
Streaming Algorithms for Connectivity
Augmentation
Ce Jin1 #

MIT, Cambridge, MA, USA

Michael Kapralov #

EPFL, Lausanne, Switzerland

Sepideh Mahabadi #

Microsoft Research–Redmond, WA, USA

Ali Vakilian #

Toyota Technological Institute at Chicago (TTIC), IL, USA

Abstract
We study the k-connectivity augmentation problem (k-CAP) in the single-pass streaming model.
Given a (k − 1)-edge connected graph G = (V, E) that is stored in memory, and a stream of weighted
edges (also called links) L with weights in {0, 1, . . . , W }, the goal is to choose a minimum weight
subset L′ ⊆ L of the links such that G′ = (V, E ∪ L′) is k-edge connected. We give a (2 + ϵ)-
approximation algorithm for this problem which requires to store O(ϵ−1n log n) words. Moreover,
we show the tightness of our result: Any algorithm with better than 2-approximation for the
problem requires Ω(n2) bits of space even when k = 2. This establishes a gap between the optimal
approximation factor one can obtain in the streaming vs the offline setting for k-CAP.

We further consider a natural generalization to the fully streaming model where both E and
L arrive in the stream in an arbitrary order. We show that this problem has a space lower bound
that matches the best possible size of a spanner of the same approximation ratio. Following this, we
give improved results for spanners on weighted graphs: We show a streaming algorithm that finds a
(2t − 1 + ϵ)-approximate weighted spanner of size at most O(ϵ−1n1+1/t log n) for integer t, whereas
the best prior streaming algorithm for spanner on weighted graphs had size depending on log W . We
believe that this result is of independent interest. Using our spanner result, we provide an optimal
O(t)-approximation for k-CAP in the fully streaming model with O(nk + n1+1/t) words of space.

Finally we apply our results to network design problems such as Steiner tree augmentation
problem (STAP), k-edge connected spanning subgraph (k-ECSS) and the general Survivable Network
Design problem (SNDP). In particular, we show a single-pass O(t log k)-approximation for SNDP
using O(kn1+1/t) words of space, where k is the maximum connectivity requirement.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases streaming algorithms, connectivity augmentation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.93

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2402.10806

1 Introduction

In the (weighted) k-connectivity augmentation problem (k-CAP), given a (k − 1)-edge-
connected n-vertex graph G = (V, E) (possibly with parallel edges) together with a set
of weighted candidate edges (also called links) denoted by L ⊆

(
V
2
)

and their weights

1 Work done during an internship at Microsoft Research, Redmond.

EA
T

C
S

© Ce Jin, Michael Kapralov, Sepideh Mahabadi, and Ali Vakilian;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 93; pp. 93:1–93:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cejin@mit.edu
https://orcid.org/0000-0001-5264-1772
mailto:michael.kapralov@epfl.ch
mailto:smahabadi@microsoft.com
https://orcid.org/0000-0001-5004-8991
mailto:vakilian@ttic.edu
https://orcid.org/0000-0001-5049-7594
https://doi.org/10.4230/LIPIcs.ICALP.2024.93
https://arxiv.org/abs/2402.10806
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

93:2 Streaming Algorithms for Connectivity Augmentation

w : L→ {0, 1, . . . , W}, the goal is to find a minimum weight subset S ⊆ L of the links such
that (V, E ∪ S) is k-edge-connected. Augmenting connectivity is a crucial task for enhancing
network reliability which can be used for strengthening the resilience of a network and
ensuring uninterrupted access for all users. k-CAP is among the most elementary questions in
Network Design, which is an important area of discrete optimization. The iterative rounding
method of [29] provides a 2-approximation for a more general problem of survivable network
design problem (SNDP). Untill very recently, nothing better than 2 approximation was known
even for weighted tree augmentation problem (TAP). In a recent development, weighted
k-CAP has witnessed breakthroughs with approximation factors below 2 [48, 49, 50]. The
state-of-the-art for weighted k-CAP is 1.5 + ϵ approximation.

In this work, we consider weighted k-CAP in the streaming model, which is one of the
most common models for processing real-time and large-scale data. A graph streaming
algorithm operates by processing a sequence of graph edges presented in any order (or in
some applications in random order), reading them one by one. The primary objective is to
design algorithms that can process the entire edge sequence and output an approximately
efficient solution, making just one (or a few passes), while utilizing limited memory resources.
Ideally, the space usage of the algorithm should be significantly smaller than the size of
the n-vertex input graph (with possibly O(n2) edges), preferably O(n · polylog(n)) memory,
which is referred to as the semi-streaming model [18].

While graph problems such as minimum spanning tree [2, 47, 42], matching [39, 25, 5,
4, 30], spanners, sparsifiers and shortest paths [19, 7, 15, 2, 33, 28, 20, 21] have received
significant attention in the streaming model, the connectivity augmentation problem, has
received comparatively very limited study in this context. Prior to our result, only testing
k-connectivity in streaming was studied [52, 13, 47], which showed that testing k-edge-
connectivity in streaming requires Θ̃(nk) space in one pass, and Θ̃(n) space in two passes
[46, 3]. See Appendix C for more discussion on related work.

1.1 Our Computational Models
In this work, we study graph augmentation problems in the streaming model of computation.
The input to the k-CAP problem consists of two pieces of information, namely the (k − 1)-
connected network G and the set of links that can be used to augment connectivity.

Link arrival streaming. In the link arrival streaming model the graph G is presented to the
algorithm first, and the cost of storing it does not count towards the space complexity of
the algorithm. This is akin to the oracle model that is routinely used to study submodular
function maximization in the streaming model (e.g., in [6, 43]): One thinks of having an
oracle for the function being maximized. For submodular function maximization it is not
always clear how to implement this oracle in small space, but in our case the actual cost of
storing a sufficient representation of the graph G can be easily made O(nk), and, with some
work, even O(n), as we now explain.

Note that a minimally k-connected graph has size O(nk). So if the graph has larger size,
one can process the edges of G (even in a streaming fashion) using a k-connectivity certificate
of G that preserves all cuts of value at most k, and store this compact representation in O(nk)
space. Finally, one can apply even a more efficient preprocessing that preserves a similar
information via a cactus graph with O(n) edges. Then the problem becomes streaming cactus
augmentation. The cactus augmentation problem itself is a well-studied problem in particular
for designing approximation algorithms for k-CAP. To simplify the notation, throughout the
paper, we assume the latter compact representation of size O(n).

C. Jin, M. Kapralov, S. Mahabadi, and A. Vakilian 93:3

Fully streaming. Besides the most natural link arrival model defined above, we study the
more general model where the edges of G and the links that can be used for augmentation
may arrive in an interleaved fashion. This model is quite general: in particular, it allows
for the edges of G to arrive after the links, in which case the algorithm must maintain a
compressed representation of the stream of links that allows augmenting any given graph G

presented later!
For the other graph problems studied in this paper, namely spanner, SNDP and k-edge

connected spanning subgraph (k-ECSS), we consider the standard edge arrival streams in
which edges of the input graph arrives one by one in an arbitrary order stream.

1.2 Our Results
In this paper, we focus on insertion-only streams, and provide the first streaming algorithms
for k-CAP in link arrival streams and fully streaming. Table 1 summarizes our results.

Graph augmentation in link arrival. We show tight results for weighted k-CAP in link
arrival streams (see first row in Table 1). Note that, while we can achieve a factor 2 + ϵ

approximation in O(n
ϵ log n) words of space, our lower bound shows that getting better than

2 approximation requires Ω(n2) bits of memory. This establishes a gap between the streaming
setting and the offline setting where strictly better than 2 approximation algorithms are
known (e.g., see [50]). An easy argument shows that Ω(n) bits of space is necessary for
achieving any approximation for k-CAP in link arrival streams (Proposition 2.12 in the full
versoin), so our algorithm has nearly-tight space complexity. If one picks a k-connectivity
certificate as the compact representation of G, the space complexity of the upper bound
becomes O(nk + n

ϵ log n).
Further, we study the Steiner tree augmentation problem (STAP) which is a generalization

of the tree augmentation problem (TAP) in link arrival streams and provide matching upper
and lower bounds (See the second row in Table 1). While our lower bound holds for link
arrival streams, our algorithm works even in the more general fully streaming too. We remark
that, while in the offline setting TAP and STAP admit similar approximations [45], there is
a gap in their complexities in the streaming model.

Graph augmentation in fully streaming. We further show matching upper and lower bounds
(up to a polylog(n) factor) for k-CAP in the fully streaming setting (see the lower section in
the first row of Table 1). The main component in our algorithm for solving k-CAP is an
improved streaming algorithm for constructing spanners on weighted graphs. In particular,
our upperbound implies that spanner is an optimal “universal” augmentation set for k-CAP.

Improved streaming spanner in weighted graphs. Given an n-vertex graph G = (V, E)
with a weight function w : E → {0, . . . , W}, a subgraph H ⊆ G is a t-spanner of G if for
every (u, v) ∈ E, the shortest uv-path in H has weight at most t · w(uv). In streaming
spanner, which is a well-studied problem [7, 15, 2, 33, 20], edges of E arrive in an arbitrary
order stream. While by using the standard weight-based partitioning trick, constructing an
O(t)-spanner in O(n1+1/t ·log W) words of space in one pass over the stream is straightforward
(e.g., mentioned in [21]), it was not known whether the dependence on log W is crucial.2

2 We remark that our contribution in removing the dependence on log W from the number of edges in
spanner (and consequently from k-CAP) is conceptually interesting, as most graph streaming algorithms
are mainly designed for unweighted graphs, and extending them to the weighted case typically incurs a
log W loss.

ICALP 2024

93:4 Streaming Algorithms for Connectivity Augmentation

Table 1 Summary of our results for k-CAP, STAP, Spanner and SNDP in steaming models.
All our problems are weighted. The space upper bounds are measured in words, while the lower
bounds are in bits. We use Õ(f) to mean O(f · polylogf) (it does not hide log W factors). All our
algorithms are deterministic, whereas all lower bounds hold for randomized algorithms with constant
success probability.

Problem Pass Approx. Space Stream Notes

k-CAP 1

2 + ϵ O(n
ϵ

log n)
link arrival

Theorem 1

2 − ϵ Ω(n2) bits Theorem 10

O(t)
Õ(kn + n1+ 1

t)
fully streaming

Theorem 15

Ω(kn + n1+ 1
t) bits Theorem 11

STAP 1 O(t)
Õ(n1+ 1

t) fully streaming Corollary 20

Ω(n1+ 1
t) bits link arrival Corollary 21

Spanner 1 O(t)
Õ(n1+ 1

t)
edge arrival

Theorem 16

Ω(n1+ 1
t) bits Erdős’ girth conjecture

SNDP 1
O(t log k) Õ(kn1+ 1

t)
edge arrival

Theorem 25

O(t) Ω(n1+ 1
t) bits Corollary 21

k-ECSS k O(log k) O(kn log n) edge arrival Corollary 26

Exploiting an even-odd bucketing approach, we provide a streaming algorithm with space
complexity O(n1+1/t · log min(W, n)) words which by the well-known Erdős girth conjecture is
basically the best one can hope for up to logarithmic factors. We further apply this even-odd
bucketing to the k-CAP problem in the link arrival setting, and obtain a (more technical)
algorithm (Theorem 1) with no dependence on log W in its space complexity.

Streaming SNDP. Finally, we describe an application of our results for designing the first
one-pass streaming algorithms for the problem in insertion only edge arrival streams, where
the edges of the input graph arrive in an arbitrary order stream.

In SNDP, given a graph G = (V, E) with a weight function w : E → {0, 1, . . . , W}
together with a connectivity requirement r : V × V → Z≥0, the goal is to find a minimum
weight subgraph H ⊆ G so that for every s, t ∈ V , H contains r(st) edge-disjoint paths
connecting s and t. A parameter of interest in SNDP is the maximum connectivity requirement
k = maxst r(st). SNDP is a classic problem in combinatorial optimization and generalizes
several well-studied problems such as MST, Steiner tree, k-edge connected spanning subgraph
(k-ECSS), and k-CAP.

The fourth row of Table 1 shows our results for SNDP in edge arrival streams. In fact, our
streaming algorithm works even for the more general problem of covering proper functions
of the form f : 2V → {0, 1, . . . , k} using the edges of G (see Section B.2 for more details).
k-ECSS, which itself is a basic problem in discrete optimization, is a variant of SNDP in
which for every s, t ∈ V , r(st) = k. As a straightforward application of our algorithm for
k-CAP in link arrival streams, we get a k-pass, O(log k)-approximation for k-ECSS using
O(kn log n) words of space. (See last row of Table 1).

C. Jin, M. Kapralov, S. Mahabadi, and A. Vakilian 93:5

Unweighted variant. We remark that while we get tight algorithms for weighted k-CAP
in both link arrival and fully streaming models, our lower bounds for link arrival does not
hold for unweighted graphs. By a reduction from bipartite matching and invoking the result
of [30], we observe a weaker lower bound that no streaming algorithm with npolylogn space
can achieve an approximation factor better than 1.409. Therefore, it remains an interesting
open question to close the gap between 1.409 and 2 for unweighted k-CAP. Again, given that
this lower bound is for tree augmentation, and the best known algorithm for (offline) TAP in
unweighted graphs achieves an approximation factor of 1.326 [24], this again shows a gap
between the two models for the problem in the unweighted variant.

1.3 Our Techniques
Given a streaming algorithm for the unweighted variants of both k-CAP and the spanner
problems, an easy generalization to the weighted graphs is by partitioning the set of weights
into log1+ϵ W number of classes and roughly running the unweighted sparsification on each
class, resulting in ϵ−1 log W blow up in the space usage. To remove the dependency on log W

from the number of words, we follow an even-odd bucketing approach. More precisely, we
partition the weights into much larger classes (i.e., buckets), such that the minimum and
maximum weight in each class differ by poly(n)/ϵ. This ensures that first, inside each class
one can perform the weight-based partitioning to solve the problem while having only log n

dependence in the space. Second, even picking all the edges from the (i− 2)-th class Ei−2 is
cheaper than picking any edge in the i-th class Ei (i.e., it only introduces an extra (1 + ϵ)
multiplicative factor). This assumption allows us to infer additional properties about the
graph once we are processing the edges in the class Ei, and shrink the problem significantly
from each level Ei−2 to Ei. Thus our algorithm proceeds by separating the sparsification for
the even-indexed buckets E2i and the odd-indexed buckets E2i−1, and processes the buckets
from smallest to largest weights.

Spanner. First, consider the spanner problem, and let C = {C1, . . . , Cr} be the set of
connected components created by the edges from the classes upto Ei−2. The even-odd
bucketing ensures that we only need to consider the edges from Ei that are between two
different components of C. Thus, we shrink each connected component into a super-node and
use the standard spanner algorithm with weight-based partitioning on this reduced graph.
Note that the space usage of the algorithm is proportional to the number of super-nodes
with non-zero degree. However, all such super-nodes will merge into bigger components for
the next bucket Ei+2. Therefore the space usage of the algorithm for processing Ei can be
charged to the reduction in the number of super-nodes. Since the number of super-nodes
starts from n and goes down to 1, the total space usage of the algorithm can be bounded as
a function of n. Finally, we need to perform the above process in a streaming setting: As we
receive more edges in the stream, the components in Ci change but it is easy to maintain all
required information in a streaming fashion.

Link arrival k-CAP. Our algorithm for k-CAP is more involved. First, by standard results
in the literature, the problem reduces to cycle augmentation: given a cycle C, the goal
is to augment it with a subset of edges from L such that the resulting graph becomes
3-edge-connected. Let the nodes on the cycle be indexed 1 to n in this order with vertex 1
being called the root. Now every cut of size 2 corresponds to two edges on the cycle. We
specify such a cut with the interval [i, j] with 1 < i ≤ j ≤ n that does not include the root.
The goal is to cover all such cuts specified by these intervals.

ICALP 2024

93:6 Streaming Algorithms for Connectivity Augmentation

1
u

u′

v
i

i− 1j

j + 1

[i, j]

First, using known ideas from [35, 36], we present a simple streaming algorithm for the
unweighted variant of the problem as follows. We replace every link uv by two directed links
u⃗v and v⃗u, (this is where the factor 2 in the approximation comes from), and we say that u⃗v

covers a cut [i, j] if v ∈ [i, j] and u /∈ [i, j]. Now one can show that for 1 ≤ u < u′ < v, it is
always better to keep the edge u⃗v than u⃗′v. Similarly, for v < u′ < u ≤ n, it is always better
to keep the edge u⃗v than u⃗′v. As a result, for each vertex, we keep at most two incoming
edges. Therefore, the total space usage of the algorithm is only O(n) in this case. Again
this algorithm can be generalized to the weighted graphs using a weight-based partitioning,
introducing a factor log W .

To remove the dependency on log W , again we consider the even-odd bucketing. This
time, for each weight class Ei, we consider the 3-edge-connected components C1, . . . , Cr

formed by the edges in buckets upto Ei−2. Again using the even-odd bucketing plus the
fact that the cycle is already 2-edge-connected, we can show that shrinking each of the
3-connected components into a super-node still works. The main challenge is that as opposed
to the spanner setting, the problem on the super-node does not reduce to the same problem
of cycle augmentation. This is because a single super-node does not necessarily span a
consecutive set of vertices on the cycle. However, we note that in this case, the min-cuts on
the cycle that do not fully include or fully exclude the vertices in a single super-node do not
need to be considered. This allows us to reduce the space usage of the algorithm again to
be proportional to the number of super-nodes and thus bound the total space usage of the
algorithm as a function of n.

Fully streaming k-CAP. Our algorithm in this setting maintains two sketches. First, it
keeps a k-connectivity certificate on the set of edges E using a folklore streaming algorithm
that keeps k disjoint forests, which contains the information of all min-cuts of E that
need to be augmented in k-CAP. Second, employing our results on weighted spanners, the
algorithm maintains a spanner for the set of (weighted) links. This means that every link ℓ

of weight/length w that we miss, can be replaced with a path of weight at most O(t) · w,
thus covering all the min-cuts originally covered by ℓ. We show that this is a near-optimal
algorithm one can get in this setting.

Lower bounds. Most of our lower bounds are via simple reductions from the INDEX
problem in a two-party communication model, where we embed the bit-string held by Alice
into edges of a graph, where by asking augmentation queries, Bob is able to tell whether edge
(u, v) exists in Alice’s graph for any pair of vertices u, v. The most interesting one of our
lower bounds (Theorem 12) shows that, in the fully streaming model, the space complexity
for storing a spanner is essentially necessary. In the proof we let Alice hold a subgraph of a
high-girth graph, and Bob wants to estimate the distance in this graph between u, v (which
is sufficient for telling whether (u, v) is an edge, due to the high girth). Our proof reduces

C. Jin, M. Kapralov, S. Mahabadi, and A. Vakilian 93:7

this problem of estimating the distance between u, v to the problem of augmenting a chain
with end points u, v into a 2-edge-connected graph. However, we also need rule out potential
augmentation solutions that do not correspond to a uv-path.

Applications. Our algorithms for streaming connectivity augmentation also imply streaming
algorithms for problems such as STAP, k-ECSS and SNDP. In particular, our one-pass
algorithm for SNDP works by running k instances of our streaming spanner algorithm in
parallel, which store k disjoint sparse subgraphs of the input graph that satisfy certain
approximation guarantee. In particular, we show these k disjoint “spanner-like” objects
forms a coreset for SNDP instances with maximum connectivity requirement at most k.3
Our approach follows the augmentation framework of [51, 26] to show the existence of an
approximately good solution using edges from these k sparse subgraphs.

1.4 Organization
In Section 2, we present our (2 + ϵ)-approximate algorithms for k-CAP in the link arrival
model, and present a lower bound showing our approximation ratio is close to optimal. In
Section 3, we study k-CAP in the fully streaming model, and present matching space lower
bounds and upper bounds assuming our weighted spanner result. In Appendix A, we present
our weighed spanner algorithm in the streaming model with better log W dependence. Finally
in Appendix B we present further applications to other network design problems such as
k-ECSS and SNDP. All missing proofs are deferred to the full version of the paper.

2 Connectivity Augmentation in Link Arrival Streams

In this section, we consider k-CAP, the problem of augmenting the connectivity of a given
graph G = (V, E) from k − 1 to k using a subset of weighted links L ⊆

(
V
2
)

in link arrival
streams. To recall, in the link arrival model, a cactus representation of the graph G, which is
of size O(n) (see Definition 2 for the formal definition of cactus), is given to us in advance
and the set L arrives in the stream (see Section 1.1).

▶ Theorem 1. The k-connectivity augmentation problem (k-CAP) on (G = (V, E), L) in
the link arrival model admits a one-pass (2 + ϵ)-approximation algorithm with total memory
space O(n

ϵ log min(n, W)) words, where W = maxe∈E w(e).

Note that the augmentation set itself may have size Ω(n)4, so any algorithm that explicitly
stores a solution must consume Ω(n) space. Moreover, we will show that just approximating
the optimal total weight of the augmentation solution to any factor already requires Ω(n)
bits of space. Hence, the space of our algorithm is tight up to a poly-logarithmic factor.

2.1 Preliminaries
Cactus representation of min-cuts. To increase the edge-connectivity of a (k−1)-connected
graph G to k, we need to add links to cover all min-cuts of size k − 1. That is, for each cut
S of size k − 1 (i.e., |δG(S)| = k − 1), we must add a link e ∈ L such that e ∈ δ(S). Dinits,
Karzanov, and Lomonosov [14] showed there is a compact representation of all min-cuts of
an undirected graph by a cactus graph.

3 In fact, the coreset guarantee holds even for the more general covering proper functions of the form
f : 2V → {0, 1, . . . , k}.

4 As an example, consider a graph G = (V, E) where V = {0, 1, . . . , n − 1} and E = {(i, j) : j −
i ∈ {1, 2, . . . , k}} (where indices are modulo n), which has edge connectivity 2k. If the link set is
L = {(i, i + 1) : i ∈ [n]}, then at least ⌈n/2⌉ links are necessary to increase the edge connectivity by one.

ICALP 2024

93:8 Streaming Algorithms for Connectivity Augmentation

▶ Definition 2 (Cactus Graph). A cactus graph is a 2-edge-connected graph C = (VC , EC)
where each edge in EC belongs to exactly one simple cycle. Note that we allow cycles of
length 1 or 2 too.

▶ Lemma 3 ([14]). Let G = (V, E) be an undirected graph. There is a loopless cactus
C = (VC , EC) of size at most 2n− 1 and a mapping φ : V → VC so that a subset S ∈ V is a
min-cut of G if and only if φ(S) is a min-cut of C.

Moreover, when the min-cut size of G is an odd integer, the cactus representation of G is
a spanning tree (we may still treat it as a cactus by duplicating each tree edge).

The cactus representation is particularly useful for connectivity augmentation problems:

▶ Corollary 4. Let G = (V, E) be an undirected graph. Let C denote the cactus representation
of min-cuts in G. Then a link (u, v) ∈ E \ EH crosses a min-cut S in G if and only if the
corresponding link (φ(u), φ(v)) crosses φ(S) in C.

▶ Remark 5. We remark that there is a simple streaming algorithm for constructing the cactus
representation with space complexity Õ(kn): First, construct a k-connectivity certificate
H of G (recall that a k-connectivity certificate for a graph G is a subgraph H of G that
contains all edges crossing cuts of size k or less in G, and at least k edges from each cut
of size more than k) with O(kn) edges with space complexity O(kn) words in polynomial
time, using a simple algorithm by [41]. Then, we apply the algorithm of [34] for computing
the cactus representation of the subgraph H in Õ(|E(H)|) = Õ(kn) time and space. It is
straightforward to verify that the constructed cactus is a cactus representation of G, given G

is a (k − 1)-connected graph.
We then get the following as a corollary of Theorem 1: If the algorithm receives a

k-connectivity certificate as a representation of G or the edges of G arrive in the stream
before any link arrives, we can construct a cactus representation of G in O(kn) space first
and then run our algorithm in this section for cactus augmentation and the overall space
complexity will be O(nk + n

ϵ log n).

Transforming cactus to cycle. In the (weighted) cactus augmentation problem, without
loss of generality, we can assume the cactus is a single cycle. The latter problem is known
as weighted cycle augmentation. To reduce an instance on a general cactus to the single
cycle case (without losing approximation factor), we apply the technique observed in [23, 50]:
Unfold the cactus into its Eulerian circuit, then add additional zero-weight edges (which we
can use to augment at no cost) to connect the nodes corresponding to the same junction
node in the cactus. See Section 3 in [50] for a detailed description.

▶ Lemma 6 (Theorem 3 in [23]; see also Lemma 2.2 in [50]). Let α > 1. If there is an
α-approximation algorithm for the weighted cycle augmentation problem, then the weighted
cactus augmentation problem admits an α-approximation.

Note that this reduction only produces O(n) extra zero-weight edges, so it does not affect the
space complexity of the streaming algorithm. We can apply the unfolding technique in the
preprocessing step and in the rest of this section, we assume that the cactus is a single cycle.

2.2 Main Step: Cycle Augmentation in Link Arrival Streams
We arbitrarily assign a root node on the cycle, and let its index be 0. Then let the vertices
of the cycle be V = {0, 1, . . . , n − 1}, with edges C = {e1, e2, . . . , en} where ei = (i − 1, i)
(with indices modulo n). We first describe a 2-approximation for the unweighted case, using
an idea from [35, 36].

C. Jin, M. Kapralov, S. Mahabadi, and A. Vakilian 93:9

▶ Theorem 7. There exists a one-pass 2-approximation algorithm for the cycle augmentation
problem on unweighted graphs with total memory space O(n) edges.

Proof. Following [35, 36], we consider a directed version of the problem defined as follows:
given a set E of directed edges, augment a minimum size subset E′ ⊆ E to the cycle, such
that for every 2-cut (L, V \ L) of the cycle where 0 ∈ V \ L (i.e., L = {l, l + 1, . . . , r} for
some 1 ≤ l ≤ r ≤ n − 1), there exists x⃗y ∈ E′ with y ∈ L and x ∈ V \ L (we say x⃗y

covers L in this case). To reduce the original (undirected) cycle augmentation instance to
this directed problem, simply replace each input edge (u, v) by two arcs u⃗v, v⃗u, incurring a
2-factor approximation: any directed solution {x⃗y} implies an undirected solution {(x, y)} of
the same cost, and any undirected solution {(x, y)} implies a directed solution {x⃗y} ∪ {y⃗x}
of twice the cost.

Now we solve the directed instance exactly by an O(n)-space streaming algorithm. For
each v ∈ V , we only need to keep the input arc u⃗v with minimum indexed u, and keep
the input arc u⃗v with maximum indexed u. In this way we store only O(n) arcs in total,
and finally we run an offline exact algorithm (e.g., [22], which was also used by [36]) for
the directed problem on these stored arcs. This does not affect optimality, because when
0 ≤ u < u′ < v, any 2-cut, U = {l, l + 1, . . . , r} covered by u⃗′v is also covered by u⃗v, so we
can discard u⃗′v if we already have u⃗v (a similar argument applies to the v < u′ < u ≤ n− 1
case). ◀

By a simple scaling, this algorithm can be modified into a (2 + ϵ)-approximate algorithm for
the weighted case with total space O(n

ϵ log W) edges. Now we improve this log W dependency.

▶ Theorem 8. The cycle augmentation problem on weighted graphs admits a one-pass
(2 + ε)-approximation streaming algorithm with total memory space O(n

ϵ log min(W, n)) edges.

Proof. We assume ϵ > 1/n; otherwise use the trivial O(n2)-space algorithm that stores the
cheapest edge between every pair of vertices.

Define weight intervals Ik = [(n/ϵ)k, (n/ϵ)k+1). Let Ek be the set of input edges e that
have arrived so far with weights w(e) ∈ Ik. Note that5

mine∈Ek+2 w(e)
maxe∈Ek

w(e) > n/ϵ. (1)

These weight intervals do not contain zero, so we separately use a zero-weight class E−1 to
hold edges of zero weight. But for notational simplicity, we will not specially mention this
zero weight class in later description. One can check that this does not affect the correctness
of the algorithm.

Recall C is the base cycle of length n. For each k ∈ {0, 1, . . . , ⌈logn/ϵ W ⌉}, define graph

Gk := C ∪
⋃
i≥0

Ek−2i. (2)

Let Qk denote the collection of 3-edge-connected components of Gk, which form a partition
of the n vertices. See Figure 1 for an illustration. Let 1 ≤ |Qk| ≤ n denote the number of
components. Since Gk ⊆ Gk+2, Qk refines Qk+2, and |Qk| ≥ |Qk+2|.

5 This inequality is meaningful only if both Ek and Ek+2 are nonempty. This issue does not affect our
overall argument since our algorithm can simply ignore the empty weight classes.

ICALP 2024

93:10 Streaming Algorithms for Connectivity Augmentation

Figure 1 An example of 3-edge-connected components Qk of the graph Gk. Thin black edges
denote the base cycle, and thick blue edges denote the links from the set

⋃
i≥0 Ek−2i; together they

form Gk. The dashed green lines describe the 3-edge-connected components of graph Gk.

Algorithm description. At any point, our streaming algorithm always stores a subset of
the input edges E =

⋃
k Ek, which includes the following:

1. Undirected edges Fk: We store edge subsets Fk ⊆ Ek, such that for all k the subgraph
C ∪

⋃
i≥0 Fk−2i ⊆ Gk has the same 3-edge-connected components as Qk.

2. Directed arcs Sk: For each k and 3-edge-connected component U ∈ Qk, and every
weight interval Ji = [(1 + ϵ)i, (1 + ϵ)i+1) ⊆ Ik+2, we store the arc x⃗y with minimum (and
maximum) indexed x where (x, y) ∈ Ek+2, y ∈ U, x /∈ U , and w(x, y) ∈ Ji. The set of
these arcs is denoted by Sk.

Now we describe how to maintain this information when a new edge (u, v) ∈ Ek′ arrives.
Maintain Item 1: Note that adding this edge could potentially cause the components
in Qk′+2i (i = 0, 1, 2, . . .) to merge. To maintain Item 1 (and hence the knowledge of
all Qk), we insert (u, v) into the current Fk′ , and then run a clean up procedure to
remove redundant edges: Start from the graph H ← C ∪

⋃
j≥1 Fk′−2j which encodes the

3-connectivity information of the graph formed using edges prior to Ek′ , and iterate over
the edges e ∈ Fk′+2i (in increasing order of i = 0, 1, 2, . . .). If adding e to H does not
change the 3-edge-connected components of H, then remove e from Fk′+2i. Otherwise
add e to H. It is clear that this clean up procedure preserves all the 3-connectivity
information, since we start from the base graph C which is already 2-edge-connected.
Maintain Item 2: To maintain Item 2, we simply use arcs u⃗v and v⃗u to replace
the existing ones that become dominated. When two 3-edge-connected components
U, U ′ ∈ Qk merge, we also merge the stored information for U, U ′ (compare the best arcs
stored for these two components and keep the better one).
Offline step: In the end, we run an offline exact algorithm (such as [22]) that solves
the directed problem (see proof of Theorem 7) on the stored arcs in Item 2 and directed
versions of the stored edges in Item 1.

Space complexity. For Item 1 the total space is
∑

k |Fk| =
∑

j |F2j |+
∑

j |F2j+1| edges. We
bound both terms separately. Due to our clean up procedure, there should be no redundant
edges in Feven =

⋃
j F2j : starting from the base cycle H ← C, we can iterate over the edges

e ∈ Feven in certain order so that adding edge e to H always strictly decreases the number of
3-edge-connected components of H. Hence |Feven| ≤ n− 1, and similarly |Fodd| ≤ n− 1, so∑

k

|Fk| ≤ 2(n− 1). (3)

C. Jin, M. Kapralov, S. Mahabadi, and A. Vakilian 93:11

Define ck+2 to be the number of 3-edge-connected components U ∈ Qk for which there
exists (u, v) ∈ Ek+2 with u ∈ U and v /∈ U . Then the space for Item 2 is

∑
k 2ck+2 ·

log1+ϵ

maxe∈Ek+2 w(e)
mine∈Ek+2 w(e) ≤

∑
k ck+2 ·O(log(n/ϵ)/ϵ) ≤

∑
k ck+2 ·O(log(n)/ϵ) edges. We need the

following lemma.

▶ Lemma 9. ck+2 ≤ 2(|Qk| − |Qk+2|).

Using this lemma, the space complexity for Item 2 is

O(log n

ϵ
)
∑

k

ck+2 ≤ O(log n

ϵ
)
∑

k

(|Qk| − |Qk+2|)

≤ O(log n

ϵ
) · 2(n− 1)

≤ O(n log n

ϵ
) ▷ by summing over even and odd k separately

So the total space complexity is O(ϵ−1n log n) edges.

Proof of Lemma 9. We first shrink the graph Gk = C ∪
⋃

i≥0 Ek−2i into graph Hk. Let
each node of Hk represent a 3-edge-connected component U ∈ Qk, and for every (u, v) ∈ C

(recall C is the set of edges on the base cycle) with u ∈ U ∈ Qk and v ∈ V ∈ Qk, we connect
U, V in Hk by an edge (allowing self-loops and parallel edges). As a standard fact, Hk is a
cactus (allowing self loops), and C corresponds to an Eulerian circuit of Hk.

Let Ck denote the collection of simple cycles (cycles with distinct vertices; we view a self
loop as a simple cycle as well) of the cactus Hk. Then Ck can be viewed as a partition of
the n edges on the base cycle C, where e, e′ ∈ C belong to the same partition if and only if
{e, e′} is a 2-cut of Gk. Observe that |Ck| = n + 1− |Qk|.6 Hence, in the following it suffices
to prove ck+2 ≤ 2 · (|Ck+2| − |Ck|). Note that Ck+2 is a finer partition of C than Ck.

10

11

12

1

2

3 4

56

7

8

9

1 2

3

4

5

6

78

9

10

11

12

Figure 2 A picture of the cactus Hk (middle) produced by shrinking Gk (left). The tree Tk

(right) is produced from cactus Hk.

We now consider how adding edges Ek+2 into Gk can refine Ck. Convert the cactus Hk

into a tree Tk as follows. Let Tk be a bipartite graph with vertex bipartition (Ck, Qk), in
which D ∈ Ck is connected to every U ∈ Qk that lies on the simple cycle D in cactus Hk.
Observe this bipartite graph Tk is indeed a tree. For each (u, v) ∈ Ek+2, let u ∈ U ∈ Qk and
v ∈ V ∈ Qk, and we mark all the tree-edges on the unique path connecting U and V in Tk.

6 To see this equality, consider removing one arbitrary edge from each simple cycle of the cactus, and the
remaining edges should form a tree. As there are |Qk| vertices, the number of edges in the remaining
tree is |Qk| − 1, so the number of edges n in the original cactus equals |Qk| − 1 + |Ck|, since we removed
|Ck| edges in the removal step.

ICALP 2024

93:12 Streaming Algorithms for Connectivity Augmentation

10

11
121

2

3 4

56

7

8

9

1 2

3

4

5

6

78

9

10

11

12

Figure 3 After adding an edge from Ek+2 (depicted in red), the partition Ck+2 refines the old
partition Ck: {1, 3, 9} breaks into {1} and {3, 9}.

For each D ∈ Ck, let d(D) denote the number of marked tree-edges incident to the tree-node
D in Tk. Then, observe that d(D) ∈ {0} ∪ {2, 3, 4, . . . }, and D ∈ Ck (viewed as a subset of
C) breaks into max{d(D), 1} subsets in the partition Ck+2.

By assumption, there are at least ck+2 many tree-nodes U ∈ Qk that are incident to at
least one marked tree-edge in Tk, so Tk contains at least ck+2 marked tree-edges. Hence,

|Ck+2| =
∑

D∈Ck

max{d(D), 1} ≥
∑

D∈Ck

(1 + d(D)/2) ▷ since d(D) ∈ {0} ∪ {2, 3, 4, . . . }

= |Ck|+
1
2

∑
D∈Ck

d(D) ≥ |Ck|+
1
2ck+2,

which completes the proof. ◀

Approximation factor. Let OPT ⊆ E =
⋃+∞

k=−∞ Ek denote the optimal solution for the
(undirected) cycle augmentation problem. Let k∗ be the maximum k∗ such that OPT∩Ek∗ ̸=
∅. Then by (1) we have

w(OPT) > (n/ϵ) · max
e∈Ek∗−2

w(e). (4)

Bidirecting OPT gives a solution OPT′ for the directed problem with total cost w(OPT′) =
2w(OPT). In the following we convert OPT′ into a solution SOL for the directed problem
that only uses arcs stored by the streaming algorithm, with total cost w(SOL) ≤ (1 +
O(ϵ))w(OPT′) ≤ (2 + O(ϵ))w(OPT). This establishes that our streaming algorithm achieves
2 + O(ϵ) approximation ratio for the (undirected) cycle augmentation problem.

In SOL we first include both directed versions of all (u, v) ∈
⋃

k≤k∗−2 Fk, with total cost
at most∑

k≤k∗−2
2|Fk| ·max

e∈Fk

w(e) ≤
∑

k

2|Fk| · max
e∈Ek∗−2

w(e)

≤ 4(n− 1) · ϵ

n
w(OPT) ▷ by (3) and (4)

≤ 4ϵw(OPT).

Then, for every arc x⃗y ∈ OPT′ with weight w(x⃗y) ∈ Ik where k ∈ {k∗ − 1, k∗}, we will find
a replacement arc ⃗x′y′ ∈ Sk stored by Item 2: Let y ∈ U ∈ Qk. If x /∈ U , then by Item 2 we
can pick a stored arc ⃗x′y′ ∈ Sk with y′ ∈ U and w(⃗x′y′) < (1 + ϵ)w(x⃗y), such that x′ ≤ x (if
x < y) or x′ ≥ x (if x > y). We include ⃗x′y′ in SOL. (in the case of x ∈ U we do not need
to do anything)

C. Jin, M. Kapralov, S. Mahabadi, and A. Vakilian 93:13

By definition we immediately have w(SOL) ≤ 4ϵw(OPT) + (1 + ϵ)w(OPT′) = (2 +
6ϵ)w(OPT). To show SOL is a feasible solution for the directed problem, we verify that each
2-cut L = {l, l + 1, . . . , r} (where 1 ≤ l ≤ r ≤ n− 1) is covered. There are three cases:

Case 1: (L, V \ L) is not a 2-cut of Gk∗−2. By Item 1, Gk∗−2 and C ∪
⋃

i≥0 Fk∗−2−2i

have the same 3-edge-connected components, and hence have the same 2-cuts, so (L, V \L)
is also not a 2-cut of C ∪

⋃
i≥0 Fk∗−2−2i. Hence, there exists (u′, v′) ∈

⋃
i≥0 Fk∗−2−2i such

that u′ ∈ V \ L, v′ ∈ L. Then, ⃗u′v′ covers L, and by construction we have ⃗u′v′ ∈ SOL.
Case 2: (L, V \ L) is not a 2-cut of Gk∗−3. This case is similar to case 1.
Case 3: Otherwise. In this case, (L, V \ L) is a 2-cut of both Gk∗−2 and Gk∗−3. From
the feasibility of OPT, we know there must exist arc x⃗y ∈ OPT′ that covers L (i.e.,
y ∈ L, x ∈ V \ L) with weight w(x⃗y) ∈ Ik where k ∈ {k∗ − 1, k∗}. Let y ∈ U ∈ Qk−2.
Since (L, V \L) is a 2-cut of Gk−2, we know x, y cannot be in the same 3-edge-connected
component of Gk−2, so x /∈ U . Now let ⃗x′y′ ∈ SOL be the replacement arc we found
for x⃗y. By definition, y′ ∈ U . We consider the case of x < y (the other case y < x is
similar), and hence x′ ≤ x. In this case we must have x < l ≤ y ≤ r, so x′ < l and hence
x′ /∈ L. Suppose for contradiction that ⃗x′y′ does not cover L. Then we must have y′ /∈ L.
But this would mean (L, V \ L) is a 2-cut in Gk−2 separating y and y′, contradicting
the assumption that y, y′ ∈ U belong to the same 3-edge-connected component of Gk−2.
This proves that the replacement arc ⃗x′y′ ∈ SOL indeed covers L. ◀

The following shows that the approximation factor of our algorithm is close to optimal.

▶ Theorem 10. Any streaming algorithm that solves the weighted TAP in the link arrival
model with better than 2-approximation needs Ω(n2) bits of space.

3 Connectivity Augmentation in the Fully Streaming Setting

In this section, we first prove a space lower bound for k-CAP in the fully streaming model.
Then, we show a streaming algorithm with nearly matching space complexity.

3.1 Lowerbound for Estimating Connectivity Augmentation Cost
Our main lower bound statement is the following.

▶ Theorem 11. For any constant integer t ≥ 1, the (unweighted) k-CAP (even when k is
known) in the fully streaming model requires space complexity Ω(kn + n1+1/t) bits (assuming
the Erdős’s girth conjecture) to approximate the solution size to a factor better than 2t + 1.

It follows from combining two lower bound results Theorem 12 and Theorem 13.

Lower bound in terms of approximation factor (t). We first describe the space lower bound
in terms of the approximation factor. As is standard in the spanner literature, the proof is
based on high-girth graphs, but here we need to be more careful to make the connection
between tree-augmentation and shortest paths.

▶ Theorem 12. Consider the (unweighted) TAP where E is the base tree and L is the set of
edges to augment, and E ∪ L arrive as a stream in an arbitrary order.

For any constant integer t ≥ 1, any (randomized) streaming algorithm A that can output
the size of a better than (2t + 1)-approximate solution requires Ω(γ(n, 2t + 1)) bits of space,
where γ(n, 2t + 1) denotes the maximum possible number of edges in an n–vertex graph with
girth > 2t + 1.

ICALP 2024

93:14 Streaming Algorithms for Connectivity Augmentation

We remark that the same lower bound of Theorem 12 also generalizes to k-CAP for higher
values of k > 2, provided that we allow the base graph E to have parallel edges.

Lower bound in terms of connectivity parameter (k). Zelke [53] gave a simple proof
that computing the size of the minimum cut of an (unweighted) undirected graph requires
Ω(n2) bits of space for any one-pass streaming algorithm. In Zelke’s construction the input
graph has minimum cut size as large as Θ(n). Here we observe that Zelke’s proof can be
adapted to graphs with minimum cut size Θ(k), and show lower bounds for the connectivity
augmentation problem.

We remark that [47] also obtained an Ω(kn)-bit randomized lower bound and an
Ω(kn log n)-bit deterministic lower bound for the k-CAP using a different proof.

▶ Theorem 13. The k-CAP (where k is known) in the fully streaming model (with unweighted
links) requires Ω(nk) bits of space to approximate to any finite factor.

▶ Remark 14. We remark that the same Ω(nk) lower bound also holds for the task of con-
structing a cactus representation of a graph (Lemma 3), even assuming the edge connectivity
value k is known. This is because the cactus representation immediately allows to distinguish
between the cases of having two minimum cuts C1, C2 or one minimum cut C2, and thus the
proof above still applies.

3.2 Tight Algorithm
The main result of this section, whose details are deferred to the full version of the paper, is a
single-pass algorithm that outputs a (2t−1+ϵ)-approximate solution in O(nk+ϵ−1n1+1/t log n)
space, nearly matching the lower bounds of Theorem 12 and 13.

▶ Theorem 15. The k-CAP in the fully-streaming model can be solved by a single-pass
streaming algorithm with approximation ratio (2t− 1 + ϵ) in O(nk + ϵ−1n1+1/t log n) space.

References
1 Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad

Javad Latifi Jebelli, Stephen G. Kobourov, and Richard Spence. Graph spanners: A tutorial
review. Comput. Sci. Rev., 37:100253, 2020.

2 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners,
and subgraphs. In Symposium on Principles of Database Systems, pages 5–14, 2012.

3 Sepehr Assadi and Aditi Dudeja. A simple semi-streaming algorithm for global minimum cuts.
In Symposium on Simplicity in Algorithms (SOSA), pages 172–180. SIAM, 2021.

4 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph
streams. In Proceedings of the Symposium on Discrete Algorithms, pages 1723–1742, 2017.

5 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in
dynamic graph streams and the simultaneous communication model. In Proceedings of the
twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages 1345–1364, 2016.

6 Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause.
Streaming submodular maximization: Massive data summarization on the fly. In Proceedings
of the international conference on Knowledge discovery and data mining, pages 671–680, 2014.

7 Surender Baswana. Streaming algorithm for graph spanners–single pass and constant processing
time per edge. Inf. Process. Lett., 106(3):110–114, 2008.

8 Jarosław Byrka, Fabrizio Grandoni, and Afrouz Jabal Ameli. Breaching the 2-approximation
barrier for connectivity augmentation: a reduction to steiner tree. In Symposium on Theory
of Computing, pages 815–825, 2020.

C. Jin, M. Kapralov, S. Mahabadi, and A. Vakilian 93:15

9 Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the gap between tree and
connectivity augmentation: unified and stronger approaches. In Symposium on Theory of
Computing, pages 370–383, 2021.

10 Chandra Chekuri, Alina Ene, and Ali Vakilian. Prize-collecting survivable network design in
node-weighted graphs. In International Workshop on Approximation Algorithms for Combin-
atorial Optimization, pages 98–109, 2012.

11 Chandra Chekuri, Alina Ene, and Ali Vakilian. Node-weighted network design in planar and
minor-closed families of graphs. ACM Transactions on Algorithms (TALG), 17(2):1–25, 2021.

12 Joseph Cheriyan and László A Végh. Approximating minimum-cost k-node connected sub-
graphs via independence-free graphs. SIAM Journal on Computing, 43(4):1342–1362, 2014.

13 Michael S. Crouch, Andrew McGregor, and Daniel M. Stubbs. Dynamic graphs in the sliding-
window model. In Algorithms - ESA 2013 - 21st Annual European Symposium, volume 8125
of Lecture Notes in Computer Science, pages 337–348. Springer, 2013.

14 E A Dinits, Alexander V Karzanov, and Micael V Lomonosov. On the structure of a family of
minimal weighted cuts in a graph. Studies in Discrete Optimization, pages 290–306, 1973.

15 Michael Elkin. Streaming and fully dynamic centralized algorithms for constructing and
maintaining sparse spanners. ACM Trans. Algorithms, 7(2):20:1–20:17, 2011.

16 Guy Even, Jon Feldman, Guy Kortsarz, and Zeev Nutov. A 1.8 approximation algorithm for
augmenting edge-connectivity of a graph from 1 to 2. Transactions on Algorithms (TALG),
5(2):1–17, 2009.

17 Jittat Fakcharoenphol and Bundit Laekhanukit. An O(log2 k)-approximation algorithm for the
k-vertex connected spanning subgraph problem. In Proceedings of the Symposium on Theory
of Computing, pages 153–158, 2008.

18 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. In International Colloquium on Automata,
Languages, and Programming, pages 531–543, 2004.

19 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the data-stream model. Journal on Computing, 38(5):1709–1727, 2008.

20 Manuel Fernández V, David P Woodruff, and Taisuke Yasuda. Graph spanners in the
message-passing model. In Innovations in Theoretical Computer Science Conference, 2020.

21 Arnold Filtser, Michael Kapralov, and Navid Nouri. Graph spanners by sketching in dynamic
streams and the simultaneous communication model. In Proceedings of the Symposium on
Discrete Algorithms (SODA), pages 1894–1913, 2021.

22 Harold N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.
J. Comput. Syst. Sci., 50(2):259–273, 1995.

23 Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Krzysztof Sornat. On the cycle
augmentation problem: hardness and approximation algorithms. Theory of Computing Systems,
65:985–1008, 2021.

24 Mohit Garg, Fabrizio Grandoni, and Afrouz Jabal Ameli. Improved approximation for two-
edge-connectivity. In Symposium on Discrete Algorithms (SODA), pages 2368–2410, 2023.

25 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Symposium on Discrete Algorithms (SODA),
pages 468–485, 2012.

26 MX Goemans, AV Goldberg, S Plotkin, DB Shmoys, É Tardos, and DP Williamson. Improved
approximation algorithms for network design problems. In Symposium on Discrete Algorithms
(SODA), pages 223–232, 1994.

27 Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. Improved approximation for tree
augmentation: saving by rewiring. In Symposium on Theory of Computing, pages 632–645,
2018.

28 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph
processing. Algorithmica, 76:654–683, 2016.

ICALP 2024

93:16 Streaming Algorithms for Connectivity Augmentation

29 K. Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Combinatorica, 21(1):39–60, 2001.

30 Michael Kapralov. Space lower bounds for approximating maximum matching in the edge
arrival model. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 1874–1893, 2021.

31 Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford.
Single pass spectral sparsification in dynamic streams. SIAM J. Comput., 46(1):456–477, 2017.

32 Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid Nouri, Aaron
Sidford, and Jakab Tardos. Fast and space efficient spectral sparsification in dynamic streams.
In Proceedings of the Symposium on Discrete Algorithms (SODA), pages 1814–1833, 2020.

33 Michael Kapralov and David Woodruff. Spanners and sparsifiers in dynamic streams. In
Proceedings of the Symposium on Principles of Distributed Computing, pages 272–281, 2014.

34 David R. Karger and Debmalya Panigrahi. A near-linear time algorithm for constructing
a cactus representation of minimum cuts. In Claire Mathieu, editor, Proceedings of the
Symposium on Discrete Algorithms (SODA), pages 246–255, 2009.

35 Samir Khuller and Ramakrishna Thurimella. Approximation algorithms for graph augmenta-
tion. Journal of Algorithms, 14(2):214–225, 1993.

36 Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings. J. ACM,
41(2):214–235, 1994.

37 Guy Kortsarz and Zeev Nutov. Approximating k-node connected subgraphs via critical graphs.
SIAM Journal on Computing, 35(1):247–257, 2005.

38 Guy Kortsarz and Zeev Nutov. A simplified 1.5-approximation algorithm for augmenting
edge-connectivity of a graph from 1 to 2. Transactions on Algorithms, 12(2):1–20, 2015.

39 Andrew McGregor. Finding graph matchings in data streams. In International Workshop on
Approximation Algorithms for Combinatorial Optimization, pages 170–181. Springer, 2005.

40 Hiroshi Nagamochi. An approximation for finding a smallest 2-edge-connected subgraph
containing a specified spanning tree. Discrete Applied Mathematics, 126(1):83–113, 2003.

41 Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse
k-connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–596, 1992.

42 Jelani Nelson and Huacheng Yu. Optimal lower bounds for distributed and streaming spanning
forest computation. In Proceedings of the Symposium on Discrete Algorithms, pages 1844–1860,
2019.

43 Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrovic, Amir Zandieh, Aidasadat Mousavi-
far, and Ola Svensson. Beyond 1/2-approximation for submodular maximization on massive
data streams. In International Conference on Machine Learning, pages 3829–3838, 2018.

44 Zeev Nutov. Approximating steiner networks with node-weights. SIAM Journal on Computing,
39(7):3001–3022, 2010.

45 R Ravi, Weizhong Zhang, and Michael Zlatin. Approximation algorithms for steiner tree
augmentation problems. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2429–2448, 2023.

46 Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact minimum cuts
without knowing the graph. In 9th Innovations in Theoretical Computer Science Conference,
ITCS, volume 94 of LIPIcs, pages 39:1–39:16, 2018.

47 Xiaoming Sun and David P Woodruff. Tight bounds for graph problems in insertion streams. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2015). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.

48 Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree augmentation.
In Foundations of Computer Science (FOCS), pages 1–12, 2022.

49 Vera Traub and Rico Zenklusen. Local search for weighted tree augmentation and steiner tree.
In Symposium on Discrete Algorithms (SODA), pages 3253–3272, 2022.

50 Vera Traub and Rico Zenklusen. A (1.5+ε)-approximation algorithm for weighted connectivity
augmentation. In Symposium on Theory of Computing, pages 1820–1833, 2023.

C. Jin, M. Kapralov, S. Mahabadi, and A. Vakilian 93:17

51 David P Williamson, Michel X Goemans, Milena Mihail, and Vijay V Vazirani. A primal-dual
approximation algorithm for generalized steiner network problems. In Proceedings of the
Symposium on Theory of Computing (STOC), pages 708–717, 1993.

52 Mariano Zelke. k-connectivity in the semi-streaming model. arXiv preprint cs/0608066, 2006.
arXiv:cs/0608066.

53 Mariano Zelke. Intractability of min-and max-cut in streaming graphs. Information Processing
Letters, 111(3):145–150, 2011.

A Streaming Algorithm for Spanners on Weighted Graphs

In this section, we prove the following theorem on computing spanners for weighted graphs
in the streaming model.

▶ Theorem 16. For any integer t ≥ 1, there is a one-pass streaming algorithm for computing
a (2t− 1 + ϵ)-spanner of size O(ϵ−1n1+1/t log n) of a weighted graph, with space complexity
O(ϵ−1n1+1/t log n) words.

Let G = (V, E) be a weighted graph. We denote the weight function by w : E → R+.
Moreover, We normalize the weights so that w(e) ∈ {0}∪ [1, W]. For each j ∈ [0, ⌈log1+ϵ W ⌉],
our algorithm stores Ej , a subset of edges of G that have weights in [(1 + ϵ)j , (1 + ϵ)j+1).
(These intervals do not contain zero, so we separately use a zero-weight class E−1 to hold
edges of zero weight. For notational simplicity, we will not mention this zero weight class in
later description. One can check that this does not affect the correctness of the algorithm.)

Our algorithm is as follows (see Algorithm 2). As an edge e arrives, round its weight to
the nearest power of (1 + ϵ) and place it in the corresponding weight class Ej . As usual,
we keep the edge e iff it does not close a cycle of length at most 2t in Ej , for some given
parameter t. After processing the edge, we run the Sparsify subroutine described below in
Algorithm 1.

Sparsify subroutine. Let C > 0 be a sufficiently large constant. Define intervals Ik =
[k · (C/ϵ) log n, (k + 1) · (C/ϵ) log n]. For all k let Ẽk :=

⋃
j∈Ik

Ej . For each k let Eeven
≤k =⋃k

j=−∞ Ẽ2j and Eodd
≤k =

⋃k
j=−∞ Ẽ2j+1. Let Eeven =

⋃
j Ẽ2j , and we define Eodd similarly.

Our Sparsify procedure operates independently on these two sets. We will ensure that each
set contains O(ϵ−1n1+1/t log n) edges, independent of the weight bound W . We now describe
how Sparsify operates on Eeven (the operations are the same for Eodd).

▷ Claim 17. Let the constant C in the definition of the sets Ẽk be chosen sufficiently large.
Let k be an integer. Let H = (V, Eeven

≤k−1). Then for any edge e = (u, v) ∈ Ẽ2k such that u

and v belong to the same connected component in H, one has we ≥ distH(u, v).

Our procedure Sparsify(k) performs the following step for each k from kmax down to
kmin. Collapse the connected components induced by Eeven

≤k−1 into supernodes, and consider
the multigraph with edges Ẽ2k on this set of supernodes. We convert this multigraph into a
simple graph in the following natural way. For each edge e = (u, v) ∈ Ẽ2k,

delete e if it is a self loop in this graph (i.e. u, v belong to the same connected component)
delete e if there is a shorter edge that is parallel to e.

This is summarized in Algorithm 1. The algorithm is summarized in Algorithm 2.

▶ Lemma 18. The edges stored by Algorithm 2 form a (2t− 1) · (1 + ϵ)-spanner of G.

▶ Lemma 19. Throughout the algorithm, the total number of edges stored by Algorithm 2 is
always at most O(ϵ−1n1+1/t log n).

ICALP 2024

https://arxiv.org/abs/cs/0608066

93:18 Streaming Algorithms for Connectivity Augmentation

Algorithm 1 Sparsify.

1: procedure Sparsify
2: for k = kmax down to kmin do ▷ The same procedure for the set Eodd

3: Let H = (V, Eeven
≤k−1) and let C1, . . . , Cr be the connected components of H.

4: for e = (u, v) ∈ Ẽ2k do
5: if u, v ∈ Ci for some i then
6: delete e from Ẽ2k

7: end if
8: if ∃(u′, v′) ∈ Ẽ2k s.t. w(u′,v′) ≤ we, and u, u′ ∈ Ci, v, v′ ∈ Cj for some i, j

then
9: delete e from Ẽ2k

10: end if
11: end for
12: end for
13: end procedure

Algorithm 2 Overall algorithm.

1: procedure Spanner
2: for each edge e = (u, v) in the stream do
3: Round weight of e to power of 1 + ϵ. Let j be the weight class of e.
4: Add e to Ej iff distEj

(u, v) > (2t− 1) · we.
5: Call Sparsify
6: end for
7: end procedure

B Further Applications of Streaming Connectivity Augmentation

In this section, we show applications of our streaming algorithms for k-CAP for following
well-studied network design problems: STAP, SNDP and k-ECSS.

B.1 Steiner Tree Augmentation Problem (STAP) in Streaming
In STAP, we are given a set of vertices V partitioned into terminal nodes (R) and Steiner
nodes (V \ R), and a Steiner tree T spanning the terminal set R. Then given a set of
weighted links L ⊆

(
V
2
)
, the goal is to find a minimum weight set of links S ⊆ L such that

H = (V, E(T) ∪ S) has 2 edge-disjoint paths between any pair of terminals. The problem is
a special case of SNDP and can be approximate within a factor of 2 by iterative rounding
method of Jain [29]. In light of recent developments for approximating tree augmentation
and connectivity augmentation problems [49], Ravi, Zhang, and Zlatin [45] provided a
(1.5 + ϵ)-approximation for Steiner tree augmentation problem in polynomial time.

Algorithm in fully streaming setting. First, we observe that our results imply an algorithm
for STAP in the fully streaming setting.

▶ Corollary 20. STAP in the fully streaming model can be solved by a single-pass streaming
algorithm with approximation ratio (2t−1+ϵ) and space complexity O(ϵ−1n1+1/t log n) words.

Note that the same fully streaming algorithm from Corollary 20 can also be used to solve
STAP in the easier link arrival streams.

C. Jin, M. Kapralov, S. Mahabadi, and A. Vakilian 93:19

Lower bound in link arrival streams. Now we show that STAP has a lower bound nearly
matching Corollary 20 even in link arrival streams. This shows a separation of STAP from
the easier TAP: the latter problem has a better streaming algorithm in link arrival streams
than in the fully streaming setting, whereas the former problem does not.

▶ Corollary 21. For any constant integer t ≥ 1, weighted STAP in link arrival streams requires
space complexity Ω(n1+1/t) bits (assuming the Erdős’s girth conjecture) to approximate the
solution cost to a factor better than 2t + 1.

B.2 SNDP in Edge Arrival Streams
In this section, using our results and techniques from k-CAP and weighted spanners, we
present a streaming algorithm for the general SNDP problem in edge arrival streams. We
remark that our result in this section provide coresets for covering functions defined on cuts.

▶ Lemma 22. Consider a weighted graph G = (V, E) in an edge arrival stream. For
integer k ≥ 1 there is a one-pass streaming algorithm that computes k disjoint edge subsets
S1⊎S2⊎· · ·⊎Sk ⊆ E each of size |Si| ≤ O(ϵ−1n1+1/t log n), in total space O(kϵ−1n1+1/t log n)
words such that, for every i ∈ [k] and every e = (u, v) ∈ E \ (S1 ∪ S2 ∪ · · · ∪ Si), there is be a
path P ⊆ Si connecting u, v with total length w(P) ≤ (2t− 1 + ϵ)w(e).

One of the main algorithmic approaches for SNDP is the augmentation framework
pioneered by [51]. In this approach, the solution is constructed in k phases and by the end
of the phase ℓ, the connectivity of every pair u, v in the so-far-constructed solution is at
least min{ℓ, r(st)}. So, the optimization problem of each phase is to increase connectivity of
subset of pairs by one. More precisely, in each phase ℓ, we need to pick a minimum-weight
subgraph H to cover a function fℓ : 2V → {0, 1}. We say that a subgraph H covers f iff for
every U ⊂ V , δH(U) ≥ f(s). In the case of SNDP, for every ℓ ≤ k, fℓ is a skew-supermodular
function and admits a 2-approximation via a primal-dual algorithm [51].

Next, We use Lemma 22 to show a coreset for covering {0, 1} functions f : 2V → {0, 1}:

▶ Definition 23. Given a weighted graph G = (V, E), and a function f : 2V → {0, 1, . . . , k},
find an edge subset H ⊆ E with minimum total weight such that for all U ⊆ V it holds
that |δH(U)| ≥ f(U). Throughout this section, we consider the functions f arising from an
instance of SNDP on G with connectivity requirement function r with maximum requirement
k. Then, for every U ⊂ V , f(U) := maxs∈U,t∈V \U r(st).7

▶ Lemma 24. Given a weighted graph G = (V, E), let S = S1 ∪ · · · ∪ Sk be the set of edges
returned by the algorithm of Lemma 22. Then, the optimal solution for covering a function
f : 2V → {0, 1, · · · , k} (arising from a SNDP instance on G) on graph G′ = (V, S) is an
O(t log k)-approximation of the optimal solution for covering f on G = (V, E).

▶ Theorem 25. SNDP with maximum connectivity requirement k on a weighted graph
G = (V, E) admits a single-pass streaming algorithm with space complexity O(kn1+1/t) words
and approximation ratio O(t log k).

Note that SNDP generalizes STAP, so the same lower bound for STAP from Corollary 21
also applies to SNDP. Specifically, for any constant integer t ≥ 1, weighted SNDP requires
space complexity Ω(n1+1/t) bits (assuming the Erdős’s girth conjecture) to approximate the
solution cost to a factor better than 2t + 1.

7 All results hold for a more general class of proper functions too. The function f is called proper if
f(V) = 0, f(U) = f(V \ U) for every U ⊂ V (symmetry), and f(U1 ∪ U2) ≤ max{f(U1), f(U2)}
whenever U1 and U2 are disjoint (maximality).

ICALP 2024

93:20 Streaming Algorithms for Connectivity Augmentation

Min-Weight k-ECSS. As a corollary of Theorem 1 for CAP in link arrival streams, we
have the following guarantee for the problem of finding minimum-weight k-edge-connected
spanning subgraph (k-ECSS), where given a graph G = (V, E) with a weight function
w : E → R≥0, the goal is to find a minimum-weight k-edge-connected subgraph H ⊆ G.

▶ Corollary 26. There exists a k-pass O(log k)-approximation algorithm for minimum-weight
k-ECSS with total memory space O(nk + n log min(n, W)) where W = maxe∈E w(e).

C Related Work

Approximation algorithms of k-CAP. The edge-connectivity of a graph plays a central role
in a wide range of network design problems, spanning both classical and modern problems.
While the celebrated iterative rounding technique of [29] provides a 2-approximation for most
of these problems, any better than 2-approximation for them are among main open problems
within the field of approximation algorithms.

Significant progress has been made in achieving better than a 2-approximation for specific
instances of the weighted k-CAP.Notably, extensive research focusing on the well-studied
unweighted TAP has led to breakthroughs [40, 16, 38, 27, 9], culminating in an approximation
factor of 1.326 [24]. Remarkably, this same factor has also been achieved for the unweighted k-
CAP [9], a problem that recently saw significant advancements surpassing the 2-approximation
barrier [8]. Moreover, in a recent development, the weighted TAP and k-CAP have witnessed
breakthroughs with approximation factors below 2 [48, 49, 50]. It is noteworthy that these
advancements in the weighted variants are relatively recent in the research landscape.

The Steiner tree augmentation problem, in which given a Steiner tree T ⊂ G = (V, E)
over terminals R ⊂ V the goal is to find a minimum weight set of edges H ⊆ G \ T that
increases the connectivity of the set R to 2, has also been studied and recently [45] provides
(1.5 + ϵ)-approximation generalizing some of the techniques in [49].

SNDP. Similarly to k-ECSS, the augmentation variant of SNDP has been extensively studied
and is significant in the development of approximation algorithms for different variations of
SNDP. Notably, the augmentation variant of SNDP generalizes well-studied problems such as
TAP, STAP and k-CAP. The augmentation variant of SNDP was originally studied to analyze
the primal-dual methods for SNDP, leading to k and log k approximations [51, 26], and
compared to the state-of-the-art 2-approximation iterative rounding technique of [29] has the
advantage of applicability to other variants of SNDP such as node-weighted SNDP [44, 11, 10]
or vertex-connectivity SNDP [37, 17, 12].

Spanners and sparsifiers. Graph spanners are important tools for graph compression in
which the distances between the nodes are preserved. See [1] for a survey on graph spanners
in general. Spanners have also been studied extensively in the streaming setting, see e.g.,
[7, 2, 15, 33, 21]. For other notions of graph sparsifiers in the streaming model, see e.g.,
[31, 32].

	1 Introduction
	1.1 Our Computational Models
	1.2 Our Results
	1.3 Our Techniques
	1.4 Organization

	2 Connectivity Augmentation in Link Arrival Streams
	2.1 Preliminaries
	2.2 Main Step: Cycle Augmentation in Link Arrival Streams

	3 Connectivity Augmentation in the Fully Streaming Setting
	3.1 Lowerbound for Estimating Connectivity Augmentation Cost
	3.2 Tight Algorithm

	A Streaming Algorithm for Spanners on Weighted Graphs
	B Further Applications of Streaming Connectivity Augmentation
	B.1 Steiner Tree Augmentation Problem (STAP) in Streaming
	B.2 SNDP in Edge Arrival Streams

	C Related Work

