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Abstract
Consider a matroid equipped with a labeling of its ground set to an abelian group. We define the
label of a subset of the ground set as the sum of the labels of its elements. We study a collection
of problems on finding bases and common bases of matroids with restrictions on their labels. For
zero bases and zero common bases, the results are mostly negative. While finding a non-zero basis
of a matroid is not difficult, it turns out that the complexity of finding a non-zero common basis
depends on the group. Namely, we show that the problem is hard for a fixed group if it contains an
element of order two, otherwise it is polynomially solvable.

As a generalization of both zero and non-zero constraints, we further study F -avoiding constraints
where we seek a basis or common basis whose label is not in a given set F of forbidden labels. Using
algebraic techniques, we give a randomized algorithm for finding an F -avoiding common basis of
two matroids represented over the same field for finite groups given as operation tables. The study
of F -avoiding bases with groups given as oracles leads to a conjecture stating that whenever an
F -avoiding basis exists, an F -avoiding basis can be obtained from an arbitrary basis by exchanging
at most |F | elements. We prove the conjecture for the special cases when |F | ≤ 2 or the group is
ordered. By relying on structural observations on matroids representable over fixed, finite fields,
we verify a relaxed version of the conjecture for these matroids. As a consequence, we obtain a
polynomial-time algorithm in these special cases for finding an F -avoiding basis when |F | is fixed.
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1 Introduction

Several combinatorial optimization problems involve additional constraints, such as parity,
congruency, and exact-weight constraints [35, 41, 42, 43, 44]. These constraints are subsumed
by group-label constraints defined as follows: the ground set E is equipped with a labeling
ψ : E → Γ to an abelian group Γ and a solution X ⊆ E must ensure that the sum of the
labels of its entries is not in a prescribed forbidden set F ⊆ Γ, i.e., ψ(X) :=

∑
e∈X ψ(e) /∈ F .

We call such a solution F -avoiding.
Particularly important special cases of group-label constraints include the non-zero

(F = {0}) and zero (F = Γ \ {0}) constraints, where F -avoiding sets are referred to as
non-zero and zero, respectively. The non-zero constraint has been extensively studied for
path problems on graphs as it generalizes constraints on parity and topology. This line
of research includes packing non-zero A-paths [12] as well as finding a shortest odd s–t
path [46, Section 29.11e], a shortest non-zero s–t path [25], and an F -avoiding s–t path
with |F | ≤ 2 [28]. For these problems, some literature allows Γ to be non-abelian since the
order of operations can be naturally defined for paths. Problems related to non-zero perfect
bipartite matchings in Z2 have also been dealt with, see [1, 18, 26]. The zero constraint,
or, slightly more generally, the group-label constraint with |Γ \ F | = 1, can encode the
congruency and exact-weight constraints by setting Γ to be a cyclic group Zm and the
integers Z, respectively. Examples of problems whose congruency-constrained versions have
been studied include submodular function minimization [42], minimum cut [43], and integer
linear programming with totally unimodular coefficients [41]. For the last problem, Nägele,
Santiago, and Zenklusen [41] gave a randomized strongly polynomial-time algorithm to test
the existence of an F -avoiding feasible solution, where the group is Zm with prime m and
|F | ≤ 2, implying the congruency constraint if m = 3.

The exact-weight constraint was first considered for the matching problem by Papadim-
itriou and Yannakakis [44]. Mulmuley, Vazirani, and Vazirani [40] gave a randomized
polynomial-time algorithm for solving the problem using an algebraic technique. Derandom-
izing this algorithm is a major open problem and there is a collection of partial results for it,
see e.g. [6, 18, 22, 49, 52]. Other exact problems include arborescences, matchings, cycles [2],
and independent sets or bases in a matroid [11, 16, 45].

In this work, we explore group-label constraints for matroid bases and matroid intersection.
Throughout the paper, we assume that any group Γ is abelian without mentioning it. In the
problems Non-Zero Basis and Zero Basis, we are given a matroid M on a ground set E
and a group labeling ψ : E → Γ, and we are to find a non-zero or zero basis, respectively, or
to correctly report that no such basis exists. In F -avoiding Basis, along with the matroid
M and labeling ψ, we are also given a forbidden label set F ⊆ Γ, and we need to find
an F -avoiding basis, that is, a basis B with ψ(B) ̸∈ F . In Non-Zero Common Basis,
Zero Common Basis, and F -avoiding Common Basis, instead of a single matroid, we
are given two matroids M1 and M2 on a common ground set E and seek a non-zero, zero,
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and F -avoiding common basis, respectively. We also tackle the weighted variants of these
problems, referred to as Weighted Non-Zero Basis for example, where we are to find a
feasible solution minimizing a given weight function w : E → R.

We note that the target label 0 in the non-zero and zero problems can be changed to
an arbitrary group element g ∈ Γ by appending a coloop to the ground set with label −g.
Regarding the input of the group, we consider the following three types: (i) operation and
zero-test oracle, (ii) operation table of a finite group, and (iii) a fixed finite group. Unless
otherwise stated, we assume that a group is given as the oracles and the matroids are given
as independence oracles. In this case, by a polynomial-time algorithm, we mean an algorithm
making polynomially many elementary steps, group operations, and independence oracle
calls. If the group is finite and is given by its operation table, then the running time of a
polynomial-time algorithm can depend polynomially on the group size.

Our research follows the recent initiative by Liu and Xu [35], who addressed Zero Basis1.
They conjectured that, given the existence of a zero basis, for any non-zero basis B, there is
a zero basis B∗ such that |B∗ \B| ≤ D(Γ) − 1, where D(Γ) denotes the Davenport constant
of Γ (see Section 6.3 for definition), which is upper-bounded by |Γ|. Liu and Xu proved the
conjecture for cyclic groups Γ = Zm with the order m being a prime power or the product of
two primes, with the aid of an additive combinatorics result by Schrijver and Seymour [47],
deriving an FPT algorithm parameterized by |Γ| = m for Zero Basis. In Theorem 6.6, we
give a counterexample to this conjecture for groups with Zd2 with d ≥ 4.

The non-zero constraint is closely related to lattices studied by Lovász [37]. The lattice
generated by vectors {v1, . . . , vn} ⊆ Rn is the set {

∑n
i=1 λivi | λ1, . . . , λn ∈ Z }. For a set

family F ⊆ 2E , let lat(F) denote the lattice generated by the characteristic vectors of F .
Every lattice has a lattice basis A = {a1, . . . , an} ⊆ ZE , which is a set of linearly independent
vectors generating it. Since F and its lattice basis A generate the same lattice, F has a
non-zero member if and only if A has a non-zero member, i.e., ψ(ai) :=

∑
e∈E ai(e)ψ(e) ̸= 0

for some i. This implies that if a basis of lat(F) can be computed in polynomial time, then
the existence of a non-zero member of F can be decided in polynomial time. Such set families
F include matroid bases [45], common bases of a matroid and a partition matroid having
two classes [45], and perfect matchings [37, 38].

Below, we summarize our results for each problem.

Non-Zero Basis. The tractability of Non-Zero Basis can be derived from the above lattice
argument together with a characterization of base lattices [45]. We observe that for any
zero basis B, there exists a non-zero basis B∗ such that |B∗ \B| ≤ 1, provided that at
least one non-zero basis exists. A weighted variant of this statement is shown in the same
way. This result generalizes an algorithm for Weighted Zero Basis with Γ = Z2 by
Liu and Xu [35].

Non-Zero Common Basis. We show in Theorems 3.7 and 6.1 that Non-Zero Common
Basis is polynomially solvable if and only if Γ does not contain Z2 as a subgroup. Our
hardness proof for Γ = Z2 is based on an information-theoretic argument using sparse
paving matroids, which is independent of the P ̸= NP conjecture. The polynomial-time
algorithm for Γ ̸≥ Z2 is a modification of the negatively directed cycle elimination
algorithm for weighted matroid intersection [9]. In Theorem 3.9, we also give a 2-
approximation algorithm for Weighted Non-Zero Common Basis if Γ ̸≥ Z2 and the
weight function is nonnegative. Finally, in Theorems 3.11 and 3.12, we solve Weighted

1 Called Group-Constrained Matroid Base (GCMB) in [35].
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Non-Zero Common Basis for an arbitrary group when both matroids are partition
matroids or one of the matroids is a partition matroid defined by a partition having two
classes.

F -avoiding Basis and Common Basis. If the group is fixed and finite, (Weighted) F -
avoiding Basis reduces to polynomially many instances of (weighted) matroid inter-
section [35]. On the other hand, it follows from the results of [16] that F -avoiding
Basis requires exponentially many independence oracle queries if F is part of the input
and the group is finite and is given as an operation table, while the same hardness of
F -avoiding Common Basis follows from our Theorem 6.1 even if the group is fixed and
finite. Regarding positive results for F -avoiding problems, our contribution is twofold.
First, using similar ideas as in [11, 51], in Theorem 4.2 we give a randomized algebraic
algorithm for F -avoiding Common Basis in case where the matroids are represented
over the same field and the group is finite and is given as an operation table. We observe
in Theorem 4.3 that the algorithm can be derandomized in certain cases, including
F -avoiding Basis for graphic matroids. Second, we turn to the study of F -avoiding
Basis for cases where |F | is fixed and the group is given by an oracle. Motivated by the
work of Liu and Xu [35], we propose Conjecture 5.1 stating that if at least one F -avoiding
basis exists, then each basis can be turned into an F -avoiding basis by exchanging at
most |F | elements. The validity of the conjecture follows from the results of [35] for
groups of prime order. We show that the conjecture also holds if Γ is an ordered group
(Theorem 5.6) or if |F | ≤ 2 (Theorem 5.18). By introducing a novel relaxation of strong
base orderability, in Theorem 5.11 we show that a relaxation of the conjecture holds for
GF(q)-representable matroids for every fixed prime power q. In Theorem 5.17, we prove
a somewhat stronger version of this result for graphic matroids. In each of these special
cases, we obtain the polynomial solvability of F -avoiding Basis for fixed F .

Zero Basis and Zero Common Basis. The zero constraint for Γ = Z corresponds to the
exact-weight constraint, implying that many problems are NP-hard, in particular, Zero
Basis is NP-hard even for uniform matroids (Theorem 6.2). It follows from the results
of [16] that Zero Basis requires exponentially many independence oracle queries for a
finite group given by operation table. We show the same hardness of Zero Common
Basis for any fixed nontrivial group (Theorem 6.4). On the other hand, we obtain
positive results from the aforementioned results on F -avoiding problems. In particular,
Zero Basis is polynomially solvable if the group is fixed and finite [35], Theorem 4.2
implies a randomized polynomial-time algorithm for Zero Common Basis for matroids
represented over the same field if Γ is finite and is given as an operation table, and
using the results of [35], Theorem 5.11 implies an FPT algorithm for Zero Basis when
parameterized by |Γ| if the matroids are representable over a fixed, finite field.

Other work related to group-labeled matroids

Bérczi and Schwarcz [5] showed the hardness of partitioning into common bases, see also
[4, 24] for later results. A natural relaxation of that problem gives rise to problems related to
Non-Zero Common Basis for the group R/Z. This relation is explained in the full version.

It is straightforward to verify that the family of non-zero subsets of a set satisfies the
axiom of delta-matroids, which are a generalization of matroids introduced by Bouchet [8].
From this viewpoint, Non-Zero Basis offers a tractable special case of the intersection of a
matroid and a delta-matroid. We note that the intersection of a matroid and a delta-matroid
is intractable in general, as it encompasses matroid parity. Kim, Lee, and Oum [29] defined
a delta-matroid, called a Γ-graphic delta-matroid, from a graph equipped with a labeling of
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vertices to an abelian group Γ. In the definition, they employ a constraint similar to but
different from non-zero. Exploring the relationship between Γ-graphic delta-matroids and
our findings is left for future work.

Organization

The rest of this paper is organized as follows. Section 2 provides preliminaries on groups and
matroids. Section 3 deals with non-zero problems. Section 4 provides an algebraic algorithm
for F -avoiding Common Basis for represented matroids. Section 5 studies F -avoiding
Basis if |F | is fixed. Section 6 includes our hardness results for each of the problems. Finally,
Section 7 concludes this paper enumerating open problems.

2 Preliminaries

Let N, Z≥0, Z, Q, R≥0, and R denote the set of positive integers, nonnegative integers,
integers, rationals, nonnegative reals, and reals, respectively. We let [n] := {1, . . . , n} for
n ∈ Z≥0. For a set S, we simply write S \ {x} as S − x for x ∈ S and S ∪ {y} as S + y for
y /∈ S. For a set E and r ∈ Z≥0, we let

(
E
r

)
:= {S ⊆ E | |S| = r }.

In this paper, all groups are implicitly assumed to be abelian. We use the additive notation
for the operations of groups except in Section 4. For m ∈ N, let Zm = {0, . . . ,m− 1} denote
the cyclic group of order m. For groups Γ1 and Γ2, we mean by Γ1 ≤ Γ2 that Γ1 is a subgroup
of Γ2. A group Γ is said to be ordered if Γ is equipped with a total order ≤ compatible with
the operation of Γ in the sense that a ≤ b implies a+ c ≤ b+ c for all a, b, c ∈ Γ. A labeling
is a function ψ : E → Γ from a set E to a group Γ, and we let ψ(S) :=

∑
x∈S ψ(x) for S ⊆ E.

Let GF(q) denote the finite field of q elements for a prime power q.
We follow [14] for basic terminologies on graphs such as paths and cycles. The vertex and

edge sets of a graph G are denoted by V (G) and E(G), respectively. Similarly, V (D) denotes
the vertex set of a directed graph D, and A(D) denotes its arc set. Given a weight function
w : A(D) → R and a subgraph C of D, the weight of C is defined as w(C) := w(A(C)). A
weight function w is said to be conservative if D does not contain a directed cycle of negative
weight.

We refer the reader to [20, 46] for basics on matroid optimization. A matroid M consists
of a finite ground set E(M) and a nonempty set family B(M) ⊆ 2E(M) such that for any
B1, B2 ∈ B(M) and x ∈ B1 \ B2, there exists y ∈ B2 \ B1 such that B1 − x + y ∈ B(M).
Elements in B(M) are called bases. The next basis exchange property was proved by
Brualdi [10], see also [46, Theorem 39.12].

▶ Lemma 2.1 (Brualdi [10]). If B and B′ are bases of a matroid M , then there exists a
bijection ϕ : B \B′ → B′ \B such that B − e+ ϕ(e) is a basis for each e ∈ B \B′.

Following [20], we define a partition matroid as a direct sum of uniform matroids and a
unitary partition matroid as a direct sum of rank-1 uniform matroids. We note that several
authors refer to the latter object as partition matroids. Given a matrix A over some field,
we denote by M(A) the matroid defined on the column indices of A where a set is a basis of
M(A) if the corresponding columns form a basis of the vector space spanned by the columns
of A. Given a connected graph G, its cycle matroid M(G) is the matroid whose ground
set is E(G) and whose bases are the edge sets of the spanning trees of G. If M = M(A)
for a matrix A over a field F or a graph A, we say that M is F-representable or graphic,
respectively.

ICALP 2024
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3 Non-Zero Basis and Common Basis

3.1 Non-Zero Basis
In this section, we consider (Weighted) Non-Zero Basis. The following theorem can be
derived from the description of the lattices of matroid bases by Rieder [45]. In what follows
we give a direct proof of the result.

▶ Theorem 3.1. Let M be a matroid and ψ : E(M) → Γ a group labeling. The following are
equivalent:

(i) all bases of M have the same label,
(ii) M has a basis B such that ψ(B′) = ψ(B) holds for each basis B′ with |B \B′| ≤ 1, and
(iii) ψ is constant on each component of M .

Proof. It is clear that (i) implies (ii) and (iii) implies (i). In what follows, we show that
(ii) implies (iii). Let B be a basis such that ψ(B′) = ψ(B) holds for each basis B′ with
|B \B′| ≤ 1. Let GB denote the bipartite graph with bipartition (B,E(M) \B) and edge
set {xy | x ∈ B, y ∈ E(M) \ B,B − x + y ∈ B(M) }. By the assumption on B, it follows
that ψ(x) = ψ(y) for each edge xy of GB . Then, ψ is constant on each connected component
of the graph GB , and thus (iii) follows by using that the connected components of the graph
GB coincide with the components of the matroid M [32]. ◀

Note that Theorem 3.1(iii) provides a characterization for “NO” instances of Non-Zero
Basis, while Theorem 3.1(ii) provides a simple algorithm for this problem. Liu and Xu [35]
gave the following simple and constructive algorithm for Weighted Zero Basis with
Γ = Z2, for which the zero and non-zero constraints are equivalent, without decomposing the
matroid into components. First, find a minimum weight basis B ∈ B(M), and if ψ(B) ̸= 0,
then we are done. Otherwise, consider all the bases of the form B − x+ y with x ∈ B and
y ∈ E(M) \B. Among these bases, if there is none with a non-zero label, then there does
not exist a non-zero basis, otherwise, choose a non-zero basis of minimum weight among the
considered ones. Actually, this algorithm works correctly for Weighted Non-Zero Basis
for any group, and the proof of [35, Proposition 1] can be modified to show its correctness.
In what follows, we give a different proof of this fact.

▶ Lemma 3.2. Let M be a matroid, ψ : E(M) → Γ a group labeling, and w : E(M) → R a
weight function. Then, for any minimum-weight basis B, there exists a minimum-weight
non-zero basis B∗ such that |B \B∗| ≤ 1, provided that at least one non-zero basis exists.

Proof. Let B′ be a minimum-weight non-zero basis with |B \B′| being minimal. If B = B′

then we are done, otherwise ψ(B) = 0. According to the symmetric exchange axiom, we can
choose x ∈ B \ B′ and y ∈ B′ \ B such that B − x+ y and B′ + x− y are both bases. As
0 ̸= ψ(B)+ψ(B′) = ψ(B−x+y)+ψ(B′ +x−y), one of B−x+y and B′ +x−y must be non-
zero. Suppose ψ(B−x+y) ̸= 0. Since w(B)+w(B′) = w(B−x+y)+w(B′ +x−y) and w(B)
has the minimum weight, we have w(B−x+y) ≤ w(B′), which implies w(B−x+y) = w(B′)
by ψ(B − x+ y) ̸= 0. Thus, we can take B∗ = B − x+ y. If ψ(B′ + x− y) ̸= 0, then it can
be shown in the same way that B′ + x− y is a minimum-weight non-zero basis, contradicting
the assumption that B′ is a minimum-weight non-zero basis closest to B. ◀

We obtain the following from Lemma 3.2.

▶ Theorem 3.3. Weighted Non-Zero Basis can be solved in polynomial time.
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3.2 Non-Zero Common Basis
3.2.1 Polynomial-time Algorithm with Z2 ̸≤ Γ
In this section, we show the polynomial solvability of Non-Zero Common Basis when
Z2 ̸≤ Γ, that is, Γ does not contain any element of order two. Later, we will show in
Theorem 6.1 that the problem is hard if Z2 ≤ Γ. Our algorithm is a modification of the
weighted matroid intersection algorithm given by Krogdahl [30, 31, 32] and independently
by Brezovec, Cornuéjols, and Glover [9].

We will use the following result on directed graphs. While several works concentrated
on finding non-zero paths and cycles in group-labeled graphs [25], their setting does not
seem to include group-labeled digraphs. Therefore, we give a proof of the next result in the
full version. While this result may be of independent interest, it will later be applied as a
subroutine.

▶ Theorem 3.4. Let D be a digraph, ψ : A(D) → Γ a group labeling, and w : A(D) → R
a conservative weight function. Then, there is a polynomial-time algorithm that returns a
non-zero directed cycle in D which is shortest with respect to w or correctly reports that D
contains no non-zero directed cycle.

We note that the problem of finding an odd directed path is NP-hard even in the
unweighted case [33]. In contrast to Theorem 3.4, the key distinction here lies between walks
and paths: while a walk can include a directed cycle to change a group label, a path cannot.
Consequently, a Dijkstra-style algorithm for finding an odd directed path must track not
only the last vertex but also all intermediate vertices, leading to an exponential increase in
running time.

Let M1 and M2 be matroids on a common ground set E and ψ : E → Γ a group labeling.
Given a common basis B, we define the digraph DM1,M2(B) on the vertex set E and the
labeling ψ′ on its arcs as follows. For each x ∈ B and y ∈ E \B such that B−x+y ∈ B(M1),
we add an arc xy to DM1,M2(B) with label ψ′(xy) := ψ(y). Similarly, for each x ∈ B and
y ∈ E \B such that B − x+ y ∈ B(M2), we add an arc yx and with label ψ′(yx) := −ψ(x).

▶ Lemma 3.5. Let M1 and M2 be matroids on a common ground set E and ψ : E → Γ
a group labeling. Let B and B′ be common bases of M1 and M2 such that ψ(B) = 0 and
ψ(B′) ̸= 0. Then, DM1,M2(B) contains a non-zero directed cycle C with V (C) ⊆ B △B′.

Proof. By Lemma 2.1, DM1,M2(B) contains a collection P1 of |B\B′| pairwise vertex-disjoint
arcs from B\B′ to B′\B and a collection P2 of |B\B′| pairwise vertex-disjoint arcs from B′\B
to B\B′. The union of P1 and P2 has label ψ(B′\B)−ψ(B\B′) = ψ(B′)−ψ(B) = ψ(B′) ̸= 0
and consists of pairwise vertex-disjoint directed cycles in DM1,M2(B), hence it contains a
non-zero directed cycle. ◀

The following result and proof are analogous to that of [9, Theorem 2]. In that result, a
weight function is given instead of a labeling, and the constraint “non-zero” is replaced by
“negative”. In our setting, the proof only works if we assume Z2 ̸≤ Γ, as we need to guarantee
that if we decompose an arc set having label 2ψ′(C) for some non-zero directed cycle C, then
at least one member of the decomposition has non-zero label. We give the proof in the full
version.

▶ Lemma 3.6. Let Γ be a group such that Z2 ̸≤ Γ. Let M1 and M2 be matroids on a common
ground set E, ψ : E → Γ a group labeling, and B a common basis. If C is a non-zero directed
cycle of DM1,M2(B) whose vertex set is inclusion-wise minimal among non-zero directed
cycles, then B △ V (C) is a common basis.

Combining Lemmas 3.5 and 3.6, we obtain the main result of the section.

ICALP 2024
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▶ Theorem 3.7. Let Γ be a group such that Z2 ̸≤ Γ. Let M1 and M2 be matroids on a
common ground set E, ψ : E → Γ a group labeling, and B0 a zero common basis. Then,
M1 and M2 have a non-zero common basis if and only if DM1,M2(B0) contains a non-zero
directed cycle. Moreover, Non-Zero Common Basis is polynomially solvable.

Proof. If there exists a non-zero common basis B∗, then DM1,M2(B0) contains a non-zero
directed cycle by Lemma 3.5. Conversely, if DM1,M2(B0) contains a non-zero directed cycle,
then let C be a minimum length non-zero directed cycle. Then, Lemma 3.6 implies that
B∗ := B △ V (C) is a common basis, and we have ψ(B∗) = ψ(B0) + ψ′(C) = ψ′(C) ̸= 0.

This provides the following algorithm for Non-Zero Common Basis. First, we find a
common basis B0. If no common basis exists or B0 is non-zero, we are done. Otherwise,
we find a minimum length non-zero directed cycle C in DM1,M2(B0) using Theorem 3.4. If
no non-zero directed cycle exists then we report that there is no non-zero common basis,
otherwise we output B0 △ V (C). ◀

We turn to the study of Weighted Non-Zero Common Basis. Given two matroids M1
and M2 on a common ground set E, a common basis B, and a weight function w : E → R,
we define the weight function w′ on the arcs of DM1,M2(B) as follows. For each arc xy such
that x ∈ B, y ∈ E \ B and B − x + y ∈ B(M1) we define w′(xy) := w(y), and for each
arc yx such that x ∈ B, y ∈ E \ B and B − x + y ∈ B(M2) we define w′(yx) := −w(x).
Then, B is a minimum-weight common basis if and only if w′ is conservative [31, 21, 9],
see also [46, Theorem 41.5]. We observe the following relationship between the weight of a
shortest non-zero directed cycle in DM1,M2(B) and the weights of non-zero common bases of
M1 and M2. Its simple proof can be found in the full version.

▶ Lemma 3.8. Let M1 and M2 be matroids on a common ground set E, ψ : E → Γ a group
labeling, and w : E → R a weight function. Let B0 be a minimum-weight common basis and
assume that ψ(B0) = 0. Let C be a shortest non-zero directed cycle in DM1,M2(B0) with
respect to w′. Then, w(B0 △ V (C)) ≤ w(B∗) holds for each non-zero common basis B∗.

We note that Lemma 3.8 generalizes Lemma 3.2, as in the special case M1 = M2 each
arc of DM1,M2(B0) is bidirectional, thus a shortest non-zero directed cycle consists of two
vertices.

In Lemma 3.8, the weight of C is measured by w′ (which takes negative values on some
arcs), so V (C) is not necessarily inclusion-wise minimal among the vertex sets of non-zero
directed cycles. Thus, it does not yield an algorithm for Weighted Non-Zero Common
Basis. In fact, the complexity of the problem remains open for a group Γ with Z2 ̸≤ Γ.
Nevertheless, we use Lemma 3.8 to give a 2-approximation if the weight function w is
nonnegative. The proof of the result is given in the full version.

▶ Theorem 3.9. Let Γ be a group with Z2 ̸≤ Γ. Let M1 and M2 be matroids on a common
ground set E, ψ : E → Γ a group labeling, and w : E → R≥0 a weight function. Then, there
exists a polynomial-time algorithm that computes a non-zero common basis B that satisfies
w(B) ≤ 2w(B∗) for every non-zero common basis B∗ or correctly outputs that there exists
no non-zero common basis.

3.2.2 Certificate for All Common Bases Being Zero
Given a strongly connected digraph having labels on its arcs, the fact that all directed
cycles have label zero can be certified by a certain labeling of its vertices. Using this
result and assuming a property of the matroid pair ensuring strong connectivity, we get a
characterization for all directed cycles of DM1,M2(B) having label zero, which is analogous
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to the weight-splitting theorem of Frank [19]. By Theorem 3.7, this provides the following
certificate for the “NO” instances of Non-Zero Common Basis if Z2 ̸≤ Γ. We give details
in the full paper.

▶ Theorem 3.10. Let M1 and M2 be matroids on a common ground set E and the same rank
r. Assume that rM1(X) + rM2(E \X) > r holds for every ∅ ≠ X ⊊ E. Let B be a common
basis of M1 and M2, and ψ : E → Γ a group labeling. Then, DM1,M2(B) contains no non-zero
directed cycle if and only if there exist labelings ψ1, ψ2 : E → Γ such that ψ = ψ1 + ψ2 and
ψi is constant on each connected component of Mi for i = 1, 2.

3.2.3 Partition matroids
When both matroids are partition matroids, we can drop the assumption Z2 ̸≤ Γ from
Theorem 3.7 and extend it to the weighted setting. The proof of the next result is given in
the full version.

▶ Theorem 3.11. Weighted Non-Zero Common Basis is polynomially solvable if M1
and M2 are partition matroids.

Given a graph G and a function b : V (G) → Z≥0, a perfect b-matching is an edge set F ⊆
E(G) such that dF (v) = b(v) for each v ∈ V . If G is bipartite, then its perfect b-matchings
form the family of common bases of two partition matroids. Therefore, Theorem 3.11 can be
formulated as having a polynomial-time algorithm for finding a minimum weight non-zero
perfect b-matching in a bipartite graph with weights and labels on its edges. For perfect
matchings and the group Z2, the idea of essentially the same algorithm as ours was briefly
mentioned in [26], where the authors noted that it can also be derived from results of [1]. A
formal description of the algorithm and a proof of its correctness were given in [18] for a
special weight function.

Next, we consider the special case of Weighted Non-Zero Common Basis when we
only assume that one of the matroids is a partition matroid. Without further assumptions,
this problem is not easier than the general one: a construction similar to that of Harvey,
Király and Lau [23] shows that the general problem can be reduced to the special case when
one of the matroids is a unitary partition matroid and all partition classes have size two. In
what follows, we will consider the case when the partition matroid is defined by a partition
having two classes. In this special case, the polynomial solvability of Non-Zero Common
Basis follows from the corresponding lattice basis characterization of Rieder [45]. We extend
this result by solving the weighted version of the problem.

▶ Theorem 3.12. Weighted Non-Zero Common Basis is polynomially solvable if M2 is
a partition matroid defined by a partition having two classes.

The proof of the theorem is given in the full version. The proof of both Theorem 3.11 and
Theorem 3.12 relies on Lemma 3.8 by observing that the special property of the matroid pair
guarantees that B0 △ V (C) is a common basis whenever B0 is a minimum-weight common
basis having label zero and C is a shortest non-zero directed cycle in DM1,M2(B).

4 Algebraic Algorithm for F -avoiding Basis and Common Basis

We present a randomized polynomial-time algorithm for F -avoiding Common Basis for
representable matroids given as matrices over a field F and a finite group Γ given as an
operation table. Our algorithm is a generalization of the exact-weight matroid intersection
algorithm for representable matroids by Camerini, Galtiati, and Maffioli [11]. A similar
algebraic algorithm has also been considered by Webb [51, Section 3.7].
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Before describing the algorithm, we introduce needed algebraic notions and results.
We assume that the arithmetic operations and the zero test over F can be performed in
constant time. In this section, we use the multiplicative notation for the operation of Γ,
and let e denote the group unit (zero) of Γ instead of 0. The group ring K[Γ] of Γ over
a field K is the set of formal K-coefficient linear combinations of the elements in Γ, i.e.,
K[Γ] := {

∑
g∈Γ agg | ag ∈ K (g ∈ Γ) }. The addition and multiplication of f =

∑
g∈Γ agg ∈

K[Γ] and h =
∑
g∈Γ bgg ∈ K[Γ] are naturally defined as f + h =

∑
g∈Γ(ag + bg)g and

fh =
∑
g,g′∈Γ agbg′gg′. With these operations, K[Γ] forms a commutative ring, containing K

as a subring under the natural identification K ∋ a 7→ ae ∈ K[Γ]. Note that the operations
of K[Γ] and the zero test can be performed in polynomially many operations of K and Γ.

For finite sets R and C, we mean by an R× C matrix a matrix of size |R| × |C| whose
rows and columns are identified with R and C, respectively. We simply write [r] × C as
r × C for r ∈ Z≥0. Given a ground set E and a labeling ψ : E → Γ, we define an E × E

diagonal matrix Dψ as follows: for every j ∈ E, we set the (j, j) diagonal entry of Dψ as
xjψ(j), where xj is an indeterminate (variable) whose actual value comes from F. Then, Dψ

is regarded as a matrix over the group ring F({xe}e∈E)[Γ], where F({xe}e∈E) denotes the
rational function field over F in |E| indeterminates {xe}e∈E .

The following is a modification of a claim of Tomizawa and Iri [50], who first used the
Cauchy–Binet formula in the context of linear matroid intersection.

▶ Lemma 4.1. Let F be a field, M1 and M2 F-representable matroids with the common
ground set E and the same rank r, Ak an r × E matrix representing Mk for k = 1, 2, and
ψ : E → Γ a labeling. Let Ξ = A1DψA

⊤
2 . Then, the coefficient of g ∈ Γ in det(Ξ) is a

non-zero polynomial in {xj}j∈E if and only if a common basis with label g exists.

Proof. By the Cauchy–Binet formula, we can expand det(Ξ) as

det(Ξ) =
∑
B∈(E

r )
det(A1[B]) det(A2[B])

∏
j∈B

xj · ψ(B), (1)

where Ak[B] denotes the submatrix of Ak obtained by extracting the columns in B for
k = 1, 2. Observe that det(A1[B]) det(A2[B]) is non-zero if and only if B is a common basis
of M1 and M2, and the terms coming from different common bases do not cancel out thanks
to the factor

∏
j∈B xj , proving the claim. ◀

Lemma 4.1 together with the Schwartz–Zippel lemma [36, 48, 53], division-free determinant
algorithm [27], search-to-decision reduction, and the field extension for small fields give rise
to a randomized algebraic algorithm for F -avoiding Common Basis. The proof of the
result is given in the full version.

▶ Theorem 4.2. Let F be a field and M1 and M2 F-representable matroids with the common
ground set E. There is a randomized algorithm that, given matrices A1 and A2 over F
representing M1 and M2, respectively, the operation table of a finite abelian group Γ, a group
labeling ψ : E → Γ, and a forbidden label set F ⊆ Γ, solves F -avoiding Common Basis in
expected polynomial time.

A Pfaffian pair is a pair of r × n matrices A1, A2 such that det(A1[B]) det(A2[B]) is a
non-zero constant for any common basis B [51]. This property implies that if F = Q and
matroids are given as a Pfaffian pair, then no cancel-out occurs in the summands of det(Ξ)
in the equation (1) even if we substitute 1 for all xi. Therefore, we can derandomize the
algorithm given in Theorem 4.2. Examples of common bases of matroid pairs representable by
Pfaffian pairs include spanning trees, regular matroid bases, arborescences, perfect matchings
in Pfaffian-orientable bipartite graphs, and node-disjoint S–T paths in planar graphs [39].
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▶ Theorem 4.3. F -avoiding Common Basis is polynomially solvable for Q-representable
matroids if matroids are given as a Pfaffian pair and a group is given as the operation table.

We can also generalize Theorem 4.2 to a randomized pseudo-polynomial-time algorithm
for the weighted problem as follows. See the full version for the proof.

▶ Theorem 4.4. Let F be a field and M1 and M2 F-representable matroids on a common
ground set E. There is a randomized algorithm that, given matrices A1 and A2 over F
representing M1 and M2, respectively, the operation table of a finite abelian group Γ, a group
labeling ψ : E → Γ, a forbidden label set F ⊆ Γ, and a weight function w : E → Z, solves
Weighted F -avoiding Common Basis in pseudo-polynomial time in expectation. The
algorithm can be derandomized if F = Q and (A1, A2) is a Pfaffian pair.

5 F -avoiding Basis with Fixed |F |

As we will see in Theorem 6.3, Zero Basis is hard for groups given by operation tables.
This implies the hardness of F -avoiding Basis if the set F of forbidden labels is part of the
input. In this section, we study the problem when F has a fixed size. Note that in contrast
to the setting of Section 4, we assume that Γ is given as an operation oracle (and it is not
necessarily finite).

Related to the notion of k-closeness recently introduced by Liu and Xu [35], we propose
the following conjecture.

▶ Conjecture 5.1. Let M be a matroid, ψ : E(M) → Γ a labeling, and F ⊆ Γ a finite
collection of forbidden labels. Then, for any basis B, there exists an F -avoiding basis B∗

with |B \B∗| ≤ |F |, provided that at least one F -avoiding basis exists.

Note that Lemma 3.2 (applied with a constant weight function) implies that Conjecture 5.1
holds for |F | = 1. A tightness example for Conjecture 5.1 can be found in the full version.
We can relax Conjecture 5.1 as follows.

▶ Conjecture 5.2. There exists a function f : N → N with the following property: If M is
a matroid, ψ : E(M) → Γ is a group labeling, and F ⊆ Γ is a finite collection of forbidden
labels, then, for any basis B, there exists an F -avoiding basis B∗ with |B \ B∗| ≤ f(|F |),
provided that at least one F -avoiding basis exists.

Conjectures 5.1 and 5.2 have algorithmic implications due to the following simple observation.

▶ Lemma 5.3. Let α be a fixed positive integer. Further, let M be a matroid, ψ : E(M) → Γ
a group labeling, and F ⊆ Γ a finite collection of forbidden labels, such that, for any basis B,
there exists an F -avoiding basis B∗ with |B \B∗| ≤ α, provided that at least one F -avoiding
basis exists. Then, an F -avoiding basis of M can be found in polynomial time, if one exists.

Proof. We first compute an arbitrary basis B of M . Then, for every X ⊆ B and every
Y ⊆ E(M) \ B with |X| = |Y | ≤ α, we test whether (B \ X) ∪ Y is an F -avoiding basis
of M . As there are at most 1 + nα choices for each of X and Y , the desired running time
follows. If we find an F -avoiding basis during this procedure, we return it. Otherwise, no
F -avoiding basis exists by assumption. ◀

The following is an immediate consequence of Lemma 5.3.

▶ Corollary 5.4. If Conjecture 5.2 holds, then F -avoiding Basis is solvable in polynomial
time if |F | is fixed.

ICALP 2024



86:12 Problems on Group-Labeled Matroid Bases

Liu and Xu [35] defined a finite group Γ to be k-close for an integer k ≥ 1, if for any
matroid M , group labeling ψ : E(M) → Γ, element g ∈ Γ and basis B, there exists a basis
B∗ with |B \B∗| ≤ k and ψ(B∗) = g, provided that M has at least one basis with label g.
Observe that Conjecture 5.1 would imply (|Γ| − 1)-closeness, and Conjecture 5.2 would imply
f(|Γ| − 1)-closeness of each finite group Γ for some function f : N → N. This would imply an
FPT algorithm for Zero Basis when parameterized with |Γ| due to the following result,
which is a consequence of [35, Theorem 1].

▶ Theorem 5.5 (see Liu–Xu [35]). Assume that for each finite group Γ, there exists an integer
k such that Γ is k-close. Then, Zero Basis is in FPT for finite groups when parameterized
by |Γ|.

Liu and Xu [35] observed that if all subgroups of Γ satisfy a conjecture by Schrijver and
Seymour [47], then Γ is (|Γ|−1)-close. By the results of DeVos, Goddyn, and Mohar [13], this
implies that any cyclic group Γ is (|Γ| − 1)-close whose order is a prime power or the product
of two primes. The proof of [35, Theorem 4] does not seem to generalize to our setting. Thus,
it is not clear whether the conjecture of Schrijver and Seymour implies Conjecture 5.1. If Γ
has prime order, then Liu and Xu [35, Theorem 3] gave a simpler proof of (|Γ| − 1)-closeness.
That proof also generalizes to show that Conjecture 5.1 holds for such groups.

Using the results of Lemos [34], we can also prove that Conjecture 5.1 holds for ordered
groups, which is a group Γ equipped with a total order ≤ on Γ such that a ≤ b implies
a+ c ≤ b+ c for all a, b, c ∈ Γ. The result is restated in the following theorem, whose proof
can be found in the full version.

▶ Theorem 5.6. Let M be a matroid, ψ : E(M) → Γ a labeling to an ordered group Γ, F ⊆ Γ
a finite collection of forbidden labels, B a basis of M , and suppose that M has an F -avoiding
basis. Then, there exists an F -avoiding basis B∗ of M with |B∗ \B| ≤ |F |.

5.1 Strongly Base Orderable Matroids and Relaxations
In this section, we introduce a relaxed notion of strong base-orderability, called (α, k)-weak
base orderability, where α and k are positive integers. In Section 5.1.1, we define this notion
and show its relation to strong base-orderability and group-restricted bases. In Section 5.1.2
and Section 5.1.3, we conclude results for matroids representable over fixed finite fields and
graphic matroids, respectively.

5.1.1 (α, k)-Weakly Base Orderable Matroids
A matroid is called strongly base orderable if for any two bases B1, B2, there exists a bijection
φ : B1 \B2 → B2 \B1 such that (B1 \ Z) ∪ φ(Z) is a basis for each Z ⊆ B1 \B2. For some
positive integer k, we say that the ordered basis pair (B1, B2) has the k-exchange property if
there exist pairwise disjoint nonempty subsets X1, . . . , Xk ⊆ B1 \B2 and Y1, . . . , Yk ⊆ B2 \B1
such that

(
B1 \

⋃
i∈Z Xi

)
∪

⋃
i∈Z Yi is a basis for each Z ⊆ [k]. For positive integers α and

k, we define a matroid M to be weakly (α, k)-base orderable if the ordered pair (B1, B2)
has the k-exchange property for any two bases B1, B2 of M with |B1 \ B2| ≥ α. We note
that (α, k)-weak base orderability is a relaxation of k-base orderability defined by Bonin
and Savitsky [7], and our definition of the k-exchange property differs from their definition
of k-exchange-ordering. Observe that strongly base orderable matroids are precisely the
matroids that are (k, k)-weakly base orderable for each k ≥ 1.



F. Hörsch, A. Imolay, R. Mizutani, T. Oki, and T. Schwarcz 86:13

For a matroid M and two disjoint bases B1, B2 of M with B1 ∪B2 = E(M), we say that
(B1, B2) is a basis partition of M . For a basis B of a matroid M , we say that a minor M ′

of M is a B-minor if it is obtained by contracting some elements of B and deleting some
elements of E(M) \B. We use the following simple observation later, whose proof can be
found in the full version.

▶ Lemma 5.7. Let B1 and B2 be two bases of a matroid M . Further, let M ′ be a B1-minor
of M such that (B′

1, B
′
2) is a basis partition of M ′ and has the k-exchange property for some

k ∈ N, where B′
i := Bi ∩ E(M ′) for i = 1, 2. Then (B1, B2) has the k-exchange property

in M .

The following result is our main motivation to consider weak base orderability. It
establishes a connection between weak base orderability and Conjecture 5.2.

▶ Theorem 5.8. Let M be a matroid, ψ : E(M) → Γ a group labeling, and F ⊆ Γ a finite
collection of forbidden labels. If M is (α, |F | + 1)-weakly base orderable, then for each basis
B, there exists an F -avoiding basis B∗ with |B \ B∗| ≤ α − 1, provided that at least one
F -avoiding basis exists.

For the proof, we need the following result, which is most likely routine; see the full version
for the proof.

▶ Proposition 5.9. Let S be a finite set, ψ : S → Γ a group labeling, and 0 /∈ F ⊆ Γ satisfying
|F | ≤ |S| − 1. Then, there exists some nonempty S′ ⊆ S with ψ(S′) /∈ F .

Proof of Theorem 5.8. Let k := |F | and let B be a basis and B′ an F -avoiding basis
minimizing |B′ \B|. If |B′ \B| ≤ α− 1, there is nothing to prove. We may hence suppose
that |B′ \ B| ≥ α. Then, as M is (α, k + 1)-weakly base orderable, there exist pairwise
disjoint nonempty subsets X1, . . . , Xk+1 ⊆ B′ \ B and Y1, . . . , Yk+1 ⊆ B \ B′ such that(
B′ \

⋃
i∈Z Xi

)
∪

⋃
i∈Z Yi is a basis for each Z ⊆ [k + 1]. We define ψ′ : [k + 1] → Γ by

ψ′(i) = ψ(Yi) − ψ(Xi) for all i ∈ [k + 1]. Observe that 0 /∈ F ′ := { f − ψ(B′) | f ∈ F },
as B′ is an F -avoiding basis. It hence follows from Proposition 5.9 that there exists some
nonempty Z ⊆ [k + 1] with ψ′(Z) /∈ F ′. Let B′′ :=

(
B′ \

⋃
i∈Z Xi

)
∪

⋃
i∈Z Yi. By the

definition of X1, . . . , Xk+1 and Y1, . . . , Yk+1, we obtain that B′′ is a basis of M . Further, we
have ψ(B′′) = ψ(B′) + ψ′(Z) /∈ F . Finally, we have |B′′ \B| < |B′ \B| since Z is nonempty.
This contradicts the choice of B′. ◀

As strongly base orderable matroids are (k, k)-weakly base orderable for any k ≥ 1, we
also get the following.

▶ Corollary 5.10. Strongly base orderable matroids satisfy Conjecture 5.1.

A connection of the results obtained in this section with certain orderings of elements of
matroids introduced by Baumgart [3] can be found in the full version.

5.1.2 Matroids Representable over Finite Fields
In this section, we prove that the concept of weakly base orderability allows us to deal with
a large class of matroids, namely all those which are representable over a fixed finite field.
More precisely, we prove the following result.

▶ Theorem 5.11. There is a function f : N × N → N such that for every prime power q,
every GF(q)-representable matroid is weakly (f(q, k), k)-orderable for any positive integer k.
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On a high level, the proof works in the following way. First, relying on results of [15] on
the existence of certain submatrices of large matrices over finite fields, we show that every
GF(q)-representable matroid has a certain substructure. We then show that this substructure
has the desired property. From this, we can conclude the theorem.

In order to find this substructure, we deal with the matrices representing the matroids in
consideration. We first need some notation for these matrices. For two matrices A and A′,
we say that A contains A′ as a permuted submatrix if A′ can be obtained from A by deleting
and permuting rows and columns. For a square matrix, we refer by its size to its number of
rows. Let q be a prime power. We say that a triple (α, β, γ) of elements of GF(q) is feasible
if α ̸= β and at least one of β ̸= 0 and γ ̸= 0 hold. For a triple (α, β, γ) and a positive
integer t, the (α, β, γ)-diagonal matrix of size t is the t× t matrix A = (Aij) such that for
i, j ∈ [t], we have Aij = α if i < j, Aii = β if i = j, and Aij = γ if i > j. We now collect
some properties of (α, β, γ)-diagonal matrices. We first need the following result showing
that (α, β, γ)-diagonal matrices can always be found in sufficiently large matrices over a fixed
finite field. The following result can easily be concluded from a slightly weaker result due
to Ding, Oporowski, Oxley, and Vertigan [15]. Its detailed proof can be found in the full
version.

▶ Proposition 5.12. There is a computable function f1 : N × N → N with the following
property: Let q be a prime power, t a positive integer, and A a matrix over GF(q) having
at least f1(q, t) columns no two of which are identical. Then, A contains a permuted square
submatrix A′ of size t which is (α, β, γ)-diagonal for a feasible triple (α, β, γ).

We are now ready to give the following result showing that every sufficiently large matroid
that is representable over a fixed finite field has a certain substructure. The approach is to
choose a matrix representing the matroid and find a particular submatrix in this matrix using
Proposition 5.12. After, we show that a minor represented by this matrix can be obtained
by applying certain deletions and contractions. The detailed proof can be found in the full
version.

▶ Lemma 5.13. There is a computable function f1 : N×N → N with the following properties:
Let q be a prime power, k a positive integer, M a GF(q)-representable matroid of rank at
least f1(q, k) and (B1, B2) a basis partition of M . Then, there exists a B1-minor M ′ of M
that can be represented by a matrix of the form [Ik A], where Ik is the identity matrix of size
k and A is an (α, β, γ)-diagonal matrix for a feasible triple (α, β, γ), and the columns of Ik
correspond to the elements of B′

1 and those of A correspond to the elements of B′
2, where

B′
i := Bi ∩ E(M ′) for i = 1, 2.

We will prove Theorem 5.11 by showing that matroids representable by a very specific
class of matrices satisfy its conclusion. For this, we need a statement showing that certain
matrices are nonsingular, which we derive from an explicit formula for the determinants of
(α, β, γ)-triangular matrices due to Efimov [17]. The detailed proof can be found in the full
version.

▶ Proposition 5.14. Let q be a prime power, (α, β, γ) a feasible triple, t a multiple of q(q−1),
and A the (α, β, γ)-diagonal matrix of size t. Then, A is nonsingular.

We are now ready to conclude the result for the specific class of matroids.

▶ Lemma 5.15. There is a computable function f2 : N×N → N with the following properties:
Let q be a prime power, k a positive integer, and M a matroid that can be represented by
[I A] over GF(q), where I is an identity matrix of size f2(q, k) and A is an (α, β, γ)-diagonal
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matrix of the same size for a feasible triple (α, β, γ). Next, let B1 and B2 be the subsets of
E(M) corresponding to I and A, respectively. Then, (B1, B2) is a basis partition of M and
has the k-exchange property.

Proof. Let f2 be the function defined by f2(q, k) := q(q − 1)k for all positive integers q
and k. By Proposition 5.14, we have that A is nonsingular and hence (B1, B2) is a basis
partition of M . For i ∈ [k], let Xi be the subset of B1 and Yi be the subset of B2 that
corresponds to the columns of indices q(q− 1)(i− 1) + 1 to q(q− 1)i of I and A, respectively.
For Z ⊆ [k], let BZ :=

(
B1 \

⋃
i∈Z Xi

)
∪

⋃
i∈Z Yi. It suffices to prove that BZ is a basis of

M for every Z ⊆ [k]. To this end, consider some fixed Z ⊆ [k]. Observe that the matrix
obtained from restricting [I A] to the columns corresponding to BZ can be transformed into
a matrix of the form A∗ =

[
I′ A1
O A′

]
by exchanging rows and columns. Here, I ′ is the identity

matrix of size q(q − 1)(k − |Z|), O is a zero matrix, A′ is an (α, β, γ)-diagonal matrix of size
q(q − 1)|Z|, and A1 is an arbitrary matrix. As the size of A′ is divisible by q(q − 1), we
obtain by Proposition 5.14 that A′ is nonsingular. It follows that A∗ is nonsingular, and
hence BZ is independent. As |BZ | = |B1| by construction, we obtain that BZ is a basis of
M . This finishes the proof. ◀

Finally, we combine Lemmas 5.7, 5.13, and 5.15 to conclude Theorem 5.11.

Proof of Theorem 5.11. We prove the statement for the function f : N × N → N defined by
f(q, k) := f1(q, f2(q, k)) for each k ∈ N and prime power q. Let B1 and B2 be bases of a
GF(q)-representable matroid M with |B1 \B2| ≥ f(q, k). We need to prove that (B1, B2) has
the k-exchange property. Let M ′ := M/ (B1 ∩B2) \ (E(M) \ (B1 ∪B2)). Further, for i = 1, 2,
let B′

i := Bi ∩ E(M ′) and observe that (B′
1, B

′
2) is a basis partition of M ′. It follows from

Lemma 5.13 that there exists a B′
1-minor M ′′ of M ′ that can be represented by a matrix

of the form [I A], where I is the identity matrix of size f2(q, k), A is an (α, β, γ)-diagonal
matrix of size f2(q, k) for a feasible triple (α, β, γ) and the columns of I and A correspond
to the elements of B′′

1 and B′′
2 , respectively, where B′′

i := B′
i ∩ E(M ′′) for i = 1, 2. We now

obtain from Lemma 5.15 that (B′′
1 , B

′′
2 ) is a basis partition of M ′′ and has the k-exchange

property in M ′′. As M ′′ is a B1-minor of M , we now obtain from Lemma 5.7 that (B1, B2)
has the k-exchange property in M . ◀

Combining Theorems 5.8 and 5.11, Lemma 5.3, and Theorem 5.5, we get the following.

▶ Corollary 5.16. Let q be a prime power, M a GF(q)-representable matroid, ψ : E → Γ a
group labeling and F ⊆ Γ a finite set of forbidden labels. When |F | is fixed, F -avoiding
Basis is solvable in polynomial time. Moreover, if |Γ| is finite, then Zero Basis is in FPT
when parameterized by |Γ|.

We note that Corollary 5.16 is not implied by Theorem 4.2. The former applies to
arbitrary groups, while the latter is limited to finite groups given by an operation table.
Furthermore, Corollary 5.16 gives a deterministic polynomial-time algorithm, in contrast to
the randomized algorithm in Theorem 4.2.

5.1.3 Graphic matroids
As a strengthening of the k-exchange property, we say that the basis pair (B1, B2) of a
matroid has the elementary k-exchange property if there exist k-element subsets X ⊆ B1 \B2
and Y ⊆ B2 \ B1 and a bijection φ : X → Y such that (B1 \ Z) ∪ φ(Z) is a basis for each
Z ⊆ X. Note that this is equivalent to requiring |Xi| = |Yi| = 1 for each i ∈ [k] in the
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definition of the k-exchange property. We define a matroid M to be elementarily (α, k)-weakly
base orderable if (B1, B2) has the elementary k-exchange property for any pair of basis B1
and B2 with |B1 \B2| ≥ α.

It turns out that all regular matroids are elementarily (f(k), k)-weakly base orderable for
some large function f : N → N, while the same is not true for binary matroids. The proofs
of these results can be found in the full version. As graphic matroids are regular, they are
elementarily (f(k), k)-weakly base orderable for some large function f : N → N. We give a
proof in the full version, independent from the proof of Theorem 5.11, which shows that for
graphic matroids, there exists such a function f satisfying f(k) = O(k3).

▶ Theorem 5.17. Graphic matroids are elementarily (3k3, k)-weakly base orderable for any
k ≥ 1.

5.2 Two forbidden labels
The objective of this section is to prove the following restatement of the case |F | = 2 of
Conjecture 5.1. Its proof can be found in the full version. Vaguely speaking, we first reduce
the problem to matroids on six elements and then combine some earlier results with a
particular treatment for the cycle matroid of K4.

▶ Theorem 5.18. Let M be a matroid, ψ : E(M) → Γ a group labeling, and let F be a
2-element subset of Γ. For any basis B, there exists an F -avoiding basis B∗ such that
|B \B∗| ≤ 2, provided that there exists at least one F -avoiding basis.

6 Hardness and Negative Results

In this section, we give the algorithmic hardness results and counterexamples contained in
this work. Sections 6.1 and 6.2 contain algorithmic intractability results and Section 6.3
contains a counterexample to a conjecture of Liu and Xu [35]. All proofs can be found in the
full version.

6.1 Hardness of Non-zero Common Basis with Z2 ≤ Γ
We here show that Non-Zero Common Basis is intractable for any group Γ such that
Z2 ≤ Γ. This implies that the condition on Γ in Theorem 3.7 is crucial indeed.

▶ Theorem 6.1. Non-Zero Common Basis requires an exponential number of independence
queries for any fixed group Γ such that Z2 ≤ Γ.

Our proof of Theorem 6.1 provides a new and simpler proof of the result of Bérczi and
Schwarcz [5] showing that the problem of partitioning the ground set into common bases
is hard. In addition to this new proof, we also describe the relation of a relaxation of that
problem to a problem on non-zero common bases via dual lattices in the full version.

6.2 Hardness of Zero Basis
In this section, we show two hardness results for Zero Basis. The first one shows that the
problem is hard even for uniform matroids by using the hardness of the well-known Subset
Sum problem.

▶ Theorem 6.2. Zero Basis is NP-hard for a uniform matroid and Γ = Z.
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It can be derived from [16, Theorem 1.3] that Zero Basis is also hard for finite groups
given as operation tables.

▶ Theorem 6.3 (see Doron-Arad–Kulik–Shachnai [16, Theorem 1.3]). Zero Basis requires an
exponential number of independence queries for a finite group Γ given as an operation table.

Recall that (Weighted) Zero Basis is solvable if Γ is a fixed, finite group [35]. In
contrast, Theorem 6.1 implies that Non-Zero Common Basis is hard for any fixed group Γ
such that Z2 ≤ Γ. By modifying that proof, the hardness of Zero Common Basis follows
even when the assumption Z2 ≤ Γ is dropped.

▶ Theorem 6.4. Zero Common Basis requires an exponential number of independence
queries for any nontrivial fixed group Γ.

6.3 Counterexample to a Conjecture of Liu and Xu
Liu and Xu [35] proposed a conjecture which is even stronger than the implications from
Conjectures 5.1 and 5.2. In order to state their conjecture, we need the following definition.
For a finite abelian group Γ its Davenport constant D(Γ) is defined as the minimum value
such that every sequence of elements from Γ of length D(Γ) contains a nonempty subsequence
with sum 0. Liu and Xu proposed the following conjecture.

▶ Conjecture 6.5 (Liu–Xu [35]). Let Γ be a finite abelian group. Then, Γ is (D(Γ) − 1)-close.

We provide a counterexample for Conjecture 6.5. More precisely, we prove the following
result.

▶ Theorem 6.6. Let Γ = Zd2 for some d ≥ 4. Then, Γ is not (D(Γ) − 1)-close.

7 Conclusion

In this work, we have treated several problem settings on finding bases of group-labeled
matroids whose labels satisfy certain conditions. Many questions remain open. In Section 3.2,
we deal with Weighted Non-Zero Common Basis for groups Γ with Z2 ̸≤ Γ and give
an approximation algorithm and exact algorithms for some special cases. However, the
general complexity of Weighted Non-Zero Basis for Z2 ̸≤ Γ remains open. In Section 4,
randomized algebraic algorithms turn out to be a powerful tool for finding bases and common
bases of certain labels. It would be interesting to see whether more of the problems that can
be solved by these randomized algorithms can also be solved deterministically. For example,
one could consider Non-Zero Common Basis for arbitrary groups when one of the matroids
is graphic, and the other one is a partition matroid. Finally, while Conjectures 5.1 and 5.2
remain wide open, the following stronger conjecture can be formulated analogously to the
notion of strongly k-closeness introduced by Liu and Xu [35]. Note that the conjecture holds
for |F | = 1 by Lemma 3.2, and it can also be shown that it holds for strongly base orderable
matroids.

▶ Conjecture 7.1. Let M be a matroid on a ground set E, ψ : E → Γ a group labeling,
F ⊆ Γ a finite subset, and w : E → R a weight function. Suppose that M has an F -avoiding
basis. Then, for any minimum weight basis B, there exists a minimum weight F -avoiding
basis B∗ such that |B \B∗| ≤ |F |.
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