
Fully Dynamic Strongly Connected Components in
Planar Digraphs
Adam Karczmarz #

University of Warsaw, Poland
IDEAS NCBR, Warsaw, Poland

Marcin Smulewicz #

University of Warsaw, Poland

Abstract
In this paper we consider maintaining strongly connected components (SCCs) of a directed planar
graph subject to edge insertions and deletions. We show a data structure maintaining an implicit
representation of the SCCs within Õ(n6/7) worst-case time per update. The data structure supports,
in O(log2 n) time, reporting vertices of any specified SCC (with constant overhead per reported
vertex) and aggregating vertex information (e.g., computing the maximum label) over all the vertices
of that SCC. Furthermore, it can maintain global information about the structure of SCCs, such as
the number of SCCs, or the size of the largest SCC.

To the best of our knowledge, no fully dynamic SCCs data structures with sublinear update time
have been previously known for any major subclass of digraphs. Our result should be contrasted
with the n1−o(1) amortized update time lower bound conditional on SETH, which holds even for
dynamically maintaining whether a general digraph has more than two SCCs.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases dynamic strongly connected components, dynamic strong connectivity,
dynamic reachability, planar graphs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.95

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2406.10420

Funding Adam Karczmarz: Partially supported by the ERC CoG grant TUgbOAT no 772346 and
the National Science Centre (NCN) grant no. 2022/47/D/ST6/02184.

1 Introduction

Two vertices of a directed graph G = (V, E) are called strongly connected if they can reach
each other using paths in G. Pairwise strong connectivity is an equivalence relation and
the strongly connected components (SCCs) of G are its equivalence classes. Computing
the SCCs is among the most classical and fundamental algorithmic problems on digraphs
and there exists a number of linear-time algorithms for that [14, 33, 35]. Therefore, it is
no surprise that maintaining SCCs has been one of the most actively studied problems on
dynamic directed graphs [1, 2, 3, 4, 5, 7, 8, 18, 23, 25, 30, 31].

When maintaining the strongly connected components, the information we care about may
vary. First, we could be interested in efficiently answering pairwise strong connectivity queries:
given u, v ∈ V , decide whether u and v are strongly connected. Pairwise strong connectivity
queries, however, cannot easily provide any information about the global structure of SCCs
(such as the number of SCCs, the size of the largest SCC). Neither they enable, e.g., listing
the vertices strongly connected to some u ∈ V . This is why, in the following, we distinguish
between dynamic pairwise strong connectivity and dynamic SCCs data structures which

EA
T
C
S

© Adam Karczmarz and Marcin Smulewicz;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 95; pp. 95:1–95:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.karczmarz@mimuw.edu.pl
https://orcid.org/0000-0002-2693-8713
mailto:m.smulewicz@mimuw.edu.pl
https://orcid.org/0000-0001-6932-6592
https://doi.org/10.4230/LIPIcs.ICALP.2024.95
https://arxiv.org/abs/2406.10420
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

95:2 Fully Dynamic Strongly Connected Components in Planar Digraphs

provide a more global view. In particular, all the data about the SCCs can be easily accessed
if the SCCs are maintained explicitly, e.g., if the SCC identifier of every vertex is stored at
all times and explicitly updated.

1.1 Previous work

In the following, let n = |V | and m = |E|. Dynamic graph data structures are traditionally
studies in incremental, decremental or fully dynamic settings, which permit the graph to
evolve by either only edge insertions, only deletions, or both, respectively. A decremental
data structure maintaining SCCs with near-optimal total update time is known [5]. Very
recently, a deterministic data structure with m1+o(1) total update time has been obtained
also for the incremental setting [8]. Both these state-of-the art data structures maintain the
SCCs explicitly.

The fully dynamic variant – which is our focus in this paper – although the most natural,
has been studied the least. First of all, there is strong evidence that a non-trivial dynamic
SCCs data structure for sparse graphs cannot exist. If the SCCs have to be maintained
explicitly, then a single update can cause a rather dramatic Ω(n)-sized amortized change
in the set of SCCs1. As a result, an explicit update may be asymptotically as costly as
recomputing SCCs from scratch. This argument – applicable also for maintaining connected
components of an undirected graph – does not exclude the possibility of maintaining an implicit
representation of the SCCs in sublinear time, though. After all, there exist very efficient fully
dynamic connectivity data structures, e.g., [20, 21, 38], typically maintaining also an explicit
spanning forest which allows retrieving any “global” component-wise information one can
think of rather easily. However, Abboud and Vassilevska Williams [1] showed that even for
maintaining a single-bit information whether G has more than two SCCs, a data structure
with O(n1−ϵ) amortized time is unlikely, as it would break the Orthogonal Vectors conjecture
implied by the SETH [22, 37].2 This considerably limits the possible global information
about the SCCs that can be maintained within sublinear time per update.

For denser graphs, Abboud and Vassilevska Williams [1] also proved that maintaining
essentially any (even pairwise) information about SCCs dynamically within truly subquadratic
update time has to rely on fast matrix multiplication. And indeed, that pairwise strong
connectivity can be maintained this way follows easily from the dynamic matrix inverse-based
dynamic st-reachability data structures [36, 32]. More recently, we [25] showed that in
fact SCCs can be maintained explicitly in O(n1.529) worst-case time per update. They also
proved that maintaining whether G has just a single SCC (dynamic SC) is easier3 and
can be achieved within O(n1.406) worst-case time per update. Both these bounds are tight
conditional on the appropriate variants [36] of the OMv conjecture [19].

In summary, the complexity of maintaining SCCs in general directed graphs is rather
well-understood now. In partially dynamic settings, the known bounds are near optimal
unconditionally, whereas in the fully dynamic setting, the picture appears complete unless
some popular hardness conjectures are proven wrong. In particular, for general sparse
digraphs, no (asymptotically) non-trivial fully dynamic SCCs data structure can exist.

1 Consider a directed cycle and switching its arbitrary single edge on and off.
2 In [1], a conditional lower bound of the same strength is also derived for the dynamic #SSR problem

where the goal is to dynamically count vertices reachable from a source s ∈ V .
3 Interestingly, the SETH-based lower bound of [1] does not apply to the dynamic SC problem.

A. Karczmarz and M. Smulewicz 95:3

Planar graphs. It is thus natural to ask whether non-trivial dynamic SCCs data structures
are possible if we limit our attention to some significant class of sparse digraphs. And indeed,
this question has been partially addressed for planar digraphs in the past. Since pairwise
s, t-strong connectivity queries reduce to two s, t-reachability queries, the known planar
dynamic reachability data structures [9, 34] imply that sublinear (Õ(n2/3) or Õ(

√
n)-time,

depending on whether embedding-respecting insertions are required) updates/queries are
possible for pairwise strong connectivity. Another trade-off for dynamic pairwise strong
connectivity has been showed by Charalampopoulos and Karczmarz [6]. Namely, they showed
a fully dynamic data structure for planar graphs with Õ(n4/5) worst-case update time that
can produce an identifier sv of an SCC of a given query vertex v in O(log2 n) time. Whereas
this is slightly more general4, it still not powerful enough to enable efficiently maintaining
any of the global data about the SCCs of a dynamic planar digraph such as the SCCs count.

To the best of our knowledge, the question whether a more robust – that is, giving a more
“global” perspective on the SCCs beyond only supporting pairwise queries – fully dynamic
SCCs data structure for planar digraphs (or digraphs from any other interesting class) with
sublinear update time is possible has not been addressed before.

1.2 Our results

In this paper, we address the posed question in the case of planar directed graphs. Specifically,
our main result is a dynamic SCCs data structure summarized by the following theorem.

▶ Theorem 1. Let G be a planar digraph subject to planarity-preserving edge insertions and
deletions. There exists a data structure maintaining the strongly connected components of G

implicitly in Õ(n6/7) worst-case time per update. Specifically:
The data structure maintains the number of SCCs and the size of the largest SCC in G.
For any query vertex v, in O(log2 n) time the data structure can compute the size of the
SCC of v, and enable reporting the elements of the SCC of v in O(1) worst-case time per
element.
In particular, Theorem 1 constitutes the first known fully dynamic SCCs data structure

with sublinear update time for any significant class of sparse digraphs. It also shows that the
conditional lower bound of [1] does not hold in planar digraphs.

The data structure of Theorem 1 is deterministic and does not require the edge insertions
to respect any fixed embedding of the graph (this also applies to side results discussed below).
Obtaining more efficient data structures for fully dynamic embedding-respecting updates is
an interesting direction (see, e.g., [9]) that is beyond the scope of this paper.

Related problems. Motivated by the discrepancies between the known bounds for dynamic
SCCs and dynamic SC in general digraphs (both from the lower- [1] and upper bounds [25]
perspective), we also complement Theorem 1 with a significantly simpler and faster data
structure suggesting that the dynamic SC might be easier (than dynamic SCCs) in planar
digraphs as well.5

4 Than answering pairwise strong connectivity queries. Using the SCC-identifiers, one can, e.g., partition
any k vertices of G into strongly connected classes in Õ(k) time, whereas using pairwise queries this
requires Θ(k2) queries.

5 Clearly, one could use Theorem 1 for dynamic SC as well.

ICALP 2024

95:4 Fully Dynamic Strongly Connected Components in Planar Digraphs

▶ Lemma 2. Let G be a planar digraph subject to planarity-preserving edge insertions and
deletions. One can maintain whether G has a single SCC in Õ(n2/3) worst-case time per
update.

Similarly, one could ask how dynamic #SSR (i.e., counting vertices reachable from a
single source) relates to dynamic SCCs in planar digraphs. Especially since:
(1) in general directed graphs, dynamic SCCs and dynamic #SSR currently have matching

lower- [1, 36] and upper bounds [25, 32] (up to polylogarithmic factors);
(2) the former problem is at least as hard as the latter in the sense that dynamic #SSR

reduces to dynamic SCCs in general graphs easily6, whereas an opposite reduction is not
known.

Unfortunately, the aforementioned reduction of dynamic #SSR to dynamic SCCs breaks
planarity rather badly. Interestingly, the path net technique we develop to obtain Theorem 1
does not seem to work for counting “asymmetric” reachabilities from a single source.

Nevertheless, the Voronoi diagram machinery developed for computing the diameter of a
planar graph [15] almost immediately yields a more efficient data structure for dynamic #SSR
in planar digraphs with Õ(n4/5) update time. We provide the details of that construction in
the full version of this extended abstract.

It is worth noting that Voronoi diagrams-based techniques (as developed for distance
oracles [16]) have been used in the pairwise strong connectivity data structure [6]. However,
as we discuss later on, it is not clear how to apply those for the dynamic SCCs problem. This
is why Theorem 1 relies on a completely different path net approach developed in this paper.

1.3 Organization

We review some standard planar graph tools in Section 2. Then, as a warm-up, we show the
data structure for dynamic SC in Section 3. In Section 4 we define a path net data structure
and show how it can be used to obtain a dynamic SCCs data structure. Finally, in Section 5
we describe the path net data structure. Due to space limit, some details and proofs are
deferred to the full version.

2 Preliminaries

In this paper we deal with directed graphs. We write V (G) and E(G) to denote the sets
of vertices and edges of G, respectively. We omit G when the graph in consideration is
clear from the context. A graph H is a subgraph of G, which we denote by H ⊆ G, iff
V (H) ⊆ V (G) and E(H) ⊆ E(G). We write e = uv ∈ E(G) when referring to edges of G.
By GR we denote G with edges reversed.

A sequence of vertices P = v1 . . . vk, where k ≥ 1, is called an s → t path in G if s = v1,
vk = t and there is an edge vivi+1 in G for each i = 1, . . . , k − 1. We sometimes view a path
P as a subgraph of G with vertices {v1, . . . , vk} and (possibly zero) edges {v1v2, . . . , vk−1vk}.
For convenience, we sometimes consider a single edge uv a path. If P1 is a u → v path and
P2 is a v → w path, we denote by P1 · P2 (or simply P1P2) a path obtained by concatenating
P1 with P2. A vertex t ∈ V (G) is reachable from s ∈ V (G) if there is an s → t path in G.

6 Consider the graph G′ obtained from G by adding a supersink t with a single outgoing edge ts and
incoming edges vt for all v ∈ V . Then v ∈ V is reachable from s in G iff s and v are strongly connected
in G′. See also [36].

A. Karczmarz and M. Smulewicz 95:5

Planar graph toolbox. An r-division [13] R of a planar graph, for r ∈ [1, n], is a decom-
position of the graph into a union of O(n/r) pieces P , each of size O(r) and with O(

√
r)

boundary vertices (denoted ∂P), i.e., vertices shared with some other piece of R. We denote
by ∂R the set

⋃
P ∈R ∂P . If additionally G is plane-embedded, all pieces are connected, and

the boundary vertices of each piece P of the r-division R are distributed among O(1) faces
of P that contain the vertices from ∂P exclusively (also called holes of P), we call R an
r-division with few holes. Klein [27] showed that an r-division with few holes of a triangulated
graph can be computed in linear time.

Fully dynamic r-divisions. Many dynamic algorithms for planar graphs maintain r-divisions
and useful piecewise auxiliary data structures under dynamic updates. Let us slightly
generalize the definition of an r-division with few holes to non-planar graphs by dropping
the requirement that G as a whole is planar but retaining all the other requirements (in
particular, the individual pieces are plane-embedded).

▶ Theorem 3 ([6, 28, 34]). Let G = (V, E) be a weighted planar graph that undergoes edge
deletions and edge insertions (assumed to preserve the planarity of G). Let r ∈ [1, n].

There is a data structure maintaining an r-division with few holes R of some G+, where G+

can be obtained from G by adding edges7, such that each piece P ∈ R is accompanied with
some auxiliary data structures that can be constructed in T (r) time given P and use S(r)
space.

The data structure uses O
(
n + n

r · S(r)
)

space and can be initialized in O
(
n + n

r · T (r)
)

time. After each edge insertion/deletion, it can be updated in O(r + T (r)) worst-case time.

3 Fully dynamic SC data structure

To illustrate the general approach and introduce some of the concepts used for obtaining
Theorem 1, in this section we first prove Lemma 2. That is, we show that the information
whether a planar graph G is strongly connected can be maintained in Õ(n2/3) time per
update.

We build upon the following general template used previously for designing fully dynamic
data structures supporting reachability, strong connectivity, and shortest paths queries in
planar graphs, e.g., [34, 28, 11, 6, 24]. As a base, we will maintain dynamically an r-division
with few holes R of G using Theorem 3 with auxiliary piecewise data structures to be fixed
later. Intuitively, as long as the piecewise data structures are powerful enough to allow
recomputing the requested graph property (e.g., strong connectivity, shortest path between
a fixed source/target pair) while spending r1−ϵ time per piece, for some choice of r we get a
sublinear update bound of Õ(n/rϵ + r + T (r)). For example, if T (r) = O(r9.9) and ϵ = 0.1,
for r = n0.1 we get Õ(n0.99) worst-case update time bound.

Reachability certificates. Subramanian [34] described reachability certificates that sparsify
reachability between a subset of vertices lying on O(1) faces of a plane digraph G into a
(non-necessarily planar) digraph of size near-linear in the size of the subset in question.
Formally, we have the following.

7 Note that G+ need not be planar.

ICALP 2024

95:6 Fully Dynamic Strongly Connected Components in Planar Digraphs

▶ Lemma 4 ([34]). Let H be a plane digraph with a distinguished set ∂H ⊆ V (H) lying
on some O(1) faces of H. There exists a directed graph XH , where ∂H ⊆ V (XH), of size
Õ(|∂H|) satisfying the following property: for any u, v ∈ ∂H, a path u → v exists in H if
and only if there exists a u → v path in XH . The graph XH can be computed in Õ(|H|) time.

▶ Remark 5. For Lemma 4 to hold, it is enough that ∂H lies on O(1) Jordan curves in the
plane, each of them having the embedding of H entirely (but not strictly) on one side of the
curve. In particular, it is enough that ∂H lies on O(1) faces of some plane supergraph H ′

with H ⊆ H ′.

Roughly speaking, Subramanian [34] uses reachability certificates as auxiliary data
structures in Theorem 3 in order to obtain a fully dynamic reachability data structure.
Crucially, the union of the piecewise certificates preserves pairwise reachability between the
boundary vertices ∂R, or more formally (see e.g. [6] for a proof):

▶ Lemma 6. For any u, v ∈ ∂R, u can reach v in G if and only if u can reach v in
X =

⋃
P ∈R XP .

Strong connectivity data structure. The union of certificates X preserves reachability, and
thus strong connectivity between the vertices ∂R :=

⋃
P ∈R ∂P . As a result, if G is strongly

connected, then so is ∂R in X. But the reverse implication might not hold. It turns out that
for connected graphs, to have an equivalence, it is enough to additionally maintain, for each
piece P , whether P is strongly connected conditioned on whether ∂P is strongly connected
in G.

In the following, we give a formal description of the data structure. As already said, the
data structure maintains a dynamic r-division R+ of a supergraph G+ of G (i.e., the input
graph), as given by Theorem 3. Since G ⊆ G+, the pieces {P + ∩ G : P + ∈ R+} induce an
r-division R of G; however, the boundary ∂P of a piece P ∈ R does not necessarily lie on
O(1) faces of P , so R is not technically an r-division with few holes. Nevertheless, ∂P still
lies on O(1) faces of a plane supergraph P + of P that do not contain vertices outside ∂P .
Consequently, by Remark 5, we can still use Lemma 4 to construct a sparse reachability
certificate for the piece P ∈ R. For obtaining Lemma 2, we do not require anything besides
beyond that, so for simplicity and wlog. we can assume we work with R instead of R+.

While R evolves, each piece P is accompanied with a reachability certificate XP of
Lemma 4. Note that since |∂P | = O(

√
r), XP has size Õ(

√
r) and can be constructed in

Õ(r) time. Moreover, for each P , let C∂P be a directed simple cycle on the vertices ∂P . We
additionally store the (1-bit) information whether the graph P ∪ C∂P is strongly connected.
Clearly, this can be computed in O(|P |) = O(r) time. All the accompanying data structures
of a piece P ∈ R can be thus constructed in Õ(r) time. Therefore, by Theorem 3, they are
maintained in Õ(r) time per update.

Finally, in a separate data structure, we maintain whether G is connected (in the undi-
rected sense). This can be maintained within no(1) worst-case update time deterministically
even in general graphs [17]; in our case, also a less involved data structure such as [12] would
suffice.

After R and the accompanying data structures are updated, strong connectivity of G

can be verified as follows. First of all, the union X of all XP , P ∈ R, is formed. Note that
we can test whether the vertices ∂R are strongly connected in X in O(|X|) = Õ(n/

√
r)

time by computing the strongly connected components SX of X using any classical linear
time algorithm. If G is not connected, or ∂R is not strongly connected in X, we declare G

not strongly connected. If, on the other hand, ∂R is strongly connected in X, we simply

A. Karczmarz and M. Smulewicz 95:7

check whether P ∪ C∂P is strongly connected for each P ∈ R and if so, declare G strongly
connected. This takes O(n/r) time. Thus, testing strong connectivity takes Õ(n/

√
r) time.

The following lemma establishes the correctness.

▶ Lemma 7. G is strongly connected if and only if G is connected, the vertices ∂R are
strongly connected in X, and for all P ∈ R, P ∪ C∂P is strongly connected.

Proof. First suppose that G is strongly connected. Then, G is clearly connected. Moreover,
by Lemma 6, ∂R is strongly connected in X. For contradiction, suppose that for some P ∈ R
and u, v ∈ V (P), u cannot reach v in P ∪ C∂P . By strong connectivity of G, there exists
some path Q = u → v in G. Since u cannot reach v in P , Q is not fully contained in P .
As a result, Q can be expressed as Q1 · R · Q2, where Q1 = u → a, Q2 = b → v are fully
contained in P , and a, b ∈ ∂P . But there is a path Z = a → b in C∂P , so there is a u → v

path Q1 · Z · Q2 in P ∪ C∂P , a contradiction.
Now consider the “ ⇐= ” direction. Suppose G is connected, the vertices ∂R are strongly

connected in X, and for all P ∈ R, P ∪ C∂P is strongly connected. By Lemma 6, ∂R is
strongly connected in G. Consider any P ∈ R and let x, y ∈ V (P). We first prove that there
exists a path x → y in G. Indeed, if an x → y path exists in P , it also exists in G. Otherwise,
since P ∪ C∂P is strongly connected, there exists a path Q = x → y in P ∪ C∂P that can be
expressed as Q1 · R · Q2, where Q1 = x → a and Q2 = b → y are fully contained in P and
a, b ∈ ∂P . But since a, b ∈ ∂R, by strong connectivity of ∂R, there exists a path R′ = a → b

in G. Since Q1, Q2 ⊆ G, Q1 · R′ · Q2 is an x → y path in G.
Now take arbitrary u, v ∈ V (G). If there exists a piece in R containing both u and v,

then we have already proved that there exists a path u → v in G. Otherwise, let Pu, Pv,
Pu ̸= Pv, be some pieces of R containing u, v, respectively. We have Pu ̸= G and Pv ̸= G.
Since G is connected, Pu has at least one boundary vertex a ∈ ∂Pu. Similarly, Pv has at
least one boundary vertex b ∈ ∂Pv. We have proved that there exist paths u → a and b → v

in G. But also a, b ∈ ∂R, by the strong connectivity of ∂R, there exists a path a → b in G

as well. We conclude that there exists a path u → v in G. Since u, v were arbitrary, G is
indeed strongly connected. ◀

The worst-case update time of the data structure is Õ(r +n/
√

r)+no(1). By setting r = n2/3,
we obtain Lemma 2.

4 Dynamic strongly connected components

The approach we take for maintaining strong connectivity in planar graphs does not easily
generalize even to dynamic SCCs counting. This is the case for the following reason. Even
if the piece P is fixed (static), there can be possibly an exponential number of different
assignments of the vertices ∂P to the SCCs in G (when the other pieces are subject to
changes), whereas for dynamic SC, a non-trivial situation arises only when all of ∂P lies
within a single SCC. In order to achieve sublinear update time, for any assignment we need
to be able to count the SCCs fully contained in P in time sublinear in r after preprocessing P

in only polynomial (and not exponential) time.
The following notion will be crucial for all our developments.

▶ Definition 8. Let P ∈ R, and let A ⊆ ∂P . A path net ΠP (A) induced by A is the set of
vertices of P that lie on some directed path in P connecting some two elements of A.

In other words, the path net ΠP (A) contains vertices v ∈ V (P) such that v can reach A and
can be reached from A in P . We call a path net ΠP (A) closed if A = ΠP (A) ∩ ∂P , that is,
there are no boundary vertices of P outside A that can reach and can be reached from A.

ICALP 2024

95:8 Fully Dynamic Strongly Connected Components in Planar Digraphs

The following key lemma relates a piece’s path net to the SCCs of G.

▶ Lemma 9. Let S be an SCC of G containing at least one boundary vertex of P , i.e.,
S ∩ ∂P ̸= ∅. Then the path net ΠP (S ∩ ∂P) is closed and equals S ∩ V (P).

Proof. Let us first argue that ΠP (S ∩∂P) is closed. If it was not, there would exist b ∈ ∂P \S

such that there exist paths b → (S ∩ ∂P) and (S ∩ ∂P) → b in P . It follows that b can
reach and be reached from S in G, i.e., b is strongly connected with S. Hence, b ∈ S, a
contradiction.

Let v ∈ ΠP (S ∩ ∂P). Since v can reach and can be reached from S ∩ ∂P in P , then it is
indeed strongly connected with S in G, since the vertices S are strongly connected in G. So
v ∈ S ∩ V (P).

Now let v ∈ S ∩ V (P). Pick any b ∈ S ∩ ∂P (possibly b = v if v ∈ ∂P). There exists
paths R = v → b and Q = b → v in G. Note that R has some prefix R1 = v → a that is fully
contained in P and a ∈ ∂P . Similarly, Q has a suffix Q1 = c → v that is fully contained in
P and c ∈ ∂P . Since there exists paths v → a, a → b, b → c, c → v in G, vertices a, b, c are
strongly connected in G. So a, c ∈ S ∩ ∂P . The paths R1, Q1 certify that v can be reached
from and can reach S ∩ ∂P in P . Therefore, v ∈ ΠP (S ∩ ∂P) as desired. ◀

If an SCC S is as in Lemma 9, then since the vertices ∂P might be shared with other
pieces of R, ΠP (S ∩ ∂P) \ ∂P constitutes the vertices of S contained exclusively in the
piece P . As there are only Õ(n/

√
r) boundary vertices through all pieces, their affiliation

to the SCCs of G can be derived from the (SCCs of the) certificate graph X =
⋃

P ∈R XP

(defined and maintained as in Section 3), i.e., they may be handled efficiently separately.
Consequently, being able to efficiently aggregate labels, or report the elements, of the sets of
the form ΠP (A) \ ∂P (where ΠP (A) is closed) is the key to obtaining an efficient implicit
representation of the SCCs of G, as claimed in Theorem 1. Our main technical contribution
(Theorem 10) is a path net data structure enabling precisely that. The data structure requires
a rather large Õ(r3) preprocessing time but achieves the goal by supporting queries about
A ⊆ ∂P in near-optimal Õ(|A|) time. Formally, we show:

▶ Theorem 10. Let P ∈ R and let α : V (P) → R be a weight function. In Õ(r3) time one
can construct a data structure supporting the following queries. Given a subset A ⊆ ∂P , such
that ΠP (A) is closed, in Õ(|A|) time one can:

create an iterator that enables listing elements of ΠP (A) \ ∂P in O(1) time per element,
aggregate weights over ΠP (A) \ ∂P , i.e., compute

∑
v∈ΠP (A)\∂P α(v).

▶ Remark 11. We do not require using subtractions to compute the aggregate weights. In
fact, the data structure of Theorem 10 can be easily modified to aggregate weights coming
from any semigroup, e.g., one can compute the max/min weight in ΠP (A) \ ∂P within these
bounds.

Our high-level strategy is to maintain the certificates and path net data structures
accompanying individual pieces along with the r-division. Roughly speaking, to obtain the
information about the SCCs of G beyond how the partition of ∂R into SCCs looks like, we
will query the path net data structures for each piece P with the sets A equal to the SCCs
of X having non-empty intersection with ∂P . We prove Theorem 10 later on, in Section 5.

In the remaining part of the section, we explain in detail how, equipped with Theorem 10,
a dynamic (implicit) strongly connected components data structure can be obtained. As
in Section 3, we maintain an r-division R dynamically, and maintain sparse reachability
certificates XP , along with the set SX of SCCs of X =

⋃
P ∈R XP . Moreover, for each P

A. Karczmarz and M. Smulewicz 95:9

we store the strongly connected components SP of P . Let S∂P be the elements of SP that
contain a boundary vertex, and SP \∂P the elements of SP that do not. Clearly, we have
SP = S∂P ∪ SP \∂P and (

⋃
SP) ∩

(⋃
SP \∂P

)
= ∅.

For each piece P ∈ R, we additionally store a path net data structure DP of Theorem 10
with an appropriately defined weight function (to be picked depending on the application
later). Note that for a piece P , all the auxiliary data structures accompanying P that we
have defined can be computed in Õ(r3) time. We now consider the specific goals that can be
achieved this way.

Finding the largest SCC. Denote by S∗ the largest SCC of G. To be able to identify S∗,
and e.g., compute its size, we additionally store and maintain the following. For each piece P ,
we also maintain the largest SCC S∗

P of P . The sizes of all the SCCs of P , in particular the
size of S∗

P , can be easily found and stored after computing SP .
Note that if the largest SCC S∗ of G is not contained entirely in any individual piece P

(and thus is larger than maxP ∈R |S∗
P |), it has to intersect ∂R. More specifically, in this case

for each piece P such that S∗ ∩ V (P) ̸= ∅, we have S∗ ∩ ∂P ̸= ∅.
Recall that by Lemma 6, X =

⋃
P ∈R XP preserves the strong connectivity relation on

the vertices ∂R. Therefore, if S∗ intersects ∂R, it has to contain B ∩ ∂R for some SCC B

of X. For any such B, we can compute the size of the SCC SB of G satisfying B ∩ ∂R ⊆ SB

as follows. First of all, |SB ∩ ∂R| = |B ∩ ∂R| since B is an SCC of X. It is thus enough to
compute, for all P ∈ R, |SB ∩ (V (P) \ ∂P)|. Since the sets V (P) \ ∂P are pairwise disjoint
across the pieces, by adding these values, we will get the desired size |SB |.

We have already argued that if B ∩ ∂P = ∅, then SB ∩ V (P) = ∅. If, on the other hand,
B∩∂P is non-empty, by Lemma 9, if we use the weight function α(v) ≡ 1 in the piecewise data
structures DP of Theorem 10, we can compute |SB ∩ (V (P) \ ∂P)| =

∑
v∈ΠP (B∩∂P)\∂P α(v)

in Õ(|B ∩ ∂P |) time using the input set A := B ∩ ∂P . We conclude that the sizes SB for all
B ∈ SX can be computed in time

Õ

 ∑
B∈SX

∑
P ∈R

B∩∂P ̸=∅

|B ∩ ∂P |

 = Õ

∑
P ∈R

∑
B∈SX

B∩∂P ̸=∅

|B ∩ ∂P |

 = Õ

(∑
P ∈R

|∂P |

)
= Õ(n/

√
r).

(1)

Finally, S∗ is either equal to the largest SB for B ∈ SX , or the largest S∗
P (through P ∈ R).

The latter is the case if maxB∈SX
|SB | < maxP ∈R |S∗

P |. Which case we fall into is easily
decided once all the O(n/

√
r) sizes |SB | are computed.

Accessing the SCC of a specified vertex. Suppose first that we know the SCC Sv of G

containing a query vertex v, and additionally whether Sv intersects ∂R. If Sv ∩ ∂R = ∅,
then v is a vertex of a unique piece P , and Sv ∈ SP \∂P . In this case, we can clearly compute
the size of Sv and report the elements of Sv in O(1) time since Sv ∈ SP is stored explicitly.

Otherwise, if Sv ∩ ∂R ≠ ∅, we reuse the information that we have computed for finding
the largest SCC. We have already described how to compute the sizes of all the SCCs S of G

intersecting ∂R (in particular Sv) along with these respective intersections in Õ(n/
√

r) time
upon update. Moreover, for all P ∈ R we have computed |S ∩ (V (P) \ ∂P)| using the data
structure DP of Theorem 10. As a result, we can store, for each such S, a subset L(S) ⊆ R
of pieces P such that S ∩ (V (P) \ ∂P) ̸= ∅. Recall that for all P ∈ L(S), we can also use
DP to create an iterator for reporting the elements of S ∩ (V (P) \ ∂P) in O(1) time per

ICALP 2024

95:10 Fully Dynamic Strongly Connected Components in Planar Digraphs

element. So, in order to efficiently report elements of any such S, we first report the vertices
of S ∩ ∂R, and then the elements of each S ∩ (V (P) \ ∂P) for subsequent pieces P ∈ L(S).
Indeed, one needs only O(1) worst-case time to find each subsequent vertex of S.

Finally, we are left with the task of of finding the SCC Sv of a query vertex v ∈ V . It is
not clear how to leverage path net data structures for that in the case when Sv intersects ∂R.
Instead, we use the data structure of [6] in a black-box way. That data structure handles
fully dynamic edge updates in Õ(n4/5) worst-case time, and provides O(log2 n) worst-case
time access to consistent (for queries issued between any two subsequent updates) SCC
identifiers of individual vertices8. Using [6], after every update we find the identifiers I of the
SCCs of vertices ∂R in G in Õ(n/

√
r) time. Now, to find the SCC of v upon query, we find

the identifier iv of the SCC containing v in O(log2 n) time. If iv ∈ I (which can be tested
in O(log n) time), we obtain that v is in an SCC of G intersecting ∂R and some vertex bv

from the intersection. bv can be in turn used to access L(Sv) and thus enable reporting the
elements of Sv. Otherwise, if iv /∈ I, S ∩ ∂R = ∅ and thus S equals the unique SCC from
SP \∂P containing v in the unique piece P containing v.

Counting strongly connected components. Let us separately count SCCs S∂R that intersect
∂R and those that do not. The former can be counted in Õ(n/

√
r) time by counting the

SCCs of X that intersect ∂R (that we maintain). The latter can be computed as follows.
Consider the sum Φ =

∑
P ∈R |SP \∂P |. If we wanted the sum Φ to count the SCCs not

intersecting ∂R, then an SCC S ∈ SP \∂P contributes to the sum unnecessarily precisely
when S is not an SCC of G. To see that, note that if an SCC S of P is not an SCC of G, it
has to be a part of another SCC S′ of G that also contains vertices of other pieces, i.e., S′

intersects ∂R. From Lemma 9, we conclude:

▶ Corollary 12. An SCC S ∈ SP \∂P is not an SCC of G iff there exists (precisely one) SCC
B of X such that S ⊆ ΠP (B ∩ ∂P) (or equivalently, such that S ∩ ΠP (B ∩ ∂P) ̸= ∅).

As a result, we can count the number of SCCs in G that do not intersect ∂R by subtracting
from Φ, for each P ∈ R, and each B ∈ SX the number cP,B of SCCs in SP \∂P that intersect
ΠP (B ∩∂P). To this end, we can use the data structure DP of Theorem 10 built upon P (and
maintained as described before) with a weight function α on V (P) assigning 1 to an arbitrary
single vertex vS of each SCC S ∈ SP \∂P , and 0 to all other vertices. By Corollary 12, with
such a weight function, cP,B =

∑
v∈ΠP (B∩∂P)\∂P α(v) can be computed in Õ(|B ∩ ∂P |) time

using DP . Consequently, similarly as in (1), over all B ∈ SX , and P ∈ R, computing all the
values cP,B will take Õ(n/

√
r) time. As mentioned before, the SCC count is obtained by

subtracting those from Φ and adding the result to the count of S∂R.
Depending on the application, the worst-case update time of the data structure is

Õ(n/
√

r + r3) or Õ(n/
√

r + r3 + n4/5). The bound is optimized for r = n2/7 and this yields
Theorem 1.

5 The path net data structure

This section is devoted to describing the below key component of our dynamic SCCs data
structure.

8 The query time of that data structure can be easily reduced to O(log n · log log n) without affecting the
Õ(n4/5) update bound if one simply replaces the classical MSSP data structure [26] used internally for
performing point location queries in additively weighted Voronoi diagrams [16] with the MSSP data
structure of [29].

A. Karczmarz and M. Smulewicz 95:11

▶ Theorem 10. Let P ∈ R and let α : V (P) → R be a weight function. In Õ(r3) time one
can construct a data structure supporting the following queries. Given a subset A ⊆ ∂P , such
that ΠP (A) is closed, in Õ(|A|) time one can:

create an iterator that enables listing elements of ΠP (A) \ ∂P in O(1) time per element,
aggregate weights over ΠP (A) \ ∂P , i.e., compute

∑
v∈ΠP (A)\∂P α(v).

5.1 Overview
Charalampopoulos and Karczmarz [6] showed that for any SCC S of G, V (P) ∩ S forms an
intersection of two cells coming from two carefully prepared additively weighted Voronoi
diagrams on P with sites ∂P . As a result, they could use Voronoi diagram point location
mechanism [16, 29] for testing in O(polylog n) time whether a query vertex lies in such an
intersection. If we tried to follow this approach, we would need to be able to aggregate/report
vertices in such intersections of cells coming from two seemingly unrelated Voronoi diagrams.
This is very different from just testing membership, and it is not clear whether this can be
done efficiently.

Instead, in order to prove Theorem 10, we take a more direct approach. As is done
typically, we first consider the situation when A lies on a single face of P . In the single-hole
case, the first step is to reduce to the case when the input piece P is acyclic; note that if
a vertex lies in the path net ΠP (A), its entire SCC in P does. Acyclicity and appropriate
perturbation [10] allows us to pick a collection of paths πu,v, for all u, v ∈ ∂P , such that every
two paths in the collection are either disjoint or their intersection forms a single subpath
of both. This property makes the paths πu,v particularly convenient to use for cutting the
piece P into smaller non-overlapping parts.

More specifically, the paths πu,v are used to partition – using a polygon triangulation-like
procedure – a queried net ΠP (A) into regions in the plane with vertices B ⊆ A bounded by
either fragments of the face of P containing ∂P or some paths πu,v for u, v ∈ B (so-called
base instances). A base instance has a very special structure guaranteeing that for a given
vertex v ∈ V (P) \ ∂P , there are only O(1) pairs s, t ∈ B such that an s → v → t path exists
in P . At the end, this crucial property can be used to reduce a base instance query B even
further to looking up Õ(|B|) preprocessed answers for base instances with at most 5 vertices
from ∂P , of which there are at most Õ(|∂P |5) = Õ(r5/2). The precomputation of small base
instances can be done in Õ(r3) time.

For efficiently implementing the polygon triangulation-like partition procedure – which
repeatedly cuts off base instances from the “core” part of the problem – we develop a
dynamic data structure for existential reachability queries on a single face of a plane digraph
(Lemma 15). To this end, we leverage the single-face reachability characterization of [23].

As the final step, we show a reduction from the case when A can lie on k faces on P , to
the case when A lies on k − 1 faces. The reduction – which eventually reduces the problem
to the single-hole case – can blow up the piece’s size by a constant factor. However, since
there are only O(1) holes initially, the general case can still be solved only constant factor
slower than the single-hole case.

5.2 Reducing to the acyclic case
Recall that P is a piece of an r-division with few holes R and thus has size O(r). Moreover,
∂P lies on O(1) faces (holes) of some supergraph P + of P and |∂P | = O(

√
r). For simplicity

we will not differentiate between the faces/holes of P and P +. Whenever we refer to a hole h

of P , we mean a closed curve h in the plane such that whole embedding of P lies weakly on
a single side of h, and only vertices ∂P may lie on the curve h.

ICALP 2024

95:12 Fully Dynamic Strongly Connected Components in Planar Digraphs

First of all, we compute the strongly connected components SP of P . Observe that from
the point of view of supported queries, all vertices of a single SCC S ∈ SP are treated exactly
the same: when a single vertex v ∈ S \ ∂P is reported (or its weight α(v) is aggregated), all
other vertices from S \ ∂P are as well. For each S ∈ SP we precompute the aggregate weight
α(S) =

∑
v∈S\∂P α(v) in O(r) time. We then contract each strongly connected component

S ∈ SP into a single vertex vS . Crucially, since each subgraph P [S] is connected in the
undirected sense, contractions can be performed in an embedding preserving way (via a
sequence of single-edge contractions), so that:

The obtained graph P ′ is acyclic.
The vertices ∂P ′ := {vS : S ∈ SP , S ∩ ∂P ̸= ∅} lie on O(1) faces of (a supergraph of) P ′.

Indeed, to see the latter property, label each b ∈ ∂P initially each with hole that b lies on
and make non-boundary vertices unlabeled. When the vertices merge, label the resulting
vertex using one of the involved vertices’ labels, if any of them has one. At the end there
will be still O(1) labels, each vertex of ∂P ′ will have one of these labels, and for each label,
all the vertices holding that label will be incident to a single face of P ′. Clearly, |P ′| = O(r)
and |∂P ′| = O(

√
r).

The proof of the below lemma can be found in the full version.

▶ Lemma 13. Suppose a data structure D′ of Theorem 10 is built for the acyclic graph P ′

with the weight function α′(vS) := α(S) =
∑

v∈S\∂P α(v). Then, a query A ⊆ ∂P from
Theorem 10 can be reduced, in O(|A|) time, to a query about A′ = {vS : S ∈ SP , S ∩ A ≠ ∅}
issued to D′.

In the following we will assume that P is an acyclic graph. We will no longer need
the assumption ΠP (A) ∩ ∂P = A; this was only needed for the efficient reduction to the
acyclic case. Consequently, we will design a data structure with query time Õ(|A|) even if
A ⊊ ΠP (A) ∩ ∂P .

The single-hole assumption. In the remaining part of this section, we assume we only want
to handle queries where the query set A lies on a single hole h of an acyclic piece P . Due to
space constraints, we present the reduction of the general case to the single-hole case in the
full version. Our strategy for the single-hole case will be to efficiently break the problem into
subproblems for which we have the answer precomputed.

5.3 Picking non-crossing paths
We first fix, for any u, v ∈ V (P) such that u can reach v, one particular u → v path πu,v ⊆ P .
We apply the perturbation scheme of [10] to P , so that the shortest paths in P become
unique. For any u, v ∈ V (P) such that u can reach v in P , we define πu,v to be the unique
shortest u → v path in P . Note that each πu,v is a simple path in P . We have the following
crucial property.

▶ Lemma 14. Let u, v, x, y ∈ V (P) be such that u can reach v and x can reach y in P . If
V (πu,v) ∩ V (πx,y) ̸= ∅, then πu,v and πx,y share a single (possibly zero-edge) subpath.

Proof. Let a (b) be the first (last, resp.) vertex on πu,v that is also a vertex of πx,y. πu,v

can be expressed as Q1 · T · Q2, where T = a → b. Moreover, V (πu,v) ∩ V (πx,y) ⊆ V (T). If
a ̸= b, the vertex b cannot appear before a on πx,y, because then a and b would lie on a cycle
in P , contradicting acyclicity of P . As a result, πx,y has an a → b subpath as well. Since
shortest paths in P are unique and shortest paths have optimal substructure, the a → b

subpath of πx,y equals T . So, πx,y can be expressed as R1 · T · R2. Since πx,y is simple, and
V (πu,v) ∩ V (πx,y) ⊆ V (T), we indeed have πu,v ∩ πx,y = T . ◀

A. Karczmarz and M. Smulewicz 95:13

Observe that since P is a DAG, for u, v ∈ V (P), u ̸= v, πu,v and πv,u cannot both exist.
When one of them exists, we will sometimes write π{u,v} to denote the one that exists.

5.4 Generalization
Before we proceed, we need to state our problem in a more general way that will enable
decomposition into smaller subproblems of similar kind. Let us first fix a counterclockwise
order of V (h), as follows. Let u1, e1, u2, e2, . . . , ur, er be the sequence of vertices and edges
on a counterclockwise bounding walk of h with an arbitrary starting point. The encountered
vertices ui might not be all distinct since h can be a non-simple face in general. The order ≺h

of V (h) that we use is obtained by removing duplicate vertices from the sequence in an
arbitrary way, i.e., for each v ∈ V (h) we pick one index iv such that uiv

= v. If x, y ∈ V (h)
and ix < iy, then we define Cx,y to be the curve eix

eix+1 . . . eiy−1. Otherwise, if ix > iy,
then Cx,y = eixeix+1 . . . ere1e2 . . . eiy−1. If h is simple, then Cx,y is a simple curve. However,
in general, Cx,y can be self-touching but it does not cross itself.

Suppose B ⊆ ∂P ∩ V (h) is given in the counterclockwise order on h. Moreover, for
each pair of neighboring (i.e., appearing consecutively in the cyclic order of B given by ≺h)
vertices x, y of B, a curve Φx,y connecting x to y is given. The curve Φx,y equals either π{x,y}
or Cx,y. Let Φ be the closed curve formed by concatenating the subsequent curves Φx,y for
all neighboring x, y ∈ B. For brevity, we also extend the notation Φa,b to non-neighboring
vertices a, b of B, and define Φa,b to be a concatenation of the curves Φx,y for all neighboring
pairs (x, y) between a and b on Φ. We don’t require Φ to be a simple (Jordan) curve; parts
of it may be overlapping. Whereas Φ is allowed to be self-touching, it does not cross itself,
like e.g., the cycle bounding a non-simple face of a plane graph. Let P [Φ] denote the region
of P that lies weakly inside the curve Φ.

The objective of the problem (B, Φ) is to aggregate weights of (or report) the vertices of
ΠP (B) \ ∂P that lie strictly inside Φ. More formally, we want to aggregate vertices v that lie,
at the same time, strictly on the left side of each of the curves Φx,y (seen as a curve directed
from x to y) where x, y ∈ B are neighboring in the counterclockwise order on h.9 Note that
with such a defined problem, the original goal of the query procedure can be rephrased as
(A, h) since all the vertices of ΠP (A) \ ∂P indeed lie strictly inside h.

5.5 Preprocessing
Preprocessing for small instances and subproblems.

For any tuple B = (b1, . . . , bq) of at most 4 vertices of ∂P appearing in that order on
in ≺h, and any out of at most 2q = O(1) possible curves Φ that might constitute the
problem (B, Φ), we precompute the aggregate weight and the list of vertices in ΠP (B)\∂P

that lie strictly inside Φ. This can clearly be done in Õ(|∂P |4 · |P |) = Õ(r3) time.
For any 5-tuple τ = (b0, . . . , b4) ordered by ≺h, and any out of at most 24 possible curves
Φbi,bi+1 ∈ {π{bi,bi+1}, Cbi,bi+1}, where i ∈ {0, . . . , 3}, we precompute and store the set Xτ

of vertices x ∈ V (P) \ ∂P such that:
1. x lies on some path connecting b1 and b2 in P ,
2. x does not lie on any path connecting b0 and b1 in P ,
3. x lies strictly to the left of each Φbi,bi+1 for i = {0, . . . , 3}.

9 Even more formally, assuming P is embedded in such a way that h is the infinite face of a supergraph
of P , we are interested in the vertices lying in the intersection of the regions strictly inside closed curves
Φx,y · Cy,x for all neighboring x, y in B.

ICALP 2024

95:14 Fully Dynamic Strongly Connected Components in Planar Digraphs

We also store the aggregate weight w(Xτ). This preprocessing can be performed in a
brute-force way in Õ(|∂P |5 · |P |) = Õ(r7/2) time. It can be also optimized fairly easily to
Õ(r3) time and space, as shown in the full version.
For any u, v ∈ ∂P , we store the path π{u,v} itself, along with aggregate weights of all its
subpaths. This data can be computed in Õ(|∂P |2 · |P |2) = Õ(r3) time in a brute-force
way.
Finally, for any two pairs (u, v), (x, y) ∈ ∂P × ∂P , we compute the intersection of the
paths π{u,v} and π{x,y}. By Lemma 14, that intersection is either empty or is a subpath
of both these paths. Hence, it is enough to store the two endpoints of the intersection
subpath only. The desired intersections can be found in Õ(|∂P |4 · |P |) = Õ(r3) time in a
brute-force way.

Existential reachability data structure. We also build data structures L, LR of the following
lemma for P and P R, respectively.

▶ Lemma 15. In Õ(r) time one can construct a data structure maintaining an (initially
empty) set Z ⊆ ∂P ∩ V (h) and supporting the following operations in O(polylog n) time:

insert or delete a single b ∈ ∂P ∩ V (h) either to or from Z.
for any query vertex v ∈ (∂P ∩ V (h)) \ Z, find any z ∈ Z (if exists) that v can reach
in P .
Due to space constraints, the proof of Lemma 15 is deferred to the full version.

5.6 Answering queries
We now proceed with the description of our algorithm solving the general problem (B, Φ).

Base case. Let the elements of B = {b1, . . . , bk} be sorted according to their order ≺h

on Φ. For convenience, identify bk+l with bl for any integer l.
We first consider the easier base case, with the following additional requirement:

For any 1 ≤ i < j ≤ k, if bi can reach bj or can be reached from bj in P , then either
j = i + 1 or (i, j) = (1, k).

If k ≤ 4, we will simply return the precomputed aggregate weight, or an iterator to a list
of vertices in ΠP (B) \ ∂P strictly inside Φ. So suppose k ≥ 5. We start with the following
lemma.

▶ Lemma 16. Let v ∈ ΠP (B) \ ∂P lie strictly inside Φ. Then:
There exists such i that v lies on some bi → bi+1 or on some bi+1 → bi path in P .
Moreover, there is at most one more pair {x, y} ⊆ B, {x, y} ≠ {bi, bi+1} such that v lies on
some x → y or y → x path in P , and either {x, y} = {bi−1, bi}, or {x, y} = {bi+1, bi+2}.

Proof. Item (1) follows easily by the additional requirement of the base case. Let v lie on
some bj → c path in P , where c ∈ B. Since P is acyclic, we have that bj ̸= c and thus
c ∈ {bj−1, bj+1}. If c = bj+1, we put i = j and if c = bj−1, we put i = j − 1.

For item (2), consider the case when v lies on some bi → bi+1; the case when v lies
on a bi+1 → bi path is symmetric. Suppose v also lies on some x → y path in P , where
x, y ∈ B, x ̸= y, {x, y} ≠ {bi, bi+1}. Since bi can reach y through v, y ∈ {bi−1, bi+1} by
the base case requirement. Similarly, since x can reach bi+1 through v, x ∈ {bi, bi+2}. We
cannot have x = bi+2 and y = bi−1 since bi+2 reaching bi−1 is a contradiction with the first
base case requirement for k ≥ 5. As a result, (x, y) ̸= (bi, bi+1) implies (x, y) = (bi, bi−1)

A. Karczmarz and M. Smulewicz 95:15

or (x, y) = (bi+2, bi+1). Moreover, v cannot lie on both some bi → bi−1 path and some
bi+2 → bi+1 path, since then bi+2 could reach bi−1, which is again a contradiction for
k ≥ 5. ◀

By Lemma 16, each v ∈ ΠP (B)\∂P falls into exactly one of the k sets Yi, for i = 1, . . . , k,
such that Yi contains those v in V (P) \ ∂P that lie on a path in P connecting bi and bi+1 (in
any direction), but at the same time do not lie on any path connecting bi−1 and bi in P (in
any direction). Indeed, if v appears only on paths connecting bi and bi+1, it will be included
in Yi. On the other hand, if v appears both on paths connecting bi and bi+1 and on paths
connecting bi+1 and bi+2, it will be included only in Yi, but not in Yi+1.

▶ Lemma 17. Suppose v ∈ Yi. Then v lies strictly inside Φ if and only if v lies strictly on
the left side of Φbi−1,bi , Φbi,bi+1 , Φbi+1,bi+2 , and Φbi+2,bi+3 .

Proof. Since strictly inside Φ means strictly to the left of all Φbj ,bj+1 , the “ =⇒ ” direction
is trivial.

Consider the “ ⇐= ” direction. For contradiction, suppose v does not lie strictly inside Φ.
Then, for some j /∈ {i − 1, i, i + 1, i + 2}, v lies weakly to the right of Φbj ,bj+1 . Since v ∈
V (P) \ ∂P and the hole h contains only vertices of ∂P , this means that Φbj ,bj+1 = π{bj ,bj+1}.
Since bj and bj+1 are consecutive in B, and i /∈ {j, j + 1}, bi lies weakly to the left of
π{bj ,bj+1}.

By v ∈ Yi, the vertex v lies on a path Q connecting bi and bi+1 in P . Since v and bi

lie weakly on different sides of π{bj ,bj+1}, the path Q has to cross π{bj ,bj+1} at a vertex w

appearing not later than v on Q (possibly v = w). If Q = bi → bi+1, the existence of w

implies that there exists an s → bi+1 path in P going through v such that s ∈ {bj , bj+1}.
By v ∈ Yi, this implies s ∈ {bi, bi+2}. As a result, j ∈ {i − 1, i, i + 1, i + 2}, a contradiction.
Similarly, if Q = bi+1 → bi, there exists an s → bi path in P going through v such that
s ∈ {bj , bj+1}. But on the other hand by v ∈ Yi we have s = bi+1 so j ∈ {i, i + 1}, a
contradiction. ◀

As a result, we can equivalently aggregate vertices v in each Yi under a (seemingly) weaker
requirement that v lies strictly on the left side of Φbi−1,bi

, Φbi,bi+1 , Φbi+1,bi+2 , and Φbi+2,bi+3 .
But this is, again, part of the precomputed data for the tuple (bi−1, bi, bi+1, bi+2, bi+3).

Consequently, there are k disjoint sets Yi to consider. We can thus aggregate weights or
construct a list for reporting vertices from v ∈ ΠP (B) \ ∂P strictly inside Φ in O(k) time.
We thus obtain:

▶ Lemma 18. The base case can be handled in O(|B|) time.

General case. To solve the general case, we reduce it to a number of base case instances.
To this end, we maintain a partition of B = S ∪ T such that S precedes T on Φ. Let
S = {s1, . . . , sp} and T = {t1, . . . , tq}. We will gradually simplify the problem while
maintaining the following invariants:
(1) For any u, v ∈ B, if u can reach v in P , then πu,v ⊆ P [Φ].
(2) For any 1 ≤ i < j ≤ p, if si can reach sj or can be reached from sj , then j = i + 1.
(3) If x, y ∈ B are neighbors in the counterclockwise order ≺h on Φ and Φx,y = π{x,y}, then

x, y ∈ S.
(4) In the data structures L, LR of Lemma 15, the set Z satisfies Z = S \ {sp}.

The algorithm will gradually modify B, S, T, Φ until we have S = B and T = ∅. Note
that when T = ∅, (B, Φ) = (S, Φ) satisfies the requirement of the base case and can be solved
in Õ(|B|) time.

ICALP 2024

95:16 Fully Dynamic Strongly Connected Components in Planar Digraphs

Initially we put Φ = h, S = {b1, b2}, and insert b1 to Z to satisfy the invariants.
The main loop of the procedure runs while T ̸= ∅ and does the following. Using L and LR,

in O(polylog n) time we test whether t1 can reach Z or can be reached from Z in P . If this
is not the case, we simply move t1 to the end of S, an update Z accordingly. Note that |T |
decreases then.

Otherwise, we can find all vertices X = {x1, . . . , xl} ⊆ Z that t1 can reach or can
be reached from in Õ(|X|) by repeatedly extracting them from the data structures L, LR.
Additionally we sort X so that the order x1, . . . , xl matches the order of S on Φ. Let πi

denote the path π{t1,xi} possibly reversed to go from t1 to xi, and πR
i denote the reverse πi

going from xi to t1. The vertices X are used to “cut off” l base case instances, as follows.
For i = 0, . . . , l, let Si denote the vertices of S between xi and xi+1 on Φ (inclusive), where
we set xl+1 := sp, x0 := s1. We split the problem (B, Φ) into the following subproblems (see
Figure 1 for better understanding):
1. For each i = 1, . . . , l − 1, an instance (Si ∪ {t1}, Φxi,xi+1 · πR

i+1 · πi).
2. An instance (Sl ∪ {t1}, Φxl,t1 · πl).
3. An instance (S0 ∪ T, Φs1,x1 · πR

1 · Φt1,s1).

▶ Lemma 19. For each of the above subproblems (B′, Φ′), and u, v ∈ B′, if u can reach v

in P , then πu,v ⊆ P [Φ′].

Proof. Note that (B′, Φ′) is obtained from (B, Φ) by cutting it out of (B, Φ) with at most
two paths π{t1,a}, π{t1,b}, for some t1, a, b ∈ B′ ⊆ B. By our assumption, πu,v ⊆ P [Φ]. As
a result, if πu,v was not contained in P [Φ′], then πu,v would need to cross either π{t1,a} or
π{t1,b}. However, this is impossible by Lemma 14 and since u, v ∈ V (P [Φ′]). ◀

▶ Lemma 20. The obtained instances of types 1 and 2 above fall into the base case.

Proof. To see that the base case requirement is satisfied, recall that by the invariant posed
on S, if two elements of Si, where i ∈ {1, . . . , l}, are related (wrt. reachability in P), they are
neighboring in Si. By construction, t1 can be only related to the first and the last element
of Si. ◀

Since the cutting is performed using non-crossing paths in P , the regions P [Φ′] for the
obtained subproblems can only share their boundaries, that is, if some v is strictly inside
one of the curves Φ′, then it it is not strictly inside another obtained curve Φ′′. Therefore,
if we proceeded with the above subproblems recursively, we would not aggregate or report
any vertex of v ∈ ΠP (B) \ ∂P twice. However, we still need to report/aggregate vertices
that lie on paths π1, . . . , πl strictly inside the curve Φ. We now discuss how this strategy
is implemented. Let us first consider solving the subproblems recursively. We handle all
the obtained base case instance of types 1 and 2 as explained before. If x1 = sg, then by
Lemma 18, the total time required for this is O

(∑l
i=1(|Si| + 1)

)
= O((p − g) + l). But note

that l ≤ p − g, so in fact the bound is O(p − g).
To handle the instance (S0 ∪ T, Φs1,x1 · πR

1 · Φt1,s1), we simply replace (B, Φ) with it
and proceed with solving it using the algorithm for the general case. To this end, we set
S := S0 ∪ {t1}, T := {t2, . . . , tq} and update Z in the data structures L, LR to S0 by
removing elements. Then, invariant (1) is satisfied by Lemma 19, and invariants (2), (3)
and (4) are satisfied by construction. This way, in Õ(∆) time we reduce the instance (B, Φ)
by ∆ = |S| − |S0| = p − g vertices. Recall that Z = S \ {sp} implies that g < p. Thus, ∆ ≥ 1
and the sizes of B and T strictly decrease.

A. Karczmarz and M. Smulewicz 95:17

s1

s2

x1 = sg

x2

x3

x4

sp

t1

t2

tq

π1 = πt1,x1

π2 = πt1,x2

π3 = πt1,x3

π4

Figure 1 Splitting the instance (B, Φ), where B = S ∪ T , into 5 smaller instances with paths
π1, . . . , πl (either originating or ending in t1) for l = 4. The vertices S = {s1, . . . , sp} are shown in
blue, whereas the vertices T = {t1, . . . , tq} in red. The black arrows and dashed lines represent the
individual parts of the curve Φ: paths of the form πu,v or parts of the curve h, respectively. Note
that the black arrows appear only on the Φs1,sp part of Φ. The vertices x1, . . . , x4, marked green,
are precisely all the vertices of S \ {sp} that t1 can reach or can be reached from. The obtained
smaller instances are marked with distinct patterns. The instances marked with line patterns (types
1 or 2) are base instances. The instance marked using a dotted pattern (type 3) might constitute
the only obtained instance that is not a base instance (for which the algorithm continues).

Let us now discuss how to aggregate/report the vertices of ΠP (B) \ ∂P that lie on any
of the paths π1, . . . , πl (that are not handled in any of the subproblems), but at the same
time lie strictly inside Φ (before altering (B, Φ)). Since Φ is formed of either the edges of the
hole h, or from the paths π{u,v}, and each πi is contained in P [Φ], equivalently we need to
aggregate the vertices of ΠP (B) \ ∂P on the paths π1, . . . , πl that do not lie on Φ.

Observe that since x1, . . . , xl lie on Φ in that order, and the paths π1, . . . , πl all lie in P [Φ]
and are non-crossing by Lemma 14, for any three i < j < k, we have V (πi) ∩ V (πk) ⊆ V (πj).
As a result, any vertex on these paths is included in precisely one of the sets V (πi) \ V (πi−1),
for i = 1, . . . , l and V (π0) := ∅. Moreover, in Lemma 21 we will show that each πi can
possibly have a non-empty intersection with O(1) parts (between neighboring elements of B)
of Φ, that we can also identify in O(1) time. Since, by Lemma 14, for every path π{u,v},
the intersection of π{u,v} with πi is either empty or forms a subpath of πi, aggregating or
reporting the required vertices of πi boils down to aggregating or reporting the vertices of
V (P) \ ∂P on some O(1) subpaths of πi that form what remains from πi after removing O(1)
of its intersections with other paths πu,v.

ICALP 2024

95:18 Fully Dynamic Strongly Connected Components in Planar Digraphs

▶ Lemma 21. Consider the moment when the split into subproblems happens. Suppose
xi = sj. Let u, v ∈ B be neighboring on Φ, so that u comes before v in the counterclockwise
order ≺h on Φ. Then (V (πi)∩V (Φu,v))\∂P ̸= ∅ implies that u = sj′ for some j′ ∈ {1, . . . , p}
such that |j − j′| ≤ 2.

Proof. Recall that the curve is πi is either the path π{xi,t1} or its reverse. Let us only
consider the case when π{xi,t1} = πxi,t1 ; the case when π{xi,t1} = πt1,xi

is analogous.
By invariant (3), we have that u, v ∈ S since otherwise Φu,v is a part of the curve h and

therefore does not contain any vertices from outside V (h). So {u, v} = {sj′ , sj′+1} for some
j′ ∈ {1, . . . , p − 1}. Let z ∈ (V (πi) ∩ V (Φu,v)) \ ∂P . If Φu,v = πsj′ ,sj′+1 , then the z → v

subpath of Φu,v and the xi → z subpath of πi together form an sj → sj′+1 path in P , which
by invariant (2) implies j′ + 1 ∈ {j − 1, j, j + 1}, and thus j′ ∈ [j − 2, j]. If Φu,v = πsj′+1,sj′ ,
then, analogously, there exists an sj → sj′ path in P , so j′ ∈ [j − 1, j + 1]. ◀

By Lemma 21, for each πi, we need to report all vertices of πi from outside ∂P , except
those on the union of at most 6 subpaths of πi. Since the subpaths are always intersections
of some two paths πu,v, we can identify these subpaths using precomputed data in O(1)
time. Aggregating vertex weights not on at most 6 subpaths of πi is the same as aggregating
weights on at most 7 disjoint subpaths of πi. Recall that we have precomputed the aggregate
weights for all the subpaths of all the possible πu,v. As a result, aggregating or reporting
vertices ΠP (B) \ ∂P that lie on any of the paths π1, . . . , πl takes O(l) = O(p − g) time.

▶ Lemma 22. The general case can be handled in Õ(|B|) time.

Proof. Recall that when T = ∅, we have a base instance that can be solved in O(|B|) time.
Every iteration of the main loop that does not involve changing B takes O(polylog n)

time and reduces the size of T by one. But the set T can shrink at most |B| times, so such
iterations cost Õ(|B|) time in total. Every other iteration of the main loop involves reducing
the size of B by some ∆ > 0 in Õ(∆) time. Such iterations clearly cost Õ(|B|) time in total
as well. ◀

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, pages 434–443. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.
53.

2 Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Robert E. Tarjan. A new approach
to incremental cycle detection and related problems. ACM Trans. Algorithms, 12(2):14:1–14:22,
2016. doi:10.1145/2756553.

3 Aaron Bernstein, Aditi Dudeja, and Seth Pettie. Incremental SCC maintenance in sparse
graphs. In 29th Annual European Symposium on Algorithms, ESA 2021, volume 204 of
LIPIcs, pages 14:1–14:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.ESA.2021.14.

4 Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic
decremental reachability, scc, and shortest paths via directed expanders and congestion
balancing. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020, pages 1123–1134. IEEE, 2020. doi:10.1109/FOCS46700.2020.00108.

5 Aaron Bernstein, Maximilian Probst, and Christian Wulff-Nilsen. Decremental strongly-
connected components and single-source reachability in near-linear time. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pages 365–376.
ACM, 2019. doi:10.1145/3313276.3316335.

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1145/2756553
https://doi.org/10.4230/LIPIcs.ESA.2021.14
https://doi.org/10.4230/LIPIcs.ESA.2021.14
https://doi.org/10.1109/FOCS46700.2020.00108
https://doi.org/10.1145/3313276.3316335

A. Karczmarz and M. Smulewicz 95:19

6 Panagiotis Charalampopoulos and Adam Karczmarz. Single-source shortest paths and strong
connectivity in dynamic planar graphs. J. Comput. Syst. Sci., 124:97–111, 2022. doi:
10.1016/j.jcss.2021.09.008.

7 Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Jakub Łącki, and Nikos
Parotsidis. Decremental single-source reachability and strongly connected components in
õ(m

√
n) total update time. In IEEE 57th Annual Symposium on Foundations of Computer

Science, FOCS 2016, pages 315–324. IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.
42.

8 Li Chen, Rasmus Kyng, Yang P. Liu, Simon Meierhans, and Maximilian Probst Gutenberg.
Almost-linear time algorithms for incremental graphs: Cycle detection, sccs, s-t shortest path,
and minimum-cost flow, 2023. arXiv:2311.18295.

9 Krzysztof Diks and Piotr Sankowski. Dynamic plane transitive closure. In Algorithms
- ESA 2007, 15th Annual European Symposium, Proceedings, pages 594–604, 2007. doi:
10.1007/978-3-540-75520-3_53.

10 Jeff Erickson, Kyle Fox, and Luvsandondov Lkhamsuren. Holiest minimum-cost paths and
flows in surface graphs. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, pages 1319–1332, 2018. doi:10.1145/3188745.3188904.

11 Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest paths,
and near linear time. J. Comput. Syst. Sci., 72(5):868–889, 2006. doi:10.1016/j.jcss.2005.
05.007.

12 Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees, with
applications. SIAM J. Comput., 14(4):781–798, 1985. doi:10.1137/0214055.

13 Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM J. Comput., 16(6):1004–1022, 1987. doi:10.1137/0216064.

14 Harold N. Gabow. Path-based depth-first search for strong and biconnected components. Inf.
Process. Lett., 74(3-4):107–114, 2000. doi:10.1016/S0020-0190(00)00051-X.

15 Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann. Voronoi
diagrams on planar graphs, and computing the diameter in deterministic õ(n5/3) time. SIAM
J. Comput., 50(2):509–554, 2021. doi:10.1137/18M1193402.

16 Pawel Gawrychowski, Shay Mozes, Oren Weimann, and Christian Wulff-Nilsen. Better tradeoffs
for exact distance oracles in planar graphs. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 515–529. SIAM, 2018. doi:10.1137/1.9781611975031.34.

17 Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander
hierarchy and its applications to dynamic graph algorithms. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10
- 13, 2021, pages 2212–2228. SIAM, 2021. doi:10.1137/1.9781611976465.132.

18 Bernhard Haeupler, Telikepalli Kavitha, Rogers Mathew, Siddhartha Sen, and Robert Endre
Tarjan. Incremental cycle detection, topological ordering, and strong component maintenance.
ACM Trans. Algorithms, 8(1):3:1–3:33, 2012. doi:10.1145/2071379.2071382.

19 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC 2015, pages 21–30. ACM, 2015. doi:10.1145/2746539.2746609.

20 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, 2001. doi:10.1145/502090.502095.

21 Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Fully
dynamic connectivity in o(log n(loglog n)2) amortized expected time. TheoretiCS, 2, 2023.
doi:10.46298/THEORETICS.23.6.

22 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

ICALP 2024

https://doi.org/10.1016/j.jcss.2021.09.008
https://doi.org/10.1016/j.jcss.2021.09.008
https://doi.org/10.1109/FOCS.2016.42
https://doi.org/10.1109/FOCS.2016.42
https://arxiv.org/abs/2311.18295
https://doi.org/10.1007/978-3-540-75520-3_53
https://doi.org/10.1007/978-3-540-75520-3_53
https://doi.org/10.1145/3188745.3188904
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1137/0214055
https://doi.org/10.1137/0216064
https://doi.org/10.1016/S0020-0190(00)00051-X
https://doi.org/10.1137/18M1193402
https://doi.org/10.1137/1.9781611975031.34
https://doi.org/10.1137/1.9781611976465.132
https://doi.org/10.1145/2071379.2071382
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1145/502090.502095
https://doi.org/10.46298/THEORETICS.23.6
https://doi.org/10.1006/jcss.2000.1727

95:20 Fully Dynamic Strongly Connected Components in Planar Digraphs

23 Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki, and Piotr Sankowski. Decremental
single-source reachability in planar digraphs. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, pages 1108–1121. ACM, 2017. doi:
10.1145/3055399.3055480.

24 Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum queries
in monge matrices and partial monge matrices, and their applications. ACM Trans. Algorithms,
13(2):26:1–26:42, 2017. doi:10.1145/3039873.

25 Adam Karczmarz and Marcin Smulewicz. On fully dynamic strongly connected components. In
31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam,
The Netherlands, volume 274 of LIPIcs, pages 68:1–68:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPICS.ESA.2023.68.

26 Philip N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pages 146–155, 2005.
URL: http://dl.acm.org/citation.cfm?id=1070432.1070454.

27 Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator de-
compositions for planar graphs in linear time. In Symposium on Theory of Comput-
ing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 505–514, 2013.
doi:10.1145/2488608.2488672.

28 Philip N. Klein and Sairam Subramanian. A fully dynamic approximation scheme for shortest
paths in planar graphs. Algorithmica, 22(3):235–249, 1998. doi:10.1007/PL00009223.

29 Yaowei Long and Seth Pettie. Planar distance oracles with better time-space tradeoffs.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,
Virtual Conference, January 10 - 13, 2021, pages 2517–2537. SIAM, 2021. doi:10.1137/1.
9781611976465.149.

30 Jakub Łącki. Improved deterministic algorithms for decremental reachability and strongly
connected components. ACM Trans. Algorithms, 9(3):27:1–27:15, 2013. doi:10.1145/2483699.
2483707.

31 Liam Roditty and Uri Zwick. Improved dynamic reachability algorithms for directed graphs.
SIAM J. Comput., 37(5):1455–1471, 2008. doi:10.1137/060650271.

32 Piotr Sankowski. Subquadratic algorithm for dynamic shortest distances. In Computing and
Combinatorics, 11th Annual International Conference, COCOON 2005, Kunming, China,
August 16-29, 2005, Proceedings, volume 3595 of Lecture Notes in Computer Science, pages
461–470. Springer, 2005. doi:10.1007/11533719_47.

33 M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis. Computers
& Mathematics with Applications, 7(1):67–72, 1981. doi:10.1016/0898-1221(81)90008-0.

34 Sairam Subramanian. A fully dynamic data structure for reachability in planar digraphs. In
Algorithms - ESA ’93, First Annual European Symposium, Bad Honnef, Germany, September
30 - October 2, 1993, Proceedings, pages 372–383, 1993. doi:10.1007/3-540-57273-2_72.

35 Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972. doi:10.1137/0201010.

36 Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic matrix
inverse: Improved algorithms and matching conditional lower bounds. In 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2019, pages 456–480. IEEE Computer
Society, 2019. doi:10.1109/FOCS.2019.00036.

37 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

38 Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1757–1769. SIAM, 2013. doi:
10.1137/1.9781611973105.126.

https://doi.org/10.1145/3055399.3055480
https://doi.org/10.1145/3055399.3055480
https://doi.org/10.1145/3039873
https://doi.org/10.4230/LIPICS.ESA.2023.68
http://dl.acm.org/citation.cfm?id=1070432.1070454
https://doi.org/10.1145/2488608.2488672
https://doi.org/10.1007/PL00009223
https://doi.org/10.1137/1.9781611976465.149
https://doi.org/10.1137/1.9781611976465.149
https://doi.org/10.1145/2483699.2483707
https://doi.org/10.1145/2483699.2483707
https://doi.org/10.1137/060650271
https://doi.org/10.1007/11533719_47
https://doi.org/10.1016/0898-1221(81)90008-0
https://doi.org/10.1007/3-540-57273-2_72
https://doi.org/10.1137/0201010
https://doi.org/10.1109/FOCS.2019.00036
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1137/1.9781611973105.126
https://doi.org/10.1137/1.9781611973105.126

	1 Introduction
	1.1 Previous work
	1.2 Our results
	1.3 Organization

	2 Preliminaries
	3 Fully dynamic SC data structure
	4 Dynamic strongly connected components
	5 The path net data structure
	5.1 Overview
	5.2 Reducing to the acyclic case
	5.3 Picking non-crossing paths
	5.4 Generalization
	5.5 Preprocessing
	5.6 Answering queries

