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Abstract
A parameterized string (p-string) is a string over an alphabet (Σs ∪Σp), where Σs and Σp are disjoint
alphabets for static symbols (s-symbols) and for parameter symbols (p-symbols), respectively. Two
p-strings x and y are said to parameterized match (p-match) if and only if x can be transformed into
y by applying a bijection on Σp to every occurrence of p-symbols in x. The indexing problem for
p-matching is to preprocess a p-string T of length n so that we can efficiently find the occurrences
of substrings of T that p-match with a given pattern. Let σs and respectively σp be the numbers of
distinct s-symbols and p-symbols that appear in T and σ = σs +σp. Extending the Burrows-Wheeler
Transform (BWT) based index for exact string pattern matching, Ganguly et al. [SODA 2017]
proposed parameterized BWTs (pBWTs) to design the first compact index for p-matching, and
posed an open problem on how to construct the pBWT-based index in compact space, i.e., in
O(n lg |Σs ∪ Σp|) bits of space. Hashimoto et al. [SPIRE 2022] showed how to construct the pBWT
for T , under the assumption that Σs ∪ Σp = [0..O(σ)], in O(n lg σ) bits of space and O(n σp lg n

lg lg n
)

time in an online manner while reading the symbols of T from right to left. In this paper, we
refine Hashimoto et al.’s algorithm to work in O(n lg σ) bits of space and O(n lg σp lg n

lg lg n
) time in a

more general assumption that Σs ∪ Σp = [0..nO(1)]. Our result has an immediate application to
constructing parameterized suffix arrays in O(n lg σp lg n

lg lg n
) time and O(n lg σ) bits of working space.

We also show that our data structure can support backward search, a core procedure of BWT-based
indexes, at any stage of the online construction, making it the first compact index for p-matching
that can be constructed in compact space and even in an online manner.
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89:2 Constructing Compact Indexes for P-Matching

1 Introduction

A parameterized string (p-string) is a string over an alphabet (Σs ∪ Σp), where Σs and Σp

are disjoint alphabets for static symbols (s-symbols) and for parameter symbols (p-symbols),
respectively. Two p-strings x and y are said to parameterized match (p-match) if and only if x

can be transformed into y by applying a bijection on Σp to every occurrence of p-symbols in
x. For example with Σs = {a, b} and Σp = {X, Y, Z}, two p-strings aXYbZXaY and aZYbXZaY
p-match because aXYbZXaY can be transformed into aZYbXZaY by replacing X, Y and Z with
Z, Y and X, respectively. The concept of p-matching was introduced by Baker aiming at
software maintenance and plagiarism detection [1, 2, 3], and has been extensively studied in
the last decades (see a recent survey [28] and references therein).

The indexing problem for p-matching is to preprocess a p-string T of length n so that
we can efficiently find the occurrences of substrings of T that p-match with a given pattern.
Solutions proposed for this problem adapt and extend indexes initially devised for exact
string pattern matching, e.g., parameterized suffix trees [1, 25, 2, 3], parameterized suffix
arrays [8, 20, 4, 12], parameterized suffix trays [14], parameterized DAWGs [31], parameterized
position heaps [9, 11, 13] and parameterized Burrows-Wheeler transforms (pBWTs) based
indexes [16, 24, 18].

Among these indexes, pBWT-based indexes are the most space economic, consuming
n lg |Σs ∪ Σp|+ O(n) bits [16] or 2n lg |Σs ∪ Σp|+ 2n + o(n) bits with a simplified version
proposed in [24]. Let σs and respectively σp be the numbers of distinct s-symbols and p-
symbols that appear in T and σ = σs + σp. The pBWT-based index of T can be constructed
via the parameterized suffix tree of T for which O(n(lg σs + lg σp))-time or randomized O(n)-
time construction algorithms are known [25, 7, 26], but the intermediate memory footprint
of O(n lg n) bits could be intolerable when it is significantly larger than the resulting index.
Hashimoto et al. [19] showed how to compute the pBWT of [24] for T , under the assumption
that Σs ∪ Σp = [0..O(σ)], in O(n lg σ) bits and O(n σp lg n

lg lg n ) time in an online manner while
reading the symbols of T from right to left. Here we note that the work of [19] lacks details in
terms of pBWT-based index construction because any pBWT-based index to date [16, 24, 18]
requires additional data structures other than the pBWT, and the pBWTs alone does not
seem to be enough to support p-matching queries efficiently.

In this paper, we refine the algorithm of [19] to work in O(n lg σ) bits and O(n lg σp lg n
lg lg n )

time in a more general assumption that Σs ∪ Σp = [0..nO(1)]. While working in compact
space, i.e., O(n lg σ) bits, it achieves o(nσp) time when σp = ω(lg n). This is of great
interest because the time complexity of o(nσp) has not been achieved in the construction
for p-matching indexes even in the offline setting unless we resort to a fast construction
algorithm for parameterized suffix trees using O(n lg n) bits. In particular, the currently
best worst-case result for the direct construction of parameterized suffix arrays is O(nσp)
time and O(n lg n) bits of working space [12]. Since our online-built data structure for T can
be used to compute the parameterized suffix array of T in O(n lg σp lg n

lg lg n ) time, we obtain a
new way to construct parameterized suffix arrays in O(n lg σp lg n

lg lg n ) time and O(n lg σ) bits of
working space.

We also show that our data structure can support backward search, a core procedure of
BWT-based indexes, at any stage of the online construction, making it the first compact
index for p-matching that can be constructed in compact space and even in an online manner.
This cannot likely be achieved with the previous work [19] due to the lack of support for 2D
range counting queries in the data structure it uses.
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Our computational assumptions are as follows:
We assume a standard Word-RAM model with word size Ω(lg n).
Each symbol in (Σs ∪ Σp) is represented by O(lg n) bits, namely, a symbol is from the
universe [0..nO(1)].
We can check membership for a given symbol (∈ Σs ∪ Σp) in Σs and Σp in O(1) time,
e.g., by having some flag bits or thresholds separating both alphabet sets.
The order of two s-symbols can be determined in O(1) time based on their bit representa-
tions.

An index of a p-string T for p-matching is to support, given a pattern w,
1. the counting query that asks to compute the number of occurrences of substrings in T

that p-match with w and
2. the locating query that asks to compute the positions of these counted occurrences in T .
The number of occurrences returned for a locating query of w is the answer to the counting
query of w. Since these occurrences can be at arbitrary positions of T in general, the time
complexity for the locating query depends usually on the number of these occurrences. In
contrast, most indexes based on the BWT can answer counting queries in time independent
to this number, by levering the so-called backward search. By using backward search, our
time complexities for both queries resemble those of other BWT-based indexes, with some
additional logarithmic terms. In detail, our main result is as follows:

▶ Theorem 1. For a p-string T of length n over an alphabet (Σs ∪ Σp) of size nO(1), an
index of T for p-matching can be constructed online in O(n lg σp lg n

lg lg n ) time and O(n lg σ) bits
of space, where σs and respectively σp are the numbers of distinct s-symbols and p-symbols
used in the p-string and σ = σs + σp. At any stage of the online construction, it can support
the counting queries in O(m lg σp lg n

lg lg n ) time, where m is the length of a given pattern for
queries. By building an additional data structure of O( n

∆ lg n) bits of space for a chosen
parameter ∆ ∈ {1, 2, . . . , n} the locating queries can be supported in O(m lg σp lg n

lg lg n + occ ∆ lg n
lg lg n )

time, where occ is the number of occurrences to be reported.

We also obtain the following result for constructing the parameterized suffix array:

▶ Theorem 2. For a p-string T of length n over an alphabet (Σs ∪ Σp) of size nO(1), the
parameterized suffix array of T can be constructed in O(n lg σp lg n

lg lg n ) time and O(n lg σ) bits of
space, where σs and respectively σp are the numbers of distinct s-symbols and p-symbols used
in the p-string and σ = σs + σp.

2 Preliminaries

2.1 Basic notations and tools
We denote with lg = log2 the logarithm with base two. An integer interval {i, i + 1, . . . , j} is
denoted by [i..j], where [i..j] represents the empty interval if i > j.

Let Σ be an ordered finite alphabet. An element of Σ∗ is called a string over Σ. The
length of a string w is denoted by |w|. The empty string ε is the string of length 0, that is,
|ε| = 0. Let Σ+ = Σ∗−{ε} and Σk = {x ∈ Σ∗ | |x| = k} for any non-negative integer k. The
concatenation of two strings x and y is denoted by x · y or simply xy. When a string w is
represented by the concatenation of strings x, y and z (i.e., w = xyz), then x, y and z are
called a prefix, substring, and suffix of w, respectively. A substring x of w is called proper if
x ̸= w.

ICALP 2024
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The i-th symbol of a string w is denoted by w[i] for 1 ≤ i ≤ |w|, and the substring
of a string w that begins at position i and ends at position j is denoted by w[i..j] for
1 ≤ i ≤ j ≤ |w|, i.e., w[i..j] = w[i]w[i + 1] · · ·w[j]. For convenience, let w[i..j] = ε if
j < i; further let w[..i] = w[1..i] and w[i..] = w[i..|w|] denote abbreviations for the prefix
of length i and the suffix starting at position i, respectively. For two strings x and y, let
lcp(x, y) denote the length of the longest common prefix between x and y. We consider
the lexicographic order over Σ∗ by extending the strict total order < defined on Σ: x is
lexicographically smaller than y (denoted as x < y) if and only if either x is a proper prefix
of y or x[lcp(x, y) + 1] < y[lcp(x, y) + 1] holds. In this paper, we will ignore the former case
since we mainly consider the lexicographic order between distinct strings that have a sentinel
(end-marker) at the end of the strings so that x cannot be a proper prefix of y.

For any string w, character c, and position i (1 ≤ i ≤ |w|), rankc(w, i) returns the
number of occurrences of c in w[..i] and selectc(w, i) returns the i-th occurrence of c in w.
For 1 ≤ i ≤ j ≤ |w|, a range minimum query RmQw(i, j) asks for arg mini≤k≤j{w[k]}. We
also consider find previous/next queries FPQp(w, i) and FNQp(w, i), where p is a predicate
either in the form of “c” (equal to c), “< c” (less than c) or “≥ c” (larger than or equal
to c): FPQp(w, i) returns the largest position j ≤ i at which w[j] satisfies the predicate p.
Symmetrically, FNQp(w, i) returns the smallest position j ≥ i at which w[j] satisfies the
predicate p. For example with the integer string w = [2, 5, 10, 6, 8, 3, 14, 5], FNQ5(w, 4) = 8,
FNQ6(w, 4) = 4, FPQ5(w, 4) = 2, FNQ<5(w, 4) = 6, FPQ<5(w, 4) = 1, FNQ≥9(w, 4) = 7 and
FPQ≥9(w, 4) = 3.

If the answer of selectc(w, i), FPQp(w, i) or FNQp(w, i) does not exist, it is just ignored.
To handle this case of non-existence, we would use them in an expression with min or max:
For example, max{1, FPQp(w, i)} returns 1 if FPQp(w, i) does not exist.

Dynamic strings should support insertion/deletion of a symbol to/from any position as
well as fast random access. We use the following result:

▶ Lemma 3 ([29]). A dynamic string of length n over an alphabet [0..U ] can be implemented
while supporting random access, insertion, deletion, rank and select queries in (n + o(n)) lg U

bits of space and O( lg n
lg lg n ) query and update times.

Dynamic binary strings equipped with rank and select queries can be used as a building
block for the dynamic wavelet matrix [6] of a string over an alphabet [0..U ] to support
queries beyond rank and select. The idea is that each of the other queries can be simulated
by performing one of the building block queries on every level of the wavelet matrix, which
has ⌈lg U⌉ levels, cf. [32, Section 6.2.].

▶ Lemma 4. A dynamic string of length n over an alphabet [0..U ] with U = O(n) can be
implemented while supporting random access, insertion, deletion, rank, select, RmQ, FPQ
and FNQ queries in (n + o(n))⌈lg U⌉ bits of space and O( lg U lg n

lg lg n ) query and update times.

2.2 Parameterized strings
Let Σs and Σp denote two disjoint sets of symbols. We call a symbol in Σs a static symbol
(s-symbol) and a symbol in Σp a parameter symbol (p-symbol). A parameterized string
(p-string) is a string over (Σs ∪Σp). Let $ be the smallest s-symbol, which will be used as an
end-marker of p-strings. Let ∞ represent a symbol that is larger than any integer, and let
N∞ = N+ ∪ {∞} be the set of positive integers N+ including infinity (∞). Logically we
assume that N∞ ∩Σs = ∅ and (N∞ ∪Σs) is an ordered alphabet such that all s-symbols are
smaller than any element in N∞. For practical implementations, we require that s-symbols
and integers can be distinguished in constant time (e.g., by shifting the ranges of the domains).
Also, the conceptual symbol ∞ can be treated as the finite value σp + 1.
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For any p-string w the p-encoded string ⟨w⟩ of w, also proposed as prev∞(w) in [24], is
the string in (N∞ ∪ Σs)|w| such that

⟨w⟩[i] =


w[i] if w[i] ∈ Σs,

∞ if w[i] ∈ Σp and w[i] does not appear in w[..i− 1],
i− j otherwise,

where j is the largest position in [1..i− 1] with w[i] = w[j]. To put in words, we transformed
each occurrence of a p-symbol into the distance to the previous occurrence of the same
p-symbol, or ∞ if it is the leftmost occurrence. Two p-strings x and y p-match if and
only if ⟨x⟩ = ⟨y⟩. On the one hand, the transformation from w to ⟨w⟩ is prefix-consistent,
i.e., ⟨w⟩ = ⟨wc⟩[..|w|] for any symbol c ∈ (Σs ∪ Σp). On the other hand, ⟨w⟩ and ⟨cw⟩[2..]
differ if and only if c ∈ Σp occurs in w. If it is the case, the leftmost occurrence h of
c in w is the unique position such that ⟨w⟩ and ⟨cw⟩[2..] differ with ⟨w⟩[h] = ∞ and
(⟨cw⟩[2..])[h] = ⟨cw⟩[h + 1] = h, i.e., h = selectc(w, 1) and h + 1 = selectc(cw, 2).

For any p-string w, let |w|p denote the number of distinct p-symbols in w, i.e., |w|p =
rank∞(⟨w⟩, |w|). We define a function π that maps a non-empty p-string w ∈ (Σs ∪ Σp)+ to
an element in (Σs ∪ [1..|w|p]) such that π(w) is w[1] if w[1] is an s-symbol; otherwise π(w)
is the number of distinct p-symbols in w[..h + 1], where h + 1 is either the position of the
second occurrence of w[1] in w or |w| if w[1] is unique in w. More formally,

π(w) =
{

w[1] if w[1] ∈ Σs,

|w[..h + 1]|p otherwise,

where h + 1 = min{|w|, selectw[1](w, 2)}. In the second case, π(w) is considered to represent
the rank of p-symbol w[1] when p-symbols are sorted in increasing order of the leftmost
positions they appear in w[2..], considering the rank of p-symbols not in w[2..] to be |w|p. If
selectw[1](w, 2) exists, it holds that h = select∞(⟨w[2..]⟩, π(w)). For convenience, we extend
the domain of π to handle the empty string with π(ε) = $.

For two p-strings x and y, lcp∞(⟨x⟩, ⟨y⟩) denotes the number of ∞’s in the longest
common prefix of ⟨x⟩ and ⟨y⟩.

Our algorithm heavily relies on the properties of the p-string encoding and π. For any
p-strings x and y, Table 1 shows a complete list of cases for lcp(⟨x⟩, ⟨y⟩), lcp∞(⟨x⟩, ⟨y⟩) and
the lexicographic order between ⟨x⟩ and ⟨y⟩. The correctness immediately follows from
the definition of the p-string encoding and π (see Figure 1 for illustrations). It is worth
noting that Case (B3) is the only case in Cases (B1)-(B4) where we have ⟨y⟩ < ⟨x⟩, i.e., the
lexicographic order is changed after extension.

By Table 1, we have the following corollaries:

▶ Corollary 5. For any p-strings x and y, lcp∞(⟨x⟩, ⟨y⟩) ≤ lcp∞(⟨x[2..]⟩, ⟨y[2..]⟩) + 1.

▶ Corollary 6. For any p-strings x and y with π(x) = π(y), ⟨x⟩ < ⟨y⟩ if and only if
⟨x[2..]⟩ < ⟨y[2..]⟩.

▶ Corollary 7. For any p-strings x and y (whether ⟨x[2..]⟩ < ⟨y[2..]⟩ or ⟨x[2..]⟩ > ⟨y[2..]⟩)
with π(x) ≤ lcp∞(⟨x[2..]⟩, ⟨y[2..]⟩) and π(x) < π(y), it holds that ⟨x⟩ < ⟨y⟩. Note that π(x)
and/or π(y) can be s-symbols.

ICALP 2024
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Table 1 All cases for lcp(⟨x⟩, ⟨y⟩), lcp∞(⟨x⟩, ⟨y⟩) and the lexicographic order between ⟨x⟩
and ⟨y⟩ for p-strings x and y over (Σs ∪ Σp) with λ = lcp(⟨x[2..]⟩, ⟨y[2..]⟩) < min{|x|, |y|},
e = lcp∞(⟨x[2..]⟩, ⟨y[2..]⟩) and ⟨x[2..]⟩ < ⟨y[2..]⟩. On the one hand, a case starting with letter A
assumes that at least one of π(x) and π(y) is in Σs, while on the other hand, a case starting with
letter B assumes that none of π(x) and π(y) is in Σs. We let h = selectx[1](x, 2) − 1 in Case (B2)
and h′ = selecty[1](y, 2) − 1 in Case (B3), both of which always exist because the conditions of Cases
(B2) and (B3) imply that π(x) ̸= ∞ and π(y) ̸= ∞, respectively.

cases additional conditions lcp(⟨x⟩, ⟨y⟩) lcp∞(⟨x⟩, ⟨y⟩) lexicographic order
(A1) π(x) ̸= π(y) 0 0 ⟨x⟩ < ⟨y⟩ iff π(x) < π(y)
(A2) π(x) = π(y) λ + 1 e ⟨x⟩ < ⟨y⟩
(B1) π(x) = π(y) ≤ e λ + 1 e ⟨x⟩ < ⟨y⟩
(B2) π(x) ≤ e and π(x) < π(y) h π(x) ⟨x⟩ < ⟨y⟩
(B3) π(y) ≤ e and π(y) < π(x) h′ π(y) ⟨y⟩ < ⟨x⟩
(B4) e < min{π(x), π(y)} λ + 1 e + 1 ⟨x⟩ < ⟨y⟩

Table 2 An example of R−1
T (i), LCP∞

T , LT and FT for a p-string T = XYaZYXaZXZa$ with Σs = {a}
and Σp = {X, Y, Z}.

i T [i..] ⟨T [i..]⟩ R−1
T (i) LCP∞

T [i] LT [i] FT [i] ⟨T [R−1
T (i)..]⟩

1 XYaZYXaZXZa$ ∞∞a∞35a432a$ 12 0 a $ $
2 YaZYXaZXZa$ ∞a∞3∞a432a$ 11 0 1 a a$
3 aZYXaZXZa$ a∞∞∞a432a$ 7 0 2 a a∞∞2a$
4 ZYXaZXZa$ ∞∞∞a432a$ 3 2 2 a a∞∞∞a432a$
5 YXaZXZa$ ∞∞a∞32a$ 10 0 2 1 ∞a$
6 XaZXZa$ ∞a∞32a$ 6 1 3 2 ∞a∞32a$
7 aZXZa$ a∞∞2a$ 2 2 3 2 ∞a∞3∞a432a$
8 ZXZa$ ∞∞2a$ 9 1 2 2 ∞∞a$
9 XZa$ ∞∞a$ 5 2 3 3 ∞∞a∞32a$
10 Za$ ∞a$ 1 3 $ 3 ∞∞a∞35a432a$
11 a$ a$ 8 2 a 2 ∞∞2a$
12 $ $ 4 2 a 3 ∞∞∞a432a$

Let T be a p-string that has the smallest s-symbol $ as its end-marker, i.e., T [|T |] = $ and
$ does not appear anywhere else in T . The suffix rank function RT : [1..|T |]→ [1..|T |] for T

maps a position i (1 ≤ i ≤ |T |) to the lexicographic rank of ⟨T [i..]⟩ in {⟨T [j..]⟩ | 1 ≤ j ≤ |T |}.
Its inverse function R−1

T (i) returns the starting position of the lexicographically i-th p-encoded
suffix of T . 1

The parameterized Burrows-Wheeler Transform (pBWT) of T is the string LT of length
|T | over (Σs∪ [1..|T |p]) such that LT [i] = π(T [R−1

T (i)−1..])), where we assume that T [0..] = $.
Another string FT of length |T | is defined as FT [i] = π(T [R−1

T (i)..]). 2 Since {T [R−1
T (i)..] |

1 ≤ i ≤ |T |} = {T [R−1
T (i)−1..] | 1 ≤ i ≤ |T |} is equivalent to the set of all non-empty suffixes

of T , FT is a permutation of LT .

1 R−1
T and RT are essentially equivalent to parameterized suffix arrays and inverse parameterized suffix

arrays, respectively.
2 Previous studies [16, 24, 19] define pBWTs based on sorted cyclic rotations, but our suffix-based

definition is more suitable for online construction to prevent unnecessary updates on FT and LT .
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Figure 1 Illustrations for the cases of Table 1. The two bold diagonal arrows on the top separate
the cases starting with letter A (left side) from the others, starting with B (right side). Each
horizontal right-facing arrow represents the longest common prefix of two p-encoded strings, and the
lexicographic order between them is determined by the following p-encoded symbols. Particularly,
we let a = ⟨x[2..]⟩[λ + 1] and b = ⟨y[2..]⟩[λ + 1], where λ = lcp(⟨x[2..]⟩, ⟨y[2..]⟩). Since a < b, it holds
that a ≤ λ while b ≤ λ or b = ∞. For Case (B1), h = selectx[1](x, 2) − 1 = selecty[1](y, 2) − 1. For
Case (B2)-(B4) and (B4)’, h = selectx[1](x, 2) − 1 and h′ = selecty[1](y, 2) − 1, some of which are not
necessarily defined (when π(x) or π(y) is ∞) but assumed to be present in illustrations. Case (B4)’
illustrates the case with b = ∞ and h′ = λ + 1, which is included in Case (B4).

The so-called LF-mapping LFT maps a position i to RT (R−1
T (i)− 1) if R−1

T (i) > 1, and
otherwise RT (|T |) = 1. By definition and Corollary 6, we have:

▶ Corollary 8. For any p-string T and any integers i, j with 1 ≤ i < j ≤ |T |, LFT (i) < LFT (j)
if LT [i] = LT [j].

Thanks to Corollary 8, it holds that LFT (i) = selectc(FT , rankc(LT , i)), where c = LT [i]. The
inverse function FLT of LFT can be computed by FLT (i) = selectc(LT , rankc(FT , i)), where
c = FT [i].

Let LCP∞
T be the string of length |T | such that LCP∞

T [1] = 0 and LCP∞
T [i] =

lcp∞(⟨T [R−1
T (i − 1)..]⟩, ⟨T [R−1

T (i)..]⟩) for every 1 < i ≤ |T |. An example of all explained
arrays is given in Table 2.
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3 Online construction algorithm

To construct our index for p-matching online, we maintain FT , LT , and LCP∞
T with dynamic

data structures while prepending a symbol to the current p-string T . The details of the
data structures will be presented in Subsection 3.3. In what follows, we focus on a single
step of updating T to T̂ = cT for some symbol c in Σs ∪ Σp. Note that FT , LT and LCP∞

T

are strongly related to the sorted p-encoded suffixes of a p-string and T̂ = cT is the only
suffix that was not in the suffixes of T . Let k = RT (1) and k̂ = RT̂ (1). In order to deal
with the new emerging suffix T̂ , we compute the lexicographic rank k̂ of ⟨T̂ ⟩ among the
non-empty p-encoded suffixes of T̂ . Then FT̂ and LT̂ can be obtained by replacing $ in LT at
k by π(T̂ ) and inserting $ and π(T̂ ) into the k̂-th position of LT and FT , respectively. In
Subsection 3.1, we propose our algorithm to compute k̂. For updating LCP∞, we have to
compute the lcp∞-values for ⟨T̂ ⟩ with its lexicographically adjacent p-encoded suffixes, which
will be treated in Subsection 3.2.

3.1 How to compute k̂

Unlike previous work [19] that computes k̂ by counting the number of p-encoded suffixes
that are lexicographically smaller than ⟨T̂ ⟩, we get k̂ indirectly by computing the rank of a
lexicographically closest (smaller or larger) p-encoded suffix to ⟨T̂ ⟩. The lexicographically
smaller (resp. larger) closest element in {⟨T [i..]⟩ | 1 ≤ i ≤ |T |} to ⟨T̂ ⟩ is called the p-pred
(resp. p-succ) of ⟨T̂ ⟩. If the lexicographic rank of the p-pred (resp. p-succ) of ⟨T̂ ⟩ is k− (resp.
k+), then it holds that k̂ = k+ = k− + 1.

We start with the easy case that the prepended symbol c is an s-symbol.

▶ Lemma 9. Let T̂ = cT be a p-string with c ∈ Σs. If p := FPQc(LT , k) exists, the rank
k− of the p-pred of T̂ is LFT (p). Otherwise, k− = selectb(FT , rankb(FT , |T |)), where b is the
largest s-symbol that appears in T and is smaller than c.

Proof. By Case (A2) of Table 1, the lexicographic order of p-encoded suffixes starting
with c does not change by removing their first characters, which are all c. If p exists,
⟨T [R−1

T (p)..]⟩ is the lexicographically smaller closest p-encoded suffix to ⟨T ⟩ that is preceded
by c. Hence, ⟨T [R−1

T (LFT (p))..]⟩ = ⟨c(T [R−1
T (p)..])⟩ is the p-pred of ⟨cT ⟩ = ⟨T̂ ⟩, which means

that k− = LFT (p).
If p does not exist, it implies that ⟨T̂ ⟩ is the lexicographically smallest p-encoded suffix

that starts with c. Since ⟨T̂ ⟩ lexicographically comes right after the p-encoded suffixes
starting with an s-symbol smaller than c, k− is the last occurrence of b in FT , that is,
k− = selectb(FT , rankb(FT , |T |)). ◀

In the rest of this subsection, we consider the case that c is a p-symbol. If T contains
no p-symbol, it is clear that k− = |T |. Hence, in what follows, we assume that there is a
p-symbol in T .

Since ⟨T̂ ⟩ has the longest lcp-value with its p-pred or p-succ among all the suffixes of
T , we search for such p-encoded suffixes of T using the following lemmas to leverage the
information stored in LCP∞

T .

▶ Lemma 10. Given two positions i and j with 1 ≤ i < j ≤ |T |,

lcp∞(⟨T [R−1
T (i)..]⟩, ⟨T [R−1

T (j)..]⟩) = RmQLCP∞
T

(i + 1, j).
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Algorithm 1 Algorithm to compute the maximal interval [l..r] such that
lcp∞(⟨T [R−1

T (i)..]⟩, ⟨T [R−1
T (j)..]⟩) ≥ e for any j ∈ [l..r]. It returns [i..i] if e > |T [R−1

T (i)..]|p.

1 Function GetMI(i, e):
2 l← max{1, FPQ<e(LCP∞

T , i)};
3 r ← min{|T |, FNQ<e(LCP∞

T , i + 1)− 1};
4 return [l..r];

Proof. By Lemma 1 of [22], lcp(x, z) = min{lcp(x, y), lcp(y, z)} for any strings x < y < z,
and thus, lcp∞(x, z) = min{lcp∞(x, y), lcp∞(y, z)}. Since LCP∞

T holds the lcp∞-values
of lexicographically adjacent p-encoded suffixes, we get lcp∞(⟨T [R−1

T (i)..]⟩, ⟨T [R−1
T (j)..]⟩) =

min{LCP∞
T [g]}j

g=i+1 = RmQLCP∞
T

(i+1, j) by applying the previous argument successively. ◀

▶ Lemma 11. For given i, e ∈ [1..n], if e ≤ |T [R−1
T (i)..]|p, then Algorithm 1 computes the

maximal interval [l..r] such that lcp∞(⟨T [R−1
T (i)..]⟩, ⟨T [R−1

T (j)..]⟩) ≥ e for any j ∈ [l..r]. If
e > |T [R−1

T (i)..]|p, then Algorithm 1 returns [i..i].

▶ Lemma 12. Algorithm 2 correctly returns k̂.

Proof.
Outline. Let hi = select∞(⟨T ⟩, i) for any 1 ≤ i ≤ min{|T |p, π(T̂ )}, and hi = |T | + 1 for
any i > min{|T |p, π(T̂ )}. Also let λ = max{lcp(⟨T̂ ⟩, ⟨T [i..]⟩) | 1 ≤ i ≤ |T |}. Although
Algorithm 2 does not intend to compute the exact value of λ, it checks if λ falls in [he..he+1]
in decreasing order of e starting from min{π(T̂ ), max{LCP∞

T [k], LCP∞
T [k + 1]}}. One of the

necessary conditions to have lcp(⟨T̂ ⟩, ⟨T [i..]⟩) > he is that lcp(⟨T ⟩, ⟨T [i + 1..]⟩) ≥ he, or
equivalently lcp∞(⟨T ⟩, ⟨T [i + 1..]⟩) ≥ e. Line 2 computes the maximal interval [l..r] that
represents the ranks of the p-encoded suffixes having an lcp∞-value larger than or equal to e.
The basic idea is to find a p-encoded suffix in {⟨T [R−1

T (p)..]⟩}r
p=l that comes closest to ⟨T̂ ⟩

when extended by adding its preceding symbol. Here let us call ⟨T [R−1
T (p)−1..]⟩ the extended

suffix of ⟨T [R−1
T (p)..]⟩. When Algorithm 2 decreases e to the value with λ ∈ [he + 1..he+1], k̂

is returned in one of the if-then-blocks at Lines 4, 5, 8 and 13.
If lcp(⟨T̂ ⟩, ⟨T [i..]⟩) = hê for an integer ê, there are two possible scenarios (see Figure 2

for an illustration):
(H1) lcp∞(⟨T ⟩, ⟨T [i + 1..]⟩) ≥ ê and either π(T̂ ) > π(T [i..]) = ê or π(T [i..]) > π(T̂ ) = ê, and
(H2) lcp(⟨T ⟩, ⟨T [i + 1..]⟩) = hê − 1 and both π(T̂ ) and π(T [i..]) are at least ê.
Case (H1) is processed in one of the if-then-blocks at Lines 6 and 18 when e = ê. while Case
(H2) at Lines 4, 5, 8 and 13 when e = ê− 1. Note that p-encoded suffix of Case (H1) is never
farther from ⟨T̂ ⟩ than that of Case (H2) because the lexicographic order between ⟨T̂ ⟩ and
⟨T [i..]⟩ is determined by ∞ and hê at hê + 1 in Case (H1), while it is by ∞ and something
smaller than hê in Case (H2). Since Algorithm 2 processes Case (H1) first, it guarantees
that the algorithm finds the closer one first.

In what follows, we delve into the details of each code block.
If-then-block at Line 3. The case with e = π(T̂ ) is treated differently than other cases in
the if-then-block at Line 3 since hπ(T̂ ) is the unique position where ⟨T ⟩[hπ(T̂ )] =∞ turns into
⟨T̂ ⟩[hπ(T̂ ) + 1] = hπ(T̂ ). For a p-encoded suffix ⟨T [R−1

T (q′)..]⟩ ∈ {⟨T [R−1
T (p)..]⟩}r

p=l, having
LT [q′] = π(T̂ ) is necessary and sufficient for its extended suffix ⟨T [R−1

T (q′)−1..]⟩ to have an lcp-
value larger than hπ(T̂ ) with ⟨T̂ ⟩. By Corollary 6, p-encoded suffixes satisfying this condition
must preserve their lexicographic order after extension, and hence, it is enough to search for
the closest one (q ← FPQe(LT , k) or q ← FNQe(LT , k)) to ⟨T ⟩ and compute the rank of its
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extended suffix by LFT (q). If Lines 4 and 5 do not return a value, we know that λ ≤ hπ(T̂ ). The
if-block at Line 6 checks if there exists a p-encoded suffix ⟨T [i+1..]⟩ that satisfies the condition
of Case (H1) to be lcp(⟨T̂ ⟩, ⟨T [i..]⟩) = hπ(T̂ ). It is enough to find one ⟨T [R−1

T (q)..]⟩ with
LT [q] > π(T̂ ) because it is necessary and sufficient to have lcp(⟨T̂ ⟩, ⟨T [R−1

T (q)− 1..]⟩) = hπ(T̂ )

and ⟨T̂ ⟩[hπ(T̂ ) + 1] = ∞ ̸= hπ(T̂ ) = ⟨T [R−1
T (q) − 1..]⟩[hπ(T̂ ) + 1]. Note that there could be

two or more p-encoded suffixes that satisfy the condition and their lexicographic order may
change by extension. In the then-block at Line 6, the algorithm computes the rank of the
lexicographically smallest p-encoded suffix that has an lcp∞-value larger than π(T̂ ) with
⟨T [R−1

T (q)− 1..]⟩ = ⟨T [R−1
T (LFT (q))..]⟩, which is the p-succ of ⟨T̂ ⟩ in this case.

Precondition to enter Line 7. The case with e ≠ π(T̂ ) is processed in the else-block at Line 7.
Here, it is good to keep in mind that when we enter this else-block, lcp∞(⟨T ⟩, ⟨T [i..]⟩) ≤ e or
π(T [i− 1..]) ≤ e holds for any proper suffix T [i..] of T , since otherwise k̂ must be reported
in a previous round of the foreach loop.
If-then-block at Line 8. When the if-condition at Line 8 holds, ⟨T [R−1

T (q)..]⟩ is the lexico-
graphically smaller closest p-encoded suffix to ⟨T ⟩ such that lcp∞(⟨T̂ ⟩, ⟨T [R−1

T (q)− 1..]⟩) ≥
e + 1, or equivalently lcp(⟨T̂ ⟩, ⟨T [R−1

T (q) − 1..]⟩) > he. Note that ⟨T [R−1
T (q) − 1..]⟩ < ⟨T̂ ⟩

must hold, since otherwise, T [R−1
T (q) − 1..] and ⟨T̂ ⟩ would fall into Case (B3) with

lcp∞(⟨T [R−1
T (q) − 1..]⟩, ⟨T̂ ⟩) = π(T̂ ), and k̂ should be reported at Line 6 in a previous

round. For any p-encoded suffix in {⟨T [R−1
T (p)..]⟩}k−1

p=q+1 its extended suffix is lexicograph-
ically smaller than ⟨T [R−1

T (q) − 1..]⟩ due to Corollary 7, and never closer to ⟨T̂ ⟩ than
⟨T [R−1

T (q) − 1..]⟩. If |T [R−1
T (q)..]|p ≥ e + 1, the interval [l′..r′] computed at Line 9 is the

maximal interval such that every p-encoded suffix in {⟨T [R−1
T (p)..]⟩}r′

p=l′ shares the common
prefix of length h′ := select∞(⟨T [R−1

T (q)..]⟩, e + 1) with ⟨T [R−1
T (q)..]⟩. In the case with

|T [R−1
T (q)..]|p = e, GetMI(q, e + 1) returns [q..q] and let us define h′ to be |T [R−1

T (q)..]|.
Since any ⟨T [i..]⟩ ∈ {⟨T [R−1

T (p)..]⟩}l′−1
p=1 has an lcp-value smaller than h′ with ⟨T [R−1

T (q)..]⟩,
it follows from Table 1 that ⟨T [i − 1..]⟩ < ⟨T [R−1

T (q) − 1..]⟩. Also, for any ⟨T [i..]⟩ ∈
{⟨T [R−1

T (p)..]⟩}|T |
p=k+1, the aforementioned precondition to enter the else-block at Line 7

implies that ⟨T [R−1
T (q)− 1..]⟩ < ⟨T [i− 1..]⟩ < ⟨T̂ ⟩ cannot happen: If lcp∞(⟨T ⟩, ⟨T [i..]⟩) < e

or π(T [i− 1..]) ≤ e, then lcp(⟨T̂ ⟩, ⟨T [i− 1..]⟩) ≤ he < lcp(⟨T̂ ⟩, ⟨T [R−1
T (q)− 1..]⟩) leads to the

conclusion. For the remaining case with lcp∞(⟨T ⟩, ⟨T [i..]⟩) = e and π(T [i− 1..]) > e, it holds
that ⟨T̂ ⟩ < ⟨T [i− 1..]⟩ due to Case (B4) of Table 1.

In the previous paragraph we have confirmed that the lcp-value between ⟨T̂ ⟩ and its p-pred
is at most h′, which implies that the p-pred is the largest p-encoded suffix that is prefixed
by x := ⟨T [R−1

T (q) − 1..]⟩[..h′]. If q′ ← FPQ≥e+2(LT , r′) computed at Line 10 is in [l′..r′],
⟨T [R−1

T (q′)−1..]⟩ = ⟨T [LFT (q′)..]⟩ is prefixed by x ·∞ and the p-pred is the largest p-encoded
suffix that is prefixed by x ·∞, which can be computed by max GetMI(LFT (q′), e + 2) because
⟨T [R−1

T (q′)− 1..]⟩[..h′ + 1] = ⟨T [R−1
T (LFT (q′)..]⟩[..h′ + 1] = x · ∞ contains exactly e + 2 ∞’s.

If q′ /∈ [l′..r′], the p-pred is the largest p-encoded suffix that is prefixed by x · h′ (or x · $ for
the case with |T [R−1

T (q)..]|p = e), which is ⟨T [R−1
T (LFT (q))..]⟩.

If-then-block at Line 13. When the if-condition at Line 13 holds, ⟨T [R−1
T (q)..]⟩ is the

lexicographically larger closest p-encoded suffix to ⟨T ⟩ such that lcp∞(⟨T̂ ⟩, ⟨T [R−1
T (q)−1..]⟩) ≥

e + 1, or equivalently lcp(⟨T̂ ⟩, ⟨T [R−1
T (q) − 1..]⟩) > he. Note that ⟨T̂ ⟩ < ⟨T [R−1

T (q) −
1..]⟩ must hold, since otherwise, ⟨T̂ ⟩ and T [R−1

T (q) − 1..] would fall into Case (B3) with
lcp(⟨T̂ ⟩, ⟨T [R−1

T (q) − 1..]⟩) = hê for some ê > e, and k̂ should be reported at Line 18 of
a previous round. For any p-encoded suffix in {⟨T [R−1

T (p)..]⟩}q−1
p=k+1 its extended suffix is

lexicographically smaller than ⟨T̂ ⟩ due to Corollary 7, and never come lexicographically
between ⟨T̂ ⟩ and ⟨T [R−1

T (q) − 1..]⟩. If |T [R−1
T (q)..]|p ≥ e + 1, the interval [l′..r′] computed
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Figure 2 Illustration for Cases (H1) and (H2) in which lcp(⟨T̂ ⟩, ⟨T [i..]⟩) = hê for an integer
ê. The left part shows one of the situations for Case (H1) where lcp∞(⟨T ⟩, ⟨T [i + 1..]⟩) ≥ ê

and π(T̂ ) > π(T [i..]) = ê. The right part shows one of the situations for Case (H2) where
lcp(⟨T ⟩, ⟨T [i + 1..]⟩) = hê − 1, π(T̂ ) > hê and π(T [i..]) > hê.

at Line 14 is the maximal interval such that every p-encoded suffix in {⟨T [R−1
T (p)..]⟩}r′

p=l′

shares the common prefix of length h′ := select∞(⟨T [R−1
T (q)..]⟩, e + 1) with ⟨T [R−1

T (q)..]⟩. In
the case with |T [R−1

T (q)..]|p = e, GetMI(q, e + 1) returns [q..q] and let us define h′ to be
|T [R−1

T (q)..]|.
For any ⟨T [i..]⟩ ∈ {⟨T [R−1

T (p)..]⟩}k−1
p=1 , the aforementioned precondition to enter the

else-block at Line 7 implies that ⟨T [i − 1..]⟩ < ⟨T̂ ⟩ because Case (B3) of Table 1 cannot
hold under the condition of lcp∞(⟨T ⟩, ⟨T [i..]⟩) ≤ e or π(T [i − 1..]) ≤ e. For any ⟨T [i..]⟩ ∈
{⟨T [R−1

T (p)..]⟩}|T |
p=r′+1, we show that ⟨T̂ ⟩ < ⟨T [i − 1..]⟩ < ⟨T [R−1

T (q) − 1..]⟩ cannot happen:
Note that lcp∞(⟨T [R−1

T (q)..]⟩, ⟨T [i..]⟩) ≤ e by definition, and lcp∞(⟨T [R−1
T (q)..]⟩, ⟨T [i..]⟩) < e

implies lcp∞(⟨T ⟩, ⟨T [i..]⟩) = lcp∞(⟨T [R−1
T (q)..]⟩, ⟨T [i..]⟩). If lcp∞(⟨T [i..]⟩, ⟨T [R−1

T (q)..]⟩) < e

or π(T [i − 1..]) ≤ e, lcp(⟨T̂ ⟩, ⟨T [i − 1..]⟩) ≤ he < lcp(⟨T̂ ⟩, ⟨T [R−1
T (q) − 1..]⟩) leads to the

conclusion. For the remaining case with lcp∞(⟨T [i..]⟩, ⟨T [R−1
T (q)..]⟩) = e and π(T [i−1..]) > e,

it holds that ⟨T [R−1
T (q)− 1..]⟩ < ⟨T [i− 1..]⟩ due to Case (B4) of Table 1.

In the previous paragraph we have confirmed that the lcp-value between ⟨T̂ ⟩ and its p-succ
is at most h′, which implies that the p-succ is the smallest p-encoded suffix that is prefixed
by x := ⟨T [R−1

T (q)− 1..]⟩[..h′]. If q′ ← FNQe+1(LT , l′) computed at Line 15 is in [l′..r′], the
p-succ is the smallest p-encoded suffix that is prefixed by x · h′ (or x · $ for the case with
|T [R−1

T (q)..]|p = e), which is ⟨T [R−1
T (LFT (q′))..]⟩. If q′ /∈ [l′..r′], the p-succ is the smallest

p-encoded suffix that is prefixed by x ·∞, which can be computed by min GetMI(LFT (q), e+2)
because ⟨T [R−1

T (q) − 1..]⟩[..h′ + 1] = ⟨T [R−1
T (LFT (q))..]⟩[..h′ + 1] = x · ∞ contains exactly

e + 2 ∞’s.

If-then-block at Line 18. When we enter the if-then-block at Line 18, it is guaranteed
that λ ≤ he. In order to check if there exists a p-encoded suffix ⟨T [i + 1..]⟩ that satisfies the
condition of Case (H1) to be lcp(⟨T̂ ⟩, ⟨T [i..]⟩) = he, the algorithm computes q ← FPQe(LT , r).
If q ∈ [l..r], ⟨T [R−1

T (q)..]⟩ is the lexicographically largest p-encoded suffix that satisfies the
condition, and by Corollary 6, its extended suffix ⟨T [R−1

T (q)− 1..]⟩ must be the largest one
to have lcp(⟨T̂ ⟩, ⟨T [R−1

T (q) − 1..]⟩) = he. Therefore, ⟨T [R−1
T (q) − 1..]⟩ is the p-pred of ⟨T̂ ⟩,

and k̂ = 1 + LFT (q). ◀
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Algorithm 2 Algorithm to compute k̂.

1 foreach e← min{π(T̂ ), max{LCP∞
T [k], LCP∞

T [k + 1]}} down to 1 do
2 [l..r]← GetMI(k, e);
3 if e = π(T̂ ) then
4 if (q ← FPQe(LT , k)) ∈ [l..r] then return 1 + LFT (q) ;
5 if (q ← FNQe(LT , k)) ∈ [l..r] then return LFT (q) ;
6 if (q ← FNQ≥e+1(LT , l)) ∈ [l..r] then return min GetMI(LFT (q), e + 1) ;
7 else
8 if (q ← FPQ≥e+1(LT , k)) ∈ [l..r] then
9 [l′..r′]← GetMI(q, e + 1);

10 q′ ← FPQ≥e+2(LT , r′);
11 if q′ ∈ [l′..r′] then return 1 + max GetMI(LFT (q′), e + 2) ;
12 else return 1 + LFT (q) ;
13 if (q ← FNQ≥e+1(LT , k)) ∈ [l..r] then
14 [l′..r′]← GetMI(q, e + 1);
15 q′ ← FNQe+1(LT , l′);
16 if q′ ∈ [l′..r′] then return LFT (q′) ;
17 else return min GetMI(LFT (q), e + 2) ;
18 if (q ← FPQe(LT , r)) ∈ [l..r] then return 1 + LFT (q) ;

3.2 How to maintain LCP∞
T

Suppose that we have k = RT (1), k̂ = RT̂ (1), LT , FT . We show how to compute the
lcp∞-values of ⟨T̂ ⟩ with its p-pred ⟨T [R−1

T (k̂) − 1..]⟩ and p-succ ⟨T [R−1
T (k̂)..]⟩ to maintain

LCP∞
T .

We focus on lcp∞(⟨T̂ ⟩, ⟨T [R−1
T (k̂)..]⟩) because the other one can be treated similarly.

We apply Table 1 by setting x = T̂ and y = T [R−1
T (k̂)..] if k < FLT (k̂) (otherwise we

swap their roles for x and y). In order to get lcp∞(⟨x⟩, ⟨y⟩), all we need are π(x) = π(T̂ ),
π(y) = F[k̂] and e = lcp∞(⟨x[2..]⟩, ⟨y[2..]⟩). For the computation of e we use Lemma 10, i.e.,
e = lcp∞(⟨x[2..]⟩, ⟨y[2..]⟩) = RmQLCP∞

T
(k + 1, FLT (k̂)).

3.3 Dynamic data structures and analysis
Let σs and respectively σp := |T |p be the numbers of distinct s-symbols and p-symbols that
appear in T and σ = σs + σp. We consider constructing FT , LT and LCP∞

T online for a
p-string T of length n over an alphabet (Σs∪Σp) of size nO(1). To this end, we introduce data
structures for implementing our algorithm, which we presented in the previous subsections.

To obtain our claimed space bounds of O(n lg σ) bits, we maintain a naming function
that maps the set of distinct s-symbols indexed in the pBWT from Σs to the range of ranks
[1..σs]. By doing so, we can represent and store each s-symbol in the pBWT by its rank.
Thus, each s-symbol in FT and LT consumes O(lg σs) bits instead of O(lg n) bits.

In the following we present two alternative implementations for the naming function. The
first one imposes a new order on the s-symbols such that the computed FT and LT arrays
may arrange s-symbols differently than the standard pBWT built on the plain s-symbols.
The second one keeps the order of the s-symbols, but needs an additional scan of the input
text T to determine the order prior to the computation of the pBWT.
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1. Our first approach updates the naming function in the same online fashion as computing
the pBWT. To this end, we represent the naming function by a dynamic associative
array using O(σs lg n) = O(n lg σs) bits of space and taking O( lg σs

lg lg σs
) operation time

like [21]. Setting initially σs = 0, we update σs and the naming function whenever we
read a new s-symbol. In detail, when we read a new s-symbol with integer representation
x with a yet-undefined rank (meaning it is not yet stored in the associative array), we
increment σs by one, and insert the integer key x associated with the value σs into the
associative array. The assignment of the ranks is done in a first come first served order,
meaning that the order of two s-symbols is determined by whose rightmost occurrence in
the text has the larger text position (since we build the pBWT online reading symbols
from the right end). Changing the alphabet order neither invalidates the LF-mapping
nor the backward search.3 However, there is a subtle caveat in that this approach needs
to know σs in advance (or at least a close upper bound σ′

s with σ′
s = cσ for a constant

c ≥ 1). Otherwise, we need to spend some extra time on reconstructing all dynamic
data structures working with s-symbols. That is because, for steady increases of σs,
there is point where we no longer can represent a s-symbol rank in just ⌈lg σs⌉ bits, but
need 1 + ⌈lg σs⌉ bits instead. Instead of rebuilding all data structures storing s-symbol
ranks on every increase of ⌈lg σs⌉, we initially accommodate each s-symbol with 2⌈lg σs⌉
bits, and double this space whenever necessary.4 By doing so, the number of bits per
s-symbol increases from constant to Θ(lg σs) exponentially, and thus the number of total
rebuilding steps is bounded by O(lg lg σs), where σs denotes the final number of distinct
s-symbols indexed by the pBWT. Thus the final construction time stated in Theorem 1
becomes O(n (lg σp+lg lg σs) lg n

lg lg n ), based on the fact that querying or updating the dynamic
data structures representing FT and LT needs O( lg n

lg lg n ) time per entry, as we will later
see in Lemma 13.
For computing b in Lemma 9 for a given s-symbol c, we process as follows. Given c has
been assigned the rank r, then b = r − 1. Otherwise, c has not been ranked, and thus
b = σs since c will receive a rank larger than all other s-symbols indexed in the pBWT.

2. However, if this imposed order is not desirable in some setting, it is possible to assign
ranks reflecting the initial order of Σs. For that, we note that the aforementioned
implementation [21] also supports a sorted traversal of the keys. Thus, it is sufficient to
(a) build this associative array while scanning the entire text T , (b) reassign each key a
new rank determined by a sorted traversal of the associative array, and finally (c) start
the pBWT computation. This, of course, needs to read T twice instead of once.
Unfortunately, since we keep the initial alphabet order of the s-symbols, determining b

in Lemma 9 becomes nontrivial. For computing the value of b, we maintain the set of
s-symbols used in the currently computed pBWT by a dynamic fusion tree [34] taking
O(σs lg n) = O(n lg σs) bits. The fusion tree allows us then to compute b in O( lg σs

lg lg σs
)

time.
Next, we maintain FT by a dynamic string of Lemma 3 supporting random access,

insertion, rank and select queries in O( lg n
lg lg n ) time and O(n lg σ) bits of space. For LCP∞

T we
maintain a dynamic string of Lemma 4 to support random access, insertion, RmQ, FPQ and
FNQ queries in O( lg σp lg n

lg lg n ) time and O(n lg σp) bits of space.

3 Changing the alphabet order for optimizing the compressibility of the BWT is actually an actively
researched topic [5].

4 While this seems like a standard trick for amortizing the costs of dynamic arrays, the amortization
argument does not hold here in general because the cost parameter σs and the array length n can be
independent. For instance, imagine that we first read n/2 times the same s-symbol from the input, and
then start to read only distinct s-symbols.
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If we build a dynamic string of Lemma 4 for LT , the query time would be O( lg σ lg n
lg lg n ).

Since our algorithm does not use RmQ, FPQ and FNQ queries for s-symbols, we can reduce
the query time to O( lg σp lg n

lg lg n ) as follows. We represent LT with one level of a wavelet tree,
where a bit vector partitions the alphabet into Σs and [1..|T |p] and thus has pointers to XT

and YT storing respectively the sequence over Σs and that over [1..|T |p] of LT . We represent
the former and the latter by the data structures described in Lemmas 3 and 4, respectively,
since we only need the aforementioned queries such as RmQ on YT . Then, queries on LT can
be answered in O( lg σp lg n

lg lg n ) time using O(n lg σ) bits of space.
In addition to these dynamic strings for FT , LT and LCP∞

T , we consider maintaining
another dynamic string ZT , a string that is obtained by extracting the leftmost occurrence
of every p-symbol in T . Note that |ZT | = σp ≤ n. A dynamic string ZT of Lemma 3 enables
us to compute π(cT ) for a p-symbol c by π(cT ) = min{∞, selectc(ZT , 1)} in O( lg σp

lg lg σp
) time

and O(σp lg σp) bits of space.
We are now ready to prove the following lemma.

▶ Lemma 13. FT , LT and LCP∞
T for a p-string of length n over an alphabet (Σs∪Σp) of size

nO(1) can be constructed online in O(n lg σp lg n
lg lg n ) time and O(n lg σ) bits of space, where σs

and respectively σp are the numbers of distinct s-symbols and p-symbols used in the p-string
and σ = σs + σp.

Proof. We maintain the dynamic data structures of O(n lg σ) bits described in this subsection
while prepending a symbol to the current p-string. For a single step of updating T to T̂ = cT

with c ∈ (Σs ∪ Σp), we compute k̂ = RT̂ (1) as described in Subsection 3.1 and obtain FT̂

and LT̂ by replacing $ in LT at k = RT (1) by π(T̂ ) and inserting $ and π(T̂ ) into the k̂-th
position of LT and FT , respectively. LCP∞

T is updated as described in Subsection 3.2.
If c ∈ Σs, the computation of k̂ based on Lemma 9 requires a constant number of

queries. If c ∈ Σp, Algorithm 2 computes k̂ invoking O(2 + e − ê) queries, where e =
max{LCP∞

T [k], LCP∞
T [k + 1]} and ê = max{LCP∞

T̂
[k̂], LCP∞

T̂
[k̂ + 1]}. The value e can be seen

as a potential held by the current string T , which upper bounds the number of queries. The
number of queries in a single step can be O(σp) in the worst case when e and ê are close to σp

and respectively 0, but this will reduce the potential for later steps, which allows us to give
an amortized analysis. Since a single step increases the potential at most 1 by Corollary 5,
the total number of queries can be bounded by O(n).

Since we invoke O(n) queries that take O( lg σp lg n
lg lg n ) time each, the overall time complexity

is O(n lg σp lg n
lg lg n ). ◀

4 Extendable compact index for p-matching

In this section, we show that LT , FT and LCP∞
T can serve as an index for p-matching.

First we show that we can support backward search, a core procedure of BWT-based
indexes, with the data structures for LT , FT and LCP∞

T described in Subsection 3.3. For any
p-string w, let w-interval be the maximal interval [l..r] such that ⟨T [R−1

T (p)..]⟩ is prefixed
by ⟨w⟩ for any p ∈ [l..r]. We show the next lemma for a single step of the backward search,
which computes cw-interval from w-interval.

▶ Lemma 14. Suppose that we have data structures for LT , FT and LCP∞
T described in

Subsection 3.3. Given w-interval [l..r] and c ∈ (Σs ∪ Σp), we can compute cw-interval [l′..r′]
in O( lg σp lg n

lg lg n ) time.

Proof. We show that we can compute cw-interval from w-interval using a constant number
of queries supported on LT , FT and ⟨T̂ ⟩, which takes O( lg σp lg n

lg lg n ) time each.
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When c is in Σs: A p-encoded suffix ⟨T [R−1
T (p)− 1..]⟩ = ⟨T [R−1

T (LFT (p))..]⟩ is prefixed by
⟨cw⟩ if and only if ⟨T [R−1

T (p)..]⟩ is prefixed by ⟨w⟩ and LT [p] = c. In other words, LFT (p) ∈
[l′..r′] if and only if p ∈ [l..r] and LT [p] = c. Then it holds that l′ = LFT (FNQc(LT , l))
and r′ = LFT (FPQc(LT , r)) due to Corollary 6.
When c is a p-symbol that appears in w: Similar to the previous case, LFT (p) ∈ [l′..r′] if
and only if p ∈ [l..r] and LT [p] = π(cw). Then it holds that l′ = LFT (FNQπ(cw)(LT , l))
and r′ = LFT (FPQπ(cw)(LT , r)) due to Corollary 6.
When c is a p-symbol that does not appear in w: Let e = |w|p. Since p ∈ [l..r] and
LT [p] > e are necessary and sufficient conditions for LFT (p) to be in [l′..r′], we can
compute r′ − l′ + 1, the width of [l′..r′], by counting the number of positions p such that
LT [p] > e with p ∈ [l..r]. This can be done with 2D range counting queries, which can
also be supported with the wavelet matrix of Lemma 4. If s = FNQ≥e+1(LT , l) is in [l..r],
it holds that r′ − l′ + 1 ̸= 0 and LFT (s) ∈ [l′..r′]. Note that LFT (s) is not necessarily
l′ because p-encoded suffixes ⟨T [R−1

T (p)..]⟩ with LT [p] > e in [l..r] do not necessarily
preserve the lexicographic order when they are extended by one symbol to the left, making
it non-straightforward to identify the position l′.
To tackle this problem, we consider

[le..re] = GetMI(s, e) and [l′
e+1..r′

e+1] = GetMI(LFT (s), e + 1),

and show that l′ = l′
e+1+x, where x is the number of positions p in [le..l−1] with LT [p] > e.

Observe that [l..r] ⊆ [le..re] and [l′..r′] ⊆ [l′
e+1..r′

e+1] by definition, and that LFT (p) ∈
[l′

e+1..r′
e+1] if and only if p ∈ [le..re] and LT [p] > e (see Figure 3 for an illustration). Also,

it holds that ⟨T [R−1
T (LFT (p))..]⟩ < ⟨T [R−1

T (LFT (q))..]⟩ for any p ∈ [le..l − 1] and q ∈ [l..r]
satisfying LT [p] > e and LT [q] > e because lcp∞(⟨T [R−1

T (p)..]⟩, ⟨T [R−1
T (q)..]⟩) = e, and

they fall into Case (B4) of Table 1. Similarly for any p ∈ [l..r] and q ∈ [r + 1..re]
satisfying LT [p] > e and LT [q] > e, we have ⟨T [R−1

T (LFT (p))..]⟩ < ⟨T [R−1
T (LFT (q))..]⟩.

Hence, l′ = l′
e+1 + x holds.

This concludes the proof. ◀

We are now ready to prove Theorem 1, which we restate here:

▶ Theorem 1. For a p-string T of length n over an alphabet (Σs ∪ Σp) of size nO(1), an
index of T for p-matching can be constructed online in O(n lg σp lg n

lg lg n ) time and O(n lg σ) bits
of space, where σs and respectively σp are the numbers of distinct s-symbols and p-symbols
used in the p-string and σ = σs + σp. At any stage of the online construction, it can support
the counting queries in O(m lg σp lg n

lg lg n ) time, where m is the length of a given pattern for
queries. By building an additional data structure of O( n

∆ lg n) bits of space for a chosen
parameter ∆ ∈ {1, 2, . . . , n} the locating queries can be supported in O(m lg σp lg n

lg lg n + occ ∆ lg n
lg lg n )

time, where occ is the number of occurrences to be reported.

Proof of Theorem 1. If we only need counting queries, Lemmas 13 and 14 are enough:
While we build LT , FT and LCP∞

T online, we can compute w-interval [l..r] for a given pattern
w of length m using Lemma 14 successively m times, spending O(m lg σp lg n

lg lg n ) time in total.
Since {R−1

T (i) | i ∈ [l..r]} is the set of occurrences of w in T , we consider how to access
R−1

T (i) in O( ∆ lg n
lg lg n ) time to support locating queries. As is common in BWT-based indexes,

we employ a sampling technique (e.g., see [10]): For every Θ(∆) text positions we store the
values so that if we apply LF/FL-mapping to i successively at most Θ(∆) times we hit one
of the sampled text positions. A minor remark is that since our online construction proceeds
from right to left, it is convenient to start sampling from the right-end of T and store the
distance to the right-end instead of the text position counted from the left-end of T .
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Figure 3 Illustration for the computation of cw-interval [l′..r′] from w-interval [l..r] for the case
when c is a p-symbol that does not appear in w with e = |w|p = 3. The left (resp. right) part shows
sorted p-encoded suffixes around [l..r] (resp. [l′..r′]) with grayed areas representing the longest
common prefix between w (resp. cw) and each p-encoded suffix. The figure illustrates that each
position p ∈ [le..l − 1] with LT [p] > e is mapped to [l′

e+1..l′ − 1] by the LF-mapping.

During the online construction of the data structures for LT , FT and LCP∞
T , we additionally

maintain a dynamic bit vector of length n and a dynamic integer string VT of length O(n/∆),
which marks the sampled positions and stores sampled values, respectively. We implement
VT with the dynamic string of Lemma 3 in O( n

∆ lg n) bits with O( lg n
lg lg n ) query times. In

order to support LF/FL-mapping in O( lg n
lg lg n ) time, we also maintain LT by an instance

of the dynamic string of Lemma 3. Using these data structures, we can access R−1
T (i) in

O(∆ lg n
lg lg n ) time as we use LF/FL-mapping at most O(∆) times. This leads to the claimed

time bound for locating queries. ◀

5 Constructing parameterized suffix arrays in compact space

The parameterized suffix array of a p-string T of length n is the n-length integer array PSAT

with PSAT [i] = R−1
T (i) for any 1 ≤ i ≤ n. We now prove Theorem 2:

▶ Theorem 2. For a p-string T of length n over an alphabet (Σs ∪ Σp) of size nO(1), the
parameterized suffix array of T can be constructed in O(n lg σp lg n

lg lg n ) time and O(n lg σ) bits of
space, where σs and respectively σp are the numbers of distinct s-symbols and p-symbols used
in the p-string and σ = σs + σp.

Proof of Theorem 2. Using Lemma 13, we can build FT and LT in O(n lg σp lg n
lg lg n ) time and

O(n lg σ) bits of working space, which supports the LF-mapping in O( lg σp lg n
lg lg n ) time. After

reserving n lg n bits space for the array PSAT , we fill PSAT in decreasing order of its values
starting from PSAT [1] = n. By definition of the LF-mapping, given a position i with
PSAT [i] = x > 1, the position i′ with PSAT [i′] = x − 1 can be computed by i′ = LFT (i).
Therefore, all values of PSAT can be filled with n applications of the LF-mappings, leading
to O(n lg σp lg n

lg lg n ) time in total. ◀
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6 Concluding remarks

We have proposed a construction of a BWT-based compact index for p-matching, which
works in compact space and in an online manner. BWT-based indexes have been proposed
for other generalized pattern matching like structural pattern matching [17], order preserving
matching [15], Cartesian tree matching [23], palindrome pattern matching [30] and circular
parameterized pattern matching [33]. Generalized pattern matching listed above has a
common feature that their underlying equivalent relations are substring consistent [27].
Since previous work has shown that similar techniques can often be applied to this class of
generalized pattern matching, it is of great interest to see if the techniques presented in this
paper can also be used for constructing other BWT-based indexes.
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