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Abstract
In the Minmax Set Cover Reconfiguration problem, given a set system F over a universe U
and its two covers Cstart and Cgoal of size k, we wish to transform Cstart into Cgoal by repeatedly adding
or removing a single set of F while covering the universe U in any intermediate state. Then, the
objective is to minimize the maximum size of any intermediate cover during transformation. We prove
that Minmax Set Cover Reconfiguration and Minmax Dominating Set Reconfiguration
are PSPACE-hard to approximate within a factor of 2− 1

polyloglog N
, where N is the size of the universe

and the number of vertices in a graph, respectively, improving upon Ohsaka (SODA 2024) [32] and
Karthik C. S. and Manurangsi (2023) [26]. This is the first result that exhibits a sharp threshold for
the approximation factor of any reconfiguration problem because both problems admit a 2-factor
approximation algorithm as per Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and Uno
(Theor. Comput. Sci., 2011) [23]. Our proof is based on a reconfiguration analogue of the FGLSS
reduction [12] from Probabilistically Checkable Reconfiguration Proofs of Hirahara and Ohsaka (STOC
2024) [19]. We also prove that for any constant ε ∈ (0, 1), Minmax Hypergraph Vertex Cover
Reconfiguration on poly(ε−1)-uniform hypergraphs is PSPACE-hard to approximate within a
factor of 2 − ε.
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1 Introduction

1.1 Background
In the field of reconfiguration, we study the reachability and connectivity over the space
of feasible solutions under an adjacency relation. Given a source problem that asks the
existence of a feasible solution, its reconfiguration problem requires to decide if there exists a
reconfiguration sequence, namely, a step-by-step transformation between a pair of feasible
solutions while always preserving the feasibility of any intermediate solution. One of the
reconfiguration problems we study in this paper is Set Cover Reconfiguration [23],
whose source problem is Set Cover. In the Set Cover Reconfiguration problem,
for a set system F over a universe U and its two covers Cstart and Cgoal of size k, we
seek a reconfiguration sequence from Cstart to Cgoal consisting only of covers of size at
most k + 1, each of which is obtained from the previous one by adding or removing a
single set of F . Countless reconfiguration problems have been defined from a variety of
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source problems, including Boolean satisfiability, constraint satisfaction problems, and graph
problems. Studying reconfiguration problems may help elucidate the structure of the solution
space of combinatorial problems [13].

The computational complexity of reconfiguration problems has the following trend: a
reconfiguration problem is likely to be PSPACE-complete if its source problem is intractable
(say, NP-complete); e.g., Set Cover [23], 3SAT [13], and Independent Set [16, 17]; a
source problem in P frequently induces a reconfiguration problem in P; e.g., Spanning
Tree [23] and 2SAT [13]. Some exception are however known; e.g., 3Coloring [7] and
Shortest Path [6]. We refer the readers to the surveys by Nishimura [30] and van den
Heuvel [35] and the Combinatorial Reconfiguration wiki [20] for more algorithmic and
hardness results of reconfiguration problems.

To overcome the computational hardness of a reconfiguration problem, we consider its
optimization version, which affords to relax the feasibility of intermediate solutions. For
example, Minmax Set Cover Reconfiguration [23] is an optimization version of Set
Cover Reconfiguration, where we are allowed to use any cover of size greater than k+ 1,
but required to minimize the maximum size of any covers in the reconfiguration sequence
(see Section 4.1 for the formal definition). Solving this problem approximately, we may be
able to find a “reasonable” reconfiguration sequence for Set Cover Reconfiguration that
consists of covers of size at most, say, 1% larger than k + 1. Unlike Set Cover, which is
NP-hard to approximate within a factor smaller than lnn [10, 11, 27], Minmax Set Cover
Reconfiguration admits a 2-factor approximation algorithm due to Ito, Demaine, Harvey,
Papadimitriou, Sideri, Uehara, and Uno [23, Theorem 6]. An immediate question is: Is this
the best possible?

Here, we summarize known hardness-of-approximation results on Minmax Set Cover
Reconfiguration. Ohsaka [32] showed that Minmax Set Cover Reconfiguration
is PSPACE-hard to approximate within a factor of 1.0029 assuming the Reconfiguration
Inapproximability Hypothesis [31], which was recently proved [19, 26]. Karthik C. S. and
Manurangsi [26] proved NP-hardness of the (2 − ε)-factor approximation for any constant
ε ∈ (0, 1). Both results are not optimal: Ohsaka’s factor 1.0029 is far smaller than 2, while
Karthik C. S. and Manurangsi’s result is not PSPACE-hardness. This leaves a tantalizing
possibility that there may exist a polynomial-length reconfiguration sequence that achieves a
1.0030-factor approximation for Minmax Set Cover Reconfiguration, and hence the
approximation problem may be in NP. Note that the PSPACE-hardness result of Ohsaka [32]
disproves the existence of a polynomial-length witness (in particular, a polynomial-length
reconfiguration sequence) for the 1.0029-factor approximation under the assumption that
NP ̸= PSPACE.

1.2 Our Results
We present optimal results of PSPACE-hardness of approximation for three reconfiguration
problems. Our first result is that Minmax Set Cover Reconfiguration is PSPACE-hard
to approximate within a factor smaller than 2, improving upon Ohsaka [32, Corollary 4.2]
and Karthik C. S. and Manurangsi [26, Theorem 4]. This is the first result that exhibits a
sharp threshold for the approximation factor of any reconfiguration problem: approximating
within any factor below 2 is PSPACE-complete and within a 2-factor is in P [23].

▶ Theorem 1.1 (informal; see Theorem 4.1). For a set system F of universe size N and
its two covers Cstart and Cgoal of size k, it is PSPACE-complete to distinguish between the
following cases:
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(Completeness) There exists a reconfiguration sequence from Cstart to Cgoal consisting only
of covers of size at most k + 1.
(Soundness) Every reconfiguration sequence contains a cover of size greater than (2 −
ε(N))(k + 1), where ε(N) := (polyloglogN)−1.

In particular, Minmax Set Cover Reconfiguration is PSPACE-hard to approximate
within a factor of 2 − ε(N).

As a corollary of Theorem 4.1 along with [32], the following PSPACE-hardness of approx-
imation holds for Dominating Set Reconfiguration, which also admits a 2-factor
approximation [23] (please refer to [32] for the problem definition).

▶ Corollary 1.2 (from Theorem 4.1 and [32, Corollary 4.3]). Minmax Dominating Set
Reconfiguration is PSPACE-hard to approximate within a factor of 2 − 1

polyloglog N , where
N is the number of vertices in a graph.

Our third result is a similar inapproximability result for Hypergraph Vertex Cover
Reconfiguration, which is defined analogously to Set Cover Reconfiguration. Min-
max Hypergraph Vertex Cover Reconfiguration is easily shown to be 2-factor
approximable [23]; we prove that this is optimal.

▶ Theorem 1.3 (informal; see Theorem 4.3). For any constant ε ∈ (0, 1), a poly(ε−1)-uniform
hypergraph, and its two vertex covers Cstart and Cgoal of size k, it is PSPACE-complete to
distinguish between the following cases:

(Completeness) There exists a reconfiguration sequence from Cstart to Cgoal consisting only
of vertex covers of size at most k + 1.
(Soundness) Every reconfiguration sequence contains a vertex cover of size greater than
(2 − ε)(k + 1).

In particular, Minmax Hypergraph Vertex Cover Reconfiguration on poly(ε−1)-
uniform hypergraphs is PSPACE-hard to approximate within a factor of 2 − ε.

We highlight here that the size of hyperedges in a Hypergraph Vertex Cover Reconfig-
uration instance of Theorem 4.3 depends (polynomially) only on the value of ε−1, whereas
the size of subsets in a Set Cover Reconfiguration instance of Theorem 4.1 may depend
on the universe size N .

Proofs marked with ∗ are omitted and can be found in the full version of this paper [18].

1.3 Proof Overview
At a high level, our proofs of Theorems 1.1 and 1.3 are given by combining the ideas developed
in [19, 31, 32, 26]. Karthik C. S. and Manurangsi [26] proved NP-hardness of the (2−ε)-factor
approximation of Minmax Set Cover Reconfiguration as follows.
1. Starting from the PCP theorem for NP [3, 4], they applied the FGLSS reduction [12]

to prove NP-hardness of the O(ε−1)-factor approximation of an intermediate problem,
which we call Max Partial 2CSP.

2. The O(ε−1)-factor approximation of Max Partial 2CSP is reduced to the (2 − ε)-factor
approximation of a reconfiguration problem, which we call Label Cover Reconfigu-
ration (Problem 2.3).

3. Label Cover Reconfiguration can be reduced to Minmax Set Cover Recon-
figuration via approximation-preserving reductions of Lund and Yannakakis [27] and
Ohsaka [32].

ICALP 2024
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Here, Max Partial 2CSP is defined as follows. The input consists of a graph G = (V, E), a
finite alphabet Σ, and constraints ψe : Σ2 → {0, 1} for each edge e ∈ E . A partial assignment
is a function f : V → Σ ∪ {⊥}, where the symbol ⊥ indicates “unassigned.” The task is to
maximize the fraction of assigned vertices in a partial assignment f that satisfies ψe for every
e = (v, w) ∈ E ; i.e., ψe(f(v), f(w)) = 1 if f(v) ̸= ⊥ and f(w) ̸= ⊥.

To improve this NP-hardness result to PSPACE-hardness, we replace the starting point
with the PCRP (Probabilistically Checkable Reconfiguration Proof) system of Hirahara
and Ohsaka [19], which is a reconfiguration analogue of the PCP theorem. We also replace
Max Partial 2CSP with its reconfiguration analogue, which we call Partial 2CSP
Reconfiguration (Problem 2.2). The proof of PSPACE-hardness is outlined as follows.
1. Starting from the PCRP theorem for PSPACE [19], we apply the FGLSS reduction [12] to

prove PSPACE-hardness of Partial 2CSP Reconfiguration (Sections 3.1 and 3.2).
2. We reduce Partial 2CSP Reconfiguration to Label Cover Reconfiguration

(Section 3.3).
3. We reduce Label Cover Reconfiguration to Minmax Set Cover Reconfigura-

tion by the reductions of [32, 27] (Section 4.1).
The second and third steps are similar to the previous work [26]. Our main technical
contribution lies in the first step, which we explain below.

Roughly speaking, the PCRP theorem [19] shows that any PSPACE computation on inputs
of length n can be encoded into a sequence π(1), · · · , π(T ) ∈ {0, 1}poly(n) of exponentially
many proofs such that any adjacent pair of proofs π(t) and π(t+1) differs in at most one bit,
and each proof π(t) can be probabilistically checked by reading q(n) bits of the proof and
using r(n) random bits, where q(n) = O(1) and r(n) = O(logn). The FGLSS reduction [12]
transforms such a proof system into a graph G = (V, E), an alphabet Σ, and constraints
(ψe)e∈E such that each vertex v ∈ V := {0, 1}r(n) corresponds to a coin flip sequence of a
verifier, each value α ∈ Σ = {0, 1}q(n) corresponds to a local view of the verifier, and the
constraints ψe check the consistency of two local views of the verifier. This reduction works in
the case of the PCP theorem and proves NP-hardness of Max Partial 2CSP [26]. However,
the reduction does not work in the case of the PCRP theorem: We need to ensure that the
reconfiguration sequence of proofs π(1), · · · , π(T ) is transformed into a sequence of partial
assignments f (1), · · · , f (T ), each adjacent pair of which differs in at most one vertex. The
issue is that changing one bit in the original proof π(t) may result in changing the assignments
of many vertices in a partial assignment f (t) : V → Σ ∪ {⊥}.

To address this issue, we employ the ideas developed in [31, 32], called the alphabet
squaring trick, and modify the FGLSS reduction as follows. Given a verifier that reads q(n)
bits of a proof, we define the alphabet as Σ = {0, 1, 01}q(n). Intuitively, the symbol “01” means
that we are taking 0 and 1 simultaneously. This enables us to construct a reconfiguration
sequence of partial assignments f (1), · · · , f (T ) from a reconfiguration sequence of proofs
π(1), · · · , π(T ). Details can be found in Section 3.2.

1.4 Related Work
Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and Uno [23] showed that optimization
versions of SAT Reconfiguration and Clique Reconfiguration are NP-hard to ap-
proximate, relying on NP-hardness of approximating Max SAT [15] and Max Clique [14],
respectively. Note that their NP-hardness results are not optimal since SAT Reconfigu-
ration and Clique Reconfiguration are PSPACE-complete. Toward PSPACE-hardness
of approximation for reconfiguration problems, Ohsaka [31] proposed the Reconfiguration
Inapproximability Hypothesis (RIH), which postulates that a reconfiguration analogue of
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Constraint Satisfaction Problem is PSPACE-hard to approximate, and demonstrated
PSPACE-hardness of approximation for many popular reconfiguration problems, including
those of 3SAT, Independent Set, Vertex Cover, Clique, Dominating Set, and Set
Cover. Ohsaka [32] adapted Dinur’s gap amplification [9] to demonstrate that under RIH,
optimization versions of 2CSP Reconfiguration and Set Cover Reconfiguration are
PSPACE-hard to approximate within a factor of 0.9942 and 1.0029, respectively.

Very recently, Hirahara and Ohsaka [19] and Karthik C. S. and Manurangsi [26] announced
the proof of RIH independently, implying that the above PSPACE-hardness results hold
unconditionally. Karthik C. S. and Manurangsi [26] further proved that (optimization
versions of) 2CSP Reconfiguration and Set Cover Reconfiguration are NP-hard to
approximate within a factor smaller than 2, which is numerically tight because both problems
are (nearly) 2-factor approximable. Our result partially resolves an open question of [26,
Section 6]: “Can we prove tight PSPACE-hardness of approximation results for GapMaxMin-
2-CSPq and Set Cover Reconfiguration?”

Other reconfiguration problems whose approximability was investigated include those of
Set Cover [23], Subset Sum [22], and Submodular Maximization [33]. We note that
optimization variants of reconfiguration problems frequently refer to those of the shortest
reconfiguration sequence [29, 5, 24, 25], which are orthogonal to this study.

2 Preliminaries

2.1 Notations
For a nonnegative integer n ∈ N, let [n] := {1, 2, . . . , n}. Unless otherwise specified, the base
of logarithms is 2. A sequence S of a finite number of objects S(1), . . . , S(T ) is denoted by
(S(1), . . . , S(T )), and we write S(t) ∈ S to indicate that S(t) appears in S . Let Σ be a finite
set called alphabet. For a length-n string π ∈ Σn and a finite sequence of indices I ⊆ [n]∗, we
use π|I := (πi)i∈I to denote the restriction of π to I. The Hamming distance between two
strings f, g ∈ Σn, denoted by ∆(f, g), is defined as the number of positions on which f and
g differ; namely,

∆(f, g) :=
∣∣∣{i ∈ [n]

∣∣∣ fi ̸= gi

}∣∣∣ . (2.1)

2.2 Reconfiguration Problems on Constraint Graphs
Constraint Graphs. In this section, we formulate reconfiguration problems on constraint
graphs. The notion of constraint graph is defined as follows.

▶ Definition 2.1. A q-ary constraint graph is defined as a tuple G = (V, E ,Σ,Ψ) such that
(V, E) is a q-uniform1 hypergraph called the underlying graph,
Σ is a finite set called the alphabet, and
Ψ = (ψe)e∈E is a collection of q-ary constraints, where each ψe : Σe → {0, 1} is a circuit.

A binary constraint graph is simply referred to as a constraint graph. ⌟

For an assignment f : V → Σ, we say that f satisfies a hyperedge e = {v1, . . . , vq} ∈ E (or a
constraint ψe) if ψe(f(e)) = 1, where f(e) := (f(v1), . . . , f(vq)), and f satisfies G if it satisfies
all the hyperedges of G. In the qCSP Reconfiguration problem, for a q-ary constraint

1 A hypergraph is said to be q-uniform if each of its hyperedges has size exactly q.

ICALP 2024
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graph G and its two satisfying assignments f start and fgoal, we are required to decide if there
exists a reconfiguration sequence from f start to fgoal consisting only of satisfying assignments
for G, each adjacent pair of which differs in at most one vertex. qCSP Reconfiguration
is PSPACE-complete in general [13, 23]; thus, we formulate its two optimization versions.

Partial 2CSP Reconfiguration. For a constraint graph G = (V, E ,Σ,Ψ = (ψe)e∈E), a
partial assignment is defined as a function f : V → Σ ∪ {⊥}, where the symbol ⊥ indicates
“unassigned.” We say that a partial assignment f : V → Σ ∪ {⊥} satisfies edge e = (v, w) ∈ E
if ψe(f(v), f(w)) = 1 whenever f(v) ̸= ⊥ and f(w) ̸= ⊥. The size of f , denoted by ∥f∥, is
defined as the number of vertices whose value is assigned; namely,

∥f∥ :=
∣∣∣{v ∈ V

∣∣∣ f(v) ̸= ⊥
}∣∣∣ . (2.2)

For two satisfying partial assignments f start and fgoal for G, a reconfiguration partial as-
signment sequence from f start to fgoal is a sequence F = (f (1), . . . f (T )) of satisfying partial
assignments such that f (1) = f start, f (T ) = fgoal, and ∆(f (t), f (t+1)) ⩽ 1 (i.e., f (t) and f (t+1)

differ in at most one vertex) for all t. For any reconfiguration partial assignment sequence
F = (f (1), . . . , f (T )), we define ∥F∥min as

∥F∥min := min
1⩽t⩽T

∥f (t)∥. (2.3)

Partial 2CSP Reconfiguration is formally defined as follows:

▶ Problem 2.2 (Partial 2CSP Reconfiguration). For a constraint graphG = (V, E ,Σ,Ψ)
and its two satisfying partial assignments f start, fgoal : V → Σ ∪ {⊥}, we are required to find
a reconfiguration partial assignment sequence F from f start to fgoal such that ∥F∥min is
maximized. ⌟

Let MaxParG(f start ↭ fgoal) denote the maximum value of ∥F ∥min
|V| over all possible reconfig-

uration sequences F from f start to fgoal; namely,

MaxParG(f start ↭ fgoal) := max
F =(f start,...,fgoal)

∥F∥min

|V|
. (2.4)

Note that 0 ⩽ MaxParG(f start ↭ fgoal) ⩽ 1. For every numbers 0 ⩽ s ⩽ c ⩽ 1, Gapc,s

Partial 2CSP Reconfiguration requests to determine for a constraint graph G and its
two satisfying partial assignments f start and fgoal, whether MaxParG(f start ↭ fgoal) ⩾ c or
MaxParG(f start ↭ fgoal) < s. Note that we can assume ∥f start∥ = ∥fgoal∥ = |V| when c = 1.

Label Cover Reconfiguration. For a constraint graph G = (V, E ,Σ,Ψ = (ψe)e∈E), a multi-
assignment is defined as a function f : V → 2Σ. We say that a multi-assignment f satisfies
edge e = (v, w) ∈ E if there exists a pair (α, β) ∈ f(v) × f(w) such that ψe(α, β) = 1. The
size of f , denoted by ∥f∥, is defined as the sum of |f(v)| over all v ∈ V; namely,

∥f∥ :=
∑
v∈V

|f(v)|. (2.5)

For two satisfying multi-assignments f start and fgoal for G, a reconfiguration multi-assignment
sequence from f start to fgoal is a sequence F = (f (1), . . . , f (T )) of satisfying multi-assignments
such that f (1) = f start, f (T ) = fgoal, and∑

v∈V

∣∣∣f (t)(v)△f (t+1)(v)
∣∣∣ ⩽ 1 for all t. (2.6)
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For any reconfiguration multi-assignment sequence F = (f (1), . . . , f (T )), we define ∥F∥max as

∥F∥max := max
1⩽t⩽T

∥f (t)∥. (2.7)

Label Cover Reconfiguration is formally defined as follows.2

▶ Problem 2.3 (Label Cover Reconfiguration). For a constraint graph G = (V, E ,Σ,Ψ)
and its two satisfying multi-assignments f start, fgoal : V → 2Σ, we are required to find a recon-
figuration multi-assignment sequence F from f start to fgoal such that ∥F∥max is minimized. ⌟

Let MinLabG(f start ↭ fgoal) denote the minimum value of ∥F ∥max
|V|+1 over all possible reconfigu-

ration multi-assignment sequences F from f start to fgoal; namely,

MinLabG(f start ↭ fgoal) := min
F =(f start,...,fgoal)

∥F∥max

|V| + 1 . (2.8)

Note that MinLabG(f start ↭ fgoal) ⩾ |V|
|V|+1 . For every numbers 1 ⩽ c ⩽ s, Gapc,s Label

Cover Reconfiguration requests to determine whether MinLabG(f start ↭ fgoal) ⩽ c or
MinLabG(f start ↭ fgoal) > s for a constraint graph G and its two satisfying multi-assignments
f start and fgoal. Note that we can assume ∥f start∥

|V|+1 = ∥fgoal∥
|V|+1 ⩽ 1 when c = 1.

2.3 Probabilistically Checkable Reconfiguration Proof Systems
First, we formally define the notion of verifier.

▶ Definition 2.4. A verifier with randomness complexity r : N → N and query complexity
q : N → N is a probabilistic polynomial-time algorithm V that given an input x ∈ {0, 1}∗,
tosses r = r(|x|) random bits R and uses R to generate a sequence of q = q(|x|) queries
I = (i1, . . . , iq) and a circuit D : {0, 1}q → {0, 1}. We write (I,D) ∼ V (x) to denote the
random variable for a pair of the query sequence and circuit generated by V on input
x ∈ {0, 1}∗ and r random bits, and write (I,D) = V (x,R) when we wish to fix the random
bits R. Denote by V π(x) := D(π|I), where (I,D) = V (x,R) for R ∼ {0, 1}r, the random
variable for the output of V on input x given oracle access to a proof π ∈ {0, 1}∗. We say
that V (x) accepts a proof π if V π(x) = 1; i.e., D(π|I) = 1 for (I,D) ∼ V (x). ⌟

We proceed to the definition of Probabilistically Checkable Reconfiguration Proofs (PCRPs)
due to Hirahara and Ohsaka [19], which offer a PCP-type characterization of PSPACE. For any
pair of proofs πstart, πgoal ∈ {0, 1}ℓ, a reconfiguration sequence from πstart to πgoal is a sequence
(π(1), . . . , π(T )) ∈ ({0, 1}ℓ)∗ such that π(1) = πstart, π(T ) = πgoal, and ∆(π(t), π(t+1)) ⩽ 1 (i.e.,
π(t) and π(t+1) differ in at most one bit) for all t.

▶ Theorem 2.5 (PCRP theorem [19, Theorem 5.1]). For any language L in PSPACE, there
exists a verifier V with randomness complexity r(n) = O(logn) and query complexity q(n) =
O(1), coupled with polynomial-time computable functions πstart, πgoal : {0, 1}∗ → {0, 1}∗, such
that the following hold for any input x ∈ {0, 1}∗:

(Completeness) If x ∈ L, there exists a reconfiguration sequence Π = (π(1), . . . , π(T )) from
πstart(x) to πgoal(x) over {0, 1}poly(|x|) such that V (x) accepts every proof with probability
1; namely,

∀t ∈ [T ], P
[
V (x) accepts π(t)

]
= 1. (2.9)

2 This problem can be thought of as a reconfiguration analogue of Min Rep [8].

ICALP 2024
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(Soundness) If x /∈ L, every reconfiguration sequence Π = (π(1), . . . , π(T )) from πstart(x)
to πgoal(x) over {0, 1}poly(|x|) includes a proof that is rejected by V (x) with probability
more than 1

2 ; namely,

∃t ∈ [T ], P
[
V (x) accepts π(t)

]
<

1
2 . (2.10)

We further introduce the notion of regular verifier. We say that a verifier is regular if
each position in its proof is equally likely to be queried.3

▶ Definition 2.6. For a verifier V and an input x ∈ {0, 1}∗, the degree of a position i of a
proof is defined as the number of times i is queried by V (x) over r(|x|) random bits; namely,∣∣∣{R ∈ {0, 1}r(|x|)

∣∣∣ i ∈ IR

}∣∣∣ = P
(I,D)∼V (x)

[
i ∈ I

]
· 2r(|x|), (2.11)

where r is the randomness complexity of V and IR is the query sequence generated by
V (x,R). A verifier V is said to be ∆-regular if the degree of every position is exactly equal
to ∆. ⌟

3 Subconstant Error PCRP Systems and FGLSS Reduction

We construct a bounded-degree PCRP verifier with subconstant error using Theorem 2.5 in
Section 3.1, and prove PSPACE-hardness of approximation for Partial 2CSP Reconfigu-
ration and Label Cover Reconfiguration by the FGLSS reduction [12] in Sections 3.2
and 3.3, respectively.

3.1 Bounded-degree PCRP Systems with Subconstant Error
Starting from Theorem 2.5, we first obtain a regular PCRP verifier for any PSPACE language,
whose proof uses the degree reduction technique due to Ohsaka [31].

▶ Proposition 3.1 (∗). For any language L in PSPACE, there exists a ∆-regular PCRP
verifier V with randomness complexity r(n) = O(logn), query complexity q(n) = O(1),
perfect completeness, and soundness 1 − ε, for some constant ∆ ∈ N and ε ∈ (0, 1).

Subsequently, using a randomness-efficient sampler over expander graphs (e.g., [21,
Section 3]), we construct a bounded-degree PCRP verifier with subconstant error.

▶ Proposition 3.2. For any language L in PSPACE and any function δ : N → R with
δ(n) = Ω(n−1), there exists a bounded-degree PCRP verifier V with randomness complexity
r(n) = O(log δ(n)−1 + logn), query complexity q(n) = O(log δ(n)−1), perfect completeness,
and soundness δ(n). Moreover, for any input x ∈ {0, 1}∗, the degree of any position is
poly(δ(|x|)−1).

Verifier Description. Our PCRP verifier is described as follows. By Proposition 3.1, let V
be a ∆-regular PCRP verifier for a PSPACE-complete language L with randomness complexity
r(n) = O(logn), query complexity q(n) = q ∈ N, perfect completeness, and soundness 1 − ε,
where ∆ ∈ N and ε ∈ (0, 1). The proof length, denoted by ℓ(n), is polynomially bounded

3 Note that regular verifiers are sometimes called smooth verifiers, e.g., [34]. Since the term “regularity”
is compatible with that of (hyper)graphs, we do not use the term “smoothness” but “regularity.”
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since ℓ(n) ⩽ q(n)2r(n) = poly(n). Hereafter, for any r(n) random bit sequence R, let IR

and DR respectively denote the query sequence and circuit generated by V (x,R). Given a
function δ : N → R with δ(n) = Ω(n−1), we construct the following verifier Ṽ :

Bounded-degree verifier Ṽ with subconstant error.

Input: a ∆-regular verifier V with soundness 1 − ε, a function δ : N → R, and an input
x ∈ {0, 1}n.

Oracle access: a proof π ∈ {0, 1}ℓ(n).
1: construct a (d, λ)-expander graph X over vertex set {0, 1}r(n) with λ

d <
ε
4 .

2: let ρ :=
⌈ 2

ε ln δ(n)−1⌉
= O(log δ(n)−1).

3: uniformly sample a (ρ− 1)-length random walk R = (R1, . . . , Rρ) over X using
r(n) + ρ · log d random bits.

4: for each 1 ⩽ k ⩽ ρ do
5: execute V (x) on Rk to generate a query sequence IRk

= (i1, . . . , iq) and a circuit
DRk

: {0, 1}q → {0, 1}.
6: if DRk

(π|IRk
) = 0 then

7: declare reject.
8: declare accept.

Correctness. The perfect completeness and soundness for a fixed proof π ∈ {0, 1}ℓ(n) are
shown below, whose proof relies on the property about random walks over expander graphs
due to Alon, Feige, Wigderson, and Zuckerman [2].

▷ Claim 3.3 (∗). If V (x) accepts π with probability 1, then Ṽ (x) accepts π with probability
1. If V (x) accepts π with probability less than 1 − ε, then Ṽ (x) accepts π with probability
less than δ(n).

We are now ready to prove Proposition 3.2.

Proof of Proposition 3.2. We first show the perfect completeness and soundness. Suppose
x ∈ L, then there exists a reconfiguration sequence Π = (π(1), . . . , π(T )) from πstart(x)
to πgoal(x) such that P[V (x) accepts π(t)] = 1 for all t. By Claim 3.3, we have that
P[Ṽ (x) accepts π(t)] = 1 for all t. Suppose x /∈ L, then for every reconfiguration sequence
Π = (π(1), . . . , π(T )) from πstart(x) to πgoal(x), it holds that P[V (x) accepts π(t)] < 1 − ε for
some t. By Claim 3.3, we have P[Ṽ (x) accepts π(t)] < δ(n) for such t.

Since ρ = O(log δ(n)−1), the randomness complexity of Ṽ is equal to r̃(n) = r(n) + ρ ·
log d = O(log δ(n)−1 + logn), and the query complexity is q̃(n) = q(n) · ρ = O(log δ(n)−1).
Note that d and λ may depend only on ε, and a (d, λ)-expander graph X over {0, 1}r(n) can
be constructed in polynomial time in 2r(n) = poly(n), e.g., by using an explicit construction
of near-Ramanujan graphs [28, 1].

Observe finally that Ṽ queries each position i ∈ [ℓ(n)] of a proof with probability equal to

P
R

 ∨
1⩽k⩽ρ

(
i ∈ IRk

) . (3.1)

Since V is ∆-regular, it holds that

P
R∼{0,1}r(n)

[
i ∈ IR

]
= ∆

2r(n) . (3.2)
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Using the fact that each Rk is uniformly distributed over {0, 1}r(n), we bound Eq. (3.1) as
follows:

P
R

 ∨
1⩽k⩽ρ

(
i ∈ IRk

) ⩽︸︷︷︸
union bound

∑
k∈[ρ]

P
R

[
i ∈ IRk

]
= ρ · ∆

2r(n) = O
(

log δ(n)−1

2r(n)

)
. (3.3)

Consequently, the degree of each position i with respect to Ṽ is at most

P
R

 ∨
1⩽k⩽ρ

(
i ∈ IRk

) · 2r̃(n) = O
(

log δ(n)−1

2r(n)

)
· 2r(n)+ρ·log d

= O(log δ(n)−1) · 2O(log δ(n)−1)

= poly(δ(n)−1),

(3.4)

which completes the proof. ◀

3.2 FGLSS Reduction and PSPACE-hardness of Approximation for
Partial 2CSP Reconfiguration

We now establish the FGLSS reduction from Proposition 3.2 and show that Partial 2CSP
Reconfiguration is PSPACE-hard to approximate within a factor arbitrarily close to 0.

▶ Theorem 3.4. For any function ε : N → R with ε(n) = Ω
(

1
polylog n

)
, Gap1,ε(N) Partial

2CSP Reconfiguration with alphabet size poly(ε(N)−1) is PSPACE-complete, where N is
the number of vertices.

Reduction. We describe a reduction from a bounded-degree PCRP verifier to Partial
2CSP Reconfiguration. Define δ(n) := ε(poly(n))

2 , whose precise expression is given
later. For any PSPACE-complete language L, let V be a bounded-degree PCRP verifier of
Proposition 3.2 with randomness complexity r(n) = O(log δ(n)−1 + logn), query complexity
q(n) = O(log δ(n)−1), perfect completeness, and soundness δ(n). The proof length ℓ(n) is
polynomially bounded. Suppose we are given an input x ∈ {0, 1}n. Let πstart, πgoal ∈ {0, 1}ℓ(n)

be the two proofs associated with V (x). Because the degree of V is bounded by poly(δ(n)−1),
for some constant κ ∈ N, we have

P
(I,D)∼V (x)

[
i ∈ I

]
⩽
δ(n)−κ

2r(n) for any i ∈ [ℓ(n)]. (3.5)

Hereafter, for any r(n) random bit sequence R, let IR and DR denote the query sequence and
the circuit generated by V (x,R), respectively. Construct a constraint graph G = (V, E ,Σ,Ψ)
as follows:

V := {0, 1}r(n), (3.6)

E :=
{

(R1, R2) ∈ V × V
∣∣∣ IR1 ∩ IR2 ̸= ∅

}
, (3.7)

Σ :=
{

{0}, {1}, {0, 1}
}q(n)

, (3.8)

Ψ := {ψe}e∈E , (3.9)
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where we define ψR1,R2 : Σ×Σ → {0, 1} for edge (R1, R2) ∈ E so that ψR1,R2(f(R1), f(R2)) =
1 for an assignment f : V → Σ if and only if the following three conditions are satisfied:

∀α ∈
∏

i∈IR

f(R1)i, DR1(α) = 1, (3.10)

∀β ∈
∏

i∈IR

f(R2)i, DR2(β) = 1, (3.11)

∀i ∈ IR1 ∩ IR2 , f(R1)i ⊆ f(R2)i or f(R1)i ⊇ f(R2)i. (3.12)

Here, for the sake of notation simplicity, we consider f(R) as if it were indexed by IR (rather
than [q(n)]); namely, f(R) ∈ {{0}, {1}, {0, 1}}IR . Thus, f(R) for each R ∈ V corresponds
the local view of V (x,R).

For any proof π ∈ {0, 1}ℓ(n), we associate it with an assignment fπ : V → Σ such that

fπ(R) :=
(

{πi}
)

i∈IR

for all R ∈ V. (3.13)

Note that fπ(R) ∈ {{0}, {1}}IR . Constructing two assignments f start from πstart and fgoal

from πgoal by Eq. (3.13), we obtain an instance (G, f start, fgoal) of Partial 2CSP Recon-
figuration. Observe that f start and fgoal satisfy G and ∥f start∥ = ∥fgoal∥ = |V|. Note that
N := |V| ⩽ nc for some constant c ∈ N. Letting δ(n) := ε(nc)

2 = Ω
(

1
polylog n

)
ensures that

the alphabet size is |Σ| = O(3q(n)) = poly(ε(N)−1). This completes the description of the
reduction.

Correctness. We first prove the completeness.

▶ Lemma 3.5 (Completeness). If x ∈ L, then MaxParG(f start ↭ fgoal) = 1.

Proof. It is sufficient to consider the case that πstart and πgoal differ in exactly one position,
say, i⋆ ∈ [ℓ(n)]; namely, πstart

i⋆ ̸= πgoal
i⋆ and πstart

i = πgoal
i for all i ̸= i⋆. Note that f start and fgoal

may differ in two or more vertices. Consider a reconfiguration partial assignment sequence F
from f start to fgoal obtained by the following procedure:

Reconfiguration sequence F from f start to fgoal.

1: for each R ∈ V such that i⋆ ∈ IR do
2: change the i⋆th entry of R’s current value from f start(R)i⋆ = {πstart

i⋆ } to {0, 1}.
3: for each R ∈ V such that i⋆ ∈ IR do
4: change the i⋆th entry of R’s current value from {0, 1} to fgoal(R)i⋆ = {πgoal

i⋆ }.

Observe that any partial assignment f◦ of F satisfies G for the following reasons:
Since f◦(R)i⋆ ⊆ {0, 1} = {πstart

i⋆ , πgoal
i⋆ } = f start(R)i⋆ ∪fgoal(R)i⋆ when i⋆ ∈ IR, f◦ satisfies

Eqs. (3.10) and (3.11).
Letting K := {f◦(R)i⋆ | i⋆ ∈ IR}, we find K to be either {{0}}, {{1}}, {{0, 1}},
{{0}, {0, 1}}, or {{1}, {0, 1}} by construction; i.e., f◦ satisfies Eq. (3.12).

Since ∥f◦∥ = |V|, it holds that MaxParG(f start ↭ fgoal) ⩾ ∥F ∥max
|V| = 1, completing the

proof. ◀

▶ Lemma 3.6 (Soundness). If x /∈ L, then

MaxParG(f start ↭ fgoal) < δ(n) + q(n) · δ(n)−κ

2r(n) . (3.14)
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The proof of Theorem 3.4 follows from Lemmas 3.5 and 3.6 because for any sufficiently
large n such that q(n)·δ(n)−κ

2r(n) ⩽ δ(n) (note that δ(n) = Ω
(

1
polylog n

)
), the following hold:

(Perfect completeness) If x ∈ L, then MaxParG(f start ↭ fgoal) = 1;
(Soundness) If x /∈ L, then MaxParG(f start ↭ fgoal) < 2δ(n) = ε(N).

Proof of Lemma 3.6. We prove the contrapositive. Suppose MaxParG(f start ↭ fgoal) ⩾
Γ for some Γ ∈ (0, 1), and there is a reconfiguration partial assignment sequence F =
(f (1), . . . , f (T )) from f start to fgoal such that ∥F∥min = MaxParG(f start ↭ fgoal). Define then
a (not necessarily reconfiguration) sequence Π = (π(1), . . . , π(T )) over {0, 1}ℓ(n) such that
each proof π(t) is determined based on the plurality vote over f (t); namely,

π
(t)
i := argmax

b∈{0,1}

∣∣∣{R ∈ V
∣∣∣ i ∈ IR and b ∈ f (t)(R)i

}∣∣∣ for all i ∈ [ℓ(n)], (3.15)

where ties are broken so that 0 is chosen. In particular, π(1) = πstart and π(T ) = πgoal.
Observe the following:

▶ Observation 3.7. For any t ∈ [T ] and R ∈ V, it holds that

f (t)(R) ̸= ⊥ =⇒ DR(π(t)|IR
) = 1. (3.16)

Since PR∼V [f (t)(R) ̸= ⊥] = ∥f (t)∥ ⩾ Γ, by Observation 3.7, we have that for all t,

P
[
V (x) accepts π(t)

]
= P

R∼{0,1}r(n)

[
DR(π(t)|IR

) = 1
]
⩾ P

R∼V

[
f (t)(R) ̸= ⊥

]
⩾ Γ. (3.17)

Unfortunately, Π is not a reconfiguration sequence because π(t) and π(t+1) may differ in two
or more positions. Since f (t) and f (t+1) differ in a single vertex R ∈ V , we have π(t)

i ≠ π
(t+1)
i

only if i ∈ IR, implying ∆(π(t), π(t+1)) ⩽ |IR| = q(n). Using this fact, we interpolate between
π(t) and π(t+1) to find a valid reconfiguration sequence Π(t) such that V (x) accepts every
proof of Π(t) with probability Γ − o(1).

▷ Claim 3.8. There exists a reconfiguration sequence Π(t) from π(t) to π(t+1) such that for
every proof π◦ of Π(t),

P
[
V (x) accepts π◦

]
⩾ Γ − q(n) · δ(n)−κ

2r(n) . (3.18)

Concatenating Π(t)’s of Claim 3.8 for all t, we obtain a valid reconfiguration sequence Π
from πstart to πgoal such that

min
1⩽t⩽T

P
[
V (x) accepts π(t)

]
⩾ Γ − q(n) · δ(n)−κ

2r(n) . (3.19)

Substituting δ(n) + q(n)·δ(n)−κ

2r(n) for Γ, we have that if MaxParG(f start ↭ fgoal) ⩾ δ(n) +
q(n)·δ(n)−κ

2r(n) , then V (x) accepts every proof π(t) of Π with probability at least δ(n); i.e., x ∈ L.
This completes the proof of Lemma 3.6. ◀

What remains to be done is to prove Observation 3.7 and Claim 3.8.

Proof of Observation 3.7. Suppose f (t)(R) ̸= ⊥ for some t ∈ [T ] and R ∈ V . We will show
that π(t)

i ∈ f (t)(R)i for every i ∈ IR. Define

K :=
{
f (t)(R′)i

∣∣∣ ∃R′ ∈ V s.t. i ∈ IR′ and f (t)(R′) ̸= ⊥
}
. (3.20)
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Then, any pair α, β ∈ K must satisfy that α ⊆ β or α ⊇ β because otherwise, f (t) would
violate Eq. (3.12) at edge (R1, R2) such that i ∈ R1 ∩R2, f (t)(R1)i = α, and f (t)(R2)i = β,
which is a contradiction. For each possible case of K, the result of the plurality vote π(t)

i is
shown below, implying that π(t)

i ∈ f (t)(R)i.

K {} {{0}} {{1}} {{0, 1}} {{0}, {0, 1}} {{1}, {0, 1}}

π
(t)
i 0 0 1 0 0 1

Since f (t)(R) must satisfy a self-loop (R,R) ∈ E , by the definition of ψR,R, we have

∀α ∈
∏

i∈IR

f (t)(R)i, DR(α) = 1, (3.21)

On the other hand, it holds that

π(t)|IR
∈

∏
i∈IR

f (t)(R)i, (3.22)

implying DR(π(t)|IR
) = 1, as desired. ◀

Proof of Claim 3.8. Recall that π(t) and π(t+1) may differ in at most q(n) positions. Consider
any trivial reconfiguration sequence Π(t) from π(t) to π(t+1) by simply changing at most q(n)
positions on which π(t) and π(t+1) differ. By construction, any proof π◦ of Π(t) differs from
π(t) in at most q(n) positions, say, I◦ ∈

( [ℓ(n)]
⩽q(n)

)
. Then, we derive the following:

P
[
V (x) accepts π◦

]
= P

(I,D)∼V (x)

[
D(π◦|I) = 1

]
⩾ P

(I,D)∼V (x)

[
D(π◦|I) = 1 and I ∩ I◦ = ∅

]
= P

(I,D)∼V (x)

[
D(π(t)|I) = 1 and I ∩ I◦ = ∅

]
= P

(I,D)∼V (x)

[
D(π(t)|I) = 1

]
︸ ︷︷ ︸

=P[V (x) accepts π(t)]⩾Γ

− P
(I,D)∼V (x)

[
D(π(t)|I) = 1 and I ∩ I◦ ̸= ∅

]

⩾ Γ − P
(I,D)∼V (x)

[
I ∩ I◦ ̸= ∅

]
.

(3.23)

Recall that P(I,D)∼V (x)[i ∈ I] ⩽ δ(n)−κ

2r(n) for any i ∈ [ℓ(n)] by assumption. Since |I◦| ⩽ q(n),
taking a union bound, we have

P
(I,D)∼V (x)

[
I ∩ I◦ ̸= ∅

]
⩽

∑
i∈I◦

P
(I,D)∼V (x)

[
i ∈ I

]
⩽
q(n) · δ(n)−κ

2r(n) , (3.24)

implying that

P
[
V (x) accepts π◦

]
⩾ Γ − q(n) · δ(n)−κ

2r(n) . (3.25)

This completes the proof. ◁

ICALP 2024



85:14 Optimal PSPACE-Hardness of Approximating Set Cover Reconfiguration

3.3 Reducing Partial 2CSP Reconfiguration to Label Cover
Reconfiguration

Subsequently, we show PSPACE-hardness of approximation for Label Cover Reconfigu-
ration by reducing from Partial 2CSP Reconfiguration, whose proof is similar to [26].
Note that Label Cover Reconfiguration admits a 2-factor approximation, similarly to
Minmax Set Cover Reconfiguration (see Section 4.1).

▶ Theorem 3.9 (∗). For any function ε : N → R with ε(n) = Ω
(

1
polylog n

)
, Gap1,2−ε(N)

Label Cover Reconfiguration with alphabet size poly(ε(N)−1) is PSPACE-complete,
where N is the number of vertices. In particular,

for any constant ε ∈ (0, 1), Gap1,2−ε Label Cover Reconfiguration with constant
alphabet size is PSPACE-complete, and
Gap1,2− 1

polyloglog N
Label Cover Reconfiguration with alphabet size polyloglogN is

PSPACE-complete.

4 Applications

In this section, we apply Theorem 3.9 to show optimal PSPACE-hardness of approxima-
tion results for Minmax Set Cover Reconfiguration (Theorem 4.1) and Minmax
Hypergraph Vertex Cover Reconfiguration (Theorem 4.3).

4.1 PSPACE-hardness of Approximation for Set Cover Reconfiguration
We first prove that Minmax Set Cover Reconfiguration is PSPACE-hard to approximate
within a factor smaller than 2. Let U be a finite set called the universe and F = {S1, . . . , Sm}
be a family of m subsets of U . A cover for a set system (U ,F) is a subfamily of F whose
union is equal to U . For any pair of covers Cstart and Cgoal for (U ,F), a reconfiguration
sequence from Cstart to Cgoal is a sequence C = (C(1), . . . , C(T )) of covers such that C(1) = Cstart,
C(T ) = Cgoal, and |C(t)△C(t+1)| ⩽ 1 (i.e., C(t+1) is obtained from C(t) by adding or removing
a single set of F) for all t. In Set Cover Reconfiguration [23], for a set system (U ,F)
and its two covers Cstart and Cgoal of size k, we are asked to decide if there is a reconfiguration
sequence from Cstart to Cgoal consisting only of covers of size at most k+1. Next, we formulate
its optimization version. Denote by opt(F) the size of the minimum cover of (U ,F). For any
reconfiguration sequence C = (C(1), . . . , C(T )), its cost is defined as the maximum value of

|C(t)|
opt(F)+1 over all C(t)’s in C ; namely,4

costF (C ) := max
C(t)∈C

|C(t)|
opt(F) + 1 , (4.1)

In Minmax Set Cover Reconfiguration, we wish to minimize costF (C ) subject to
C = (Cstart, . . . , Cgoal). For a pair of covers Cstart and Cgoal for (U ,F), let costF (Cstart ↭ Cgoal)
denote the minimum value of costF (C ) over all possible reconfiguration sequences C from
Cstart to Cgoal; namely,

costF (Cstart ↭ Cgoal) := min
C=(Cstart,...,Cgoal)

costF (C ). (4.2)

For every 1 ⩽ c ⩽ s, Gapc,s Set Cover Reconfiguration requests to distinguish whether
costF (Cstart ↭ Cgoal) ⩽ c or costF (Cstart ↭ Cgoal) > s.

4 Here, division by opt(F) + 1 is derived from the nature that we must first add at least one set whenever
|Cstart| = |Cgoal| = opt(F) and Cstart ̸= Cgoal.
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For the sake of completeness, we here present a 2-factor approximation algorithm for
Minmax Set Cover Reconfiguration of [23]:5

2-factor approximation for Minmax Set Cover Reconfiguration.

1: ▷ start from Cstart. ◁

2: insert each set of Cgoal \ Cstart into the current cover in any order.
3: discard each set of Cstart \ Cgoal from the current cover in any order.
4: ▷ end with Cgoal. ◁

Our main result is stated below, whose proof uses a gap-preserving reduction from Label
Cover Reconfiguration to Minmax Set Cover Reconfiguration [32, 27].

▶ Theorem 4.1. Gap1,2− 1
polyloglog N

Set Cover Reconfiguration is PSPACE-complete,
where N is the universe size. In particular, Minmax Set Cover Reconfiguration is
PSPACE-hard to approximate within a factor of 2 − 1

polyloglog N .

Theorem 4.1 along with [32] implies that Minmax Dominating Set Reconfiguration
is PSPACE-hard to approximate within a factor of 2 − 1

polyloglog N , where N is the number of
vertices (see Corollary 1.2).

Proof of Theorem 4.1. The reduction from Label Cover Reconfiguration to Minmax
Set Cover Reconfiguration is almost the same as that due to Lund and Yannakakis [27]
and Ohsaka [32]. Let (G = (V, E ,Σ,Ψ), f start, fgoal) be an instance of Label Cover
Reconfiguration with N vertices and alphabet size |Σ| = polyloglogN , where ∥f start∥ =
∥fgoal∥ = |V|. Define B := {0, 1}Σ. For each α ∈ Σ and S ⊆ Σ, we construct Qα ⊂ B and
QS ⊂ B according to [32] in 2O(|Σ|) time. Let ≺ be an arbitrary order over V . Create an
instance of Minmax Set Cover Reconfiguration as follows. For each vertex v ∈ V and
each value α ∈ Σ, we define Sv,α ⊂ E ×B as

Sv,α :=

 ⋃
e=(v,w)∈E:v≺w

{e} ×Qα

 ∪

 ⋃
e=(v,w)∈E:v≻w

{e} ×Qπe(α)

 , (4.3)

where πe(α) := {β ∈ Σ | ψe(α, β) = 1}. Then, a set system (U ,F) is defined as

U := E ×B and F :=
{
Sv,α

∣∣∣ v ∈ V, α ∈ Σ
}
. (4.4)

For a satisfying multi-assignment f : V → 2Σ for G with ∥f∥ = |V|,6 we associate it with a
subfamily Cf ⊂ F such that

Cf :=
{
Sv,α

∣∣∣ v ∈ V, α ∈ f(v)
}
, (4.5)

which is a minimum cover for (U ,F) [32]; i.e., |Cf | = |V| = opt(F). Constructing min-
imum covers Cstart from f start and Cgoal from fgoal by Eq. (4.5), we obtain an instance
((U ,F), Cstart, Cgoal) of Minmax Set Cover Reconfiguration. This completes the de-
scription of the reduction.

5 Similarly, a 2-factor approximation algorithm can be obtained for Minmax Dominating Set Recon-
figuration and Minmax Hypergraph Vertex Cover Reconfiguration.

6 In other words, each f(v) is a singleton.
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Here, we will show that

MinLabG(f start ↭ fgoal) = costF (Cstart ↭ Cgoal), (4.6)

which implies the completeness and soundness; for this, we use the following lemma [32].

▶ Lemma 4.2 ([32, Observation 4.4; Claim 4.7]). Let f : V → 2Σ be a multi-assignment and
C ⊆ F be a subfamily such that for any v ∈ V and α ∈ Σ, α ∈ f(v) if and only if Sv,α ∈ C.
Then, f satisfies an edge e = (v, w) ∈ E if and only if C covers {e} × B. In particular, f
satisfies G if and only if C covers E ×B. Moreover, it holds that ∥f∥ = |C|.

We first show that MinLabG(f start ↭ fgoal) ⩾ costF (Cstart ↭ Cgoal). For any reconfiguration
multi-assignment sequence F = (f (1), . . . , f (T )) from f start to fgoal such that ∥F∥max =
MinLabG(f start ↭ fgoal), we can construct a reconfiguration sequence C = (Cf(1) , . . . , Cf(T ))
from Cstart to Cgoal by Eq. (4.5). By Lemma 4.2, each Cf(t) covers U ; thus, C is a valid
reconfiguration sequence from Cstart to Cgoal. Moreover, costF (Cstart ↭ Cgoal) ⩽ costF (C ) =
∥F∥max = MinLabG(f start ↭ fgoal), as desired. We then show that MinLabG(f start ↭
fgoal) ⩽ costF (Cstart ↭ Cgoal). For any reconfiguration sequence C = (C(1), . . . , C(T )) from
Cstart to Cgoal such that costF (C ) = costF (Cstart ↭ Cgoal), we can construct a sequence
F = (f (1), . . . , f (t)) of multi-assignments such that f (t) : V → 2Σ is defined as follows:

f (t)(v) :=
{
α ∈ Σ

∣∣∣ Sv,α ∈ C(t)
}

for all v ∈ V. (4.7)

By Lemma 4.2, each f (t) satisfies G; thus, F is a valid reconfiguration multi-assignment
sequence from f start to fgoal. Moreover, MinLabG(f start ↭ fgoal) ⩽ ∥F∥max = costF (C ) =
costF (Cstart ↭ Cgoal), which completes the proof of Eq. (4.6).

Since |Σ| = polyloglogN , the reduction takes polynomial time in N , and it holds that
|U| = |E × B| = O(N2 · 2polyloglog N ) = O(N3); i.e., N = Ω(|U| 1

3 ). By Theorem 3.9,
Gap1,2− 1

polyloglog N
Label Cover Reconfiguration with alphabet size polyloglogN is

PSPACE-complete; thus, Gap1,2− 1
polyloglog |U|

Set Cover Reconfiguration is PSPACE-
complete as well, accomplishing the proof. ◀

4.2 PSPACE-hardness of Approximation for Hypergraph Vertex Cover
Reconfiguration

We conclude this section with a similar inapproximability result for Minmax Hypergraph
Vertex Cover Reconfiguration on O(1)-uniform hypergraphs. Minmax Hypergraph
Vertex Cover Reconfiguration is defined analogously to Minmax Set Cover Recon-
figuration; refer to the full version [18] for the formal definition. Our inapproximability
result is shown below, whose proof reuses the reduction of Theorem 4.1.

▶ Theorem 4.3 (∗). For any constant ε ∈ (0, 1), Gap1,2−ε Hypergraph Vertex Cover
Reconfiguration on poly(ε−1)-uniform hypergraphs is PSPACE-complete. In particu-
lar, Minmax Hypergraph Vertex Cover Reconfiguration on poly(ε−1)-uniform
hypergraphs is PSPACE-hard to approximate within a factor of 2 − ε.
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