
A Sublinear Time Tester for Max-Cut on
Clusterable Graphs
Agastya Vibhuti Jha #

École polytechnique fédérale de Lausanne, Switzerland

Akash Kumar1 #

Indian Institute of Technology, Bombay, India

Abstract
One natural question in the area of sublinear time algorithms asks whether we can distinguish
between graphs with max-cut value at least 1 − ε from graphs with max-cut value at most 1/2 + ε

in the adjacency list model where we can make degree queries and neighbor queries. Chiplunkar,
Kapralov, Khanna, Mousavifar, and Peres (FOCS’ 18) showed that in graphs of bounded degree, one
cannot hope for a factor 1/2 + ε approximation to the max-cut value in time n1/2+o(ε). Recently,
Peng and Yoshida (SODA ’23) obtained o(n) time algorithms which can distinguish expanders
with max-cut value at least 1 − ε from expanders with small max-cut value (their running time
is n1/2+O(ε)). In this paper, going beyond the results of Peng-Yoshida, we develop sublinear time
algorithms for this problem on clusterable graphs (which is a graph class with a good community
structure). Our algorithms run in ≈ n0.5001+O(ε) time.

A natural extension of Peng-Yoshida approach does not seem to work for clusterable graphs.
Indeed, their random walk based technique tracks the ℓ2 length of random walk vectors and they
exploit the difference in the length of these vectors to tell apart expanders with large cut value
from expanders with small cut-value. Such approaches fail to be reliable when graph has loosely
connected clusters. Taking inspiration from [4], we exploit the more refined geometry of spectra of
clusterable graphs which leads to our sublinear time implementation. We prove a novel spectral
lemma which shows that in a spectral expander 2 − λn−1 ≥ Ω(λ2). This lemma is leveraged to show
that there is a suitable difference between spectra of clusterable graphs with large cut value and
spectra of clusterable graphs with small cut value. We use this gap to obtain our sublinear time
implementation. To do this, we obtain a nuanced understanding of the eigenvector structure of
clusterable graphs and in particular, we show that the eigenvectors of the normalized Laplacian of a
clusterable graph, corresponding to eigenvalues which are close to 2 have a small infinity norm.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Mathematics of computing → Spectra of graphs

Keywords and phrases Sublinear Algorithms, Graph Algorithms, Clusterable Graphs, Property
Testung

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.91

Category Track A: Algorithms, Complexity and Games

Acknowledgements We sincerely thank Michael Kapralov for insightful discussions at the beginning
of the project. We also would like to thank Kshiteej Sheth and Weronika Wrozs-Kominska for being
helping us bounce off ideas.

1 Introduction

Max-Cut is a fundamental algorithmic problem and has several applications in computer
science. In this problem, we are given a graph G = (V, E) as input and we are asked to find
a bipartition (S, S) of vertices which has the maximum number of edges going across. Let

1 Part of this work was done when the author was a postdoc at EPFL.

EA
T

C
S

© Agastya Vibhuti Jha and Akash Kumar;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 91; pp. 91:1–91:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:agastyavjha.28@gmail.com
mailto:akash@cse.iitb.ac.in
https://doi.org/10.4230/LIPIcs.ICALP.2024.91
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

91:2 A Sublinear Time Tester for Max-Cut on Clusterable Graphs

Max-Cut(G) denote the fraction of edges cut by the maximizing bipartition. The decision
version of Max-Cut was shown to be NP-Complete by Karp in his famous list of 21 problems
in [11]. A 0.878 approximation algorithm for Max-Cut was achieved in the seminal work
of [8] which was shown to be tight assuming the unique games conjecture.

While Max-Cut is interesting on general graphs, it is also intriguing when restricted to
important graph classes. For instance, [2] provided algorithms for finding cuts in expanders
with Max-Cut(G) ≥ 1 − γ (for some sufficiently small γ > 0) that are crossed by at least
(1 − O(γ)) fraction of the edges, which improves (in small γ regime) upon the Goemans-
Williamson bound of (1 − O(√γ)) fraction of edges. In another direction, more relevant to
this paper, a crucially important step was taken by [9] who presented algorithms for testing
bipartiteness in bounded-degree graphs, assuming query access to the adjacency list of the
input. This algorithm decides in sublinear time whether the input bounded-degree graph has
Max-Cut(G) = 1 or whether has Max-Cut(G) < 1 − γ. The authors also proposed a two-step
rule of thumb for approaching a wide variety of property testing problems in bounded-degree
graphs, which involves developing property testing algorithms assuming the input graph is
an expander, and then using tools from expander decompositions to break the graph into a
collection of expanding components with inverse-polylogarithmic expansion.

Until recently however, no sublinear time algorithms were known for approximating
Max-Cut even on expanding graphs which approximate the cut-value to within a factor
better than 1/2. This was remedied by [13] who gave sublinear algorithms for approximating
Max-Cut on expanders in the adjacency list model. In this work, we focus on the adjacency
list model and provide sublinear time algorithms for Max-Cut on a natural relaxation of
expanders, namely, the family of (k, φ, ε)-clusterable graphs. Briefly, a degree d-bounded
graph G = (V, E) is (k, φ, ε)-clusterable if the vertex set can be partitioned into k sets, each
with inner conductance at least φ and outer conductance at most ε. This graph class has
been considered in several recent works on property testing [5, 4, 7]. Our main theorem
(informal version below) concerns this graph class and asserts the following:

▶ Theorem 1. Fix k ∈ N, φ < 1 and 0 < ε, γ < δφ2 where δ = 10−5. Then there exists an
algorithm which on input a (k, φ, ε)-clusterable graph runs in time ≈ n1/2+100δ+O(ε/φ2) and
returns

Yes, if Max-Cut(G) ≥ 1 − γ

No, if Max-Cut(G) ≤ 1/2 + γ

Broadly speaking, this problem of distinguishing clusterable graphs with large max-cut
value from clusterable graphs with small max-cut value is a special sub-problem of the
more general question which seeks to develop tolerant testers for max-cut. Some complexity
considerations related to the Unique Games Conjecture seem to suggest that this problem
does not admit a (1 − γ, 1 − √

γ) tolerant tester in the adjacency list query model. [3] even
showed that there is no sublinear time algorithm for the Max-Cut problem with approximation
ratio better than 16/17. It is an open question to chase down the parameter range for which
one might expect a sublinear time algorithm for a better than one-half approximation of
Max-Cut on a class of graphs richer than expanders. Our results can be viewed as taking
the first step in this direction.

2 Preliminaries

In the following, we will let G = (V, E) denote a graph.

▶ Definition 2. The normalized adjacency matrix Ā is D−1/2AD−1/2, where D is the
diagonal of degrees. The normalized Laplacian is L̄ = I − Ā.

A. V. Jha and A. Kumar 91:3

The random walk associated with G is defined to be the random walk with transition
matrix AD−1. Note that, unlike the previous works in property-testing, we do a non-lazy
walk over G.

▶ Definition 3 ([10], Rayleigh Quotient). Let A be a matrix in Rn×n and let x be a non-zero
vector in Rn. Then, the Rayleigh quotient of x with respect to A is defined as:

RA(x) = xT Ax

xT x
.

For any arbitrary matrix B in Rn×n, we use µ1 ≤ µ2 ≤ . . . ≤ µn to denote its eigenvalues
in ascending order, and ν1 ≥ ν2 ≥ . . . ≥ νn to denote its eigenvalues in descending order.
Given a graph G = (V, E), we let 1x ∈ RV to denote the indicator vector for a vertex x

in V . For a multi-set of vertices {x1, x2, . . . xk}, we let S ∈ Rn×k denote the matrix of
indicators, where the jth column of S is the vector 1xj

for 1 ≤ j ≤ k.
(Informal) Given a graph G = (V, E), and its normalized Laplacian L̄, we will refer to
the eigenvectors with corresponding eigenvalues close to 0 (resp. eigenvalues close to 2)
as the clusterability eigenvectors (resp. Max-Cut eigenvectors). The notion of close to 0
(resp. close to 2) will be made clear in the context.

▶ Theorem 4 ([10], Spectral Theorem). Let A be a real symmetric matrix. Then, there exists
an orthonormal basis of Rn consisting of eigenvectors of A and all the eigenvalues of A are
real.

▶ Theorem 5 ([10], Courant-Fischer). Let A be a real symmetric matrix in Rn×n, let
λ1 ≤ λ2 ≤ . . . ≤ λn be its eigenvalues. Then, for any 1 ≤ k ≤ n,

λk = min
U

max
x ̸=0

{{RA(x) | x ∈ U} | dim U = k},

and

λn−k+1 = max
U

min
x̸=0

{{RA(x) | x ∈ U} | dim U = k}.

▶ Lemma 6 ([10], Weyl’s Inequality). Let A and E be real symmetric matrices in Rn×n.
Then, for all i ∈ {1, 2, . . . , n},

λi(A) + λmin(E) ≤ λi (A + E) ≤ λi(A) + λmax(E).

▶ Lemma 7 ([10]). For any m × n matrix A and n × m matrix B, the multisets of nonzero
eigenvalues of AB and BA are the same. In particular, if one of AB and BA is positive
semi-definite, then µh (AB) = µh (BA).

▶ Lemma 8 (Folklore). Let A and B denote two positive semidefinite matrices in Rn×n.
Then νmax (AB) ≤ νmax (A) νmax (B).

▶ Definition 9. Given a graph G = (V, E) and a set S ⊆ V , we define vol(S) =
∑

i∈S deg(i).

▶ Definition 10 (Inner and Outer Conductance). Let G = (V, E) be a graph. For a set
S ⊆ C ⊆ V , we define the conductance of S within C as φC

in(S) = |E(S,C\S)|∑
i∈S

deg(i)
= |E(S,C\S)|

vol(S) .
The inner conductance of a set C ⊆ V is defined as

φin(C) = min
S⊆C

0<vol(S)≤vol(C)/2

φC
in(S).

We define the outer conductance of a set C ⊆ V to be φout(C) = |E(C,V \C)|
vol(C) .

ICALP 2024

91:4 A Sublinear Time Tester for Max-Cut on Clusterable Graphs

▶ Theorem 11 (Cheeger’s Inequality, Folklore). Let G be a graph. Let L̄ denote its normalized
Laplacian. Then,

ϕ2(G)
2 ≤ λ2 ≤ 2ϕ(G),

where λ2 denotes the second smallest eigenvalue of the normalized Laplacian of G.

▶ Definition 12 ((k, φ, ε)-clusterable graphs). A graph G = (V, E) is said to admit a (k, φ, ε)-
clustering if there exists a partition of V into k sets C1, C2, . . . Ck such that each Ci satisfies
φin(Ci) ≥ φ and φout(Ci) ≤ ε and for all i, j ∈ [k] it holds that |Ci|

|Cj | = O(1).
When the parameters φ and ε are clear from the context, we will often refer to these

graphs as k-clusterable graphs and sometimes even as clusterable graphs when the parameter
k is also clear from the context. [7] consider clusterable graphs where ε/φ2 ≤ δ := 10−5. We
also consider a similar parameter regime.

▶ Theorem 13 ([7], Clusterability Eigengap). Let G be a graph that admits a (k, φ, ε)-clustering.
Let 0 ≤ λ1 ≤ λ2 ≤ . . . λn denote the spectrum of its normalized Laplacian. Then, λk ≤ 2ε

and λk+1 ≥ φ2/2.

3 Technical Overview

The algorithmic problem of getting a better than 1/2 approximation algorithm for the max-
cut-value of a degree bounded graph was ushered to the frontlines of research in sublinear-time
algorithms in the work of [4]. This paper shows that any algorithm that returns an estimate
to the max-cut-value that is at least 1/2 + ε must make an n1/2+Ω(ε) number of queries to
the adjacency list of G. After this work, one natural next step is to ask whether there are
algorithms that approximate max-cut to within some approximation factor better than 1/2
on some rich enough class of interesting graphs. A progress was reported on this endeavor
in the work of [13] who obtained a such an estimate to the max-cut-value on expanders of
bounded degree.

As our starting point, we describe at a high level, the approach used in [13] for deciding
whether the max-cut value of an input expander is large or whether it is small. The starting
point of this work adapts the techniques used in the pioneering work of [9] to obtain a
tester for deciding whether Max-Cut(G) is close to 1 or bounded away from 1 on expanders.
One can think of a φ-expander as a (k, φ, ε)-clusterable graph with k = 1 and ε = 0 (see
Definition 12). Let us now describe the high level ideas that underlie Peng-Yoshida algorithm.
In particular, [13] note that on an expanding instance with large max-cut value, the following
distributions over end-points of ℓ length lazy walks are fairly far:

Dv,e: The end-point distribution supported over vertices reached in an ℓ-step walk with
the effective length (that is, number of steps left after deleting all loops) being an even
number.
Dv,o: The end-point distribution supported over vertices reached in an ℓ-step walk with
the effective length being an odd number.

As mentioned ealier, the intuition behind this argument comes from [9] which considers
the case where Max-Cut(G) = 1. In this case, note that the distributions are disjointly
supported and thus indeed the ℓ2

2 distance between the distributions is large.
While the Peng-Yoshida algorithm extends the Goldreich-Ron bipartiteness testing

algorithm in a very elegant way, unfortunately, this algorithm does not extend to the (k, φ, ε)-
clusterable case even for k = 2. To see this, let us take the following graph. It contains two

A. V. Jha and A. Kumar 91:5

disjoint isomorphic (1/ε − 2)-regular2 bipartite φ-expanders which are sparsely connected
(and we will describe what these corss-edges are momentarily). We denote the first bipartite
graph as (A1, B1) and the other one as (A2, B2) where |A1| = |B1| = |A2| = |B2| = n/4.
Next, we connect A1 and A2 with a perfect matching and we also connect A1 and B2 with
another perfect matching. We also add a perfect matching between B1 and A2 and another
one between B1 and B2. In all, this gives us a 1/ε-regular (2, φ, ε)-clusreable graph which
has Max-Cut(G) = 1 − O(ε). Now, consider performing a lazy walk of logarithmic length
from any start vertex in this instance. Note that the walk reveses its “polarity” once every
2/ε steps in expectation. In particular, this means that the distributions Dv,o and Dv,e are
fairly close and one can no longer use the distance between these distributions as a reliable
indicator for whether the max-cut-value is large or whether it is small.

We want to circumvent this obstacle and obtain a better than 1/2-approximation to max-
cut-value in sublinear time for k-clusterable graphs. To this end, for the ease of presentation
in this overview, it will be convenient to make the following simplications listed in the remark
below.

▶ Remark 14. We emphasize that all the simplifications made in this remark are only for the
ease of presentation in this overview. Our main result (Theorem 16) and its proof does not
rely on these simplifications.
1. We will assume that graph is d-regular.
2. We will assume that all clusters in the input k-clusterable graph have the same size.
3. Recall we are trying to distinguish (k, φ, ε)-clusterable graphs with max-cut-value at least

1 − γ from graphs with max-cut-value at most 1/2 + γ. It will additionally be convenient
to assume that φ = Ω(1) and that ε and γ are sufficiently small constants with γ = Θ(ε).
As stated in Theorem 16, we only need to have both ε and γ being at most δφ2.

Now, towards getting a better than 1/2 approximation to the max-cut-value, let us
consider the following intuition: Suppose we are given a k-clusterable graph G with high
max-cut-value. That is, we are told that Max-Cut(G) ≥ 1 − γ. In this case, by averaging,
one notices that G has at least ℓ := 2k/3 clusters which have induced max-cut-value at least
1 − O(γ). Now consider the graph that one gets after doing a two-step non-lazy walk on
G. This is the graph G2 where one puts a (parallel) edge between every pair of vertices
between which there is a path of length two. Consider what this process does to a component
with high induced max-cut-value. Intuitively, since (almost) all the edges run between the
maximizing bipartition in this component, we get two sparsely connected components – one
induced on each bipartition. And both of these bipartitions induce expanders as well. This
way, we get one additional sparse cut in G2 corresponding to every component with large
induced max-cut-value. In particular, this means the (k + ℓ)-th smallest eigenvalue of the
Normalized Laplacian of G2 is close to zero. Thus, this intuition suggests that one can track
the (k + ℓ)-th smallest eigenvalue of the normalized Laplacian of the graph which results after
a non-lazy walk of some even length. Indeed, our algorithms are built off on this intuition.

Towards showing that this algorithm can reliably distinguish between k-clusterable graphs
G with Max-Cut(G) ≥ 1 − γ and k-clusterable graphs with Max-Cut(G) ≤ 1/2 + γ (recall
we assumed γ = Θ(ε) in Remark 14), we need to understand the spectra of instances in
both of these regimes. Additionally, we need to show that the graph spectra in these two
cases are appreciably different that a non-lazy random walk based algorithm can detect this
difference. We now outline our algorithm. The algorithm proceeds by taking a multiset

2 We ignore the integrality issues.

ICALP 2024

91:6 A Sublinear Time Tester for Max-Cut on Clusterable Graphs

S ⊆ V of samples with |S| = poly(k) · nO(ε) in the hope of getting enough vertices from every
cluster. Next up, setting the length of the walk to be t = C log n

φ2 , the algorithm computes the
Gram Matrix of collision probabilities W S = (M tIS)T (M tIS) ∈ R|S|×|S| (here IS denotes
the identity matrix restricted to vertices of S). Finally, the algorithm just checks whether the
(k + ℓ)-th largest eigenvalue of n/s · W S is at least n−O(ε). If yes, the algorithm reports that
the graph had max-cut-value close to 1 otherwise it reports that the graph had max-cut-value
close to 1/2. In the following remark, we collect the remaining ingredients our analysis relies
upon. In the remainder of the tech-overview we elaborate upon the ideas stressed in this
remark.
▶ Remark 15. The intuition here comes from considering the matrix W = (M t)T (M) = M2t.
For a set S ⊆ V , we let W S denote the matrix we obtain when we restrict the matrix W to
rows and columns indexed by S.

1. In Theorem 20, we show the following two items.
a. If Max-Cut(G) ≥ 1 − γ, then the (k + ℓ)-th eigenvalue of M2t is at least (1 − ε)2t which

by the choice of t = C log n
φ2 means we get a lower bound of n−O(ε) on the (k + ℓ)-th

largest eigenvalue of W .
b. If Max-Cut(G) ≤ 1/2 + γ, we show the (k + ℓ)-th largest eigenvalue of W is at most

(1 − O(φ2))2t which by the choice of t can be shown to be at most n−C .
2. Finally, one shows that the eigenvalues of W are very close to the corresponding eigenval-

ues of n/s · W S. This goes via an application of Matrix Bernstein Bounds. Using these
bounds requires a little more understanding of the eigenvector structure of the Laplacian
of Clusterable instances with high max-cut-value which we also develop.

Towards showing Item 1.(a) and Item 1.(b) mentioned in Remark 15, it is helpful to introduce
a little notation. Let ν1 ≥ ν2 ≥ · · · ≥ νn denote the eigenvalues of the random walk matrix
M . For showing item 1.(a), note that using the easy direction of higher order Cheeger,
we already have νk(M) ≥ 1 − 2ε. In case 1.(a), we also know Max-Cut(G) ≥ 1 − ε which
additionally means that the last ℓ eigenvalues of M are close to −1 (and in particular we have
νn−ℓ+1 ≤ −1 + O(ε)). This is because G has ℓ nearly bipartite components and therefore,
we have ℓ disjointly supported vectors all of which have Rayleigh Quotient close to −1. In
all, this means that (k + ℓ)-th largest eigenvalue of M2t is at least (1 − O(ε))2t as desired.

Towards showing Item 1.(b), we prove an important eigengap transportation lemma
(Lemma 21) in spectral graph theory which asserts that for any expander graph on n vertices
we have λn−1 < 2−Ω(λ2) (recall that λ’s denote the eigenvalues of the Normalized Laplacian).
Although, fairly intuitive, this seems to be a novel result. Indeed, a direct adaptation of
techniques from [14] produces a bound saying λn−1 ≤ 2 − Ω(λ2

2) as obtained in [12]. One can
use this lemma to conclude that in case 1.(b), where Max-Cut(G) ≤ 1/2 + ε, νn−k+1 ≫ −1.
Additionally, since G has such a small max-cut-value, we can show that there at least
ℓ := 2k/3 clusters in G which have induced max-cut-value close to 1/2. It can be shown that
corresponding to every one of these ℓ components, we have an additional eigenvalue of M

which is bounded away from −1. In all, using Lemma 21, we get νk+ℓ(M2t) ≤ (1 − O(φ2)2t

as desired.
Finally, we turn to item 2 in Remark 15. Towards relating eigenvalues of W and n/s ·W S

using Matrix Bernstein, we need to control the Euclidean length of columns of M2t. Thus,
we want to understand collision statistics of random walks performed from all start vertices in
G. We do this by following techniques used in [4, 7] which encounters a similar situation. The
main goal in [4] was to test k-clusterability and lazy walks were fine for this objective. The
main idea there was to show that the eigenvectors of the random walk matrix corresponding to

A. V. Jha and A. Kumar 91:7

eigenvalues close to 1 (that is, eigenvectors which reveal clusterability information) are mostly
uniform, in absolute value, over the corresponding cluster. [7] formalize this by proving an ℓ∞
norm bound on such eigenvectors which is later leveraged towards understanding the collision
statistics of random walk behaviors from an arbitrary pair a, b of vertices. Oversimplifying a
little, this allows them to approximate powers of random walk matrices which can then be
used to test for an eigengap which in turn allows us to test clusterability. However, bounding
this Euclidean length in our situation requires a more nuanced adaptation of techniques from
[4] since our walks are non-lazy and we need to track eigenvectors of the random walk matrix
with corresponding eigenvalue close to −1.

Indeed, we show a similar statement for such eigenvectors. This is done by proving ℓ∞
norm bounds on these eigenvectors which we later use to approximate appropriate powers of
random walk matrices. Again, using the same oversimplification as above, this allows us to
approximate powers of random walk matrices which we then use to distinguish clusterable
graphs with large max-cut value from clusterable graphs with small max-cut value. More
precisely, what we show that the eigengaps between the original clusterable graphs (one
with large max-cut value and the other one with a small max-cut value) are preserved under
sampling. And this finishes the high level description of our approach. As a final aside,
there are a few additional technical challenges/interesting features of this work which we
enumerate below.

Challenges in Bounding Euclidean Length of Random Walk Vectors: Recall that
in [4], the goal was to test k-clusterability. To this end, [4] exploits that for a k-clusterable
graph, there is a large gap between the k-th largest eigenvalue (which is at least 1 − 2ε)
and (k + 1)-st largest eigenvalue (at most 1 − φ2/2)) of the random walk matrix, M . On
the other hand, in graphs which are far from being k-clusterable, the (k + 1)-st eigenvalue
of the random walk matrix is also reasonably large and this can be used a reliable
estimator to distinguish between the two cases. However, in our setup, there is no such
sharp threshold after which we necessarily witness any sharp drop between two successive
eigenvalues of M . And therefore, this non-existence of an eigengap between successive
eigenvalues remains a problem with M2t as well. Indeed, if Max-Cut(G) is large, we can
have more than ℓ clusters with relatively large induced max-cut-value (say with value at
least (1 − 1000ε)) – and each of these clusters implies a yet another large eigenvalue of
M . To allay this, we consider all eigenvectors with eigenvalue at least 1 − δφ2 and we
leverage our ℓ∞ bounds on the eigenvectors to upperbound the contribution to ∥M t1x∥2

2
from such eigenvectors. For other eigenvectors, the contribution to the walk length can
be handled by choosing walk length suitably (which depends inversely on the δ value we
choose). This also explains why our analysis carries the parameter δ around.
Showing an Eigengap in Presence of Crossedges: Remark 15 emphasizes that we
have an eigenvalue gap between the two cases, 1(a) and 1(b). However, recall that we
wanted to consider instances with outer conductance ε and the instance just described
had outer conductance 0. Two problems emerge when we consider instances with large
outer conductance. All of the argument so far assumes there are no cross edges running
between these k components. We show when an ε fraction of cross edges between various
components are added, the (k + ℓ)-th eigenvalue of M2t still remains a reliable indicator
for the max-cut-value. This does not follow immediately from Frobenius norm bounds on
the Laplacian corresponding to the cut edges.
Necessity of Non-Lazy Walks: An essential feature of our algorithm is that it crucially
involves performing non-lazy random walks. To the best of our knowledge, there is
no other work in sublinear algorithms where analyzing non-lazy walks is tied with the
algorithmic guarantees in such a fundamental way. Classic results in property testing

ICALP 2024

91:8 A Sublinear Time Tester for Max-Cut on Clusterable Graphs

Algorithm 1 TestMaxCut(G, k, φ, ε, d) ▷ Need: ε/φ2 ≤ δ = 1
105 , a constant χ ≫ 1.

▷ Set constants a = 2000·χ·d4

δ
, b = 4000·χ2d8

δ2 .

1 ℓ = ⌈2k/3⌉
2 ξ = n−a·ε/φ2 .
3 s = 1020k4d6 · n80δ+b·ε2/φ4

4 t = 10/δ · 1/φ2 · χd3 log n.
5 Sample s vertices from V uniformly at random. Let S be the multiset of sampled

vertices.
6 Compute Z = (n/s)

(
D−1/2M tS

)T (
D−1/2M tS

)
using the oracle.

7 µthres = 0.99
d · n−2000·ε·χd4δ−1φ−2 .

8 if νk+ℓ (Z) ≥ µthres then
9 Accept G.

10 else
11 Reject G.

on bounded degree graphs often make the simplification of making the graph regular
by adding loops (which again makes any random walks considered lazy). However, we
unfortunately cannot use this simplification of adding loops as this again risks shrinking
the eigengap our approach hopes to exploit. Thus, for non-regular input graphs, our
analysis can not even assume the random walk Matrix M to be symmetric (a common
assumption which can be made if G could be made regular by adding loops).

4 Algorithm Under the Oracle Assumption

The goal of this section is to present an algorithm for testing Max-Cut(G) under a simplifying
assumption. We assume that we have the following oracle at our disposal: the oracle takes a
vertex v as input, and returns D−1/2M t1v.

5 Proof Under the Oracle Assumption

We state below the main theorem which asserts that the above algorithm is a bonafide
distinguisher which reliably tells apart graphs with large max-cut-value from graphs with
small max-cut-value. This provides the proof of correctness for the algorithm described in
Section 4.

▶ Theorem 16. Let G = (V, E) be a (k, φ, ε)-clusterable graph where
The maximum degree of G is at most some constant, d.
ε ≤ δ·φ2

104·d4·χ .
Here δ = 10−5 and χ > 1 is sufficiently large.

Then the algorithm TestMaxCut(G, k, φ, ε, d) runs in time χ·d3·log n
φ2 n1/2+100δ+O(ε/φ2) and

with probability at least 2/3, returns
Accept if Max-Cut(G) ≥ 1 − ε.
Reject if Max-Cut(G) ≤ 1/2 + ε.

▶ Remark 17. As noted in item 3 of Remark 14, one can show Theorem 16 assuming both
ε, γ ≪ δφ2 (where δ = 10−5). It is more easily shown assuming γ ≤ ε which is what the
theorem above assumes.

A. V. Jha and A. Kumar 91:9

Towards proving this, we first prove the following theorem:

▶ Theorem 18. Let G = (V, E) be a (k, φ, ε)-clusterable graph where
The maximum degree of G is at most some constant, d.
ε ≤ δ·φ2

104·d4·χ . Here δ = 10−5 and χ > 1 is sufficiently large.
Then with probability taken over its internal randomness, 1 satisfies the following.

If Max-Cut(G) ≥ 1−ε, νk+ℓ

((
D−1/2M tS

)T (
D−1/2M tS

))
≥ 0.99

d ·n−2000·ε·χd4δ−1φ−2

with probability at least 2/3,

If Max-Cut(G) ≤ 1/2 + ε, νk+ℓ

((
D−1/2M tS

)T (
D−1/2M tS

))
≤ n−100,

The proof of Theorem 16 is immediate by Theorem 18.

Proof of Theorem 16. As ε is upper bounded by 10−4δφ2χ−1d−4, in the YES case our
estimator is lower bounded by 0.99d−1 · n−2000·ε·χd4δ−1φ−2 with probability at least 2/3.
While in the NO case, our estimator is upper bounded by n−100 with probability 1. ◀

We begin by stating the following proposition:

▶ Proposition 19. Let G = (V, E) be a bounded degree (k, φ, ε)-clusterable graph with ε at
most 10−4δφ2χ−1d−4 where δ = 10−5 and d is the degree bound. Then,
1. If Max-Cut(G) ≥ 1 − ε, then at least ⌈2k/3⌉ of the clusters have induced Max-Cut value

at least (1 − 10εd).
2. If Max-Cut(G) ≤ 1/2 + ε, then at least ⌈2k/3⌉ of the clusters have induced Max-Cut value

at most (1/2 + 10εd).
N.B. In the following, we will denote ⌈2k/3⌉ by ℓ for simplicity.
A simple markov argument shows that in the case with large max-cut value, most of the

clusters are nearly bipartite (far from bipartite in the case with small max-cut value resp.).

5.1 Eigengaps in the Spectrum of Random Walk Matrix
For simplicity of the reader, we collect all the parameters we use throughout the paper.

δ = 10−5.
χ > 1. a sufficiently large constant.
A degree bound, d.
k ∈ N, the number of clusters in our (k, φ, ε) clusterable graph.
ℓ = ⌈2k/3⌉.
A bound on ε, namely ε ≤ δφ2/(104d4χ).

We state the main result of this section below. The proof is given in the appendix. In
this section, we will prove one key lemma (Lemma 21) which is crucially used in proving the
theorem below.

▶ Theorem 20. Let G be a bounded degree graph that admits a (k, φ, ε)-clustering such that
ε ≤ δ · φ2/

(
104χd4) where d is the degree bound (and δ = 10−5). Then,

1. If Max-Cut(G) ≥ 1 − ε, then νk+ℓ

((
D−1/2M t

)T (
D−1/2M t

))
≥ (1 − 100εd)2t

/d,

2. If Max-Cut(G) ≤ 1/2 + ε, then

νk+ℓ

((
D−1/2M t

)T (
D−1/2M t

))
≤
(
1 − φ2/

(
100χd3))2t,

where t is any even number.

We begin by proving the key technical lemma required in the proof of Theorem 20.

ICALP 2024

91:10 A Sublinear Time Tester for Max-Cut on Clusterable Graphs

▶ Lemma 21 (Eigengap Transportation). Let G = (V, E) be a bounded degree graph, and
0 ≤ λ1 ≤ λ2 ≤ . . . λn ≤ 2 denote the spectrum of LG. Then λn−1 ≤ 2 − λ2

χ·d2 , where d is the
degree bound and χ is an absolute constant.

Let us do a little setup before we prove Lemma 21. Suppose vn−1, vn denote the last
two eigenvectors of L̄ = I − D−1/2AD−1/2. Suppose for a sufficiently small γ > 0, we have
for every x ∈ span(vn−1, vn), R(x) ≥ 2 − γ. We will show that in this case we also have
λ2 ≤ O(γd2) where d is the maximum degree in the graph G. Before we prove this result,
we first develop some intuition which will help with the formal proof which is presented in
Section Subsubsection 5.1.2.

5.1.1 Intuition for Proving Lemma 21
Towards getting some intuition, it will be helpful to assume that the graph is d-regular.
Denote the eigenvectors corresponding to λn−1 (resp λn) as vn−1 (resp vn). Recall that in
this (d-regular) case the eigenvector corresponding to λ1 is given v1 = 1/

√
n. As mentioned

above, we would like to produce a vector x ⊥ v1 with small Rayleigh Quotient. Consider
a d-regular graph with two disjoint bipartite components each on n vertices – denoted
G1 = (L1, R1, E1) and G2 = (L2, R2, E2). The eigenvectors vn−1, vn satisfy:

vn−1(u) =

+1/

√
n if u ∈ L2

−1/
√

n if u ∈ R2

0 Otherwise.
and vn(u) =

+1/

√
n if u ∈ L1

−1/
√

n if u ∈ R1

0 Otherwise.
(1)

Now consider the vector x (resp y) obtained by reversing the signs of all entries in
the vector vn (resp vn−1). Thus, the vector x equals a copy of the all-ones vector over
G1 and y equals a copy of all-ones vector over G2 where x and y have disjoint supports
and thus ⟨x, y⟩ = 0. This gives a two-dimensional space of vectors with small Rayleigh
Quotient which in turn means λ2 = 0. While taking the absolute values gives a vector with
small Rayleigh Quotient, in general, we cannot expect this to produce vectors with disjoint
supports. Suppose we only have the vector y we obtained above by taking the absolute
values of every entry in vn−1. Suppose we want to use only this vector towards bounding λ2.
The difficulty is this vector is not orthogonal to v1 as all coordinates in both of these vectors
are all positive. To fix this, we subtract off a multiple of the projection of the y along the
all-ones vector to obtain a vector z ⊥ 1. We would like to bound the Rayleigh Quotient of
z. Since all the coordinates in z are a shift of corresponding coordinates in y (by the same
additive amount) the numerator of the corresponding Rayleigh Quotients of the two vectors
are equal. Towards bounding the Rayleigh Quotient, the main idea is to lower bound the
length of z after this shift. This is precisely what we achieve in Lemma 27. Details follow.

5.1.2 Proof of Lemma 21
The high-level idea in the argument is to exhibit a two-dimensional subspace all vectors in
which have a small Rayleigh Quotient with respect to the Laplacian. We already know D1/21
is one such vector. So, it suffices to produce a vector t ⊥ D1/21 which has a small Rayleigh
Quotient. At a high-level, our proof uses the following strategy. If a suitable non-linear
transform applied to vectors vn−1 or vn does not give us the desired vector t, then that
same transform applied to an equal weight linear combination of D−1/2vn−1 and D−1/2vn

gives us the desired vector t.

A. V. Jha and A. Kumar 91:11

Let R(x) = RL̄(x). Note that the map x → D1/2x is a bijection and as noted in [15],
this means

λn−1 = max
S⊆Rn

S 2-dimensional

min
x∈S\0

RL̄(x) (2)

= max
S⊆Rn

S 2-dimensional

min
x∈S\0

RL̄(D1/2x) (3)

=
∑

(u,v)∈E(xu − xv)2∑
dvx2

v

. (4)

The following observation is immediate.

▶ Observation 22. Suppose λn−i+1(L̄) ≥ 2 − γ. Let S = span(vn−i+1, vn−i+2, . . . , vn).
Consider a i-dimensional subspace S′ = span(D−1/2vn−i+1, D−1/2vn−i+2, . . . D−1/2vn) ⊆
Rn. Then, for all non-zero vectors x ∈ S′, we have R(D1/2x) ≥ 2 − γ.

▷ Claim 23. Let x ∈ span(D−1/2vn−1, D−1/2vn). Now consider the vector x′ = |x|
obtained by letting x′(u) = |x(u)| for each u ∈ V . Then, R(D1/2x′) ≤ γ.

Proof. Since x ∈ S
def= span(D−1/2vn−1, D−1/2vn), by Observation 22, it holds that

R(D1/2x) ≥ 2−γ. This means
∑

(u,v)∈E(x(u)+x(v))2 ≤ γ
∑

dvx2
v. Note that ∥D1/2x′∥2 =

∥D1/2x∥2 as the two vectors have same absolute value in each coordinate. We will show

that R(D1/2x′) =
∑

(u,v)∈E
(x′(u)−x′(v))2∑
dvx′(v)2 ≤ γ which will settle the claim. To do this, pick an

edge (u, v) ∈ E and note that we have the following cases.
1. Case 1: x′(u) = x(u), x′(v) = x(v). In this case, we note that (x′(u) − x′(v))2 ≤

(x(u) + x(v))2.
2. Case 2: x′(u) = −x(u), x′(v) = −x(v).

In this case as well, it holds that (x′(u) − x′(v))2 ≤ (x(u) + x(v))2.
3. Case 3 and 4: x′(u) = −x(u), x′(v) = x(v) and vice versa. In this case it holds that

(x′(u) − x′(v))2 = (x(u) + x(v))2.

Thus, it follows that in all, we have R(D1/2x′) =
∑

(u,v)∈E
(x′(u)−x′(v))2∑
dvx′(v)2 ≤ γ which settles

the claim. ◁

Thus, given any vector x ∈ S
def= span(D−1/2vn−1, D−1/2vn) we can produce a vector

x′ for which D1/2x′ has small Rayleigh Quotient. However, this vector is not orthogonal to
the trivial eigenvector D1/21 of L. To fix this, we obtain a vector t in two steps. As a first
step, consider the following vector obtained by shifting x′ around which is orthogonal to the
all ones vector, 1:

s = x′ − ∥x∥1 · 1
n

.

To obtain a vector orthogonal to D1/21, consider the vector t = D−1s. Observation 26
shows that this vector is orthogonal to D1/21. One notes that t does not necessarily have
small length and this is an obstacle to upperbound R(D1/2t). To handle this, we make the
following definition.

ICALP 2024

91:12 A Sublinear Time Tester for Max-Cut on Clusterable Graphs

▶ Definition 24. Let α > 0 be a sufficiently small constant. Take a unit vector x ∈ Rn.
Consider the vector s obtained by taking absolute values in each coordinate and then shifting
it to obtain a vector orthogonal to all 1’s vector. That is,

s(i) = |x(i)| −
∥x∥1

n
.

Let t = D−1s. The vector x is called (α, d)-bad if ∥t∥2 < α/d. If ∥t∥2 ≥ α/d, then the
vector x is not (α, d)-bad and is called (α, d)-good. If the parameter d is clear from context,
we will call such these vectors α-good or α-bad.

We make the following observations about (α, d)-good vectors.

▶ Observation 25. Let x ∈ Rn be a unit vector. Obtain the vector s = |x| − ∥x∥1 · 1
n and

the vector t = D−1s. If ∥t∥ ≥ β, then ∥s∥2 ≥ β. Also, if ∥s∥ ≥ α, then t is α-good.

Proof. Note that ∥t∥2
2 =

∑
s2

i /di ≤
∑

s2
i = ∥s∥2

2. Thus, if ∥t∥2 ≥ β, ∥s∥2 ≥ ∥t∥2 ≥ β. In
the other direction, we are told ∥s∥2

2 =
∑

s2
i ≥ α2. Note that ∥t∥2

2 =
∑

s2
i /d2

i ≥ ∥s∥2
2/d2

and the result follows. ◀

▶ Observation 26. Let x ∈ Rn be a unit vector. Let t be a vector obtained as above. We
have D1/2t ⊥ D1/21.

Proof. Note

⟨D1/2t, D1/21⟩ = ⟨t, D1⟩ =
∑

tidi =
∑

si = 0. ◀

In the rest of this section, we will prove the following lemma.

▶ Lemma 27. Let α > 0 be a sufficiently small constant. Then there exists a vector
x ∈ span(D−1/2vn−1, D−1/2vn) which is α-good.

With this lemma in hand, Lemma 21 follows as an immediate corollary.

Proof of Lemma 21. By Lemma 27, there exists a vector x ∈ span(D−1/2vn−1, D−1/2vn)
which is α-good. As before, define the vectors s and t. Recall from Observation 26 that
D1/2t ⊥ D1/21. Towards showing that λ2 ≤ O(γd2), it suffices to show that R(D1/2t) ≤
O(γd2). First, let us note that x being α-good, we have ∥t∥2 =

∥∥D−1s
∥∥

2 ≥ α/d. Letting
x′ = |x|, by Claim 23, we know

∑
(u,v)∈E (x′(u) − x′(v))2 ≤ γ

∑
dvx′(v)2. And since s is

obtained by shifting each coordinate in x′ by the same amount, it follows that∑
(u,v)∈E

(s(u) − s(v))2 =
∑

(u,v)∈E

(x′(u) − x′(v))2
.

Next, write

R(D1/2t) =
∑

(u,v)∈E(tu − tv)2∑
dvt2

v

.

We observe that for each edge (u, v) ∈ E, (tu − tv)2 ≤ (su − sv)2. Finally, note
∑

dvt2
v ≥∑

t2
v = ∥t∥2

2 ≥ α2/d2. Thus, it follows that R(D1/2t) ≤ γd2/α2. This means that λ2 ≤
R(D1/2t) ≤ γ · d2/α2. ◀

Now, in the rest of this document, we will prove Lemma 27. The following claim will be
useful.

A. V. Jha and A. Kumar 91:13

▷ Claim 28. Suppose x is an α-bad vector of unit length (in l2). Let

s = |x| − ∥x∥1 · 1
n

(where |x| is a vector with |x|(u) = |x(u)|∀u ∈ V .) Then ∥s∥1 ≥
(
1 − α2/4

)√
n.

Proof. By the definition of bad vectors and Observation 25, we have ∥s∥2 ≤ α. On expanding
out,

∥s∥2
2 =

∑
i∈V

(
x(i)2 +

∥x∥2
1

n2 −
2|x(i)| · ∥x∥1

n

)
=
(

∥x∥2
2 −

∥x∥2
1

n

)
=
(

1 −
∥x∥2

1
n

)
≤ α2.

Rearranging, this gives ∥x∥1 ≥
√

n ·
√

1 − α2. For sufficiently small α, and taking Taylor
expansion, this gives

∥x∥1 ≥
(

1 − α2

4

)
·
√

n (5)

◁

Now suppose x is indeed an α-bad vector. Since, x is a unit vector with ∥x∥1 pretty
close to

√
n, it follows that the absolute value of x in each coordinate is almost 1/

√
n. This

is shown below.

▷ Claim 29. Suppose x is an α-bad vector with ∥x∥2 = 1. Let β > 0 be sufficiently small.
Then for at least

(
1 − α2/2β2) · n coordinates in i ∈ [n], it holds that

1 − β√
n

≤ |x(i)| ≤ 1 + β√
n

.

Proof. From Claim 28, it follows that ∥x∥1 ≥ (1 − α2/4)
√

n. This means

∥x∥1√
n

=
∑
i∈[n]

|x(i)| · 1√
n

≥ (1 − α2/4)

=⇒ 1/2 + 1/2 −
∑
i∈[n]

|x(i)|/
√

n ≤ α2/4 (6)

=⇒ 1
2 ·
∑
i∈[n]

|x(i)2| + 1
2 ·
∑
i∈[n]

(
1√
n

)2
−
∑
i∈[n]

|x(i)|/
√

n ≤ α2/4 (7)

=⇒
∑
i∈[n]

(
|x(i)| − 1√

n

)2
≤ α2

2 (8)

Now let

Bx = {i ∈ [n] : |x(i)| ≥ 1 + β√
n

} ∪ {i ∈ [n] : |x(i)| ≤ 1 − β√
n

}.

Note that for each such i ∈ Bx, we have that (|x(i)| − 1/
√

n)2 ≥ β2/n. Together with (8),
this means that |Bx| ≤ 1

2 ·
(

α
β

)2
n which settles the claim. ◁

Thus, Claim 28 means that if a vector x is α-bad, it would have a pretty large l1 mass
which as shown in Claim 29 means that x takes on values close to ± 1√

n
almost everywhere in

the support. This gives us all the ammunition we need to prove Lemma 27. We will proceed
by contradiction. That is, we will produce a vector x ∈ S

def= span(D−1/2vn−1, D−1/2vn)
with small l1 norm. And this means this vector is α-good. Details follow.

ICALP 2024

91:14 A Sublinear Time Tester for Max-Cut on Clusterable Graphs

Proof of Lemma 27. For ease of indexing, let z1 = D−1/2vn, z2 = D−1/2vn−1. If either of
z1, z2 is α-good, we choose that vector and the proof is finished. So, suppose both z1, z2
are α-bad. In this case, let S denote the span(z1, z2) = span(D−1/2vn, D−1/2vn−1). We
normalize all non-zero vectors in S to have length 1. We will show that the unit vector
x = 1√

2 (z1 + z2) ∈ S is in fact α-good. By way of contradiction, suppose x is α-bad and
thus by Claim 28 ∥x∥1 is close to

√
n. We will obtain a contradiction to this. Set a parameter

β =
√

α and define the set of “bad” coordinates in z1 as

B1 =
{

i ∈ [n] : |z1(i)| ≥ (1 + β)√
n

OR |z1(i)| ≤ (1 − β)√
n

}
.

Similarly, define B2 as the set of bad coordinates in z2. By Claim 29, note that |B1|, |B2|
both have size at most α/2n. Let B = B1 ∪ B2 and set G = [n] \ B. Note that z1 ⊥ z2 and
thus

⟨z1, z2⟩ = 0 =
∑
i∈[n]

z1(i)z2(i) =
∑
i∈B

z1(i)z2(i) +
∑
i∈G

z1(i)z2(i) (9)

We will show that the first term above is small in absolute value (and therefore, so is the
second term). For notational convenience, denote the restriction of z1 on B as z1,B ∈ R|B|.
Similarly, define z1,G, z2,B , and z2,G. By Cauchy Schwartz,∣∣∣∣∣∑

i∈B

z1(i)z2(i)

∣∣∣∣∣ ≤ ∥z1,B∥2∥z2,B∥2 (10)

We now upperbound the right hand side by upperbounding each of the two norms above.
We do this, for instance for z1,B by noting 1 = ∥z1∥2

2 = ∥z1,G∥2
2 + ∥z1,B∥2

2 and noting that
for each i ∈ G, z1(i)2 ≥ (1−β)2

n . This way, we get

∥z1,B∥2
2 ≤ 1 − (1 − β)2

n
· |G| ≤ 1 − (1 −

√
α)2

n
· (1 − α)n ≤ 1 − (1 − α) · (1 − 2

√
α) ≤ 3

√
α.

The second inequality uses that β =
√

α. Similarly, ∥z2,B∥2
2 ≤ 3

√
α as well. This means

⟨z1,B , z2,B⟩ ≤ 3
√

α. Thus, the inner product of z1,B and z2,B is indeed small in magnitude
and the same holds for the inner product of z1,G and z2,G which means the restrictions to
the good parts of z1 and z2 are nearly orthogonal. We will now show that ∥x∥ is small and
thus, by Claim 28, x cannot be α-bad. To this end, write

∥x∥1 = 1√
2

·
∑
i∈G

|z1(i) + z2(i)| +
∑
i∈B

|z1(i) + z2(i)|.

Let P = {i ∈ G : z1(i), z2(i) have the same sign.} and let N = G \ P . We have

∥x∥1 = 1√
2

·
∑
i∈P

|z1(i) + z2(i)| +
∑
i∈N

|z1(i) + z2(i)| +
∑
i∈B

|z1(i) + z2(i)|

≤ 1√
2

(
2 + 2β√

n

)
· |P | + 1√

2
· 2β · |N | +

∑
i∈B

|z1(i) + z2(i)|

We now bound the RHS above. For the last term, note that by triangle inequality and
Cauchy Schwatrz,∑

i∈B

|z1(i)| + z2(i)| ≤ ∥z1,B∥1 + ∥z2,B∥1 ≤ (∥z1,B∥2 + ∥z2,B∥2) ·
√

|B|

A. V. Jha and A. Kumar 91:15

which is at most 2
√

3 · 4
√

α ·
√

n ≤ 4 4
√

α ·
√

n. Finally, we will show that |P | ≈ |N | ≈ n/2 from
which it will follow that ∥x∥1 ≈

(
1/

√
2 + O(4

√
α)
)

·
√

n which is multiplicatively bounded
away from

√
n (and thus implies x cannot be α-bad).

To see this, recall β =
√

α and that

3β ≥

∣∣∣∣∣∑
i∈G

z1(i)z2(i)

∣∣∣∣∣ ≥

∣∣∣∣∣
∣∣∣∣∣∑
i∈P

z1(i)z2(i)

∣∣∣∣∣−

∣∣∣∣∣∑
i∈N

z1(i)z2(i)

∣∣∣∣∣
∣∣∣∣∣ .

We will show if |P | ̸∈ [n/2 ± 10β · n] then the absolute inner product restricted to the good
coordinates is much larger than 3β which means that both |P | and |N | have size around n/2.

Suppose |P | ≥ n/2 + δn. Note∣∣∣∣∣∑
i∈P

z1(i)z2(i)

∣∣∣∣∣ ≥ (1 − β)2

n
|P | ≥ (1 + β2 − 2β)

n
·
(n

2 + δn
)

≥ (1 − 2β)
(

1
2 + δ

)
.

The last term can be expanded as (1/2) − β + δ − 2δβ.
Also, note∣∣∣∣∣∑
i∈N

z1(i)z2(i)

∣∣∣∣∣ ≤ (1 + β)2

n
· |N | ≤ (1 + β2 + 2β)

n
·
(n

2 − δn
)

≤ (1 + 3β)
(

1
2 − δ

)
.

The last term can be expanded as (1/2) + 3β/2 − δ − 3δβ.
For δ = 10β, using
|
∑

i∈G z1(i)z2(i)| ≥ |
∑

i∈P z1(i)z2(i)| − |
∑

i∈N z1(i)z2(i)|.
The above lowerbound on |

∑
i∈P z1(i)z2(i)|, and

The above upperbound on |
∑

i∈N z1(i)z2(i)|

we conclude |
∑

i∈G z1(i)z2(i)| ≥ 15β which is a contradiction. A similar contradiction is
reached when |P | ≤ n/2 − δn (for δ = 10β). Thus, overall we have n/2 − 10βn ≤ |P |, |N | ≤
n/2 + 10βn. Plugging back the upperbounds on |P | and |N | in

∥x∥1 ≤
√

n√
2

((2 + 2β) · (1/2 + 10β) + 2β · (1/2 + 10β)) + 4 4
√

αn ≤
√

n√
2

· (1 + 8 4
√

α).

The last inequality uses that β =
√

α. This confirms that x is α-good as desired. ◀

6 Discussion and Concluding Remarks

As mentioned in the tech-overview, the remainder of the proof is deferred to the arXiv version.
In this last section, we want to explain why exploring the better than 1/2 approximability
of max-cut over clusterable graphs seems to be an important step. Indeed, as one might
already see, the current paper only presents an algorithm achieving better than a factor 1/2
approximation for clusterable graphs. After the seminal work of Goldreich and Ron ([9]),
and the recent work of Peng and Yoshida ([13]), the question of obtaining a better than
1/2 approximation algorithms for max-cut in sublinear time got ushered to the frontiers of
research. Perhaps the most natural graph class to extend a better than 1/2 approximation
guarantee on, is the class of low threshold rank graphs as defined in the seminal work of [1].

However, it is important to consider the nuances of the problem: the problem asks
–given a graph with small threshold rank, is its max-cut value close to 1 or is it close to 1/2.
Approaching this problem in the sublinear time regime appears highly non-trivial and it seems

ICALP 2024

91:16 A Sublinear Time Tester for Max-Cut on Clusterable Graphs

the current techniques have some limitations. For instance, one might try a Peng-Yoshida
style approach which leverages the ℓ2 distance between distributions induced by walks of
odd-lengths and even-lengths. However, as we described in our tech-overview, this technique
does not even extend to the case of graphs with threshold rank 2 (since clusterable graphs
form a sub-class of low-threshold rank graphs). The spectral approach pioneered in the work
of Chinplunkar et al. in FOCS 18, (which was refined in our submission), attempts to relate
the cut-value of the graph to an appropriate eigenvalue close to −1. This approach fails
for low-threshold rank graphs. Since, even for graphs with threshold rank 2, there could
be 2 small bipartite components, which would lead to 2 eigenvalues being −1. Thus, it is
not immediately clear, if there is an appropriate eigenvalue which is a good indicator of the
actual max-cut value.

Taking inspiration from the celebrated work of [6], [5] defined the notion of a (k, φ)-
clusterable graphs which has more immediate relevance for the property-testing community.
With all of this in mind, we think this is an important stepping stone towards obtaining better
than 1/2 approximation algorithms for max-cut on low threshold rank graphs. In particular,
getting a handle on the “combinatorics of low-threshold rank graphs” and understanding the
structure of small non-expanding sets therein appears quite hard. Clusterable graphs help
us leverage a much neater structure and improve our understanding of how random walks
might behave in non-expanding graphs, without making the problem of testing max-cut on
them trivial.

References
1 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games

and related problems. J. ACM, 62(5):42:1–42:25, 2015.
2 Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming

hierarchies via global correlation. In IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 472–481.
IEEE Computer Society, 2011.

3 Andrej Bogdanov, Kenji Obata, and Luca Trevisan. A lower bound for testing 3-colorability
in bounded-degree graphs. In 43rd Symposium on Foundations of Computer Science (FOCS
2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings, pages 93–102. IEEE
Computer Society, 2002.

4 Ashish Chiplunkar, Michael Kapralov, Sanjeev Khanna, Aida Mousavifar, and Yuval Peres.
Testing graph clusterability: Algorithms and lower bounds. CoRR, abs/1808.04807, 2018.
arXiv:1808.04807.

5 Artur Czumaj, Pan Peng, and Christian Sohler. Testing cluster structure of graphs. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, USA, June 14-17, 2015, pages 723–732. ACM, 2015.

6 Shayan Oveis Gharan and Luca Trevisan. Partitioning into expanders. In Chandra Chekuri,
editor, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1256–1266. SIAM,
2014.

7 Grzegorz Gluch, Michael Kapralov, Silvio Lattanzi, Aida Mousavifar, and Christian Sohler.
Spectral clustering oracles in sublinear time, 2021. arXiv:2101.05549.

8 Michel X. Goemans and David P. Williamson. .879-approximation algorithms for MAX CUT
and MAX 2sat. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of
Computing, pages 422–431. ACM, 1994.

9 Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for bunded degree graphs.
In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, pages
289–298. ACM, 1998.

https://arxiv.org/abs/1808.04807
https://arxiv.org/abs/2101.05549

A. V. Jha and A. Kumar 91:17

10 Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1985.
doi:10.1017/CBO9780511810817.

11 Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium
on the Complexity of Computer Computations, New York, USA, pages 85–103. Plenum Press,
New York, 1972.

12 Shiping Liu. Multi-way dual cheeger constants and spectral bounds of graphs. Advances in
Mathematics, 268:306–338, 2015.

13 Pan Peng and Yuichi Yoshida. Sublinear-time algorithms for max cut, max e2lin(q), and
unique label cover on expanders, 2022. arXiv:2210.12601.

14 Luca Trevisan. Max cut and the smallest eigenvalue. SIAM J. Comput., 41(6):1769–1786,
2012.

15 Luca Trevisan. Graph theory lecture notes, lecture 02. Notes, 2022. URL: https:
//lucatrevisan.github.io/41000-22/lecture02.pdf.

ICALP 2024

https://doi.org/10.1017/CBO9780511810817
https://arxiv.org/abs/2210.12601
https://lucatrevisan.github.io/41000-22/lecture02.pdf
https://lucatrevisan.github.io/41000-22/lecture02.pdf

	1 Introduction
	2 Preliminaries
	3 Technical Overview
	4 Algorithm Under the Oracle Assumption
	5 Proof Under the Oracle Assumption
	5.1 Eigengaps in the Spectrum of Random Walk Matrix
	5.1.1 Intuition for Proving Lemma 21
	5.1.2 Proof of Lemma 21

	6 Discussion and Concluding Remarks

