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Abstract
We consider the PageRank problem in the dynamic setting, where the goal is to explicitly maintain
an approximate PageRank vector π ∈ Rn for a graph under a sequence of edge insertions and
deletions. Our main result is a complete characterization of the complexity of dynamic PageRank
maintenance for both multiplicative and additive (L1) approximations.

First, we establish matching lower and upper bounds for maintaining additive approximate
PageRank in both incremental and decremental settings. In particular, we demonstrate that in the
worst-case (1/α)Θ(log log n) update time is necessary and sufficient for this problem, where α is the
desired additive approximation. On the other hand, we demonstrate that the commonly employed
ForwardPush approach performs substantially worse than this optimal runtime. Specifically, we
show that ForwardPush requires Ω(n1−δ) time per update on average, for any δ > 0, even in the
incremental setting.

For multiplicative approximations, however, we demonstrate that the situation is significantly
more challenging. Specifically, we prove that any algorithm that explicitly maintains a constant
factor multiplicative approximation of the PageRank vector of a directed graph must have amortized
update time Ω(n1−δ), for any δ > 0, even in the incremental setting, thereby resolving a 13-year
old open question of Bahmani et al. (VLDB 2010). This sharply contrasts with the undirected
setting, where we show that poly log n update time is feasible, even in the fully dynamic setting
under oblivious adversary.
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1 Introduction

The notion of PageRank was introduced by Brin and Page 25 years ago to rank web search
results [7]. Since then, computing the PageRank of a network has become a fundamental task
in data mining [23]. At a high level, PageRank is a probability distribution over the vertices
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of a directed graph which assigns higher probability to more “central” vertices; see Section 2
for a formal definition. We write π ∈ Rn to denote PageRank probability vector, where
πi is the probability mass on the i-th vertex. Due to its importance, it has been studied
extensively in a number of computational models. In this paper, we consider the PageRank
problem in the dynamic setting, in which the goal is to maintain an approximate PageRank
vector π̃ ∈ Rn of a graph undergoing a sequence of edge insertions and deletions. We focus
primarily on explicit maintainance of the PageRanks, meaning that the algorithm explicitly
maintains π̃ in its memory contents at all time steps; we remark that all prior algoriths for
the problem of maintaining all PageRanks in the dynamic setting have been of this form.

We consider three different settings, which differ in the allowed sets of operations. In the
incremental setting, edges can only be added to the graph. Analogously, in the decremental
setting, edges can only be deleted. The most general setting is the fully dynamic setting in
which we allow both types of updates. We also consider two notions of approximation. A
1 + α multiplicative approximation to the PageRank vector π is a vector π̃, such that for
every vertex v it holds π̃v ∈ [(1− α)πv, (1 + α)πv]. An additive α approximation is a vector
π̃ such that ∥π̃ − π∥1 ≤ α.1 We note that a multiplicative guarantee is strictly stronger, as a
multiplicative 1 + α approximation implies an additive α approximation.

Previous work on dynamic PageRank [4, 11, 24, 5, 10] resulted in two main approaches to
the problem. The first one is based on sampling random walks. Specifically, it is well-known
that one can approximate PageRank by sampling O(log n) random walks of length O(log n)
from each vertex in the graph (see Algorithm 1).

In a seminal paper, Bahmani et al. [4] showed that this approach can be made dynamic.
Specifically, the algorithm of Bahmani et al. maintains a multiplicative 1 + α approximation
of incremental (or decremental) PageRank when the updates arrive in a random order.
However, their analysis crucially relies on the random arrival of updates, and it was not clear
whether this assumption could be removed. The authors of [4] explicitly posed the question
of whether it is possible to extend their results for multiplicative approximations to the case
of adversarially ordered updates; to date, this question has remained open.

The second approach to computing dynamic PageRank is a dynamic version of the
ForwardPush algorithm [25, 1, 9], which is a variant of a classical local push approach
proposed by [3]. This algorithm was developed for the problem of maintaining Personalized
PageRank, but can also be naturally used to maintain an additive PageRank approximation.
While this approach is highly effective in practice, no running time bounds faster than running
a static algorithm from scratch after each update have been developed for maintaining
PageRank using the dynamic ForwardPush method.2

Thus, despite the above line of work, many fundamental questions regarding the computa-
tional cost of maintaining PageRank in a dynamic setting remain open. Specifically, it is still
open whether there exists an algorithm for maintaining a approximation to PageRank in o(n)
time per update. This question is open even if one considers only incremental or decremental
updates, or if one allows additive approximation. In this paper, we answer each of these open
questions. More precisely, we characterize the complexity of solving the dynamic PageRank
problem in each of these settings by providing new upper and lower bounds.

1 Note that this coincides with the total variational distance between distributions.
2 We note that the paper introducing the dynamic ForwardPush algorithm gives a good running time

bound for running the algorithm in undirected graphs. However, this bound only holds for computing
Personalized PageRank from a uniformly random source vertex. Even though PageRank can be reduced
to Personalized PageRank, the reduction requires computing Personalized PageRank from a fixed vertex,
and so the bound does not carry over.
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1.1 Our contributions

We provide new lower and upper bounds on the complexity of explicitly maintaining an approx-
imate PageRank vector both under additive and multiplicative approximation. Throughout
this section, we use n to denote the number of vertices in a graph, m to denote the number
of edges and ϵ to denote the jumping probability used to define PageRank.3

1.1.1 Additive Approximation

We provide (essentially) matching lower and upper bounds for explicitly maintaining additive
approximation of PageRank in both incremental and decremental setting.

▶ Theorem 1. Fix ϵ ∈ (0.01, 0.99). For any sufficiently large n ≥ 1 and any α such that
1/α = no(1/ log log n), any algorithm which explicitly maintains α-additive approximation of
PageRank must run in n · (1/α)Ω(log log n) total time.

Our lower bound, which we prove in Section 3.1, is obtained by constructing a graph and
an update sequence for which the PageRank vector undergoes a large number of significant
changes. The changes to the vector are large to the point that even an approximate PageRank
vector must be often updated in linear time. We note that the lower bound, and all other
lower bounds that we state, applies to the setting when the PageRank vector is maintained
explicitly, i.e., after each update algorithm outputs the changes that the PageRank vector
undergoes.

We note that it is easy to come up with an example in which a single edge update
significantly changes the PageRanks of a large fraction of vertices (see Figure 1). This
immediately rules out efficient incremental and decremental algorithms that maintain approx-
imate PageRank with worst-case update time guarantees. This also rules out fully dynamic
algorithms with amortized update time guarantees. However, proving a strong lower bound
for the amortized update time bound in the incremental or decremental setting is far more
involved, as it requires showing a long sequence of updates in which, on average, every edge
insertion (or deletion) changes the PageRank of many vertices.

We complement our lower bound with the following algorithmic result proved in Section 5.

▶ Theorem 2. For any ϵ ∈ (0, 1), there is an algorithm that with high probability explicitly
maintains an α additive approximation of PageRank of any graph G in either incremental or
decremental setting. The algorithm processes the entire sequence of updates in O(m) + n ·
(1/α)Oϵ(log log n) total time and works correctly against an oblivious adversary.

Furthermore, we study the complexity of the dynamic ForwardPush algorithm [25].
This algorithm, when run with parameter α̃ maintains an α̃ ·m additive approximation to
PageRank (and so to obtain α additive approximation, one needs to use α̃ = α/m). By using
a similar construction of a hard instance, we show that the algorithm takes Ω(n2−δ) time,
for any δ > 0, to handle a sequence of O(n) operations, even in incremental or decremental
settings (see Theorem 9).

3 The probability of not-jumping (in our notation, 1 − ϵ) is sometimes called the damping factor of
PageRank.

ICALP 2024



90:4 Dynamic PageRank: Algorithms and Lower Bounds

1.1.2 Multiplicative Approximation
Our next result is a lower bound showing that any algorithm explicitly maintaining a constant
multiplicative approximation to PageRank, even in the incremental or decremental setting,
must in the worst case take Ω(n2−δ) total time, for any δ > 0, to process a sequence of n

updates to an n-vertex graph. Specifically, we prove the following in Section 3.2:

▶ Theorem 3. There exists a sequence of Θ(n) edge insertions applied to an initially empty
graph on n vertices for which the following holds. For any constant δ > 0, any algorithm
that maintains a vector π̃ ∈ Rn such that (1/2)πv < π̃v ≤ 2πv at all time steps, must take
time Ω(n2−δ) to process the sequence. In particular, the amortized update time of any such
algorithm is Ω(n1−δ).

We note that, by symmetry, the above theorem also applies to the decremental setting.
Theorem 3 gives a negative resolution to the 13-year-old open question of Bahmani

et al. [4], who asked whether their polylogarithmic update time bounds for maintaining
PageRank under a sequence of updates coming in random order can be extended to the
general case. Previously, the only negative results for this problem were given by Lofgren [12]
who showed that the specific algorithm of Bahmani et al. requires Ω(nc) update time for
some c ∈ (0, 1), but this did not rule out the existence of a better algorithm. We extend this
lower bound to every algorithm which explicitly maintains an approximate PageRank vector,
and strengthen the bound from Ω(nc) to Ω(n1−δ) for any δ > 0.

To complement the above lower bound, in Section 6, we give a simple analysis of the
Bahmani et al. algorithm in undirected graphs, and show that in this case maintaining
multiplicative approximation can be done in polylogarithmic time per update even in the
fully dynamic setting. This algorithm also assumes an oblivious adversary. While the analysis
is based on a simple observation, to the best of our knowledge it has not been explicitly
given before.

▶ Theorem 4. For any ϵ ∈ (0, 1), there is an algorithm that with high probability explicitly
maintains a 1 + α multiplicative approximation of PageRank of any undirected graph G in
the fully dynamic setting. The algorithm handles each update in O(log5 n/(ϵ2α2)) time and
works correctly against an oblivious adversary.

It is an open question whether it is possible to design dynamic PageRank algorithms that
bypass our lower bounds, for example, by not maintaining PageRank explicitly or looking
beyond worst-case bounds and studying restricted graph classes.

1.2 Related Work
The dynamic PageRank problem has been studied in a number of recent works [4, 5, 11, 24, 8,
17, 18, 13, 19, 20, 9] studying both the theoretical and empirical aspects of the problem. One
line of study considered the incremental and decremental settings with updates performed in
random order [4, 24] and obtained algorithms that achieve O(log n/ϵ) update time. The result
of [24] is applicable in a non-random order as well, although in that case it requires Ω(dv)
running time per update done on a vertex v of degree dv. Bahmani et al. [5] analyze their
algorithm in a random graph model in which high PageRank vertices are more likely to receive
new neighbors. We note that attempts at designing faster algorithms have been undertaken
in [11] as well as [24]. However, these algorithms come with no provable approximation
guarantees.
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Figure 1 An example illustrating that maintaining multiplicative approximation or even an L1

approximation of PageRank in the worst case requires Θ(n/ log n) running time even after a single
deletion/insertion of edge uv. For details, see Section 1.3.

Another line of work [2, 14, 15, 25, 21] focuses on computing Personalized PageRank,
which is PageRank computed from the point of view of a single vertex. For instance, [15] show
that if each entry of a Personalized PageRank is lower-bounded by δ, then the Personalized
PageRank of a vertex can be approximated in time O(

√
d/δ), where d is the average graph

degree.

Finally, PageRank was also studied in the context of sublinear algorithms [6, 22]. For
instance, for a graph on m edges and omitting poly dependence on log m and α−1, the
very recent algorithm presented in [22] requires O(n1/2 ·min{m1/4, ∆1/2}) running time for
approximating the PageRank of a single vertex, where ∆ is the maximum degree in the
graph.

1.3 Impossibility of Non-Trivial Worst-Case Bounds

A wealth of literature on designing dynamic algorithms for approximate PageRank, including
our results, focuses on amortized running time complexity. It is natural to wonder whether
non-trivial worst-case update running times do not exists due to lack of techniques or due
to fundamental reasons. As our example in Figure 1 illustrates, non-trivial update running
times are not possible even on very sparse graphs and even if one’s goal is to maintain an
L1-approximate PageRank vector.

Namely, on the one hand, for the graph G in Figure 1, it can be shown that πu, πv ∈ Ω(ϵ)
and πx ∈ Ω((log n)/n) for each vertex x ∈ R. On the other hand, consider graph G′ obtained
from G, i.e., from the graph in Figure 1, by removing the red-dashed (u, v) edge, and let π′

be the PageRank of G′. It is not hard to show that π′
u ∈ Ω(1), π′

v ∈ O(ϵ/n) and π′
x ∈ O(1/n)

for each x ∈ R. This example illustrates the following: there exists a directed graph in which
after a single edge removal one has to update Ω(n/ log n) vertices if the goal is to maintain a
multiplicative and even an L1 approximation of the PageRank for sufficiently small constant
ϵ. Moreover, if random walks are used to estimate the PageRank – which to the best of
our knowledge is the only other used approach than Power method – then maintaining
an additive or multiplicative approximate PageRank of a single vertex still requires Ω(n)
worst-case time. To see that, observe that there are Θ(n) times more random walks passing
through v in G than in G′.

ICALP 2024
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Algorithm 1 An algorithm for computing approximate PageRank using random walks.
Input: A graph G, and parameters ϵ, α and ℓ.

1: Sample a set W of R =
⌈ 9 ln n

ϵα2

⌉
random walks starting from each vertex of G.

Each walk length is chosen from geometric distribution with parameter 1− ϵ.
2: Remove from W all walks longer than ℓ.
3: for v ∈ V do
4: Xv ← the number of times the walks from W visit v.
5: π̃(v)← Xv

|W |/ϵ .
6: end for
7: Return π̃

1.4 Organization of the Paper
The rest of this paper is organized as follows. In Section 2 we formally define PageRank
and review a random-walk based algorithm for approximating it in the static setting. In
Section 3 we give the lower bounds on the time required to explicitly maintain PageRank
and on the running time of the dynamic ForwardPush algorithm. Section 4 reviews the
algorithm for approximating PageRank by maintaining random walks. While the algorithm
is essentially the same as the algorithm by Bahmani et al. [4], we present a full analysis, since
the previous papers on dynamic PageRank did not prove the correctness of this approach.
In the following two sections we analyze this algorithm in two settings. First, in Section 5
we show that this algorithm achieves near-optimal update time while maintaining additive
approximation to PageRank. Second, in Section 6 we present a simple analysis showing that
in undirected graphs maintaining even a constant multiplicative approximation to PageRank
in the fully dynamic setting is possible with polylogarithmic update time.

2 Preliminaries

We begin by defining the PageRank of a directed graph G = (V, E). Formally, the PageRank
of G, denoted by π ∈ Rn

≥0, is the stationary distribution of a random walk on G, where at
each step the walk jumps to another uniformly random vertex with probability ϵ ∈ (0, 1).
The jump probability ϵ is a parameter, which we will fix for the remainder. If deg(i) is the
out-degree of the i-th vertex in V , then the corresponding non-symmetric transition matrix
M ∈ Rn×n has entries Mi,j = ϵ

n + (1− ϵ) 1
deg(i) if (i, j) ∈ E, and Mi,j = ϵ/n otherwise. We

make the standard assumption (required for PageRank to be well-defined) that each vertex
has deg(i) ≥ 1, which can be accomplished by adding self-loops.

PageRank can be approximated by sampling O(log n/ϵ) relatively short random walks
from each vertex. One such approach is provided as Algorithm 1, for which the following can
be shown.

▶ Proposition 5 ([4, 16]). Let π be the PageRank vector of a graph G. The estimate π̃

computed by Algorithm 1 (with ℓ =∞) satisfies (a) for all v ∈ V we have E [π̃v] = πv, and
(b) with probability 1− 1/ poly(n), simultaneously for all v ∈ V , we have π̃v = (1± α)πv.

3 Lower Bounds

In this section we present our lower bounds for maintaining explicit approximation to
PageRank and for the running time of the dynamic ForwardPush algorithm [25]. We now
describe a generic construction of a hard instance, which we instantiate with different
parameters in each of the individual lower bounds. Throughout the section, we consider the
case of ϵ ∈ (0.01, 0.99), which is the usual case in the applications of PageRank.
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The Graph. The graph G is a union of the graphs H, R, S0, S1. First, H is a directed
tree. Each non-leaf vertex v has exactly t children, with pi parallel directed edges from v

to the i-th child of v (where i is 0-based). We require that p ≥ max(1/ϵ, 2). Hence, the
total-out degree of each internal vertex in H is O(pt). The depth of H is d, and so H has
Θ(td) vertices and Θ(td · pt) edges.

The graph R consists of n/4 vertices v, each with no in-edges, and each with a single out
edge vr where r is the root of the directed tree H. Finally, the sets S0, S1 are both directed
star graphs on s + 1 vertices (with the edges directed away from the center of the star),
where Si has the center ci for i ∈ {0, 1}. Additionally, each leaf of S0 and S1 has a single
outgoing edge, which is a self-loop. We then order the leaf vertices of H as ℓ1, ℓ2, . . . , and
create a directed edge from ℓi to ci mod 2. We will set the parameters, such that the total
number of vertices in H, R, S0, and S1 is less than n. One can then add an additional O(n)
isolated vertices (with self-loops), so that the total number of vertices is precisely n.

Update Sequence The initial graph has all vertices and edges of H, R, S0, S1, except that
each non-leaf vertex of H only has an edge to its leftmost child (i.e., one with index 0).
Observe that each vertex has at least one outgoing edge, and so PageRank is well-defined.

The update sequence is as follows. Let v1, . . . , v|H| be the sequence of vertices visited on
a pre-order traversal of H, such that ℓ1, ℓ2, . . . is a subsequence of v1, . . . , v|H|. We insert
the edges of H in |H| rounds: in the ith round we insert all incoming edges of vi (unless
they have already been in the graph from the beginning).

To prove the lower bounds, we use the following way of interpreting PageRank, which is
a continuous version of Algorithm 1 and follows from Proposition 5. Each vertex has some
probability mass, which it either generates or receives from its in-neighbors. Specifically, each
vertex of the graph generates a probability mass of 1/n. A 1− ϵ fraction of the probability
mass of a vertex v (either generated by v or incoming to v from other vertices) is divided
uniformly among the outgoing edges of v and sent to the neighbors of v. The PageRank of
each vertex is exactly ϵ fraction of its probability mass.

Note that if a vertex is on a cycle, some probability mass enters it multiple times. In
this case, each time the mass enters the vertex, it increases the total probability mass. In
particular, we have the following.

▶ Observation 6. Let v be a vertex, whose only outgoing edge is a self loop. Assume that v

receives a probability mass of p along its incoming edges other than the self-loop. Then, the
PageRank of v is p + 1/n.

▶ Lemma 7. Consider the graph Gτ obtained right after inserting all edges on the path from R

to ℓi. Let mi be the probability mass that reaches ℓi from R in Gτ . Then mi ≥ (1− ϵ)2d+2/4.
Moreover, out of the probability mass that reaches the leaves of H from R, at least

(1− 1/p)d fraction reaches ℓi.

Proof. Observe that a path from any vertex u ∈ R to ℓi first follows the edge to r, which is
the only outgoing edge of u, and then, thanks to the order of adding edges of H, at each
step uses the rightmost edge of each vertex in H. Consider an internal vertex w ∈ H. By
the construction it has pi edges to the ith child (0-based). Assuming that we have added
edges to j children so far, we have that there are pj−1 edges to the rightmost child and so
the fraction of outgoing edges of w that go to the rightmost child is:

pj−1/

(
j−1∑
k=0

pk

)
= pj−1 · p− 1

pj − 1 ≥ pj−1 · p− 1
pj

= 1− 1/p. (1)

ICALP 2024
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The path from w to ℓi has d + 1 edges. At each step 1− ϵ fraction of the probability mass is
forwarded to the children, out of which, as shown above, at least 1− 1/p ≥ 1− ϵ fraction
follows the path to ℓi. Hence, the fraction of probability mass that reaches ℓi from w is
(1− ϵ)2d+2. Since vertices of R generate a total probability mass of 1/4, we get the desired.

The second claim follows directly from Equation (1) and the fact that H has depth d. ◀

3.1 Lower Bound for Maintaining Additive Approximation
We first show the following auxiliary lemma which we will use to argue when an additive
α-approximate PageRank vectors must be updated in linear time.

▶ Lemma 8. Consider four vectors v1, ṽ1, v2, ṽ2 ∈ Rn, such that ∥v1−ṽ1∥1 ≤ α, ∥v2−ṽ2∥1 ≤
α and v1 and v2 differ by at least 100 · α/n on at least n/4 coordinates. Then ṽ1 and ṽ2

differ on Ω(n) coordinates.

Proof. The proof goes by contradiction. Assume that ṽ1 and ṽ2 differ on at most n/1000
coordinates. Thus, they have at least 0.999·n coordinates in common. Moreover, ∥v1−ṽ1∥1 ≤
α implies that v1, and ṽ1 differ by more than 10 ·α/n on less than 0.1 ·n coordinates. Clearly,
a similar property is satisfied by v2, and ṽ2.

Let I be the set of coordinates where
1. ṽ1 and ṽ2 are equal (there are at least 0.999 · n such coordinates),
2. v1 and v2 differ by at least 100 · α/n (at least n/4 such coordinates),
3. v1 and ṽ1 differ by at most 10 · α/n (at least 0.9 · n coordinates),
4. v2 and ṽ2 differ by at most 10 · α/n (at least 0.9 · n coordinates).

Observe that since the vectors have n coordinates, I is nonempty. By using first the
triangle inequality, and then items 2-4 above, for any coordinate i ∈ I we have

|ṽ1
i − ṽ2

i | ≥ |v1
i − v2

i | − |v1
i − ṽ1

i | − |v2
i − ṽ2

i |
≥ 100 · α/n− 10 · α/n− 10 · α/n

= 80 · α/n.

which contradicts item 1. The lemma follows. ◀

▶ Theorem 1. Fix ϵ ∈ (0.01, 0.99). For any sufficiently large n ≥ 1 and any α such that
1/α = no(1/ log log n), any algorithm which explicitly maintains α-additive approximation of
PageRank must run in n · (1/α)Ω(log log n) total time.

Proof. We instantiate our construction using the following parameters. The number of edges
from a vertex to its ith child is (1/ϵ)i (p = 1/ϵ). Each vertex of H has t = 1/2 · logp n

children. The tree H has depth d = log(101α)
2 log(1−ϵ) − 2 ≥ 1. Note that d = Θ(log(1/α)). Finally,

S0, S1 have s = n/4 leaves.
Let us now bound the size of the graph. The number of leaves of H is

td = (1/2 · log1/ϵ n)d =
(

log n

2 log 1/ϵ

)Θ(log(1/α))
= logΘ(log(1/α)) n = (1/α)Θ(log log n), (2)

where in the third step we use the fact that log n
2 log 1/ϵ = logΘ(1) n for sufficiently large n.

R, S0 and S1 have n/4 vertices each. By Equation (2) and the assumption on α, H has
o(n) vertices, and so with the additional isolated vertices, the graph has exactly n vertices.

The number of edges incident to R, S0 and S1 is O(n). The number of children of each
internal vertex of H is

Θ(pt) = Θ(p1/2·logp n) = Θ(n1/2).
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Thus, the total number of edges in H is (1/α)Θ(log log n) · n1/2 = no(1) ·Θ(n1/2). Hence, we
conclude that the graph has n vertices and O(n) edges.

Observe that as we add edges, leaves ℓ1, ℓ2, . . . become reachable from R exactly in the
order of their indices. Fix any leaf ℓj of H. Denote by πb and πa, respectively, the PageRank
vectors just before ℓj is reachable from R and just after all edges on the path from R to ℓj

are added.
We use the interpretation of PageRank based on probability mass. Before ℓj is reachable

from R, it may receive probability mass only from its ancestors in H. Hence,

πb
ℓj
≤ (d + 1)/n = Θ(log(1/α))/n = o(log n)/n.

Moreover, since PageRank is a ϵ fraction of the probability mass entering each vertex, by
Lemma 7,

πa
ℓj
≥ ϵ · (1− ϵ)2d+2/4 = ϵ · (1− ϵ)

log(101α)
log(1−ϵ) −2/4 = 101 · ϵ · α · (1− ϵ)−2.

The increase to PageRank of ℓj is thus at least πa
ℓj
− πb

ℓj
≥ 100 · ϵ · α(1− ϵ)−2. Hence,

after the insertion there is at least 100α(1− ϵ)−2/4 “new” probability mass at ℓj . Since every
two hop path from j leads to a leaf in Sj mod 2, each of these leaves will receive a least

100 · α · (1− ϵ)−2/4 · (1− ϵ)2/s = 100 · α/(4s).

new probability mass (since only (1 − ϵ) fraction of the probability mass is transferred
along each hop). By Observation 6 all of that probability mass ends up increasing the
PageRank of the leaf. Therefore the PageRank of each of these s leaves increases by
100 · α/(4s) = 100 · α/(4 · n/4) = 100 · α/n.

We now use Lemma 8 with v1 = πb, v2 = πa and ṽ1 and ṽ2 being any PageRank
vectors giving α-additive approximation and infer that Ω(n) coordinates of any approximate
PageRank vector must be updated in order to maintain α-additive approximation. This
happens for each leaf of H, and so by Equation (2) the Lemma follows. ◀

3.2 Lower Bound for Maintaining Multiplicative Approximation
▶ Theorem 3. There exists a sequence of Θ(n) edge insertions applied to an initially empty
graph on n vertices for which the following holds. For any constant δ > 0, any algorithm
that maintains a vector π̃ ∈ Rn such that (1/2)πv < π̃v ≤ 2πv at all time steps, must take
time Ω(n2−δ) to process the sequence. In particular, the amortized update time of any such
algorithm is Ω(n1−δ).

Proof. We instantiate our construction as follows. Each non-leaf vertex v of H has exactly
t = δ/2 log n/ log log n children, with (log2 n)i parallel directed edges from v to the i-th
child of v (p = log2 n). It follows that the total outdegree of each internal vertex in H is
O(nδ). The depth of H is set to be d = logt(n1−2δ) = Θ(log n/ log log n), so that H has
n1−2δ vertices, and the total number of edges in H is O(n1−δ). Finally, both S0 and S1 have
s = n1−2δ vertices.

Fix a leaf ℓj of H and consider the state of the algorithm right after all on the path from
the root of H to ℓj have been added. By Lemma 7, the probability mass entering ℓj is at
least.

(1− ϵ)2d+2/4 = (1− ϵ)Θ(log n/ log log n) = nΘ(−1/ log log n).
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Out of this probability mass a constant fraction reaches the leaves of Sj mod 2. In particular,
the PageRank of each such leaf is at least ϵ · nΘ(−1/ log log n)/n1−2δ ≥ n−δ.

Moreover, out of the probability mass from R the fraction that reaches ℓj is at least

(1− 1/p)d = (1− 1/ log2 n)Θ(log n/ log log n) ≥ 1− 1/ log n.

out of all probability mass that reaches the leaves of H from R. Observe that compared
to this probability mass (which is a constant), the total probability mass generated by all
vertices of H is negligible. As a result, the ratio of probability mass that reaches Sj mod 2 to
the probability mass that reaches S(j+1) mod 2 is

1− 1/ log n

1/ log n
= Θ(log n).

This implies that when we add all edges on a path from R to ℓj , the PageRanks of leaves of
Sj mod 2 increase by a factor of Θ(log n) and so the PageRank estimates of all these Ω(n1−2δ)
vertices must be changed. Since a total of m = O(n) edges are added, and since this occurs
once for each of the Ω(n1−δ) leaf vertices in H, we obtain a total of Ω(n2−3δ) PageRank
estimate updates, which is the desired result after rescaling δ by a constant. ◀

3.3 Lower bound for the ForwardPush algorithm
▶ Theorem 9. Consider running the ForwardPush [25] algorithm whose error parameter is
set to ensure that the algorithm maintains additive α approximation of PageRank. For any
δ > 0, each sufficiently large n ≥ 1 and ϵ ∈ (0.01, 0.99) there exists a graph on n vertices and
a sequence of O(n) edge insertions, such that the algorithm runs in Ω(n2−δ) time.

Proof. We use our construction with the same settings as in the proof of Theorem 3.
Specifically, t = δ/2 log n/ log log n, p = log2 n, d = logt(n1−2δ) = Θ(log n/ log log n) and
s = n1−2δ.

The ForwardPush algorithm can be explained using the probability mass interpretation.
The algorithm maintains a residual on each vertex u, denoted by Ru. This residual can be
positive or negative. Initially, the residual of each vertex is 1/n.

The residual is a probability mass that still has to be pushed to the neighbors of u. The
algorithm maintains two invariants
1. |Ru| ≤ γ deg(u) for each vertex u ∈ V , where γ is an accuracy parameter.
2. If we keep pushing the residuals, the PageRank estimates converge to the exact PageRank

values.

For any vertex u that violates the invariant, that is satisfies |Ru|/ deg(u) > γ, the
algorithm executes a push operation, which takes time Θ(deg(u)) and pushes a 1− ϵ fraction
of the residual to the outneighbors of u and uses a ϵ fraction of the residual to increase the
PageRank of u. The residual of u is then set to 0. Upon an insertion of an edge uv, the
algorithm decreases Ru by ∆ = Θ(πu)/ deg(u) and increases Rv by ∆. Then, it restores the
invariant by executing push operations.

In the following part of the proof we use the following observation, which follows from
the second algorithm invariant.

▶ Observation 10. Fix a vertex v and denote by Dv the set of vertices that have a directed
path to v. We assume v ∈ Dv. Then, the total additive error of the PageRank estimate
maintained by the ForwardPush algorithm is at most

∑
u∈Dv

|Ru|.
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By using the second algorithm invariant, we get that ForwardPush ensures that the total
additive error is

∑
u∈V |Ru| ≤

∑
u∈V γ deg(u) = γm. Therefore, to ensure an additive α

approximation of PageRank, we set γm ≤ α, implying γ ≤ α/m. We note that it is easy to
come up with an example where this analysis is tight up to a constant factor.

We now analyze ForwardPush algorithm on our hard instance. Since the number of edges
in our graph is Θ(n), we invoke ForwardPush with the approximation parameter γ = Θ(1/n).
We claim that with this value of γ, the residual values are propagated often enough so that
over Θ(n) edge insertions described above, ForwardPush makes Ω(n2−δ) updates.

We use the observations from the proof of Theorem 3 that the PageRank of a vertex ci

(i ∈ {0, 1}) is nΘ(−1/ log log n) and, as we add edges, increases by a Θ(log n) factor each time
we fully add a path from R to a leaf ℓj , such that i = j mod 2.

We now use Observation 10 to show that the ForwardPush maintains a constant factor
approximate of the PageRank estimates of c0 and c1. Indeed, these vertices can only be reached
from R, H or from themselves. We now bound the residuals of these vertices. The residuals of
the vertices of R are set to 0 the moment each of these vertices performs the first push operation
and are then never updated. The residual of each vertex v of H satisfies |Rv|/ deg(v) ≤ α/m

which implies |Rv| ≤ Θ(deg(v))/m = Θ(nδ−1). Finally, the residual of c0 (and, similarly c1)
satisfies |Rc0 |/ deg(c0) ≤ α/m, which gives |Rc0 | ≤ Θ(n1−2δ)/m = Θ(n−2δ). By applying
Observation 10 we have that the additive error the PageRank estimates of c0 and c1 is at
most

Θ(nδ−1) ·Θ(n1−2δ) + Θ(n−2δ) = Θ(n−δ).

These additive errors are negligible comared to the PageRanks of these vertices, which is
nΘ(−1/ log log n). Hence, the algorithm maintains constant-factor estimates of the PageRanks
of c0 and c1. As a result, when the exact PageRank values change by a factor of Θ(log n),
the algorithm updates their estimates. However, the ForwardPush algorithm only updates
a PageRank estimate of a vertex u when either it executes a push operation on u or adds
an outgoing edge from u. Since all outgoing edges of c0 and c1 have been added in the
beginning, we get that the algorithm executes a push operation on c0 for half of leaves of H.
Each such operation takes Θ(deg(c0)) = Θ(n1−2δ) time and so the overall running time of
the algorithm is Θ(n1−2δ · n1−2δ) = Θ(n2−4δ) which, after tweaking δ by a constant factor,
gives the desired. ◀

4 Approximating PageRank by Maintaining Dynamic Random Walks

In this section we review the algorithm for approximating PageRank by maintaining random
walks. This algorithm is a dynamic version of Algorithm 1 and has been previously described
by Bahmani et al. [4]. We provide a detailed proof of correctness of the algorithm, which to
the best of our knowledge has not been included in any prior work.

The algorithm relies on maintaining Oϵ(n log n) random walks and re-sampling their parts
as necessary. In this section, we present data structures that we use to efficiently maintain
and re-sample those random walks. Section 4.1 presents our approach on an edge insertion,
while Section 4.2 describes how our algorithms handle edge deletions. We being by describing
the problem setup.

Setup. Following Proposition 5, to approximate the PageRank it suffices to sample R =
O(log n/(ϵα2)) PageRank walks from each vertex. A PageRank walk is a random walk w,
whose length ℓw is sampled from geometric distribution with parameter 1− ϵ. Even though a
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given walk may get re-routed after edge insertions or deletions, it is crucial that the the length
of each walk remains fixed throughout the entire execution of the algorithm. Otherwise, it
is easy to construct examples where the lengths of the maintained walks no longer follow the
right distribution.

We maintain two types of data structures. For each each vertex v and t = 0 . . . O(log n/ϵ),
we maintain a binary search tree Sv,t which stores all the walks whose t-th vertex if v. For
each edge e, we maintain the binary search tree We consisting of the walks passing through e.

4.1 Edge Insertion
When an edge (u, v) is inserted, we re-sample some of the walks passing through u. This
re-sampling is done by first performing rejection sampling on each walk and, second, by
choosing an appropriate position where each of the rejected walks should be re-sampled.
Choosing an appropriate position from where to re-sample w is trivial in case when w passes
through u once. However, it might be the case that w passes through that vertex multiple
times, and a more careful consideration is required. At a high level, we iterate through all
segments of w and for each segment of w that leaves u we toss a coin. Then, with probability
1/du, where du is the degree of u after the update, we reroute w starting from the considered
segment, and terminate the update procedure for w.

Each walk has a unique ID associated with it. These IDs are integers ranging from 1
through the number of walks we maintain. Each vertex and each edge keeps track of which
walks are passing through them.

Given a vertex v and integers i and t, it will be convenient to be able to sample the i-th
walk whose t-th vertex is v. It will become clear why such operation is needed when we
describe how to handle edge insertions. To be able to implement this operation efficiently,
we store the IDs of walks whose t-th vertex is v in a binary tree; we use Sv,t to refer to this
binary tree. Then, the i-th walk can be easily fetched via a search within that tree. The
maximum value of t to consider is upper-bounded by the maximum length of the walks.

Assume that we insert an edge e = (u, v). Let du be the out-degree of u after adding
e. Consider a walk w that at some point got to u and continued to u’s neighbors. If e was
present in the graph at that point, with probability 1/du the walk w would have continued
along e, and with probability 1− 1/du the walk w would have chosen some other neighbor of
u. However, w was sampled before e was in the graph, and our aim now is to correct this
distribution and account for the insertion of e. The idea is to use rejection sampling, which
we provide as Algorithm 2.

The for-loop on Line 3 of Algorithm 2 is in an efficient way of selecting walks passing
through u and v that need to be re-sampled. Since the length of each walk follows a geometirc
distribution with parameter 1− ϵ, it is easy to see that with high probability the walks have
length O(log n/ϵ), and hence ℓ ∈ O(log n/ϵ).

Remark: To the best of our understanding, on an insertion of an edge (u, v), the prior
work [24] re-samples a walk passing through u from the first occurrence of u in the walk, if
there is any such occurrence (for details, see [24]). Such re-sampling does not account for
the case when a walk passes through u multiple times and leads to biases in randomness.

4.2 Edge Deletions
Algorithm 3 presents our procedure executed after deleting an edge.

Let e be a deleted edge, and let We ⊆W be the list of walks passing through e. Clearly
each w ∈We needs to be rerouted. The following lemma states that W updated by executing
Algorithm 3 is a set of independent random walks.
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Algorithm 2 A procedure executed after edge e = (u, v) is inserted.

1: W ← ∅
2: Let ℓ be the length of longest generated walk.
3: for t = 1 . . . ℓ do
4: Sample each walk from Su,t with probability 1/du in the following way. First,

select an integer ru,t from the binomial distribution with parameters |Su,t| and
1/du. Second, select ru,t integers uniformly at random and without repetition
from [1, |Su,t|]. Then, for each of those integers i select the i-th walk from Su,t.
If e is an undirected edge, apply the same steps for Sv,t.

5: For each walk w selected in the last step such that w /∈W , add w to W and
label w by t.

6: end for
7: for each w ∈W do
8: Let j be the label remembered for w on Line 5.
9: Generate walk w′ with the following properties:

The walks w and w′ have the same length.
The vertex-prefixes of length j of w and w′ are the same.
After that prefix, if w has more than j vertices, w′ walks along e.
The remaining edges of w′ are chosen randomly, i.e., the rest of w′ is a newly
generated random walk.

10: Update the data structures by removing w and inserting w′.
11: end for

Algorithm 3 A procedure executed after edge e is deleted.
1: Let We ⊆W be the list of walks passing through e.
2: for w ∈We do
3: Let wp be the longest prefix of w not containing e.
4: Let w′ be a walk of length |w| such that w′ has wp as its prefix, and the

remainder of w′ is a random walk.
5: To update W , remove w from W and the corresponding data structures, and

insert w′.
6: end for

▶ Lemma 11. Let W be the set of walks that our algorithm maintains. Assume that e gets
deleted, and let W ′ be the updated list of walks as described in Algorithm 3. If W consists
of random walks sampled independently, then W ′ is also a set of random walks sampled
independently.

Proof. The edges of walks throughout the algorithm are sampled independently of each
other, so walks are independent by construction. We focus on showing how deletion of an
edge affects randomness of a single walk.

Consider a walk w ∈W originating at vertex w1. Let wi be the i-th vertex of w, w1...i

be the prefix of length i of w, and k be the length of w. Walk w is random iff for each i ≥ 2
and each u ∈ N(wi−1) it holds

Pr [wi = u | w1...i−1] = 1
d(wi−1) . (3)
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Let w′ be the updated walk w, d′(v) be the updated degree of vertices after e gets deleted and
u′ be a neighbor of w′

i−1 after deletion of e. Note: we are not assuming that w contains e, so
it might be the case that w = w′. We want to show that Pr

[
w′

i = u′ | w′
1...i−1

]
= 1/d′(w′

i−1).
We have

Pr
[
w′

i = u′ | w′
1...i−1

]
(4)

= Pr
[
w′

i = u′ | w′
1...i−1, e ∈ w1...i

]
· Pr [e ∈ w1...i] (5)

+ Pr
[
w′

i = u′ | w′
1...i−1, e /∈ w1...i

]
· Pr [e /∈ w1...i] . (6)

Analyzing (5). We first handle (5). Recall that w′ is constructed by keeping only the prefix
of w up to the first occurrence of e, and the rest of the walk of w′ is random and independent
of any other state of the algorithm (see Algorithm 3). Hence, we have

Pr
[
w′

i = u′ | w′
1...i−1, e ∈ w1...i

]
= 1

d′(w′
i−1) .

Analyzing (6). Now consider term (6). If w1...i does not contain e, then w′
1...i = w1...i and

we have

Pr
[
w′

i = u′ | w′
1...i−1, e /∈ w1...i

]
= Pr [wi = u′ | w1...i−1, e /∈ w1...i−1, e ̸= {wi−1, wi}] .

There are two cases:
(a) Case wi−1 /∈ e: from (3) we have

Pr [wi = u′ | w1...i−1, e /∈ w1...i−1, e ̸= {wi−1, wi}, wi−1 /∈ e]
= Pr [wi = u′ | w1...i−1, e ̸= {wi−1, wi}, wi−1 /∈ e]

= 1
d(wi−1) = 1

d′(wi−1) = 1
d′(w′

i−1) .

In the last chain of equalities we used that once we condition on w1...i−1, then (3) is a
function of only wi−1 and not on any other content of w1...i−1, e.g., whether e ∈ w1...i−1
or not.
Note: The choice of e is independent of our data structures and the randomness the
algorithm uses. However, in the case of non-oblivious adversary, i.e., in case of the
adversary who sees the state of our algorithm, the updated edge e could be chosen based
on the randomness used to generate w, and hence the above sequence of equalities would
not hold.

(b) Case wi−1 ∈ e: we have the following

Pr [wi = u′ | w1...i−1, e /∈ w1...i−1, e ̸= {wi−1, wi}, wi−1 ∈ e]

=Pr [wi = u′ ∧ e ̸= {wi−1, wi} | w1...i−1, e /∈ w1...i−1, wi−1 ∈ e]
Pr [e ̸= {wi−1, wi} | w1...i−1, e /∈ w1...i−1, wi−1 ∈ e]

= 1/d(wi−1)
(d(wi−1)− 1)/d(wi−1) = 1

d(wi−1)− 1 = 1
d′(w′

i−1) .
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Showing (3) for w′. The analysis of (5) and (6) together with (4) implies

Pr
[
w′

i = u′ | w′
1...i−1

]
= 1

d′(w′
i−1) · Pr [e ∈ w1...i] + 1

d′(w′
i−1) · Pr [e /∈ w1...i]

= 1
d′(w′

i−1) . ◀

4.2.1 Re-sampling Walks from Scratch
We now give a simple example that shows why re-sampling affected walks from scratch after
a deletion would not properly maintain random walks. We note that this approach was
suggested as a valid alternative by Bahmani et al. [4].

Consider a path graph on 5 vertices; let the graph be 1−2−3−4−5. Consider a random
walk w of length 2 originating at vertex 3 and visiting vertices w1, w2, w3, i.e., w1 = 3. Next,
a deletion of e = {4, 5} occurs. Let w′ be obtained from w as follows: if w contains e, then
w′ is a new random walk of length 2 originating at 3; otherwise, w′ equals w. Now, if we
denote the vertices on w′ by w′

1, w′
2, w′

3, we have

Pr [w′
2 = 4] = Pr [w′

2 = 4 | {4, 5} /∈ w] Pr [{4, 5} /∈ w]
+ Pr [w′

2 = 4 | {4, 5} ∈ w] Pr [{4, 5} ∈ w]
= Pr [w2 = 4 | {4, 5} /∈ w] Pr [{4, 5} /∈ w]

+ Pr [w′
2 = 4 | {4, 5} ∈ w] Pr [{4, 5} ∈ w]

= Pr [w2 = 4 and {4, 5} /∈ w] + 1
2 ·

1
4

=1
4 + 1

8 .

However, for w′ to be random it should hold Pr [w′
2 = 4] = 1/2.

5 Near-Optimal Additive Approximation Algorithm

In this section, we analyze the algorithm from Section 4 in the context of dynamically
maintaining additive approximation of PageRank. Namely, we show that when considering the
incremental or decremental setting for directed graphs, an α additive PageRank approximation
can be maintained in (1/α)Oϵ(log log n) amortized update time, even for an adversarially chosen
graph and a sequence of edge updates. Perhaps surprisingly, Theorem 1 shows that, for a
constant ϵ, this running time complexity is essentially tight.

▶ Theorem 2. For any ϵ ∈ (0, 1), there is an algorithm that with high probability explicitly
maintains an α additive approximation of PageRank of any graph G in either incremental or
decremental setting. The algorithm processes the entire sequence of updates in O(m) + n ·
(1/α)Oϵ(log log n) total time and works correctly against an oblivious adversary.

Our new analysis is based on two ideas. First, we show that if we limit the lengths of
walks in Algorithm 1 to a constant, we obtain a constant additive approximation of the
PageRank vector. This is thanks to the fact that a constant fraction of all walks have length
O(1/ϵ), and so this truncation only affects a constant factor of the walks.

▶ Lemma 12. Let π be the PageRank of a directed graph G. Then, with high probability,
Algorithm 1 for ℓ = ⌈2/ϵ · log (2/(αϵ))⌉ outputs a vector πadd such that ∥π − πadd∥1 ≤ 5 α

1−ϵ .
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To keep the flow of high-level ideas uninterrupted, the proof of Lemma 12 is given in
Section 5.1.

The second idea is an observation which bounds the maximum number of times a walk
can be affected by adding edges (edge deletions can use a symmetric argument). To explain
the idea let us see what happens when we want to maintain a random outgoing edge e of a
vertex undergoing insertions of outgoing edges. Clearly when we insert the d-th outgoing edge
we need to update e to be equal to d with probability 1/d. By a harmonic sum argument,
the expected number of times e needs to be updated in the course if k insertions is only
O(log k). We generalize this argument to walks of length ℓ as follows.

▶ Lemma 13. Let G be a directed graph undergoing edge insertions (or deletions). The total
number of times a random walk of length ℓ is being regenerated is bounded by O(logℓ n) in
expectation.

Proof. We are going to prove this bound by induction, i.e., let us denote by f(i) the upper
bound on expected number of times the walk of length i is regenerated. Consider a random
walk w of length 1 starting in a vertex v. Consider insertion of an edge incident to v. The
probability that w is regenerated at this moment is 1/dv. As we consider incremental setting
the expected number of times w is regenerated is bounded by

f(1) =
n∑

i=1

1
i
≤ ln n.

Now consider a walk w of length ℓ starting at v. Similarly as above we can bound the number
of changes to w as

f(ℓ) =
n∑

i=1

1
i
· f(ℓ− 1) ≤ ln n · f(ℓ− 1) = lnℓ n,

what finishes the proof. Symmetric argument can be applied in the decremental case. ◀

The above lemma implies that for ℓ = ⌈2/ϵ·log (2/(αϵ))⌉ the amortized cost of maintaining
each walk is (1/α)O(log log n) for a constant ϵ. As we generate O(n log n) walks in Algorithm 1
the total cost of maintaining 5α/(1− ϵ)-approximation in incremental or decremental setting
is O(m + n · (1/α)O(log log n)).

5.1 Proof of Lemma 12
Define ℓ̂ = ⌈2/ϵ · log (2/(αϵ))⌉. Let π̃ be the output of Algorithm 1 for ℓ = ∞, and πadd
the output for ℓ = ℓ̂. As discussed, it is known, e.g., see [4, 16], that |πv − π̃v| ≤ απv. As∑

v πv = 1, this further implies ∥π − π̃∥1 ≤ α.
Next, we compare πadd and π̃. Difference between these two vectors can be expressed by

the following two quantities: (1) |W |, which in turn affects the scaling on Line 5; and (2) the
value of Xv, which affects the numerator on Line 5. We analyze both of these quantities.

Analysis for |W |. For ℓ = ℓ̂, a walk has length at most ℓ̂ with probability ϵ
∑ℓ̂

j=0(1− ϵ)j =
1 − (1 − ϵ)ℓ̂+1 ≥ 1 − ϵ/2, where we used that 1 − x ≤ e−x for x ∈ [0, 1/2]. Hence,
E [|W |] ≥ nR(1− ϵ/2). By using a Chernoff bound we can prove that with high probability
it holds |W | ≥ nR(1− ϵ). The proof proceeds as follows. In the summation above, there are
only ℓ different values of j that affect E [|W |]. For a fixed j, the contribution to |W | can be
expressed as a sum of independent 0/1 random variables – a random variable per each
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of the nR walks, denoting whether the given walk has length length j or not. Hence, for a
fixed j we apply the Chernoff bound to show it concentrates well, and then by the union
bound over all ℓ values of j we get the desired concentration for |W |.

Analysis for Xv. By definition, πadd only accounts for the contribution to Xv by the
appearances of v which are within walks of length at most ℓ; Xv is defined in Algorithm 1.
Let Yv be the appearances of v for which πadd does not but π̃ does account for.

Now, we upper-bound
∑

v Yv:

E

[∑
v

Yv

]
=nR(1− ϵ)ℓ̂+1 · (ℓ̂ + 1) +

∞∑
j=ℓ̂+2

nR(1− ϵ)j

≤2nRα + nR(1− ϵ)ℓ̂+2
∞∑

j=0
(1− ϵ)j

=2nRα + nR

ϵ
(1− ϵ)ℓ+2

≤2nRα + nRϵα2/4
≤3nRα.

In the derivation above, we used (1−ϵ)ℓ̂+1(ℓ̂+1) ≤ (αϵ/2)2(ℓ̂+1) ≤ (αϵ/2)22ℓ̂ ≤ 2α. To prove
that

∑
v Yv ≤ 4nRα with high probability, it suffices to proceed the same way as for our

analysis of E [|W |]. In the analysis, we need the observation that
∑

j>c log n/ϵ nR(1−ϵ)j < 1/n

for a sufficiently large constant c. In other words, there are only O(log n) different values of
j that substantially contribute to

∑
v Yv and over which is needed to take the union bound.

Our analysis now implies that additive approximation of Algorithm 1 for ℓ = ℓ̂ is with
high probability upper-bounded by α

1−ϵ + 4 αϵ
1−ϵ ≤ 5 α

1−ϵ . The first term is coming from the
fact that πadd is computed by rescaling Xv by |W |/ϵ ≥ (1− ϵ)nR/ϵ as opposed to rescaling
by nR/ϵ, as it is done when computing π̃. The second term is coming from the fact that the
loss between π̃ and πadd in the numerator of Line 5 is at most 4nRα with high probability,
which is divided by |W |/ϵ ≥ nR(1− ϵ)/ϵ.

6 Efficient Multiplicative Approximation in Undirected Graphs

In this section, we describe how to maintain approximate PageRank of undirected graphs under
edge deletions and insertions even if the goal is to maintain a multiplicative approximation.
Our approach takes polylog n time per update and is also based on the algorithm from
Section 4.

▶ Theorem 4. For any ϵ ∈ (0, 1), there is an algorithm that with high probability explicitly
maintains a 1 + α multiplicative approximation of PageRank of any undirected graph G in
the fully dynamic setting. The algorithm handles each update in O(log5 n/(ϵ2α2)) time and
works correctly against an oblivious adversary.

Our analysis relies on the following (folklore) claim, which states that the number of the
walks passing through an edge is fairly small.

▶ Lemma 14 (Folklore). Let G be an undirected graph. Consider a set of random walks W

of length ℓ < n each, such that there are dv walks originating at vertex v. Then, with high
probability an edge e is contained in O(ℓ · log n) of those walks.
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Proof. Observe that the number of walks in W originating at each vertex v is proportional
to the stationary distribution of v. Hence, the number of walks of W whose i-th vertex is v

in expectation equals dv, for each 1 ≤ i ≤ ℓ. Therefore, the number of walks of W whose
i-th edge is e = {u, v} (either as u→ v or v → v) in expectation equals 2, for each 1 ≤ i ≤ ℓ.

Let Xe,i be the number of walks whose i-th edge equals i. From our discussion, E [Xe,i] = 2.
Also, Xe,i is a sum of 0/1 independent random variables Yv,j,i, where Yv,j,i means that the
i-th edge of the j-th walk originating at v equals e. Hence, by applying the Chernoff bound,
we obtain that with high probability it holds that Xe,i ∈ O(log n). By taking the union
bound over all 1 ≤ i ≤ ℓ and over all the vertices, we prove the desired claim. ◀

As a direct consequence of Lemma 14 we obtain the following claim.

▶ Corollary 15. Consider n · t independent random walks of length ℓ ∈ O(log n/ϵ) such
that from each vertex there are t walks originating. Then, with high probability an edge e is
contained in O(t log2 n/ϵ) of those walks.

In Section 4, we describe how to update our data structures in O(ℓ · log n) time per an
update of an ℓ-length walk. Since Algorithm 1 runs t = R = O(log n/(ϵα2)) random walks
per vertex, by Corollary 15 there are O(log3 n/(ϵα2)) walks passing through each edge. Thus
by the fact that walks have lengths O(log n/ϵ) with high probability, the dynamic algorithm
requires O(log5 n/(ϵ2α2)) time for each update, which yields Theorem 4.
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