)-parity gadget, if
We need to remove exactly rx internal edges and add exactly rx − 1 internal edges to
change from subtour (1) to subtour (2) or from subtour (3) to subtour (4);
We need to remove exactly ry internal edges and add exactly ry − 1 internal edges to
change from subtour (1) to subtour (3) or from subtour (2) to subtour (4);
In order to change from subtour (1) to subtour (4) or between subtour (2) and subtour (3),
we need to remove at least max{rx, ry} internal edges and add at least max{rx, ry} − 1
internal edges.

We call the changes in the first two conditions above and their reverses the standard
subtour changes.

By definition, a parity gadget may allow more than the four subtours (1)–(4) as possibilities
to cover the vertices by disjoint paths with end vertices in the set {X,X ′, Y, Y ′, Z, Z ′}. The
parity gadget shown in Figure 3 allows for example to cover the vertices by a {Z,X ′}-path
and a {Z ′, Y ′}-path. We say that a parity gadget is a strict parity gadget, or simply a strict
gadget, if subtours (1)–(4) are the only possible subtours for the gadget in G, after we equip
all gadgets (details are given in Section 3.3) used in the reduction. Thus the property of
being strict may depend on the other gadgets used in the reduction.

3.2 XOR gadgets
The remaining gadgets used in the reduction are the XOR gadgets. We generalize these
gadgets from the XOR gadget by [18]. See Figure 4(a)–(c) for an illustration for the definition
below.

ICALP 2024
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(a) (b) (c) (d) (e) (f)

a1

b1 bp

ap xℓ

v
xr

xℓ

v
xr

xℓ

v
xr

ax1

bx1 bx1

ax1 ax2

bx2

Figure 4 The XOR gadget of order four (a) and its two subtours ((b) and (c)). (d)–(f) are
examples of assigning the XOR gadgets of order from zero to two to the H-vertex x, where dashed
edges, dotted edges, and bold edges represent the left first-set edge, the door closest to xr, and the
right first-set edge, respectively.

▶ Definition 5 (XOR Gadget). Let p be a nonnegative integer. The XOR gadget of order p
is a graph containing two paths (a1, . . . , ap) and (b1, . . . , bp), and for i ∈ {1, . . . , p}, there is
a path of length two with ai and bi as endpoints. A subtour of the XOR gadget is a spanning
path with two endpoints in the set {a1, ap, b1, bp}. For convenience, when p = 0, both the
XOR gadget of order zero and its only subtour are defined to be the empty graph.

It is easy to see that an XOR gadget has two subtours, except when p ≤ 1, in which case,
it has only one subtour. Further, for p ≥ 2, changing from one subtour to the other requires
a swap of p− 1 edges.

We define the assigning of the XOR gadget of some order p to an H-vertex x as follows.
(See Figure 4(d)–(f) for an illustration.) Recall that xℓxr is the first-set edge of x, and let vxr

be the incident door of x to xr. We subdivide the two edges above into paths of length p+ 1,
(xℓ, a

x
1 , . . . , a

x
p , xr) and (v, bx

1 , . . . , b
x
p , xr). Then for i ∈ {1, . . . , p}, we connect ax

i and bx
i with

a path of length two. Note that when p = 0, we do nothing. Further note that when we
remove the edges incident to xℓ, xr, and v in the construction above, we obtain the XOR
gadget of order p as defined in Definition 5.

We call these incident edges to xℓ, xr, and v the external edges of the XOR gadget, and
we call the other edges in the construction the internal edges of the gadget. For convenience,
we still refer to the external edge incident to v (i.e., vbx

1 for p ≥ 1 and vxr for p = 0) as a
door of x. Additionally, we call it the closest door to xr. We call the external edge incident
to xℓ (i.e., xℓa

x
1 for p ≥ 1 and xℓxr for p = 0) the left first-set edge of x. We define the right

first-set edge of x as xrxℓ if p = 0, xra
x
p if p is positive and even, and xrb

x
p if p is odd. Lastly,

we call the other external edge incident to xr the right second-set edge of x.
We define an incident edge of a nonempty subtour of the XOR gadget to be an external

edge incident to an endpoint of the subtour. The incident edge of an empty subtour (i.e.,
when p = 0) is defined to be simply an external edge of the XOR gadget.

Based on the definitions above, it is easy to verify the following.

▶ Observation 6. For the XOR gadget assigned to an H-vertex x, one subtour of the gadget
is incident to the left and right first-set edges of x, and another subtour of the gadget is
incident to the closest door to xr and the right second-set edge of x. The two subtours above
are identical, if the order of the gadget is at most one. Otherwise, they are distinct.

3.3 Equipping gadgets
Within our reduction we will use different parity gadgets at different places and XOR gadgets
of different orders. The exact specification of which parity gadget we use at what place and
the XOR gadget of which order is used for which H-vertex will be called the equipping of
gadgets. We equip the gadgets through a labeling scheme. Specifically, for an H-vertex x
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and an incident H-edge z, a labeling L assigns an integer label to the pair (x, z). We say the
label is incident to x and to z. Additionally, L also assigns an integer label to each H-vertex.
We also say this label is incident to x. We call a labeling L valid, if for every H-edge xy,
there exists a (L(x, xy), L(y, xy))-parity gadget, and for every H-vertex x, L(x) ≥ 0.

Then we equip the gadgets based on a valid labeling L as follows. For an H-edge xy,
we equip the (L(x, xy), L(y, xy))-parity gadget to xy. Recall that w(xy) is the weight of
xy. If w(xy) ≥ 0, the same-set weight of the gadget is w(xy), and its different-set weight
is zero. Otherwise, the same-set weight of the gadget is zero, and its different-set weight
is −w(xy). Finally, for an H-vertex x, we assign the XOR gadget of order L(x) to x, and
all edges involved in this assignment have weight zero. We call this a gadget arrangement
corresponding to L. Note that this construction implies that edge weights in the TSP instance
are nonnegative.

For each H-vertex x, we define the label sum of x to be the sum of the labels incident to
x, i.e., L(x) +

∑
y:xy∈E(H) L(x, xy). We say a labeling is an s-labeling, if each H-vertex has

label sum s.

3.4 Initial tour
To complete the description of the TSP/k-Opt instance, we specify the initial tour of G. We
obtain this tour from the initial cut of H as follows. The tour contains all incident edges of
degree-two vertices. For an H-vertex x, if x is in the first set, we include the left and right
first-set edges of x in the tour. Further, we use the subtour of the XOR gadget assigned to
x, such that this subtour is incident to the left and right first-set edges of x. If x is in the
second set, we include all the doors and the right second-set edge of x in the tour. Moreover,
we use the subtour of the XOR gadget assigned to x, such that this subtour is incident to
the right second-set edge of x and the closest door to xr.

For an H-edge xy, in the corresponding gadget, we use the subtour (1) if x and y are in
the first set, subtour (2) if x is in the second set and y in the first set, subtour (3) if x is in
the first set and y in the second set, and subtour (4) if x and y are in the second set.

By the construction of G and the definition of the subtours, it can be verified that we
obtain a tour of G.

3.5 Correspondence between flip sequences and swap sequences
Let us assume that we have a valid s-labeling L, and that the parity gadgets in the
corresponding gadget arrangement are strict. Then we have the following correspondence
(for a proof see [7]).

▶ Lemma 7. Let I be a Max-Cut/Flip instance and σ be an initial cut for I. Suppose for
some s, there is a valid s-labeling L for I such that all gadgets in the gadget arrangement in
L are strict. Then we can reduce I to a TSP/k-Opt instance I ′, for k = s+ 1, and obtain an
initial tour τ from σ, such that there is a one-to-one correspondence between improving flip
sequences for I and σ and improving k-swap sequences for I ′ and τ .

4 All-exp property for k ≥ 13

In this section, we prove the following statement.

▶ Lemma 8. TSP/k-Opt has the all-exp property for k ≥ 13.
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Figure 5 (a) A (4,2)-simple gadget. Bold red edges are incident to degree-two vertices. Dashed
edges are external edges. Y ′a and ZZ′ are same-set edges with same-set weight σ, while Z′a and
Y ′Z are different-set edges with different-set weight δ. (b)–(e) show the subtours (1)–(4).

We start with the parity gadgets. We call a parity gadget a simple gadget, if the parity
gadget only allows subtours (1)–(4) (and no other subtours), independent of other gadgets
equipped in the graph G. If a simple gadget is an (rx, ry)-parity gadget we call it an
(rx, ry)-simple gadget. Note that a simple gadget is a strict gadget. The next result shows
that a (4, 2)-simple gadget exists (and by symmetry, we also have a (2, 4)-simple gadget).
The proof is given in [7].

▶ Lemma 9. The gadget as depicted in Figure 5 is a (4, 2)-simple gadget.

We can now prove Lemma 8. We use the reduction from Max-Cut/Flip to TSP/k-Opt as
described in Section 3. By Theorem 3 we may assume H to have maximum degree four.

We now construct a valid (k−1)-labeling. Firstly, we assign an orientation on the H-edges,
such that every degree-four H-vertex has exactly two incoming edges and two outgoing edges.
Specifically, we repeat the following procedure: Until all H-edges have an orientation, we
take a maximal (possibly closed) walk in the subgraph of unoriented H-edges, and we orient
the edges along the walk. It is easy to see that the orientation is as desired.

Next, for every directed H-edge z with head x and tail y, we label (x, z) and (y, z) with
four and two, respectively. By Lemma 9, there exists a simple gadget corresponding to these
labels. Our construction guarantees that up to this point the label sum of every H-vertex is
at most 12. Next, for each H-vertex, we assign a nonnegative label to the H-vertex, such
that the label sum at the H-vertex is exactly k − 1. This is possible because k ≥ 13. Hence,
we obtain a valid (k − 1)-labeling.

Further, since we use only simple gadgets, the labeling above satisfies the condition of
Lemma 7. Then by Theorem 3 and Lemma 7, we obtain Lemma 8.

5 All-exp property for k ≥ 9

In this section, we prove the following statement.

▶ Lemma 10. TSP/k-Opt has the all-exp property for k ≥ 9.
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We use the reduction in Section 3, with two extra ingredients. Firstly, we look into the
construction by Michel and Scott [15]. The graph for the instance is constructed inductively
as follows (see Figure 6 for an illustration):

The base graph F0 consists of a single edge v0,1v0,8 with weight 7.
The graph Fn contains a path of eight new vertices vn,1, vn,2, vn,3, vn,4, vn,5, vn,6, vn,7,

vn,8 that appear in the path in that order. The weights of the edges along the path from
vn,1 to vn,8 are 7 · 8n, 5 · 8n, 5 · 8n, 3 · 8n, 3 · 8n, 8n, 8n. Next, we connect Fn to Fn−1 as
follows: We add edges connecting vn−1,1 to vn,2, vn,4, and vn,6, with weights 8n,−8n,
and 8n, respectively. Finally, we add edges connecting vn−1,8 to vn,3, vn,5, and vn,7, with
weights 1, -1, and 1, respectively.

. . .

. . .

v0,8

v0,1

vn,8

vn,1 v′1

v′2

vn−1,8

vn−1,1

vn,8 vn,6 vn,4 vn,2

vn,7 vn,5 vn,3 vn,1
vn−1,7

vn,2

4 4 4

4 4 4
4

44
Fn

Fn−1

F0

4
4

Figure 6 Michel-Scott construction of a Max-Cut instance that has an exponentially long
improving flip sequence. Vertices on one side of the horizontal line are in the same set of the initial
cut. We show here a valid (k −1)-labeling L and its gadget arrangement, for k ≥ 9. Only labels L(·, ·)
with value other than two are specified. All labels to vertices have suitable values to ensure the
label sum at each vertex is k − 1. Bold edges indicate simple gadgets, and the directed edges are
flexible gadgets. The arrows indicate the direction of the forcing rule (i.e., if the gadget equipped to
a directed edge is strict at the tail, then it is forced to be strict at the head).

The final graph Hn consists of all the graphs F0, . . . , Fn and the connecting edges, as
well as two new vertices v′

1 and v′
2 and two new edges vn,1v

′
1 and v′

1v
′
2 with weights 8n+1 and

2 · 8n+1, respectively. The initial cut of Hn is as follows: One set of the cut contains exactly
v′

1 and all vertices vi,j such that j is odd. The other set contains the remaining vertices.
Michel and Scott [15] showed that there exists a unique maximal improving flip se-

quence Ln from the aforementioned cut of Hn. The sequence is described recursively as
follows: L0 = v0,1v0,8, and Ln = vn,1vn,2Ln−1vn,3vn,4Ln−1vn,5vn,6Ln−1vn,7vn,8.

Secondly, we introduce the flexible gadget, a (2, 2)-parity gadget as depicted in Figure 3.
Note that it is not a simple gadget, because besides the subtours (1)–(4), there are other
subtours, as shown in Figure 3. However, the following lemma (for a proof see [7]) shows
that a suitable equipping of the flexible and simple gadgets can force the flexible gadgets to
use only the subtours (1)–(4), and hence, they are strict:

▶ Lemma 11. Suppose in the reduction in Section 3, we only equip simple, flexible, and
XOR gadgets. If the H-edges corresponding to the flexible gadgets form a forest in H, then
all parity gadgets are strict.
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To prove Lemma 10 we use the reduction from Section 3, with some specialization. Firstly,
for the Max-Cut/Flip instance, we use the graph Hn as the graph H, for n ≥ 1, and we use
the corresponding weight and initial cut as described above. Secondly, we use the following
labeling L: (See Figure 6 for a depiction of the labeling and gadget assignment.)

For i ∈ {1, . . . , n} and q ∈ {3, 5, 7}, we have L(vi,q, vi,qvi−1,8) = 4;
For i ∈ {1, . . . , n} and q ∈ {2, 4, 6}, we have L(vi,q, vi,qvi,q+1) = 4;
L(vn,8, vn,8vn,7) = 4;
L(v′

1, vn,1v
′
1) = L(v′

1, v
′
1v

′
2) = 4;

L(x, z) = 2, for all other pairs of an H-vertex x and an H-edge z not mentioned above
and
L(vn,8) = L(vn,1) = k − 5; L(v′

2) = k − 3; for other H-vertex x, we have L(x) = k − 9.
(As k ≥ 9, these labels are nonnegative.)

For every H-edge xy, if L(x, xy) = L(y, xy) = 2, we equip the flexible gadget to xy. Otherwise,
we use the (4, 2)-simple gadget as described in Lemma 9 instead.

Observe that the labeling above is a valid (k− 1)-labeling. Further, consider the subgraph
of H containing all H-edges corresponding to the flexible gadgets. This subgraph is a forest
with the leaves: v0,8, vn,1, vn,3, vn,5, vj,3, vj,5, vj,7, and vj,8 for j ∈ {1, . . . , n − 1}. By
Lemma 11, all parity gadgets are strict.

Then Lemma 10 follows from Theorem 3 and Lemma 7.

6 All-exp property for k ≥ 5

In this section, we prove Theorem 1 that asserts the all-exp property of TSP/k-Opt for
k ≥ 5. This proof is similar to that of Lemma 10 with a few changes. Firstly, we modify the
Michel-Scott construction for the Max-Cut/Flip instance. In particular, we replace certain
edges by paths of odd length. Secondly, we introduce a new gadget, called the double gadget
that simulates two adjacent edges simultaneously. Lastly, we do not insist that all gadgets are
strict. However, we argue that with our chosen initial tour, we cannot encounter a subtour
other than subtours (1)–(4) in any parity gadget by a k-swap sequence.

6.1 Modified Michel-Scott construction
See Figure 7 for a depiction of the modification explained in this section. Recall the
construction by Michel and Scott [15] and the unique maximal improving flip sequence Ln

in Section 5. Let p be an odd number that is at least three. We observe that for any
consecutive pair (v, v′) in the sequence Ln, vv′ is an edge in Hn and (v′, v) is not a contiguous
subsequence of Ln. In that case, for such consecutive pair (v, v′), we orient the edge vv′ in
Hn from v to v′. Then we obtain a partial orientation −→

Hn of Hn.
For i ∈ {0, . . . , n} and q ∈ {1, . . . , 7}, note that the vertex vi,q only has one out-

neighbor vi′,q′ in −→
Hn, for some i′, q′. We replace the edge vi,qvi′,q′ by a path of length p

(vi,q, u
1
i,q,q′ , . . . , u

p−1
i,q,q′ , vi′,q′), with p − 1 new vertices u1

i,q,q′ , . . . , u
p−1
i,q,q′ . The weights of the

new edges and which set of the cut the new vertices belong to depend on the sign of the
weight of the original edges. In particular, let ω be the original weight of vi,qvi′,q′ and ε be a
very small number (say, 2−n), and define u0

i,q,q′ := vi,q and up
i,q,q′ := vi′,q′ . If ω > 0, then

we assign the weights for the edges along the path in decreasing order: for j = 0, . . . , p− 1,
the edge uj

i,q,q′u
j+1
i,q,q′ has weight ω − jε. Further, we assign uj

i,q,q′ to the same set of the cut
as vi,q for j even, and to that as vi′,q′ for j odd. If ω < 0, we assign the weights for the
edges along the path in increasing order: for j = 0, . . . , p− 1, the edge uj

i,q,q′u
j+1
i,q,q′ has weight
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Figure 7 Modified Michel-Scott construction, where we replace certain edges in Figure 6 with
paths of length p. Here, we indicate the sets of the initial cut by the colors of the vertices.

ω + jε. Further, we assign uj
i,q,q′ to the same set of the cut as vi,q, for all j ∈ [p− 1]. The

resulting (undirected) graph, weight, and cut after all replacements are the graph H, the
weight w, and the initial cut χ0 that we will use for the reduction.

We can show (for a proof see [7]) that the uniqueness property carries over to the new
instance.

▶ Lemma 12. There is a unique maximal improving flip sequence L′
n from the cut χ0 of H,

and this sequence is exponentially long.

6.2 Double gadget
Let xy and xt be two H-edges. Denote z := xy. A double gadget replaces a gateway Y Y ′ of
y, a gateway TT ′ of t, the z-edge ZZ ′, and a subpath (X,X1, X2, X

′) of the second-set path
of x, where XX1 and X2X

′ are two gateways of x. Note that the vertices X1 and X2 are
removed from the graph G, when we equip the double gadget to the pair xy and xt. Further,
the xt-edge is not replaced by any gadget. As the third edge in a path of length five in G,
the xt-edge is then used in every tour of G. We define the external and internal edges of the
double gadget similar to those of parity gadgets.

A double gadget has to guarantee at least eight possible subtours (with subtours defined
analogously to subtours defined in Definition 4). A {Z,Z ′}-path is always present in these
subtours. The eight subtours corresponds to all possibilities of containing an {X,X ′}-path,
a {Y, Y ′}-path, or a {T, T ′}-path.

Let σ(x, y) and δ(x, y) be the same-set and different-set weights for the edge xy, respect-
ively (i.e., they correspond to the weights when x and y are in the same set and in different
sets). The numbers σ(x, t) and δ(x, t) are defined analogously. For each of the eight subtours,
the total weight of the internal edges in the subtour is the sum of two numbers, axy and
axt. axy takes value σ(x, y) if an {X,X ′}-path and a {Y, Y ′}-path are both present or both
absent; and it takes value δ(x, y) if exactly one of these paths is present. axt is defined
analogously.
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Figure 8 A (2,2,2)-double gadget (a) and the listing of edges with nonzero weights (b). The
other panels show the eight subtours when the gadget is locally strict, including the nonzero weights
of the edges in the subtours.

We extend the definition of an (rx, ry)-parity gadget to an (rx, ry, rt)-double gadget in
the obvious way, e.g., rx is the number of internal edges that have to be removed if in a
subtour an {X,X ′}-path is added.

In the following proof, we use the (2,2,2)-double gadget as depicted in Figure 8. One
can easily verify that the graph is indeed a (2,2,2)-double gadget. Note that the gadget also
allows subtours other than those shown in the figure. However, we will show later that these
other subtours do not appear in the improving swap sequence of concern.

6.3 Proof of Theorem 1

We use the reduction described in Section 3, from the Max-Cut instance (H,w) and the
initial cut χ0 indicated in Section 6.1. In the construction of the Max-Cut instance, we use a
constant p which is odd and more than 2k, where we recall that p is the length of the paths
that replace certain edges.

We then define a suitable labeling by using the (2, 2, 2)-double gadgets, the flexible
gadgets, the (4, 2)-simple gadgets, and the XOR-gadgets. The crucial idea here is that a
double gadget can be used to label two incident edges. As a result, each H-vertex can now
be incident to at most three labels, including one label corresponding to the XOR gadget.
Accordingly, we can bring the label sum down to as low as four.
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Next, we argue that although the flexible gadget and the (2, 2, 2)-double gadget allow
many subtours, we only encounter a limited subset of these subtours. For this we introduce
the notion of local strictness and show that we can get a result similar to Lemma 7. With
this we can prove Theorem 1. See [7] for the details of this proof.

7 PLS-Completeness for k ≥ 17

In this section, we prove the PLS-completeness of TSP/k-Opt for k ≥ 17. With this result
we not only improve the value k ≥ 14, 208 from Krentel [13, 8]. We also present the first
rigorous PLS-completeness proof for TSP/k-Opt as Krentel’s proof has a substantial gap. He
assumes without proof that no edges of infinite weight can appear in a local optimum. The
definition of PLS-completeness requires that the function g maps local optima to local optima.
Therefore, either one has to show that a local optimum cannot contain edges of infinite
weight, or one has to show how to extend the definition of the function g to local optima that
contain edges of infinite weight. Both are not done in the paper of Krentel [13], and there
is no obvious way how to fill this gap. For our reduction we can prove in Lemma 14 below
that local optima cannot contain edges of infinite weight. There seems not to be a generic
way to prove such a result for arbitrary TSP instances as for example those constructed
by Krentel [13]. A result similar to Lemma 14 was obtained by Papadimitriou [19] for the
Lin-Kernighan heuristic.

▶ Theorem 2. TSP/k-Opt is PLS-complete for k ≥ 17.

Our proof of Theorem 2 follows closely the proof of Lemma 8. However, there are three
key differences. Firstly, while the all-exp property is known to hold for Max-Cut instances
with maximum degree four (Theorem 3), the PLS-completeness of Max-Cut/Flip is only
known for maximum degree five:

▶ Theorem 13 ([4]). Max-Cut/Flip is PLS-complete, even when restricted to graphs of
maximum degree five.

Secondly, we impose certain structure on the graph G in the reduction. Particularly, we
specify which gateways a parity gadget can replace.

Lastly, recall that the TSP instance requires a complete graph G∞, which we obtain
from G by adding the missing edges, which we also call the non-edges. By choosing suitable
weights for the non-edges we will be able to prove in Lemma 14 that no locally optimal tour
of G∞ can contain a non-edge.

Proof of Theorem 2. We use the reduction from Max-Cut to TSP as described in Section 3.
By Theorem 13, we can assume in the Max-Cut instance (H,w), that H is a graph of
maximum degree five.

We assign an orientation on the H-edges such that each degree-five vertex has in-degree
at most three. We can get such an orientation by repeating the following procedure: Until
all H-edges have an orientation, we take a maximal (possibly closed) walk in the subgraph
of unoriented H-edges, and we orient the edges along the walk. For every directed H-edge
z with head x and tail y, we label (x, z) and (y, z) with four and two, respectively. Next,
for each H-vertex x, we assign an integer label to x, such that the label sum at x is k − 1.
This label is nonnegative, as k ≥ 17. Corresponding to these labels we use the (4, 2)-simple
gadgets from Lemma 9 and the XOR-gadgets. Hence, this is a valid (k − 1)-labeling. We
denote it by L.
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Next, we specify the gadget arrangement corresponding to L as follows. Recall that n
is the number of H-vertices. Let x1, . . . , xn be the H-vertices. For every H-vertex x, we
assign the XOR gadget of order L(x) to x. Let ψ be the increasing lexicographical order
of the H-edges with respect to the H-vertex indices. That is, for i < i′ and j < j′, the
H-edge xixi′ precedes the H-edge xjxj′ in the order ψ, if either i < j or i = j and i′ < j′.
Then we equip the parity gadgets according to the labeling L, such that when we go along
the second-set path for each H-vertex x from xℓ to xr, the H-edges corresponding to the
related gadgets appear in their order in ψ. We equip the gadgets such that for a (4,2)-simple
gadget g related to an H-vertex t, either the vertex X or Y in g is adjacent to either tℓ or a
vertex in a gadget that is also related to t and precedes g in ψ.

Let G and w be the resulting graph and edge weight function. We have the following
lemma (for a proof see [7]).

▶ Lemma 14. For k ≥ 3 there exists a complete graph G∞ with a corresponding edge weight
function w′ obtained from G and w by adding the missing edges with suitable weights, such
that for the TSP/k-Opt instance consisting of (G∞, w

′), all locally optimal tours only contain
edges of G.

For a given tour τ we can map it to a cut σ as follows: For each H-vertex x we put x into
the first set if τ uses the left first-set edge. Otherwise we put x into the second set. Assume
we have a tour τ that is a local optimum but the corresponding cut is not a local optimum.
By Lemma 14 the tour τ contains only edges from G. By using arguments similar to those
used in the proof of Lemma 7 we can conclude that τ is not a local optimum, a contradiction.

Then Theorem 2 follows from Theorem 13. ◀

8 Conclusion

We have shown that for k ≥ 5 the k-Opt algorithm for TSP has the all-exp property, i.e. it
has exponential running time for all possible pivot rules (Theorem 1). Moreover, we proved
that TSP/k-Opt is PLS-complete for k ≥ 17 (Theorem 2). In both cases we drastically
lowered the so far best known value for k which was ≫ 1000. It was mentioned (without
explaining the details) in [13] that there is a connection between the PLS-completeness of
a problem and the all-exp property. This connection was made precise by Schäffer and
Yannakakis [21] who introduced the notion of tight PLS-completeness. They proved that the
tight PLS-completeness of a problem implies the all-exp property. Our PLS-completeness
result for TSP/k-Opt relies on the PLS-completeness of Max-Cut/Flip for graphs with
maximum degree five [4]. As for the latter the tight PLS-completeness is not known we do
not get tight PLS-completeness for TSP/k-Opt.

We put some effort into getting the constant in Theorem 1 as small as possible. In
contrast, the constant in Theorem 2 very likely can be lowered to 15 by using our techniques
from Section 6. However, this would require substantially more involved proofs. Finally we
would like to mention (as already observed by Krentel [13]) that our results also hold for
metric TSP as one can add a sufficiently large constant to all edge weights.
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