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Abstract
We show the first near-linear time randomized algorithms for listing all minimum vertex cuts of
polylogarithmic size that separate the graph into at least three connected components (also known as
shredders) and for finding the most shattering one, i.e., the one maximizing the number of connected
components. Our algorithms break the quadratic time bound by Cheriyan and Thurimella (STOC’96)
for both problems that has been unimproved for more than two decades. Our work also removes
an important bottleneck to near-linear time algorithms for the vertex connectivity augmentation
problem (Jordan ’95) and finding an even-length directed cycle in a graph, a problem shown to be
equivalent to many other fundamental problems (Vazirani and Yannakakis ’90, Robertson et al. ’99).
Note that it is necessary to list only minimum vertex cuts that separate the graph into at least three
components because there can be an exponential number of minimum vertex cuts in general.

To obtain a near-linear time algorithm, we have extended techniques in local flow algorithms
developed by Forster et al. (SODA’20) to list shredders on a local scale. We also exploit fast queries
to a pairwise vertex connectivity oracle subject to vertex failures (Long and Saranurak FOCS’22,
Kosinas ESA’23). This is the first application of using connectivity oracles subject to vertex failures
to speed up a static graph algorithm.
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1 Introduction

Given an undirected graph G with n vertices and m edges, a minimum vertex cut is a smallest
set of vertices whose removal disconnects G. The vertex connectivity of G is the size of any
minimum vertex. The problem of efficiently computing vertex connectivity and finding a
corresponding minimum vertex cut has been extensively studied for more than half a century
[16, 25, 9, 8, 12, 7, 21, 1, 19, 5, 22, 4, 13, 14, 11, 2]. Let k denote the vertex connectivity
of G. Recently, a Õ(m + nk3)-time algorithm was shown in [10], which is near-linear when
k = O(polylog(n)). Then, an almost-linear O(m1+o(1))-time algorithm for the general case
was finally discovered [18, 3]. In this paper, we show new algorithms for two closely related
problems:
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87:2 Finding Most-Shattering Min-Cuts of Polylogarithmic Size in Near-Linear Time

1. Find a most-shattering minimum vertex cut, i.e., a minimum vertex cut S such that the
number of (connected) components of G \ S is maximized over all minimum vertex cuts.

2. List all minimum vertex cuts S such that G \ S has at least three components.
In the latter problem, the restriction to at least three components is natural for polynomial-
time algorithms. This is because there are at most n many minimum vertex cuts whose
removal results in at least three components [15], but the total number of minimum vertex
cuts can be exponential or, more specifically, at least 2k(n/k)2 [24]1. We say that a vertex
set S is a separator if G \ S is not connected and a shredder if G \ S has at least three
components. An s-separator (s-shredder) is a separator (shredder) of size s. In other words,
the second problem is to list all k-shredders2.

The state-of-the-art algorithm for both Problems 1 and 2 was discovered by Cheriyan and
Thurimella [6] and runs in O(k2n2 + k3n

√
n) time. This bound has remained unimproved for

over two decades. Their approach inherently requires quadratic time because their algorithm
makes Ω(n + k2) max flow calls. Naturally, one may ask whether a subquadratic algorithm
exists.

Our Contribution

We answer the above question in the affirmative by showing a randomized algorithm for
listing all k-shredders and computing a most shattering min-cut in near-linear time for all
k = O(polylog(n)). Our main results are stated below.

▶ Theorem 1.1. Let G = (V, E) be an n-vertex m-edge undirected graph with vertex
connectivity k. There exists an algorithm that takes G as input and correctly lists all
k-shredders of G with probability 1− n−97 in O(m + k5n log4 n) time.

▶ Theorem 1.2. Let G = (V, E) be an n-vertex m-edge undirected graph with vertex
connectivity k. There exists a randomized algorithm that takes G as input and returns
a most shattering minimum-cut (if one exists) with probability 1− n−97. The algorithm runs
in O(m + k5n log4 n) time.

▶ Remark 1.3. The k5n log4 n term in both theorems can be improved to k3n1+o(1) using a
pairwise vertex connectivity oracle developed by Long and Saranurak in [20], which is faster
for large values of k.

Given recent developments in fast algorithms for computing vertex connectivity, one
might expect that some of these modern techniques (e.g. local flow [23, 10], sketching [18],
expander decomposition [26]) will be useful for listing shredders and finding most shattering
min-cuts. It turns out that they are indeed useful, but not enough.

We have extended the techniques developed for local flow algorithms [10] to list k-shredders
and compute the number of components that they separate. Specifically, our local algorithm
lists k-shredders that separate the graph in an unbalanced way in time proportional to the
smaller side of the cut. To this end, we generalize the structural results related to shredders
from [6] to the local setting. To carry out this approach, we bring a new tool into the
area – our algorithm queries a pairwise connectivity oracle subject to vertex failures [20, 17].
Surprisingly, this is the first application of using connectivity oracles subject to vertex failures
to speed up a static graph algorithm.

1 Both problems are specific to vertex cuts; recall that every minimum edge cut always separates a graph
into two components.

2 E.g. in a tree, vertices with degree at least three are 1-shredders. In the complete bipartite graph Kk,k

with k ≥ 3, both the left and right halves of the bipartition are k-shredders.
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2 Technical Overview

Let G = (V, E) be an n-vertex m-edge undirected graph with vertex connectivity k. Cheriyan
and Thurimella developed a deterministic algorithm called All-k-shredders(·) that takes G

as input and lists all k-shredders of G in O(knm + k2√nm) time. They improved this bound
by using the sparsification routine developed in [22] as a preprocessing step. Specifically,
there exists an algorithm that takes G as input and produces an edge subgraph G′ on O(kn)
edges such that all k-shredders of G are k-shredders of G′ and vice versa. The algorithm
runs in O(m) time. Using this preprocessing step, they obtained the bound for listing all
k-shredders in O(m) +O(k(kn)n + k2√n(kn)) = O(k2n2 + k3n

√
n) time.

In this paper, we resolve a bottleneck of All-k-shredders(·), improving the time com-
plexity of listing all k-shredders from O(knm + k2√nm) to O(k4m log4 n). Using the same
sparsification routine, our algorithm runs in O(m + k5n log4 n) time. The proofs of the
theorems and lemmas presented here have been omitted to the full version of the paper.

2.1 The Bottleneck
A key subroutine of All-k-shredders(·) is a subroutine called Shredders(·, ·) that takes
a pair of vertices (x, y) as input and lists all k-shredders that separate x and y. This
subroutine takes O(m) time plus the time to compute a flow of size k, which is at most
O(mk) time. The idea behind All-k-shredders(·) is to call Shredders(·, ·) multiple times
to list all k-shredders. All-k-shredders(·) works as follows. Let Y be an arbitrary set of
k + 1 vertices. Any k-shredder S will either separate a pair of vertices in Y , or separate a
component containing Y \ S from the rest of the graph.

For the first case, they call Shredders(u, v) for all pairs of vertices (u, v) ∈ Y × Y . This
takes O(k2) calls to Shredders(·, ·), which in total runs in O(k3m) time. For the second case,
we can add a dummy vertex z and connect z to all vertices in Y . Notice that any k-shredder
S separating a component containing Y \ S from the rest of the graph must separate z and
a vertex v ∈ V \ (Y ∪ S). We can find these k-shredders by calling Shredders(z, v) for all
v ∈ V \ Y . The bottleneck of Cheriyan’s algorithm is listing k-shredders that fall into the
second case. They call Shredders(·, ·) Ω(n) times as |V \ Y | = n−O(k) = Θ(n) for small
values of k. This step is precisely where the quadratic O(knm) factor comes from. To bypass
this bottleneck, we categorize the problem into different cases and employ randomization.

2.2 Quantifying a Notion of Balance
Let S be a k-shredder of G. A useful observation is that if we obtain vertices x and y in
different components of G \S, then Shredders(x, y) will list S. To build on this observation,
one can reason about the relative sizes of the components of G \ S and employ a random
sampling approach. Let C denote the “largest” component of G \ S. If C does not greatly
outsize the remaining components, we can obtain two vertices in different components of
G \ S without too much difficulty. To capture the idea of relative size between components
of G \ S, we define a quantity called volume. This definition is used commonly throughout
the literature, but we have slightly altered it here.

▶ Definition 2.1 (Volume). For a vertex set Q, we refer to the volume of Q, denoted by
vol(Q), to denote the quantity

vol(Q) = |{(u, v) ∈ E | u ∈ Q}|.

ICALP 2024
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If Q is a collection of disjoint vertex sets, then we define the volume of Q as the quantity

vol(Q) = vol

 ⋃
Q∈Q

Q

 .

For convenience, we will say that a k-shredder S admits partition (C,R) to signify that C is
the largest component of G \ S by volume and R is the set of remaining components. We
will also say x ∈ R to denote a vertex in a component of R. We can categorize a k-shredder
S by comparing the volume ratio between the largest component of G \ S and the union of
remaining components (the ratio between vol(C) and vol(R)).

▶ Definition 2.2 (Balanced/Unbalanced k-Shredders). Let S be a k-shredder of G with partition
(C,R). We say S is balanced if vol(R) ≥ m/k. Conversely, we say S is unbalanced if
vol(R) < m/k.

Suppose that S is a k-shredder with partition (C,R). Building on our discussion above,
if S is balanced, then C does not greatly outsize the rest of the graph (by a factor of k at
most). Conversely, if S is unbalanced, then C greatly outsizes the rest of the graph.

2.3 Listing Balanced k-Shredders via Edge Sampling
Listing all balanced k-shredders turns out to be straightforward via random edge sampling.
Let S be a k-shredder that admits partition (C,R). Suppose that S is balanced. The idea
is to sample an edges (x, x′) and (y, y′) such that x and y are in different components of
G \ S. Then, Shredders(x, y) will list S. Intuitively, this approach works because we know
that each component of G \ S cannot be too large, as S is a balanced k-shredder. Hence,
if we sample two edges (x, x′) and (y, y′) at random, the probability that x and y live in
different components of G \ S is some constant. We can then boost the success probability
by repeating the procedure for a polylogarithmic number of times. The formal statement is
given below.

▶ Lemma 2.3. Let G = (V, E) be an n-vertex m-edge undirected graph with vertex connectivity
k. There exists a randomized algorithm that takes G as input and returns a list L that satisfies
the following. If S is a balanced k-shredder of G, then S ∈ L with probability 1 − n−100.
Additionally, every set in L is a k-shredder of G. The algorithm runs in O(k2m log n) time.

Because handling balanced k-shredders is simple, we omit the algorithm for listing
balanced k-shredders and its analysis. We will primarily focus on our methods of listing
unbalanced k-shredders.

2.4 Listing Unbalanced k-Shredders via Local Flow
Unbalanced k-shredders are more difficult to list than balanced k-shredders. For balanced
k-shredders S with partition (C,R), we can obtain two vertices in different components of
G \ S without much difficulty. This is no longer the case for unbalanced k-shredders, mainly
because vol(R) may be arbitrarily small. Hence, most sampled edges will be incident to C.
To handle unbalanced k-shredders, we introduce a new structural definition.

▶ Definition 2.4 (Capture). Let S be an unbalanced k-shredder of a graph G = (V, E) with
partition (C,R). Consider an arbitrary tuple (x, ν, Π), where x is a vertex in V , ν is a
positive integer, and Π is a set of paths. We say that the tuple (x, ν, Π) captures S if the
following holds.
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1. x is in a component of R.
2. 1

2 ν < vol(R) ≤ ν.
3. Π is a set of k openly-disjoint simple paths, each starting from x and ending at a vertex

in C, such that the sum of lengths over all paths is at most k2ν.

At a high level, we will spend some time constructing random tuples (x, ν, Π) in the hopes
that one of the tuples captures S. The main result is stated below.

▶ Lemma 2.5. Let G be a graph with vertex connectivity k. Let (x, ν, Π) be a tuple where
x is a vertex, ν is a positive integer, and Π is a set of paths. There exists a deterministic
algorithm that takes (x, ν, Π) as input and outputs a list L of k-shredders and one set U such
that the following holds. If S is a k-shredder that is captured by (x, ν, Π), then S ∈ L or
S = U . The algorithm runs in O(k2ν log ν) time.

What is most important about this result is that we have constructed an algorithm that
can identify k-shredders on a local scale. This means it spends time proportional to an input
volume parameter ν instead of a global quantity like n or m. The idea behind Lemma 2.5 is
to modify Shredders(·, ·) using recent advancements in local flow algorithms.

2.5 Verification via Pairwise Connectivity Oracles
In our algorithm, we will obtain a list of k-shredders and a list of unverified sets. The union
of these two sets will include all k-shredders of G with high probability. However, within the
list of unverified sets, there may be some false k-shredders. To filter out the false k-shredders,
we utilize a pairwise connectivity oracle subject to vertex failures developed by Kosinas
in [17]. To determine whether an unverified set S is a k-shredder, we will make some pairwise
connectivity queries between vertex pairs (u, v) to determine whether u, v are disconnected
in G \ S. These local queries, along with some more structural observations, will help us
determine whether G \ S contains at least three components.

3 Preliminaries

This paper concerns finite, undirected, and unweighted graphs with vertex connectivity k. We
use standard graph-theoretic definitions. Let G = (V, E) be a graph with vertex connectivity
k. For a vertex subset S ⊆ V , we use G\S to denote the subgraph of G induced by removing
all vertices in S. A connected component (component for short) of a graph refers to any
maximally-connected subgraph, or the vertex set of such a subgraph. Suppose that S is a
k-shredder of G. The largest component of G \ S is the component with the greatest volume,
where volume is defined in Definition 2.1. We break ties arbitrarily. For convenience, we will
say that a k-shredder S admits partition (C,R) to signify that C is the largest component
of G \ S and R is the set of remaining components. We will also write x ∈ R to indicate a
vertex in a component of R.

For a vertex subset Q ⊆ V , we define the set of neighbors of Q as the set N(Q) = {v ∈
V \Q | (u, v) ∈ E, u ∈ Q}. For vertex subsets Q1, Q2 ⊆ V , we define E(Q1, Q2) = {(u, v) ∈
E | u ∈ Q1, v ∈ Q2}.

Let π be a simple path in G. We refer to the length of π as the number of edges in π.
Suppose π starts at a vertex x ∈ V . We say the far-most endpoint of π to denote the other
endpoint of π. Although all paths we refer to are undirected, our usage of the far-most
endpoint will be unambiguous. Let x and y be two arbitrary vertices in π. We denote π[x⇝y]
as the subpath of π from x to y. We denote π(x⇝y) as the subpath π[x⇝y] excluding the
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vertices x and y. We say two paths π, π′ are openly-disjoint if they share no vertices except
their endpoints. Let Π be a set of paths. Then, Π is openly disjoint if all pairs of paths in
Π are openly disjoint. We say v ∈ Π to denote a vertex among one of the paths in Π and
(u, v) ∈ Π to denote an edge used by one of the paths in Π.

4 Cheriyan and Thurimella’s Algorithm

We will use Shredders(·, ·) as a subroutine and extend it to a localized setting. To do this,
we need to review the terminology and ideas presented in [6].

▶ Theorem 4.1 ([6, Algorithm 2]). Let G be an n-vertex m-edge undirected graph with vertex
connectivity k. Let x and y be two distinct vertices. There exists a deterministic algorithm
Shredders(·, ·) that takes (x, y) as input and returns all k-shredders of G separating x and y

in O(km) time.

At a high level, Shredders(·, ·) works as follows. Let x and y be two vertices in a k-vertex-
connected graph G. Firstly, we use a flow algorithm to obtain a set Π of k openly-disjoint
simple paths from x to y. Observe that any k-shredder S of G separating x and y must
contain exactly one vertex from each path of Π. More crucially, at least one component of
G \ S must also be a component of G \ Π. That is, for some component Q of G \ Π, we
have N(Q) = S. This is the main property that Shredders(·, ·) exploits. It lists potential
k-shredders by finding components Q of G \Π such that |N(Q)| = k and N(Q) consists of
exactly one vertex from each path in Π (see Figure 1).

Figure 1 Let Π be the set of three openly-disjoint simple paths from x to y. A call to
Shredders(x, y) will identify N(Q1) = N(Q2) as potential 3-shredders.

We can state these facts formally with the following definitions.

▶ Definition 4.2 (Bridge). A bridge Γ of Π is a component of G \Π or an edge (u, v) ∈ E

such that (u, v) /∈ Π, but u ∈ Π and v ∈ Π.

If Γ is an edge, we define vol(Γ) = 1. Otherwise, vol(Γ) is defined according to Defini-
tion 2.1.

▶ Definition 4.3 (Attachments). Let Γ be a bridge of Π. If Γ is a component of G \ Π, then
the set of attachments of Γ is the vertex set N(Γ). Otherwise, if Γ is an edge (u, v) ∈ E, the
set of attachments of Γ is the vertex set {u, v}.
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For convenience, we refer to a single vertex among the attachments of Γ as an attachment
of Γ. For a path π ∈ Π, we denote π(Γ) as the set of attachments of Γ that are in π. If Q is
an arbitrary vertex set, then we use π(Q) to denote the set Q ∩ π. If π(Q) is a singleton set,
then we may use π(Q) to represent the unique vertex in Q ∩ π. In all contexts, it will be
clear what object the notation is referring to.

▶ Definition 4.4 (k-Tuple). A set S is called a k-tuple with respect to Π if |S| = k and for
all π ∈ Π, we have |S ∩ π| = 1.

We adopt the following notation as in Shredders(·, ·). If a component Γ of G \Π is such
that N(Γ) forms a k-tuple with respect to Π, then N(Γ) is called a candidate k-shredder
or candidate for short. In general, not all candidates are true k-shredders. To handle this,
Shredders(·, ·) performs a pruning phase by identifying fundamental characteristics of false
candidates. To identify false candidates, we formalize some of the key definitions in [6].

▶ Definition 4.5 (δπ). Let π be a path starting from a vertex x. For a vertex v ∈ π, we
define δπ(v) as the distance between x and v along path π.

▶ Definition 4.6 (Straddle). Let Γ1, Γ2 be two bridges of Π. We say Γ1 straddles Γ2 (or Γ2
straddles Γ1) if there exist paths π, π′ ∈ Π such that there exist vertex pairs (v1, v2) ∈ π(Γ1)×
π(Γ2) satisfying δπ(v1) < δπ(v2) and (u1, u2) ∈ π′(Γ1)× π′(Γ2) satisfying δπ′(u1) > δπ′(u2).

See figure Figure 2 for an example.

Figure 2 Here we have Π = {π1, π2}. The candidate k-shredder {s1, s2} is straddled by the edge
(u, v) because δπ2 (u) < δπ2 (s2) and δπ1 (v) > δπ1 (s1).

It is useful to note that Definition 4.6 is still well-defined even for candidates (i.e. we can
use the ⪯,⪰ operators to compare bridges to candidates and candidates to candidates).

Candidate Pruning

The crucial observation is that a candidate S reported by Shredders(x, y) is a k-shredder of
G if and only if no bridge of Π straddles S. Hence, to prune false candidates, Shredders(x, y)
finds all bridges of Π that are straddled using standard sorting and interval merging. These
notions are formalized in the following two lemmas.

ICALP 2024
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▶ Lemma 4.7. Let x and y be two distinct vertices and let Π denote a set of k openly disjoint
simple paths from x to y. Let S be a candidate with respect to Π. Then, S is a k-shredder
separating x and y if and only if no bridge of Π straddles S.

▶ Lemma 4.8. Let x be a vertex in G and let Π denote a set of k openly disjoint simple
paths starting from x whose sum of lengths over all paths is at most ℓ. Let C,B be a set of
candidates and a set of bridges of Π, respectively. There exists a deterministic algorithm that,
given (C,B, Π) as input, lists all candidates S ∈ C such that S is not straddled by another
candidate in C nor by any bridge in B. The algorithm runs in O(k|C| log |C| + ℓ + vol(B))
time.

Challenges

Fix an unbalanced k-shredder S with partition (C,R). Unfortunately, the same probabilistic
approach we used for listing balanced k-shredders does not work here. Specifically, if we
sample two edges (x, x′), (y, y′), the probability that x and y are in different components of
G \ S can be arbitrarily small. What this dilemma implies is that we must spend at least a
linear amount of time just to collect samples. More critically, we must spend a sublinear
amount of time processing an individual sample to make any meaningful improvement. This
time constraint rules out the possibility of calling Shredders(·, ·) per sample. Instead, we
must develop a localized version of Shredders(·, ·) that spends time relative to a parameter
of our choice, instead of a global value such as m or n.

In detail, consider an unbalanced k-shredder S with partition (C,R). Observe that there
must exist a power of two 2i such that 2i−1 < vol(R) ≤ 2i. If we sample Õ(m/2i) edges
(x, y), we will sample a vertex x ∈ R with high probability due to the classic hitting set
lemmas. The goal is to spend only Õ(poly(k) · 2i) time processing each sample to list S.
Suppose that such a local algorithm exists. Although we do not know the exact power of two
2i, we know that vol(R) < m

k . Hence, we can simply try all powers of two up to m
k . This

gives us the near-linear runtime bound:

⌈log m
k ⌉∑

i=0
Õ

(m

2i

)
· Õ(poly(k) · 2i) =

⌈log m
k ⌉∑

i=0
Õ(poly(k) ·m)

= Õ(poly(k) ·m).

5 Local Techniques

Let S be an unbalanced k-shredder with partition (C,R). Our challenge is to list S in time
relative to a parameter of our choice rather than the size of the entire graph. To achieve
this, we will implement a local search procedure from a sampled vertex. To formalize the
procedure, recall Definition 2.4.

Suppose that we have obtained a tuple (x, ν, Π) that captures S. Let Q denote the
component in R containing x. It is straightforward to see that all remaining components of
R \ {Q} will also be components of G \Π. Thus, we may attempt to explore components
of G \ Π and apply Lemma 5.3 (a local version of Lemma 4.7) and Lemma 4.8 to list S.
An important distinction from Shredders(·, ·) is that in this case, Π is no longer a set of k

openly-disjoint simple paths from x to a single vertex y, but rather from x to some vertices
in C.
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▶ Lemma 2.5. Let G be a graph with vertex connectivity k. Let (x, ν, Π) be a tuple where
x is a vertex, ν is a positive integer, and Π is a set of paths. There exists a deterministic
algorithm that takes (x, ν, Π) as input and outputs a list L of k-shredders and one set U such
that the following holds. If S is a k-shredder that is captured by (x, ν, Π), then S ∈ L or
S = U . The algorithm runs in O(k2ν log ν) time.

Our goal is to show that the inner workings of Shredders(·, ·) can be efficiently translated
to our localized setting. We show how to implement this in Algorithm 1. A major caveat
concerns the set U . We can think of U as an unverified set. Why U exists is a consequence
of locality. Essentially, because the algorithm in Lemma 2.5 is time-limited by a volume
parameter ν, we may discover a set U but not have enough time to verify whether U is a
k-shredder. We first state two helpful lemmas that will provide some understanding of how
Algorithm 1 works. These lemmas summarize and translate a large portion of Section 4 in
terms of our new setting.

▶ Fact 5.1. Let S be a k-shredder with partition (C,R) captured by (x, ν, Π). For every path
π ∈ Π, we have |S ∩ π| = 1.

▶ Lemma 5.2. Let S be a k-shredder with partition (C,R) captured by (x, ν, Π). Let Q

denote the component in R containing x. Every component in R \ {Q} is a component of
G \Π.

▶ Lemma 5.3. Let S be a k-shredder with partition (C,R) captured by (x, ν, Π). Then, no
bridge of Π straddles S.

Algorithm Outline

Consider Algorithm 1. At a high level, Algorithm 1 works as follows. Let (x, ν, Π) be a tuple
given as input to the algorithm. For each path π ∈ Π, we can traverse the path from x to the
far-most endpoint of π. At a given vertex u ∈ π, we can explore the bridges of Π attached to
u using a breadth-first search (BFS). While doing so, we maintain a list of bridges of Π. We
also maintain a list of candidate k-shredders of Π by checking whether the attachment set of
a bridge forms a k-tuple. Among the list of candidate k-shredders, false candidates are then
pruned correctly and efficiently via Lemma 5.3 and Lemma 4.8. So far, we have not deviated
from Shredders(·, ·).

The key modification is to impose a restriction on the number of edges we are allowed to
explore via BFS. We can explore at most ν edges along each path. Suppose we are processing
a vertex u along path π. If the number of edges explored for this path exceeds ν while
exploring bridges of Π attached to u, we terminate early and mark u as an unverified vertex.
Intuitively, the unverified vertex u serves as a boundary of exploration. It signifies that
bridges attached to u were not fully explored, so we flag u and treat it with extra caution
during a later step. While this may seem dubious, the key is that we are concerned only
with k-shredders that are captured by (x, ν, Π). Let S be a k-shredder with partition (C,R).
For each path π ∈ Π, if we walk in increasing distance from x and explore attached bridges
of Π, observe that it is impossible to visit more than vol(R) edges prior to reaching a vertex
in S. Since vol(R) ≤ ν, this implies we must either identify S as a candidate k-shredder, or
as the unverified set U .

At the end of processing all the paths in Π, we will have obtained a list of bridges of Π,
a list of candidate k-shredders of Π, and an unverified set consisting of all the unverified
vertices. The final step is to black box Lemma 4.8 to prune false candidates among the list
of candidate k-shredders.
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Algorithm 1 Finding the unbalanced k-shredders with small components containing x.

Input: x - a sample vertex
ν - volume parameter
Π - a set of k openly disjoint paths starting from x

Output: L - a list of k-shredders captured by (x, ν, Π)
U - an unverified set

1: L ← ∅
2: U ← ∅
3: for each path π ∈ Π do
4: reset explored edges and vertices to null
5: for each vertex u ∈ π in increasing distance from x do
6: if u is the far-most endpoint of π then
7: U ← U ∪ {u}
8: break
9: explore all unexplored bridges of Π attached to u with BFS:

terminate early the moment more than ν edges are explored
10: if BFS terminated early then
11: U ← U ∪ {u}
12: break
13: else
14: for each bridge Γ explored by BFS do
15: if the attachment set A of Γ forms a k-tuple of Π then
16: L ← L ∪ {A}
17: if x ∈ U then
18: return (∅,∅)

19: prune false k-shredders in L ∪ {U} using Lemma 4.8
20: F ← the set of far-most endpoints of all paths in Π
21: if U was not pruned U ∩ F = ∅ then
22: return (L, U)
23: else
24: return (L,∅)

We state two more lemmas that will be useful in the later sections.

▶ Lemma 5.4. Suppose that Algorithm 1 on input (x, ν, Π) returns an unverified set U such
that U ≠ ∅. Then, U is a k-separator. Specifically, let z be the far-most endpoint of an
arbitrary path π ∈ Π. Then, x and z are not connected in G \ U .

▶ Lemma 5.5. Suppose that Algorithm 1 returns a nonempty unverified set U on input
(x, ν, Π). Let Q denote the component of G \U containing x. There exists a modified version
of Algorithm 1 that also computes vol(Q) in O(kν) time.

6 Resolving Unverified Sets

We now address the case where Algorithm 1 returns an unverified set U on input (x, ν, Π).
The difference between U and the list of returned k-shredders L is that the algorithm did
not find a component Q of G \ Π such that N(Q) = U . In some sense, this means that
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we “lose” a component of G \ U . The danger in guessing that U is a k-shredder is that U

might only be a k-separator. Imagine that G \ U has exactly two components: C1 and C2.
If vol(C2)≫ vol(C1), then it becomes quite challenging to determine whether there exists
a third component of G \ U in O(vol(C1)) time. To cope with this uncertainty, we make
another structural classification.

▶ Definition 6.1 (Low-Degree, High-Degree). Let S be a k-shredder with partition (C,R).
Let ν be the unique power of two satisfying 1

2 ν < vol(R) ≤ ν. We say that S has low-degree
if there exists a vertex s ∈ S such that deg(s) ≤ ν. Otherwise, we say S has high-degree.

One aspect of this definition may seem strange: we have specifically described ν as
a power of two. This is because in the later sections, we will use geometric sampling to
capture k-shredders. The sampling parameters we use will be powers of two. Hence, we have
imposed this slightly arbitrary detail on Definition 6.1. For now, all that matters is that
1
2 ν < vol(R) ≤ ν.

Organization

There are two main lemmas for this section. Lemma 6.3 handles low-degree unverified
sets and is presented in Section 6.1. Lemma 6.7 handles high-degree unverified sets and is
presented in Section 6.2. The idea is that after Algorithm 1 returns an unverified set U , we
will use Lemma 6.3 to test whether U is a low-degree k-shredder. If not, we will leave keep
U as a potential high-degree k-shredder. After all unverified sets have been returned, we use
Algorithm 3 to extract all high-degree k-shredders from the remaining unverified sets.

6.1 Low-Degree
Suppose that U is a low-degree k-shredder with partition (C,R). Suppose that the tuple
(x, ν, Π) captures U and Algorithm 1 reports U as an unverified set. Our goal is to design an
algorithm that confirms U is a k-shredder in the same time complexity as Algorithm 1 up to
polylog(n) and poly(k) factors.

Lemma 5.4 gives us two vertices in different components of G \ U : x and z (where z

is the far-most endpoint of any path in Π). Since U is a k-shredder, there must exist a
third component of G \ U and every vertex in U must be adjacent to a vertex in this third
component. Because U is low-degree, there must exist a vertex u ∈ U with deg(u) ≤ ν. The
idea is to scan through the edges adjacent to this low-degree vertex u and find an edge (u, y)
such that y is neither connected to x nor z in G \U . To make the scanning procedure viable,
we need to efficiently answer pairwise connectivity queries in G \ U . The key ingredient is a
result obtained by Kosinas in [17]. Specifically, the following holds.

▶ Theorem 6.2. There exists a deterministic data structure for an undirected graph G

on n vertices and m edges with O(km log n) preprocessing time that supports the following
operations.
1. Given a set F of k vertices, perform a data structure update in time O(k4 log n).
2. Given a pair of vertices (x, y) return true if x is connected to y in G \ F in time O(k).

We defer the method of capturing k-shredders for later. For now, let us assume that the
tuple (x, ν, Π) captures a k-shredder U and U is reported as an unverified set by Algorithm 1.
We show an auxiliary algorithm that will be helpful in listing low-degree k-shredders.

▶ Lemma 6.3. After preprocessing the input graph using the data structure from Theorem 6.2,
there exists a deterministic algorithm that takes in as input (x, ν, Π, U), where U is an
unverified set returned by Algorithm 1 on input (x, ν, Π). The algorithm outputs true if U is
a k-shredder and there exists a vertex u ∈ U such that deg(u) ≤ ν in O(k4 log n + kν) time.
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▶ Remark 6.4. In [20], Long and Saranurak showed the existence of a pairwise connectivity
oracle subject to vertex failures with O(k2no(1)) update time and O(k) query time. Our
usage of Kosinas’s oracle involves making one update operation with a set of size k and
O(ν) many connectivity queries. Using Long and Saranurak’s version, we can improve the
dependency on k in the time complexity of Algorithm 2 to O(k2no(1) + kν) time.

Algorithm Outline

As mentioned above, the idea is to scan through the edges adjacent to u in order to find a
vertex y such that y is neither connected to x nor z in G\U . We will be utilizing Theorem 6.2
to determine whether a pair of vertices (x, y) are connected in G \U . Pseudocode is given in
Algorithm 2.

Figure 3 Here the set U = {u1, . . . , uk} was reported as an unverified set. Suppose there exist a
vertex v1 without loss of generality such that deg(u1) ≤ ν. Then, we can simply scan through the
neighbors of u1 in O(ν) iterations to obtain an edge incident to a component of G \ U that is not
Qx nor C.

6.2 High-Degree
It is quite difficult to determine locally whether U is a high-degree k-shredder. We can
no longer hope for a low-degree vertex u ∈ U and scan through its edges to find a third
component of G \ U . To tackle high-degree k-shredders reported as unverified sets, our idea
is to ignore them as they are reported and filter them later using one subroutine. Let U

be a high-degree k-shredder with partition (C,R). Let ν be the power of two satisfying
1
2 ν < vol(R) ≤ ν. Every vertex x ∈ R has deg(x) ≤ ν because vol(R) ≤ ν. Furthermore,
every vertex u ∈ U has deg(u) > ν because U is high-degree. We can exploit this structure
by noticing that U forms a “wall” of high-degree vertices. That is, if we obtain a vertex
x ∈ R, we can use BFS seeded at x to explore a small area of vertices with degree at
most ν. The high degree vertices of U would prevent the graph traversal from escaping the
component of G \ U containing x. At the end of the traversal, the set of explored vertices
would compose a component Q of G \ U and we can report that N(Q) = U might be a
high-degree k-shredder. To obtain a vertex x ∈ R, we can use the classic hitting set lemmas
via random edge sampling.
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Algorithm 2 Auxiliary algorithm for low-degree k-shredders.

Input: x - a sample vertex
ν - volume parameter
Π - a set of k openly-disjoint paths starting from x

U - unverified set returned by Algorithm 1 on (x, ν, Π)
Output: true if (1) and (2) are satisfied, false otherwise

(1) U is a k-shredder
(2) there exists a vertex u ∈ U such that deg(u) ≤ ν

1: if all vertices in U have degree greater than ν then
2: return false
3: u← a vertex in U with deg(u) ≤ ν

4: π ← the path in Π containing u

5: z ← the far-most endpoint of π

6: Φ← the pairwise connectivity oracle from Theorem 6.2 (already preprocessed)
7: update Φ on vertex failure set U

8: for each edge (u, y) adjacent to u such that y /∈ U do
9: qx,y ← connectivity query between x and y in G \ U

10: qy,z ← connectivity query between y and z in G \ U

11: if qx,y is false and qy,z is false then
12: return true
13: return false

▶ Lemma 6.5 (Hitting Set Lemma). Let Q be a set of vertices. Let ν be a positive integer
satisfying 1

2 ν < vol(Q) ≤ ν. If we independently sample 400 m
ν log n edges (u, v) uniformly at

random, we will obtain an edge (u, v) such that u ∈ Q with probability 1− n−100.

We are not finished yet, as we need to connect this idea with the unverified sets reported
by Algorithm 1. Suppose that U was reported by Algorithm 1 on input (x, ν, Π). We have
that x is in some component Q of G \ U . Our goal is to sample a vertex y in a different
component Q′ of G \ U . As described above, we can exploit the fact that U is a high-degree
k-shredder by exploring low-degree vertices in the neighborhood of y to recover Q′. At this
point, we have essentially recovered two components of G \ U : Q and Q′. To make further
progress, we present a short, intuitive lemma.

▶ Lemma 6.6. Let U be a k-separator. Let Q, Q′ be two distinct components of G \U . Then
U is a k-shredder if and only if vol(Q) + vol(Q′) + |E(U, U)| < m.

We are finally ready to handle high-degree k-shredders reported as unverified sets. We
present the main result.

▶ Lemma 6.7. There exists a randomized Monte Carlo algorithm that takes as input a list
U of tuples of the form (x, ν, Π, U), where U is an unverified set returned by Algorithm 1
on (x, ν, Π). The algorithm returns a list of k-shredders L that satisfies the following. If
(x, ν, Π, U) ∈ U is a k-tuple such that U is a high-degree k-shredder, then U ∈ L with
probability 1− n−100. The algorithm runs in O(k2m log2 n) time.

Algorithm Outline

We summarize the argument made above. Fix a tuple (x, ν, Π, U) in U such that U is a
high-degree k-shredder with partition (C,R). Let ν denote the unique power of two satisfying
1
2 ν < vol(R) ≤ ν. Because U is high-degree, we have for all u ∈ U , deg(u) > ν. Let Q

ICALP 2024



87:14 Finding Most-Shattering Min-Cuts of Polylogarithmic Size in Near-Linear Time

denote the component of G \ U containing x. Suppose we have obtained a vertex y in a
component Q′ ∈ R \ {Q}. Since all vertices in Q′ have degree at most ν, the idea is to
explore all vertices connected to y that have degree at most ν. Because N(Q′) = U and each
vertex in U has degree greater than ν, we will compute Q′ as the set of explored vertices.
After computing Q′, we will have obtained two components of G \ U : Q and Q′. In order
to confirm that U is a k-shredder, all that is left to do is to make sure that Q and Q′ are
not the only components of G \ U . Lemma 6.6 implies this can be done by verifying that
vol(Q) + vol(Q′) + |E(U, U)| < m. Now, the final step is to find such a vertex y. We use
a random sampling procedure for this task. Consider Algorithm 3. We omit the proofs of
correctness and time complexity.

Algorithm 3 Extracting all high-degree k-shredders from unverified sets.

Input: U - a list of tuples of the form (x, ν, Π, U)
Output: L - a list of k-shredders that satisfies the following:

if (x, ν, Π, U) ∈ U is such that U is a high-degree k-shredder,
then U ∈ L with probability 1− n−100

1: L ← ∅
2: for i← 0 to ⌈log

(
m
k

)
⌉ do

3: ν′ ← 2i

4: for 400 m
ν′ log n times do

5: independently sample an edge (y, z) uniformly at random
6: Q′ ← set of vertices explored by BFS seeded at y:

ignore vertices v such that deg(v) > ν′

terminate early the moment more than ν′ edges are explored
7: if BFS terminated early then
8: skip to next sample
9: else if there exists a tuple (x, ν, Π, U) ∈ U such that N(Q′) = U then

10: Q← component of G \ U containing x

11: if x /∈ Q′ and vol(Q) + vol(Q′) + |E(U, U)| < m then
12: L ← L ∪ {U}
13: return L

7 Capturing and Listing Unbalanced k-Shredders

In the previous sections, we showed an algorithm that takes as input a tuple (x, ν, Π), and
lists all k-shredders that are captured by (x, ν, Π) as well as an unverified set. We then showed
how to resolve unverified sets using casework on the structural properties of k-shredders.
There is one piece of the puzzle left: the method for capturing unbalanced k-shredders. For
this, we will leverage random sampling and recent developments in local flow algorithms as
in [10].

7.1 Leveraging Local Flow Algorithms
Let S be an unbalanced k-shredder with partition (C,R). At a high level, we use geometric
sampling to obtain a seed vertex x ∈ R and a volume parameter ν satisfying 1

2 ν < vol(R) ≤ ν.
This obtains two items necessary for capturing S. We are still missing a set of k openly-
disjoint paths Π, each starting from x and ending at a vertex in C such that the sum of
lengths over all paths is at most k2ν. This is precisely a core tool developed in [10].
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▶ Definition 7.1 (Vertex Cut). A vertex cut (L, S, R) of a graph G = (V, E) is a partition of
V such that for all vertex pairs (u, v) ∈ L×R, u is not connected to v in G \ S.
▶ Theorem 7.2 ([10, implicit in Theorem 4.1]). Let G = (V, E) be an undirected n-vertex m-
edge graph with vertex connectivity k. Let (L, S, R) be a vertex cut of G such that vol(R) < m

k .
There exists a randomized algorithm LocalVC(·, ·) that takes as input a pair (x, ν) where x is
a vertex in R and ν is a positive integer satisfying 1

2 ν < vol(R) ≤ ν. The algorithm outputs
a set Π of k openly-disjoint paths such that each path satisfies the following.
1. The sum of lengths over all paths in Π is at most k2ν.
2. The path starts from x and ends at a vertex in L.

The algorithm outputs Π with probability 1/4 in O(k2ν) time.
Theorem 4.1 of [10] only states that their algorithm returns a vertex cut. But they also

construct the set of paths Π. Their algorithm is simple, and we will briefly explain it here.
First, we perform the standard vertex-splitting reduction and reduce the problem to finding
directed edge-disjoint paths instead. To find the first path, we perform any graph search,
says DFS, from a vertex x to explore kν volume and sample a random endpoint y1 among
all explored edges. Note that y1 is in L with probability at least 1− 1/k since vol(R) ≤ ν.
Then, we reverse the direction of edges on the path from x to y1 in the DFS tree and obtain
a “residual” graph. Then, we repeat the process in the residual graph to construct the next
path from x to y2. After k iterations, the endpoints y1, . . . , yk of these k paths are in L with
probability (1− 1/k)k ≥ 1/4. These paths in the residual graphs can be decomposed (like
the flow-decomposition) into k directed edge-disjoint paths in the original graph whose total
length is k2ν. These, in turn, correspond k openly vertex-disjoint paths by the standard
reduction in the beginning.

Notice how the output of the algorithm described in Theorem 7.2 directly corresponds to
Definition 2.4. Let R denote the union of all components in R. Notice that (C, S, R) forms a
vertex cut such that vol(R) < m

k . The idea is to obtain a seed vertex x ∈ R using a linear
amount of random samples. For each sample, we can directly apply LocalVC(·, ·) to obtain
the desired set of paths. Furthermore, we can boost the success rate of the algorithm by
repeating it a polylogarithmic number of times. In the following section, we formalize this
idea.

7.2 The Algorithm for Unbalanced k-Shredders
The main result is stated below.
▶ Lemma 7.3. There exists a randomized algorithm that takes as input G = (V, E), an
n-vertex m-edge undirected graph with vertex connectivity k. The algorithm correctly lists all
unbalanced k-shredders of G with probability 1− n−98 in O(k4m log4 n) time.

We first give a high level outline for listing unbalanced k-shredders. Let S be an unbalanced
k-shredder with partition (C,R). With geometric sampling, by the hitting set lemma we
will sample a vertex x ∈ R with a volume parameter ν that satisfies 1

2 ν < vol(R) ≤ ν.
Then, we use Theorem 7.2 to obtain a set of k openly-disjoint paths Π, each starting from
x and ending at a vertex in C such that the sum of lengths over all paths is at most k2ν.
We now have a tuple (x, ν, Π) that captures S. After capturing S, we call Algorithm 1
to list S as a k-shredder or an unverified set. In the latter case, we can verify whether S

is a low-degree k-shredder using Algorithm 2. If this verification step fails, S must be a
high-degree k-shredder. In this case, we can add S to a global list of unverified sets. This list
will be processed after all unbalanced k-shredders have been captured. Lastly, we can extract
all high-degree k-shredders from the list of unverified sets using Algorithm 3. Pseudocode
describing this process is given in Algorithm 4.
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Algorithm 4 Listing all unbalanced k-shredders of a graph.

Input: G = (V, E) - an undirected k-vertex-connected graph
Output: L - a list containing all unbalanced k-shredders of G

1: L ← ∅ ▷ list of k-shredders
2: U ← ∅ ▷ unverified sets
3: Φ← initialize a pairwise connectivity oracle as in [17]

4: for i← 0 to ⌈log
(

m
k

)
⌉ do

5: ν ← 2i

6: for 400 m
ν log n times do

7: independently sample an edge (x, y) uniformly at random
8: for 100 log n times do
9: Π← LocalVC(x, ν) as in [10]

10: (Llocal, U)← call Algorithm 1 on input (x, ν, Π)
11: L ← L ∪ Llocal

12: if U ̸= ∅ then
13: call Algorithm 2 on input (x, ν, Π, U)
14: if Algorithm 2 returned true then
15: L ← L ∪ {U}
16: else
17: U ← U ∪ {(x, ν, Π, U)}

18: Lhigh−degree ← call Algorithm 3 on input U
19: L ← L ∪ Lhigh−degree

20: return L

8 Listing All k-Shredders

At last, we are ready to present the algorithm for listing all k-shredders. See Algorithm 5.

▶ Lemma 8.1. Let G = (V, E) be an n-vertex m-edge undirected graph with vertex connectivity
k. There exists a randomized algorithm that takes G as input and correctly lists all k-shredders
of G with probability 1− n−97 in O(k4m log4 n) time.

The idea is that we can classify any k-shredder as either balanced or unbalanced. We
have described how to use random edge sampling to handle the former case, and Algorithm 4
handles the latter case. Because the algorithm for listing balanced k-shredders is quite trivial,
we have omitted its pseudocode. Given Lemma 8.1, Theorem 1.1 follows by the standard
sparsification [22].

9 Most Shattering Min-Cut

We have presented a randomized near-linear time algorithm that lists all k-shredders with
high probability, but we have not yet shown how to count the number of components each
k-shredder separates. Counting components proves to be a bit trickier than it was in [6].
What we will do is modify our algorithms such that whenever we list a k-shredder S, we also
return the number of components of G\S. We will do this for Algorithm 1, Algorithm 2, and
Algorithm 3. Note that if there are no k-shredders of G, we can simply return a k-separator
of G. This can be done in Õ(m + nk3) time as shown in [10].
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Algorithm 5 Listing all k-shredders of a graph.

Input: G = (V, E) - an undirected k-vertex-connected graph
Output: L - a list of all k-shredders of G

1: L ← ∅

2: Lbalanced ← edge sampling and Shredders(·, ·)
3: L ← L ∪ Lbalanced

4: Lunbalanced ← call Algorithm 4 on input G

5: L ← L ∪ Lunbalanced

6: return L

9.1 Counting Components in the Local Algorithm
At a high level, we can modify Algorithm 1 as follows. Suppose Algorithm 1 identifies a
candidate k-shredder S on line 16. By line 13, all bridges of Π attached to some vertex
s ∈ S must have been explored. The modification is as follows. We can keep a dictionary
M whose keys are candidate k-shredders (in k-tuple form) mapped to nonnegative integers
initialized to zero. For each bridge Γ of Π attached to s, if Γ is a component of G \Π such
that N(Γ) = S, then we increment M [S]. We claim that if S ∈ L is a k-shredder captured
by (x, ν, Π), then M [S] + 2 is the number of components of G \ S.

▶ Lemma 9.1. Suppose that Algorithm 1 returns (L, U) on input (x, ν, Π). There exists
a modified version of Algorithm 1 such that for each k-shredder S ∈ L that is captured
by (x, ν, Π), the modified version also computes the number of components of G \ S. The
modification requires O(k2ν) additional time, subsumed by the running time of Algorithm 1.

9.2 Counting Components for Low-Degree Unverified Sets
If Algorithm 2 returned true on input (x, ν, Π, U), then U is a k-shredder with a vertex
u ∈ U such that deg(u) ≤ ν. Notice that all components of G \ U must contain a vertex
that is adjacent to u. Immediately, we have that the number of components of G \ U is
upper bounded by ν, as deg(u) ≤ ν. However, looking at two arbitrary edges (u, v1), (u, v2)
adjacent to u, it is unclear whether v1 and v2 are in the same component of G \U . Although
we can query whether v1 and v2 are connected in G \ U in O(k) time, we cannot afford
to make these queries for all pairs of vertices in N(u). Such a procedure would require us
to make O(ν2) many queries, which is too costly. To solve this issue, we use a convenient
property of DFS trees to bypass making O(ν2) connectivity queries. Much of the machinery
was inspired by [17], so we omit the details.

▶ Lemma 9.2. Suppose that Algorithm 2 returns true on input (x, ν, Π, U). There exists a
modified version of Algorithm 2 that also computes the number of components of G \ U . The
modification requires O(k2ν) additional time, subsumed by the running time of Algorithm 2.

9.3 Counting Components for High-Degree Unverified Sets
Recall from Section 6.2 that the key observation is that S forms a wall of high-degree vertices.
We exploited this by sampling vertices in R and exploring regions of vertices with low degree.
The idea is that S will restrict the graph exploration within one component of R, and we can
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recover that component. We can actually extend this idea a bit further to count the number
of components in R. For all components Q ∈ R, our algorithm will eventually sample a
vertex x ∈ Q. By exploring low-degree vertices, we will recover Q. We can verify that N(Q)
is a k-shredder as by now we have listed all of them. Hence, we will eventually count all
components of G \ S throughout the sampling and exploring procedure.

▶ Lemma 9.3. Suppose that Algorithm 3 returns a list L of k-shredders on input U . There
exists a modified version of Algorithm 3 such that for each k-shredder S ∈ L, the modi-
fied version also computes the number of components of G \ S. The modification requires
O(m log2 n) additional time, subsumed by the time complexity of Algorithm 3.

Given Lemmas 9.1–9.3, we can compute a most shattering minimum-cut with high
probability in O(k4m log4 n) time and, hence, Theorem 1.2 follows by the standard sparsifi-
cation [22].
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