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Abstract
In the MaxSAT with Cardinality Constraint problem (CC-MaxSAT), we are given a CNF-formula
Φ, and a positive integer k, and the goal is to find an assignment β with at most k variables
set to true (also called a weight k-assignment) such that the number of clauses satisfied by β is
maximized. Maximum Coverage can be seen as a special case of CC-MaxSat, where the formula
Φ is monotone, i.e., does not contain any negative literals. CC-MaxSat and Maximum Coverage
are extremely well-studied problems in the approximation algorithms as well as the parameterized
complexity literature.

Our first conceptual contribution is that CC-MaxSat and Maximum Coverage are equivalent
to each other in the context of FPT-Approximation parameterized by k (here, the approximation is
in terms of the number of clauses satisfied/elements covered). In particular, we give a randomized
reduction from CC-MaxSat to Maximum Coverage running in time O(1/ϵ)k · (m + n)O(1) that
preserves the approximation guarantee up to a factor of (1 − ϵ). Furthermore, this reduction also
works in the presence of “fairness” constraints on the satisfied clauses, as well as matroid constraints
on the set of variables that are assigned true. Here, the “fairness” constraints are modeled by
partitioning the clauses of the formula Φ into r different colors, and the goal is to find an assignment
that satisfies at least tj clauses of each color 1 ≤ j ≤ r.

Armed with this reduction, we focus on designing FPT-Approximation schemes (FPT-ASes) for
Maximum Coverage and its generalizations. Our algorithms are based on a novel combination of a
variety of ideas, including a carefully designed probability distribution that exploits sparse coverage
functions. These algorithms substantially generalize the results in Jain et al. [SODA 2023] for
CC-MaxSat and Maximum Coverage for Kd,d-free set systems (i.e., no d sets share d elements),
as well as a recent FPT-AS for Matroid Constrained Maximum Coverage by Sellier [ESA 2023]
for frequency-d set systems.
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1 Introduction

Two problems that have gained considerable attention from the perspective of Parameterized
Approximation [11] are the classical MaxSAT with cardinality constraint (CC-MaxSat)
problem and its monotone version, the Maximum Coverage problem. In the CC-MaxSat
problem, we are given a CNF-formula Φ over m clauses and n variables, and a positive
integer k, and the objective is to find a weight k assignment that maximizes the number
of satisfied clauses. We use var(Φ) and cla(Φ) to denote the set of variables and clauses in
Φ, respectively. An assignment to a CNF-formula Φ is a function β : var(Φ) → {0, 1}. The
weight of an assignment β is the number of variables that have been assigned 1.

The classical Maximum Coverage problem is a special case of the CC-MaxSat problem.
Indeed, it is a monotone variant of CC-MaxSat, where negated literals are not allowed. An
input to the Maximum Coverage problem consists of a family of m sets, F , over a universe
U of size n, and an integer k, and the goal is to find a subfamily F ′ ⊆ F of size k such that
the number of elements covered (belongs to some set in F ′) by F ′ is maximized. Observe
that when the goal is to cover every element in U , the Maximum Coverage problem
corresponds to Set Cover. A natural question that has guided research on these problems
is whether CC-MaxSat or Maximum Coverage admits an algorithm with running time
f(k)nO(1)? That is, whether CC-MaxSat or Maximum Coverage is fixed parameter
tractable (FPT) with solution size k? Unfortunately, these problems are W[2]-hard [9]. That
is, we do not expect these problems to admit an algorithm with running time f(k)nO(1).
This negative result sets the platform for studying these problems from the viewpoint of
Parameterized Approximation [11]. It is well known that both CC-MaxSat and Maximum
Coverage admit a polynomial time (1 − 1

e )-approximation algorithm [26], which is in fact
optimal. [10]. So, in the realm of Parameterized Approximation, we ask does there exist an
ϵ > 0, such that CC-MaxSat or Maximum Coverage admits an approximation algorithm
with factor (1 − 1

e + ϵ) and runs in time f(k, ϵ)nO(1). While there has been a lot of work on
Maximum Coverage [17, 20, 25, 15, 24], Jain et al. [17] studied CC-MaxSat and designed
a standalone algorithm for the problem. Our first result, a bit of a surprise to us, shows that
in the world of Parameterized Approximation, CC-MaxSat and Maximum Coverage are
“equivalent”.

▶ Theorem 1.1 (Informal). Let ϵ > 0. There is a polynomial time randomized algorithm
that given an instance (Φ, k) of CC-MaxSat produces an instance (U, F , k) of Maximum
Coverage such that the following holds with probability 1

2 ( ϵ
2 )k. Given a (1 − ϵ)OPTcov

solution to (U, F , k) we can obtain a (1−ϵ)OPTsat solution to (Φ, k) in polynomial time. Here,
OPTcov (OPTsat) denotes the value of the maximum number of covered elements (satisfied
clauses) by a k-sized family of subsets (weight k assignment).

https://arxiv.org/abs/2403.07328
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Theorem 1.1 allows us to focus on Maximum Coverage, rather than CC-MaxSat, at the
expense of ϵ−O(k) in the running time. Further, there is no assumption on the input formulas
in Theorem 1.1. This reduction immediately implies faster algorithms for CC-MaxSat by
utilizing the known good algorithms for Maximum Coverage [17, 20, 25, 15, 24]. The
Maximum Coverage problem has been generalized in several directions by adding either
fairness constraints or asking our solution to be an independent set of a matroid. In what
follows, we take a closer look at progresses on Maximum Coverage and its generalizations
and then design algorithms that generalize and unify all the known results for CC-MaxSat
and Maximum Coverage.

1.1 Tractability Boundaries for Maximum Coverage
Cohen-Addad et al. [8] studied Maximum Coverage and showed that there is no ϵ > 0,
such that Maximum Coverage admits an approximation algorithm with factor (1 − 1

e + ϵ)
and runs in time f(k, ϵ)(m + n)O(1) 2. Later, this was also studied by Manurangsi [20],
who obtained the following strengthening over [8]: for any constant ϵ > 0 and any function
h, assuming Gap-ETH, no h(k)(n + m)o(k) time algorithm can approximate Maximum
Coverage with n elements and m sets to within a factor (1 − 1

e + ϵ), even with a promise
that there exist k sets that fully cover the whole universe. This negative result sets the
contour for possible positive results. In particular, if we hope for an FPT algorithm that
improves over a factor (1 − 1

e ) then we must assume some additional structure on the input
families. This automatically leads to the families wherein each set has bounded size, or each
element appears in bounded sets which was considered earlier.

Skowron and Faliszewski [25] showed that, if we are working on set families, such that each
element in U appears in at most p sets, then there exists an algorithm, that given an ϵ > 0,
runs in time ( p

ϵ )O(k)nO(1) and returns a subfamily F ′ of size k that is a (1− ϵ)-approximation.
These kind of FPT-approximation algorithms are called FPT-approximation Schemes (FPT-
ASes). For p = 2, Manurangsi [20] independently obtained a similar result. Jain et al. [17]
generalized these two settings by looking at Kd,d-free set systems (i.e., no d sets share d

elements). They also considered Kd,d-free formulas (that is, the clause-variable incidence
bipartite graph of the formula excludes Kd,d as an induced subgraph). They showed that
for every ϵ > 0, there exists an algorithm for Kd,d-free formulas with approximation ratio
(1 − ϵ) and running in time 2O(( dk

ϵ )d)(n + m)O(1). For, Maximum Coverage on Kd,d-free
set families, they obtain an FPT-AS with running time ( dk

ϵ )O(dk)nO(1). Using these results
together with Theorem 1.1 we get the following.

▶ Corollary 1.2. Let ϵ > 0. Then, CC-MaxSat admits a randomized FPT-AS with running
time (dk

ϵ )O(dk)nO(1) on Kd,d-free formulas. Furthermore, if the size of clauses is bounded
by p or every variable appears in at most p clauses then CC-MaxSat admits randomized
FPT-AS with running time ( p

ϵ )O(k)nO(1). Both results hold with constant probability.

We note that the deterministic version of the first result in the corollary was given in [21] in
a recent independent work.

Corollary 1.2 follows by utilizing Theorem 1.1 and repurposing the known results about
Maximum Coverage ([17, 5, 25, 20]). We will return to the case of Kd,d-free set systems
later. Apart from extending the classes of set families where Maximum Coverage admits
FPT-ASes, the study on the Maximum Coverage problem has been extended in many
directions.

2 Throughout the paper, the approximation factor will refer to the number of elements covered/number
of satisfied clauses, unless explicitly stated otherwise

ICALP 2024
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1.1.1 Matroid Constraints
Note that Maximum Coverage is a special case of submodular function maximization
subject to a cardinality constraint. In the latter problem, we are given (an oracle access
to) a submodular function f : 2V → R≥0

3, and the goal is to find a subset U ⊆ V

that maximizes f(U) over all subsets of size at most k. Indeed, coverage functions are
submodular and monotone (i.e., adding more sets cannot decrease the number of elements
covered). There has been a plethora of work on monotone submodular maximization subject
to cardinality constraints, starting from Wolsey [27]. In a further generalization, we are
interested in monotone submodular maximization subject to a matroid constraint – in this
setting, we are given a matroid M = (U, I) 4 via an independence oracle, i.e., an algorithm
that answers queries of the form “Is P ∈ I?” for any P ⊆ U in one step, and we want to
find an independent set S ∈ I that maximizes f(S). Note here that a uniform matroid of
rank k 5 exactly captures the cardinality constraint. Calinescu et al. [6] gave an optimal
(1 − 1/e)-approximation.

More recently, Huang and Sellier [15] and Sellier [24] studied the problem of maximizing a
coverage function subject to a matroid constraint, called Matroid Constrained Maximum
Coverage. In this problem, which we call M-MaxCov (M for “matroid” constraint),
we are given a set system (U, F) and a matroid M = (F , I) of rank k, and the goal is to
find a subset F ′ ⊆ F such that F ′ ∈ I and F ′ maximizes the number of elements covered.
Note that M-MaxCov is a generalization of Maximum Coverage. In the latter paper,
Sellier [24] designed an FPT-AS for M-MaxCov, running in time (d/ϵ)O(k) · (m + n)O(1) for
frequency-d set systems. Note that this result generalizes that of [25, 20] from a uniform
matroid consraint to an arbitrary matroid constraint of rank k.

Analogous to M-MaxCov, one can define a matroid constrained version of CC-MaxSat,
called M-MaxSAT. In this problem, we are given a CNF-SAT formula Φ and a matroid
M of rank k on the set of variables. The goal is to find an assignment that satisfies the
maximum number of clauses, with the restriction that, the set of variables assigned 1 must
be an independent set in M. Note that M-MaxSAT generalizes M-MaxCov as well as
CC-MaxSat. We obtain the following result for M-MaxSAT, by combining the results on
a variant of Theorem 1.1 with the corresponding result on M-MaxCov.

▶ Theorem 1.3. There exists an FPT-AS for M-MaxSAT parameterized by k, d, and ϵ, on
d-CNF formulas, where k denotes the rank of the given matroid.

1.1.2 Fairness or Multiple Coverage Constraints
Now we consider an orthogonal generalization of Maximum Coverage. Note that an
optimal solution for Maximum Coverage may leave many elements uncovered. However,
such a solution may be deemed unfair if the elements are divided into multiple colors
(representing, say, people of different demographic groups), and the set uncovered elements
are biased against a specific color. To address these constraints, the following generalization
of Maximum Coverage, which we call F-MaxCov (F stands for “fair”), has been studied
in the literature. Here, we are given a set system (U, F), a coloring function χ : U → [r], a

3 f : 2V → R is submodular if it satisfies f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for all A, B ⊆ V
4 Recall that a matroid is a pair M = (U, I), where U is the ground set, and I is a family of subsets of U

satisfying the following three axioms: (i) ∅ ∈ I, (ii) If A ∈ I, then B ∈ I for all subsets B ⊆ A, and
(iii) for any A, B ∈ I with |B| > |A|, then there exists an element e ∈ B \ A such that A ∪ {e} ∈ I.

5 Rank of a matroid is equal to the maximum size of any independent set in the matroid.
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coverage requirement function t : [r] → N, and an integer k; and the goal is to find a subset
F ′ ⊆ F of size at most k such that, for each i ∈ [r], the union of elements in F ′ is at least
t(i) (or ti).

Since F-MaxCov is a generalisation of Maximum Coverage, it inherits all the lower
bounds known for Maximum Coverage. Furthermore, we can mimic the algorithm for
Maximum Coverage (Partial Set Cover) parameterized by t (where you want to
cover at least t elements with k sets) [5] to obtain an algorithm for Partition Maximum
Coverage parameterized by

∑
j∈[r] tj . However, the problem is NP-hard even when tj ≤ 1,

j ∈ [r], via a simple reduction from Set Cover.
F-MaxCov has been studied under multiple names in the approximation algorithms

literature; however much of the focus has been on approximating the size of the solution,
rather than the coverage. Notable exception include Chekuri et al. [7] who gave a “bicriteria”
approximation, that outputs a solution of size at most O(log r/ϵ) times the optimal size, and
covers at least (1 − 1/e − ϵ) fraction of the required coverage of each color. Very recently,
Bandyapadhyay et al. [3] recently designed an FPT-AS for F-MaxCov for the set systems
of frequency 2, running in time 2O( rk2 log k

ϵ ) · (m + n)O(1). We obtain the following result on
F-MaxCov.

▶ Theorem 1.4. There exists a randomized FPT-AS for F-MaxCov running in time(
dr

(
log k

ϵ

)r)O(k)
· (m + n)O(1), on set systems with frequency bounded by d.

Note that this result generalizes the result of [3] to frequency-d set systems, and in the
case of d = 2, our running time is faster than that of [3] (albeit our algorithm is randomized).

One can also define fair version of CC-MaxSat in an analogous way, which we call F-
MaxSAT. In this problem, we are given a CNF-formula Φ, a coloring function χ : cla(Φ) → [r],
a coverage demand function t : [r] → N, and an integer k. The goal is to find a weight-k
assignment that satisfies at least t(j) (also denoted as tj) clauses of each color j ∈ [r].
By combining Theorem 1.4 with a slightly more general version of the reduction theorem
(Theorem 1.1) also yields FPT-AS for F-MaxSAT with a similar running time.

1.2 Our New Problem: Combining Matroid and Fairness Constraints

As discussed in the previous subsections, Maximum Coverage has been generalized in two
orthogonal directions, namely, matroid constraints on the sets chosen in the solution, and
fairness constraints on the elements covered by the solution. Although the corresponding
variants of CC-MaxSat have not been studied in the literature, we mentioned that our
techniques readily imply FPT-ASes for these problems for many “sparse” formulas. Given
this, the following natural question arises.

Can we find good approximations for the variants of CC-MaxSat (resp. Maximum
Coverage) that combines the two orthogonal generalizations, namely, matroid
constraint on the variables assigned 1, and fairness constraints on the satisfied clauses
(resp. matroid constraint on the sets chosen in the solution, and fairness constraints
on the elements covered)?

In the following, we formally define the common generalization of M-MaxSAT and
F-MaxSAT, which we call (M, F)-MaxSAT.

ICALP 2024
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(M, F)-MaxSAT

M-MaxSAT F-MaxSAT (M, F)-MaxCov

CC-MaxSAT

M-MaxCov

F-MaxCov

Maximum Coverage

we improve
running time
from [18]

We generalize
results from [16, 26] we improve

running time
from [3]

[18,22,27]

Figure 1 If there is an arrow of the form A → B, then problem B generalizes problem A.
FPT-ASes for the problems in red bubbles are not known in the literature, and we study in this
paper. For all the other problems FPT-ASes are known in the literature for some cases. This paper
improves the results in cyan and blue.

(M, F)-MaxSAT
Input. A CNF-SAT formula Φ where the clauses cla(Φ) of Φ are partitioned into r

colors. Each color j ∈ [r] has an associated demand tj . Additionally, we are provided
the independence oracle to a matroid M = (var(Φ), I) of rank k.
Question. Does there exist an assignment Ψ : var(Φ) → {0, 1}, such that

The number of clauses satisfied by Ψ of color j is at least tj , for each j ∈ [r],
The set of variables assigned 1 must be independent in M, i.e., Ψ−1(1) ∈ I.

In the special case where the CNF-SAT formula is monotone (i.e., does not contain
negated literals), we obtain (M, F)-MaxCov, which generalizes all the variants of Maximum
Coverage discussed earlier. We obtain the following result for (M, F)-MaxCov.

▶ Theorem 1.5. There exists a randomized FPT-AS for (M, F)-MaxCov on set systems

with maximum frequency d, that runs in time
(

d log k
ϵ

)O(kr)
· (m + n)O(1) and returns a

(1 − ϵ)-approximation with at least a constant probability.

Finally, by reducing (M, F)-MaxSAT on d-CNF formulas to (M, F)-MaxCov with
frequency d set systems, using the randomized reduction, and then using the results of
Theorem 1.5, we obtain our most general result, as follows.

▶ Theorem 1.6. There exists a randomized FPT-AS for (M, F)-MaxSAT on d-CNF

formulas, that runs in time
(

d log k
ϵ

)O(kr)
· (m + n)O(1) and returns a (1 − ϵ)-approximation

with at least a constant probability.

We give a summary of how the various problems are related to each other, and a
comparison of our results with the literature in Figure 1.
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1.3 Related Results
Max k-VC or Partial Vertex Cover has been extensively studied in Parameterized
Complexity. In this problem we are given a graph and the task is to select a subset of k

vertices covering as many of the edges as possible. The problem is known to be approximable
within 0.929 and is hard to approximate within 0.944, assuming UGC [20]. Max k-VC
is known to be W[1]-hard [14], parameterized by k, but admits FPT algorithms on planar
graphs, graphs of bounded degeneracy, Kd,d-free graphs, and bipartite graphs, parameterized
by k [1, 13, 18]. Indeed, it is among the first problems to admit FPT-AS [23, 20, 25]. It is
also known to have “lossy kernels” [23, 19], a lossy version of classical kernelization.

Bera et al. [4] considered the special case of Partition Vertex Cover, where the set
of edges of a graph are divided into r colors, and we want to find a subset of vertices that
covers at least a certain number of edges from each color class. For this problem, they gave
a polynomial-time O(log r)-approximation algorithm. Hung and Kao [16] generalized this
to F-MaxCov, and gave a O(d log r)-approximation, where each element of the universe is
contained in at most d sets (i.e., d is the maximum frequency). Bandyapadhyay et al. [2]
studied this problem under the name of Fair Covering, and designed a O(d)-approximation,
but their running time is XP in the number of colors. Chekuri et al. [7] designed a general
framework for F-MaxCov, yielding tight approximation guarantees for a variety of set
systems satisfying certain property; in particular, they improve the approximation guarantee
for frequency-d set systems to O(d + log r), which is tight in polynomial time.

2 Overview of Our Results and Techniques

2.1 Reduction from CC-MaxSat to Maximum Coverage: An overview of
Theorem 1.1

This theorem is essentially a randomized approximation-preserving reduction from CC-
MaxSat to Maximum Coverage. Given an instance I = (Φ, k) of CC-MaxSat, we
first compute a random assignment Ψ that assigns a variable independently to be 1 with
probability p = ϵ/2 and 0 with probability 1 − p. Let V ∗ be the set of at most k variables set
to be 1 by an optimal assignment Ψ∗. It is straightforward to see that, the probability that
all the variables in V ∗ are set to be 1 by the random assignment Ψ is pk – we say that this is
the good event G. Now, consider a clause that is satisfied negatively by Ψ∗, i.e., a clause C

that contains a negative literal ¬x and Ψ∗(x) = 0. It is also easy to see that, conditioned
on the good event G, the probability that such a clause C is also satisfied negatively by Ψ
is at least 1 − p. Thus, the expected number of clauses that are satisfied negatively by Ψ,
conditioned on G, is at least 1 − p times the number of clauses satisfied negatively by Ψ∗.
Markov’s inequality implies that, with probability at least 1/2, the actual number of such
clauses is close to its expected value. Thus, conditioned on G, and the previous event, we can
focus on the positively satisfied clauses (note that the probability that both of these events
occur is at least 1/2 · (ϵ/2)k. To this end, we can eliminate all the negatively satisfied clauses,
and we can also prune the remaining clauses by eliminating any negative literals and the
variables that are set to 0 by Ψ. Thus, all the remaining clauses only contain positive literals,
which can be seen as an instance I ′ of Maximum Coverage. Furthermore, conditioned on
G, the variables set to 1 by Φ∗ correspond to a family F∗ of size k, and the elements covered
by F∗ correspond to the set of clauses satisfied only positively by Φ∗. Thus, if we find a
(1 − ϵ)-approximate solution to I ′, and set the corresponding variables to 1, and the rest of
the variables to 0, then we get a weight-k assignment that satisfies at least (1 − ϵ) · OPTsat

clauses. Note that this reduction, combined with the algorithm of [17] gives the proof of
Corollary 1.2.

ICALP 2024



88:8 Satisfiability to Coverage in Presence of Fairness, Matroid, and Global Constraints

Furthermore, this reduction is robust enough that it can accommodate the fairness
constraints on the clauses, as defined above. To be precise, one can give a similar reduction
from C-MaxSAT to C-MaxCov, where C ∈ {M, F, (M, F)} – note that when we have
fairness constraints, the success probability now becomes (r/ϵ)O(k). Essentially, these
reductions translate a constraint on the variables set to 1 (for CC-MaxSat and variants),
to the corresponding family of sets (for Maximum Coverage and variants). Thus, at the
expense of a multiplicative (r/ϵ)O(k) factor in the running time, we can focus on Maximum
Coverage and its variants, which is what we do in this section, as well as in the paper. As
a warm-up, we start in Section 2.2 with the vanilla Maximum Coverage on frequency-d set
systems (where our algorithms do not improve over the known algorithms in the literature),
and give a complete formal proof. Then, we will gradually introduce the ideas required to
handle fairness (Section 2.3) and matroid (Section 2.4) constraints – first separately, and
then together. Finally, in Section 2.5, we briefly discuss the ideas required to these results to
Kd,d-free set systems and multiple matroid constraints.

2.2 Deterministic and Randomized Branching using a Largest Set

To introduce our ideas in a clean and gradual way, we start with the simplest setting of
Maximum Coverage where the maximum frequency of the elements is bounded by d.
Recall that we are given an instance (U, F , k) and the goal is to find a sub-family of F of
size k that covers the maximum number of elements. For any sub-family R ⊆ F , let U(R)
denote the subset of elements covered by R, and OPTk(R) denote the maximum number of
elements that can be covered by a subset of R of size k. Further, for a set S ∈ F , we denote
by F − S, the family obtained by removing S, as well as the elements of S from each of the
remaining sets. Our approach is inspired by the approaches of Skowron and Faliszewski [25]
and Manurangsi [20] who show that O(kd/ϵ) sets of the largest size is guaranteed to contain
a (1 − ϵ)-approximate solution. This naturally begs the question, “why not start by adding
the largest set into the solution?” (in a sense, the following presentation is closer in spirit
to Jain et al. [17].) Let us inspect this question more closely. Let L be a largest set in F .
By looking at the contribution of coverage of each set in an optimal solution, say O, we can
easily see that |L| ≥ OPTk(F)

k . We say that a set S ∈ F is heavy w.r.t. L if |L ∩ S| ≥ ϵ|L|
k

(note that L is heavy w.r.t. itself). However, since the frequency of each element is bounded
by d, each element in L can appear in at most d (in fact, d − 1) sets L ∩ S for different R ∈ F .
This implies that at most kd

ϵ sets in F are heavy w.r.t. L.

Algorithm. Our algorithm simply branches on the sets in H(L), which is the family of heavy
sets w.r.t. L. Specifically, in the branch corresponding to a heavy set S ∈ H(L), we include it
in the solution, and recursively call the algorithm on the residual instance (U \S, F −S, k −1).
If any of the sets in O is heavy w.r.t. L, then in the branch corresponding to such a set
yields an approximate solution via induction. The main idea is that, if no set in O is heavy
w.r.t. L, then the branch corresponding to L yields a good solution. This is justified as the
effect of any of the k − 1 sets in O is too small. For the sake of clarity, we formally analyze
this algorithm below via induction.

We want to show that, for a given input (U ′, F ′, k′) the recursive algorithm returns a
family R ⊆ F ′ of size k′ such that |U ′(R)| ≥ (1 − ϵ) · OPTk′(F ′). The base case for k′ = 0
is trivial, since the algorithm returns an empty set. Suppose that the claim is true for all
inputs with budget k − 1, and we want to prove it for (U, F , k). Let O denote an optimal
solution of size k with |OPTk(F)| = |U(O)|.



T. Inamdar, P. Jain, D. Lokshtanov, A. Sahu, S. Saurabh, and A. Upasana 88:9

Approximation Ratio in the Easy Case. If O ∩ H(L) ̸= ∅, then there exists a branch
corresponding to a set S ∈ O ∩ H(L). This is the easy case (for the analysis). In this case,
OPTk−1(F − S) = OPTk(F) − |S|, and hence the approximation ratio is:

|S| + (1 − ϵ)OPTk−1(F \ S)
OPTk(F) = |S| + (1 − ϵ)(OPTk(F) − |S|)

OPTk(F)

≥ (1 − ϵ)(OPTk(F)
OPTk(F) = (1 − ϵ)

Approximation Ratio in the Hard Case. The more hard case (for analysis) is when
O ∩ H(S) = ∅. In this case, we argue that the branch that includes the element L is
good enough. As in the easy case, we first lower bound the value of OPTk−1(F − L). By
counting the unique contributions to the solution, there exists a light set Sl ∈ O such that
for O′ = O \ {Sl}, it holds |U ′(O′)| ≥ k−1

k · OPTk(F). Because no set in O is heavy w.r.t.
L, it follows that for each R ∈ O′, it holds that |R ∩ L| < ϵ|L|

k , and therefore by counting it
holds that |U(O′) ∩ L| < ϵ · |L|. Therefore,

OPTk−1(F \ L) ≥ |U ′(O′) \ L| ≥ |U(O′)| − |U(O′) ∩ L| ≥ k − 1
k

· OPTk(F) − ϵ · |L|.

Therefore, the approximation ratio of the branch that includes L is as follows.

|L| + (1 − ϵ)OPTk−1(F − L)
OPTk(F) =

|L| + (1 − ϵ)
(

k−1
k · OPTk(F) − ϵ · |L|

)
OPTk(F)

≥
|L| + (1 − ϵ)

(
k−1

k · OPTk(F)
)

− ϵ|L|
OPTk(F)

=
(1 − ϵ)|L| + (1 − ϵ)

(
k−1

k · OPTk(F)
)

OPTk(F)

≥ (1 − ϵ)(OPTk(F)
OPTk(F) = (1 − ϵ)

The second last inequality holds from the fact that |L| ≥ OPTk(F)
k .

This leads to a deterministic (1 − ϵ)-approximation algorithm with running time (( kd
ϵ )k) ·

(n + m)O(1).

Insight into the probabilistic branching

A closer inspection of the analysis reveals that the reason L may not a good choice is that
the sets of O together cover more than a certain threshold fraction of elements covered
by L. We utilize this idea through a smoothening process that captures the effect of the
size of the intersection of a set S with L in a more nuanced manner. Let us define the
weight hL(S) of a set S ∈ F \ {L} as hL(S) = |S∩L|

|L| . Our algorithm now instead does
“randomized branching”, i.e., it samples one set to be included in the solution according to
some probability distribution, and then continues recursively. Note that the single run of the
algorithm finishes in polynomial time. The probability distribution used by the algorithm
is as follows: the set L is sampled with probability 1/2, and any other set S ∈ F \ {L} is
sampled with probability proportional to its weight h(S) (the constant of proportionality
is chosen such that this is a valid probability distribution, that is, the probabilities sum
up to 1). In particular, observe that

∑
S∈F\{L} hL(S) ≤ d|L|

|L| = d. Thus, the probability of
selecting S is at least hL(S)

2d . Note that due to the way the weights hL(S) are defined, the
sets with a large intersection with L have a greater chance of being sampled, as compared to
the sets with a small intersection with L.
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We will show that the algorithm returns a (1 − ϵ)-approximate solution with probability
at least ( ϵ

2d )k, and runs in polynomial time. This implies that by repeating the algorithm
( 2d

ϵ )k times, we obtain a (1 − ϵ)-approximation with probability at least a positive constant.
This leads to a randomized algorithm with running time O∗(( 2d

ϵ )k).
The proof is again by induction. We want to show that, for any input (U ′, F ′, k′), the

algorithm returns a solution R ⊆ F ′ of size k′ such that |U ′(R)| ≥ (1 − ϵ) · OPTk′(F ′),
with probability at least ( ϵ

2d )k′ . We reuse much of the notation from the previous analysis.
Let O be an optimal solution of size k. First, the case when L ∈ O, since our algorithm
samples and includes L in the solution with probability 1/2. Then, conditioned on this
event (that is, L being sampled), the approximation ratio analysis proceeds similarly to
the easy case of the previous analysis. By induction, the recursive algorithm returns a
(1 − ϵ)-approximate solution with probability at least ( ϵ

2d )k−1. Thus, overall, the algorithm
returns a (1 − ϵ)-approximation with probability at least 1

2 ( ϵ
2d )k−1 ≥ ( ϵ

2d )k.
Now suppose L ̸∈ O. As before, let Sl ∈ O be a light set as defined earlier, and

O′ = O\{Sl}. We analyze by considering the following two cases: either (i) |U(O′)∩L| ≤ ϵ·|L|,
or (ii) |U(O′) ∩ L| > ϵ · |L|.

In case (i), we are effectively in the same situation as the hard case of the previous analysis
– as before, the algorithm samples L with probability at least 1/2, and as argued in the hard
case, conditioned on the previous event, the branch corresponding to L returns a (1 − ϵ)-
approximate solution, but now with probability at least ( ϵ

2d )k−1 by induction. Therefore, we
obtain an (1 − ϵ)-approximate solution with probability at least 1

2 ( ϵ
2d )k−1 ≥ ( ϵ

2d )k.
In case (ii), we have that |U(O′) ∩ L| > ϵ · |L|. Notice that,∑
S∈O′

|S ∩ L| > ϵ.

This implies that∑
S∈O′

hL(S) =
∑

S∈O′

|S ∩ L|
|L|

≥ |U(O′) ∩ L| > ϵ|L|.

Therefore, the total weight of the sets in O′ is at least ϵ. Therefore, the probability
that the algorithm samples a set from O′ is at least ϵ

2d . Conditioned on this event, the
approximation ratio analysis now proceeds as in the easy case, and the algorithm returns a
(1 − ϵ)-approximate solution with probability at least ϵ

2d ( ϵ
2d )k−1 = ( ϵ

2d )k.

2.3 Handling fairness constraints via the Bucketing trick
The aforementioned idea of prioritizing the largest set L, or sets that are heavy w.r.t. it,
fails to generalize when we have multiple coverage constraints in F-MaxCov. This is simply
because there is no notion of “the largest set” even when we want to cover elements of two
different colors, each with different coverage requirements. To handle such multiple coverage
constraints, our idea is to use multidimensional-knapsack-style bucketing technique to group
the sets of F into approximate equivalence classes, called bags for short. At a high level, all
the vertices belonging to a particular bag contain approximately equal (i.e., within a factor
of (1 + ϵ)) number of elements of all of the r colors. Thus, in isolation, any two sets L1 and
L2 belonging to the same bag are interchangeable, since we tolerate an ϵ-factor loss in the
coverage. Since the total number of bags can be shown to be

(
log k

ϵ

)O(rk)
, and hence we

can “guess” a bag B containing a set from a solution O. However, due to different amount
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of overlap with an optimal solution O, two sets L1, L2 ∈ B may not be interchangeable
w.r.t. O. That is, if L1 ∈ O, then O \ {L1} ∪ {L2} may not be a good solution. However,
assuming that we have correctly guessed a bag that intersects with O, we can then select a
set L ∈ B, and define the heavy sets (for deterministic algorithm) or weights hL(·) (for the
randomized algorithm) w.r.t. L. Note that, since we have multiple coverage constraints, we
cannot simply look at the total size of the intersection |S ∩ L|. Instead, we need to tweak
the notion of heaviness that takes into account the number of elements of each color in the
intersection S ∩ L. To summarize, we need two additional ideas to handle multiple colors in
F-MaxCov: (1) “guessing” over buckets, and (2) a suitable generalization of the notion of
heaviness. Modulo this, the rest of the analysis is again similar to the easy and hard cases as
before. Using these ideas, we can prove the first part of Theorem 1.4.

2.4 Handling Matroid Constraints

First, we consider M-MaxCov (note that this is an orthogonal generalization of Maximum
Coverage, without multiple coverage constraints), where the solution is required to be an
independent set in the given matroid M = (F , I) of rank k. We assume that we are given
an oracle access to M in the form of an algorithm that answers the queries of the form
“Is R an independent set?” for any subset R ⊆ F . Let us revisit the initial deterministic
FPT-AS for Maximum Coverage and try to generalize it to M-MaxCov. Recall that this
algorithm branches on each set S ∈ H(L), where L is a largest set. The analysis of easy case
goes through even in presence of the matroid constraint, since we branch on a set from an
optimal solution O. However, in the hard case, our analysis replaces a Sl ∈ O with L, and
argues that the branch corresponding to L returns a (1 − ϵ)-approximate solution. However,
this does not work for M-MaxCov, since (O \ {Sl}) ∪ {L} may not be an independent set
in M. To summarize, although L handles the coverage constraints (approximately), it may
fail to handle the matroid constraint. In fact, it may just so happen that L is not a good set
at all, in the sense that, for any set S ∈ O, (O \ {S}) ∪ {L} is not independent in M, which
is crucial for the induction to go through.

To solve this issue, we resort to the bucketing idea as in the fair coverage case (thus, the
subsequent arguments generalize to (M, F)-MaxCov in a straightforward manner; although
let us stick to the special case of M-MaxCov for now). Indeed, branching w.r.t. the largest
set L is an overkill – it suffices to pin down a bag B containing a set in O (it does not even
have to be the largest set), by “guessing” from O

(
log k

ϵ

)
bags. However, we again cannot

select an arbitrary set S ∈ B and define heavy sets w.r.t. S, precisely due to the matroid
compatibility issues mentioned earlier. Therefore, we resort to the idea of representative sets
from matroid theory [22] 6 Assuming our guess for B is correct, there exists some S ∈ B ∩ O.
However, we cannot further “guess” S, since the size of the bag may be too large. Instead,
we compute a inclusion-wise maximal independent set B′ ⊆ B. Note that the size of B′ is at
most k, and it can be computed using polynomially many queries to the independence oracle.
However, it may very well happen that S ̸∈ B′. Nevertheless, using matroid properties, we can
argue that, there exists a set S′ ∈ B′, such that (O \ {S}) ∪ {S′} is an independent set. Thus,
B′ is a representative set of B. Furthermore, since both S and S′ come from the same bag,
they cover approximately the same number of elements. Thus, our modified deterministic

6 Although this is a powerful hammer in its full generality – which we do use to handle multiple matroid
constraints – our specialized setting lets us use much simpler arguments to handle single matroid
constraint in M-MaxCov/(M, F)-MaxCov.
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algorithm works as follows. First, it computes maximal independent set B′ ⊆ B, and for each
S′ ∈ B′, it computes the heavy family H(S′). Then, it branches over all sets in

⋃
S′∈B′ H(S′).

If one of the branches corresponds to branching on a set from O, then the analysis is similar
to the easy case. Otherwise, we know that (O \{S}) ∪{S′} is an (1 − ϵ)-approximate solution
that is also an independent set. Therefore, the branch corresponding to S′ yields the required
(1 − ϵ)-approximation. We can improve the running time via doing a randomized branching
in two steps: first we pick a set S′′ ∈ B′ uniformly at random, and then we perform the
probabilistic branching using the weights hS′′(·).

Both deterministic and randomized variants incur a further multiplicative overhead of
(k log k

ϵ )k due to first guessing a bag, and then computing a representative set B′ ⊆ B of
the bag, and thus do not improve over the results of Sellier [24] in terms of running time
for M-MaxCov. However, this idea naturally generalizes to (M, F)-MaxCov, with the
appropriate modifications in bucketing (as mentioned in the previous paragraph) to handle
the multiple coverage requirements of different colors. This leads to the proof of Theorem 1.5.

2.5 Further Extensions

The ideas mentioned in the previous subsections can be extended to even more general
settings in a couple of ways. First, we describe how to extend the ideas from frequency-d set
systems for Maximum Coverage to Kd,d-free set systems, i.e., set system (U, F), where
no d sets in F contain d elements of U in common. Note that frequency-d set systems are
Kd+1,d+1-free. Then, we describe how the linear algebraic toolkit of representative sets can
be used to handle multiple (linear) matroid constraints.

Kd,d-free Set Systems

Next, we consider Kd,d-free set systems (U, F), where no d sets of F contain d common
elements of U . To design the FPT-AS on Kd,d-free set systems, we combine the bucketing
idea along with the combinatorial properties of Kd,d-free graphs to bound the number of
heavy neighbors of a set. To this end, however, we need to modify the precise definition of
heaviness (as in Jain et al. [17]). This leads to a somewhat cumbersome branching algorithm
that handles colors differently based on their coverage requirement. For colors with small
coverage requirement, we highlight the covered vertices using the standard technique of label
coding7. Now, vertices in a bag cover the elements with the same label and for colors with
high coverage requirements, the sizes of the sets in the same bag are “almost” the same.
Then, we pick an arbitrary set L from the bag B, and we branch on (suitably defined) heavy
sets w.r.t. S. Since the number of heavy sets is bounded by a function of k, d, and ϵ, this
leads to a deterministic version of Theorem 1.4 to Kd,d-free set systems. Note that since
frequency-d set systems is a special case of this, this implies a deterministic FPT-AS in this
case; however with a much worse running time compared to Theorem 1.4. This leads to the
proof of Theorem 1.5.

7 The technique is better known as color coding. However, this creates an unfortunate clash of termino-
logy – these colors have nothing to do with the original colors corresponding to coverage constraints.
Bandyapadhyay et al. [3] instead use the term “label coding”, and we also adopt the same terminology
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Handling Multiple Matroid Constraints

Our results on M-MaxCov and (M, F)-MaxCov can be generalized to handle multiple
matroid constraints on the solution, in the case when the matroids are linear or representable8.
In this more general problem, we are given q linear matroids M1, M2, . . . , Mq, where
Mi = (F , Ii), each of rank at most k, and the solution S is required to be independent in
all q matroids, i.e., S ∈

⋂
i∈[q] Ii. In this case, we can use linear algebraic tools ([22, 12]) to

compute a representative set of size qk instead of k, and the computation requires 2O(qk) ·nO(1)

time. Thus, FPT-ASes for this problem now have a factor of q in the exponent.
Note that our FPT-AS improves upon the polynomial-time approximation guarantee of

1 − 1/e of Calinescu et al. [6] for monotone submodular maximization subject to a matroid
constraint, in the special case of Kd,d-free coverage functions. To the best of our knowledge,
this is the largest class of monotone submodular functions and matroid constraints for which
the lower bound of 1 − 1/e can be overcome, even in FPT time. Further, the analogous
results to (M, F)-MaxSAT generalize these results to maximization of non-monotone/non-
submodular functions.

3 Preliminaries

For a positive integer q, let [q] := {1, 2, . . . , q}.

Convention. We consistently use index j to refer to a color from the range [r], and may
often write “for a color j” instead of “for a color j ∈ [r]”. Finally, for a coverage requirement
function t (resp. variations such as t′, t̃), and a color j, we shorten t(j) to tj (resp. t′

j , t̃j).

4 Reduction from (M, F)-MaxSAT to (M, F)-MaxCov

In this section, we begin with a polynomial time approximate preserving randomized reduction
from F-MaxSAT to F-MaxCov. The success probability of the reduction is O((ϵ/r)k).
Recall that in the F-MaxSAT problem, given a CNF-formula Φ with χ : cla(Φ) → [r], a
coverage demand function t : [r] → N and an integer k, the goal is to find an assignment of
weight at most k that satisfies at least t(i) (also denoted as ti) clauses of color class i (an
assignment Ψ satisfying these properties is called optimal weight k assignment).

We begin with some basic definitions. Let Φ be a CNF-formula. By var(Φ) and cla(Φ),
we denote the set of variables and clauses in the formula Φ, respectively. An assignment to a
CNF-formula Φ is a function Ψ : var(Φ) → {0, 1}. The weight of an assignment is the number
of variables that have been assigned 1. By T (Ψ) and F (Ψ), we denote the set of variables
assigned 1 and 0 by the assignment Ψ, respectively. For a clause c ∈ cla(Φ), var(c) is the set
of variables that occur in the clause c as a positive or negative literal. Similarly, for a set of
clauses C ∈ cla(Φ), var(C) is the set of variables that occur as a positive or negative literal
in a clause c ∈ C.

Our reduction (Algorithm 1) takes an instance (Φ, χ, t, k) of F-MaxSAT as input. It
constructs a random assignment Ψ by setting each variable to 1 with probability p and 0 with
probability 1 − p. It constructs a new formula by first removing the set of clauses that are

8 A matroid M = (E, I) is representable over a field F if there exists a matrix M such that there exists a
bijection between E and the columns on M with the property that, a subset E′ ⊆ E is independent in
M iff the corresponding set of columns are linearly independent over F.
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Algorithm 1 Reduction Algorithm(I = (Φ, χ, t, k) of F-MaxSAT ).

1: Construct a random assignment Ψ as follows. For each variable x ∈ var(Φ), independently
set Ψ(x) to 1 with probability p and 0 with probability 1 − p. ▷ We will later set
p = ϵ

2r
.

2: Construct a new formula Φ′ as follows:
Let N ⊆ cla(Φ) be the set of clauses that are satisfied negatively by Ψ. Then,
cla(Φ′) = cla(Φ) \ N .
For each c ∈ cla(Φ′), remove all the variables in c that occur either as a negative literal
or set to 0 by Ψ.
For each c ∈ cla(Φ′), add var(c) to var(Φ′).

3: Construct an instance JΨ = (U , F , χ′, t′, k′) of F-MaxCov as follows:
Set U = cla(Φ′).
For each v ∈ var(Φ′), add a set fv to F where fv = {c ∈ cla(Φ′) : v ∈ var(c)}.
For each c ∈ cla(Φ′), if the corresponding element in U is ec, set χ′(ec) = χ(c).
Set t′(i) = t(i) − |N∩χ−1(i)|

1−ϵ for each i ∈ [r].
Set k′ = k.

satisfied negatively by Ψ, followed by removing negative literals from the remaining clauses.
It reduces the formula to an instance (U , F , χ′, t′, k′) of F-MaxCov as described in Step 3
of Algorithm 1. Clearly, this reduction takes polynomial time.

Next, we prove the correctness of our reduction. For a Yes-instance I of F-MaxSAT, let
Ψ⋆ be an optimal weight k assignment. Let N⋆ be the set of clauses satisfied negatively by
Ψ⋆, i.e., every clause in N⋆ contains a negative literal that is set to 1, and let P ⋆ be the set
of clauses satisfied only positively by Ψ⋆, i.e., every clause in P ⋆ contains a positive literal
that is set to 1 and no negative literal in this clause is set to 1. By N⋆

i , we mean the set of
clauses in color class i satisfied negatively by Ψ⋆ and by P ⋆

i , we mean the set of clauses in
color class i satisfied only positively by Ψ⋆. We call a random assignment, constructed in
Algorithm 1, good if each variable in T (Ψ⋆) (positive variables under Ψ⋆) is assigned 1 by Ψ,
i.e., T (Ψ⋆) ⊆ T (Ψ), which occurs with probability at least pk. For a good assignment Ψ, let
Ni denote the set of clauses in color class i satisfied negatively by Ψ and Pi denote the set of
clauses in color class i satisfied only positively by Ψ. We say that an event G is good if a
good assignment Ψ is generated in Algorithm 1. We begin with the following claim.

▷ Claim 4.1. Given a Yes-instance I of F-MaxSAT, with probability at least 1/2, a good
assignment Ψ satisfies at least (1 − ϵ)|N⋆

i | clauses negatively, for each i ∈ [r].

Proof. Let (Φ, χ, t, k) be a Yes-instance of F-MaxSAT. Let Ψ be a good assignment, which
occurs with probability at least pk. We show that Ψ satisfies at least (1 − ϵ)|N⋆| clauses
negatively, with probability at least 1/2. Let Xi be the number of clauses in N⋆

i that are
satisfied negatively by Ψ. We define an indicator random variable xj , for each j ∈ [|N⋆

i |], as
follows.

xj =
{

1 clause cj ∈ N⋆
i is satisfied negatively by Ψ

0 otherwise

Pr(xj |G) = Pr(clause cj ∈ N⋆
i is satisfied negatively by Ψ|G) ≥ (1 − p)

E[Xi|G] =
∑

j∈[|N⋆
i

|]

xj × Pr(xj |G) ≥ (1 − p)|N⋆
i |
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Let Yi = |N⋆
i | − |Ni|, where Ni is the set of clauses satisfied negatively by Ψ. Note that,

Yi = |N⋆
i | − |Ni| ≤ |N⋆

i \ Ni| = |N⋆
i | − Xi

Thus,

E[Yi|G] ≤ |N⋆
i | − E[Xi|G] ≤ p|N⋆

i |

Since Yi ≥ 0, we can use Markov’s inequality and get

Pr(Yi ≥ 2rp|N⋆
i ||G) ≤ E[Yi]

2rp|N⋆
i |

≤ 1
2r

Since Yi = |N⋆
i | − |Ni|, we get

Pr(|Ni| ≤ (1 − 2rp)|N⋆
i ||G) ≤ 1

2r

By union bound,

Pr (∃i ∈ [r], |Ni| ≤ (1 − 2rp)|N⋆
i ||G) ≤

∑
i∈[r]

Pr(|Ni| ≤ (1 − 2rp)|N⋆
i ||G) ≤ 1

2

This implies that

Pr (∀i ∈ [r], |Ni| > (1 − 2rp)|N⋆
i ||G) ≥ 1

2

Setting p = ϵ
2r gives us the required result, i.e., with probability at least 1/2, for all colors

i ∈ [r], |Ni| > (1 − ϵ)|N⋆
i |. ◁

▶ Lemma 4.2. If I = (Φ, χ, t, k) is a yes-instance of F-MaxSAT, then with probability at
least ( ϵ

2r )k, the reduced instance JΨ = (U , F , χ′, t′, k′) is a yes-instance of F-MaxCov.

Proof. Let I be a Yes-instance of F-MaxSAT and let Ψ⋆ be an optimal weight k assignment.
Further, let N⋆ be the set of clauses satisfied negatively by Ψ⋆, i.e., every clause in N⋆

contains a negative literal that is set to 1, and let P ⋆ be the set of clauses satisfied only
positively by Ψ⋆, i.e., every clause in P ⋆ contains a positive literal that is set to 1 and no
negative literal in this clause is set to 1. Then, there exists a set VP ⋆ ⊆ var(P ⋆) of size at
most k that satisfies all the clauses in P ⋆ positively, i.e., for each clause in P ⋆, there is a
variable in VP ⋆ that occurs as a positive literal in it and is assigned 1 under Ψ⋆. Let Ψ be
a good assignment which is generated with probability at least ( ϵ

2r )k. Since Ψ is a good
assignment, T (Ψ⋆) ⊆ T (Ψ) and F (Ψ) ⊆ F (Ψ⋆). Hence, P ⋆ ⊆ P . Thus, P ⋆ ⊆ U and for each
variable in var(P ⋆), we have a set in the family F . Let Z = {fv ∈ F : v ∈ VP ⋆}. We claim
that Z is a solution to JΨ. Clearly, Z covers at least |P ⋆

i | elements in U , for each i ∈ [r]. We
claim that t′

i ≤ |P ⋆
i |. Since Ψ⋆ is a solution to I, it satisfies ti clauses for each i ∈ [r]. Since

ti = |P ⋆
i | + |N⋆

i |, due to Claim 4.1, we know that ti ≤ |P ⋆
i | + |Ni|

1−ϵ . Thus, |P ⋆
i | ≥ ti − |Ni|

1−ϵ .
Since t′

i = ti − |Ni|
1−ϵ , t′

i ≤ |P ⋆
i |. This completes the proof. ◀

▶ Lemma 4.3. Assume that I = (Φ, χ, t, k) is a yes-instance of F-MaxSAT. If there exists
(1 − ϵ)-approximate solution for JΨ = (U , F , χ′, t′, k′), where Ψ is a good assignment, then
there exists (1 − ϵ)-approximate solution for I with probability at least 1

2 .

ICALP 2024



88:16 Satisfiability to Coverage in Presence of Fairness, Matroid, and Global Constraints

Proof. Let Ψ⋆ be an optimal assignment. Due to Claim 4.1, Ψ satisfies at least (1 − ϵ)|N⋆
i |

clauses negatively, for each i ∈ [r], with probability at least 1/2. Let S be a (1−ϵ)-approximate
solution to JΨ. We construct an assignment σ as follows: if fx ∈ S, then σ(x) = 1, otherwise
0. We claim that σ is a (1 − ϵ)-approximate solution to I. Due to the construction of JΨ,
note that F does not contain a set corresponding to the variable that is set to 0 by Ψ. Thus,
if Ψ(x) = 0, then σ(x) = 0. Hence, σ satisfies at least (1 − ϵ)|N⋆

i | clauses negatively, for each
i ∈ [r], with probability at least 1/2. Next, we argue that σ satisfies at least (1−ϵ)|P ⋆

i | clauses
only positively, for each i ∈ [r]. Since S is a (1 − ϵ)-approximate solution to JΨ, for each
i ∈ [r], S covers at least (1 − ϵ)t′

i elements. Recall that U contains an element corresponding
to each clause in ∪i∈[r]Pi. Thus, σ satisfies at least (1 − ϵ)t′

i clauses only positively for each
i ∈ [r]. Recall that t′

i = ti − |Ni|
1−ϵ . Thus, |Pi| + |Ni| ≥ (1 − ϵ)(ti − |Ni|

1−ϵ ) + |Ni| = (1 − ϵ)ti.
Hence, σ is a factor (1 − ϵ)-approximate solution for I. ◀

Due to Lemma 4.2 and 4.3, we have the following result.

▶ Theorem 4.4. There exists a polynomial time randomized algorithm that given a Yes-
instance I of F-MaxSAT generates a Yes-instance J of F-MaxCov with probability at least
( ϵ

2r )k. Furthermore, given a factor (1 − ϵ)-approximate solution of J , it can be extended to a
(1 − ϵ)-approximate solution of I with probability at least 1/2.

Note that if the variable-clause incidence graph of the input formula belongs to a subgraph
closed family H, then the incidence graph of the resulting instance of F-MaxCov will also
belong to H. Thus, due to Theorem 4.4 and Theorem 1.2 in [17], we have the following
result, which is an improvement over Theorem 1.1 in [17].

▶ Theorem 4.5. There is a randomized algorithm that given a Yes-instance I of CC-
Max-SAT, where the variable-clause incidence graph is Kd,d-free, returns a factor (1 − ϵ)-
approximate solution with probability at least (1− 1

e ), and runs in time ( rdk
ϵ )O(dk)(n+m)O(1).

The ( r
ϵ )O(k) factor in the running time of the algorithm in Theorem 4.5 comes by repeating

the algorithm in Theorem 4.4, followed by Theorem 1.2 in [17], independently ( r
ϵ )O(k) many

times. This also boosts the success probabilty to at least (1 − 1
e ).

▶ Remark 4.6. Note that the reduction from F-MaxSAT to F-MaxCov also works in
presence of matroid constraint(s) on the set of variables assigned 1. Recall that in the former
(resp. latter) problem, we are given a matroid M on the set of variables (resp. sets), and the
set of at most k variables assigned 1 (resp. at most k sets chosen in the solution) is required
to be an independent set in M. This follows from the fact that the randomized algorithm
preserves the optimal independent set in the set cover instance with good probability.

5 Conclusion

In this paper, we designed FPT-approximation schemes for (M, F)-MaxSAT, which is
a generalization of the CC-MaxSat problem with fairness and matroid constraints. In
particular, we designed FPT-AS for the classes of formulas where the maximum frequency of
a variable in the clause is bounded by d, and more generally, for Kd,d-free formulas. Our
algorithm for F-MaxCov on the set systems of frequency bounded by d is substantially
faster compared to the recent result of Bandyapadhyay et al. [3], even for the special case of
d = 2. We use a novel combination of the bucketing trick and a carefully designed probability
distribution in order to obtain this faster FPT-AS.

Our work naturally leads to the following intriguing questions. Firstly, our approximation-
preserving reduction from CC-MaxSat (and variants) to Maximum Coverage (and
variants) is inherently randomized. Is it possible to derandomize this reduction? A similar
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question of derandomization is also interesting for our aforementioned algorithm for F-
MaxCov on bounded-frequency set systems. In this case, can we design an FPT-AS for the
problem running in time single-exponential in k?
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