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Abstract
We study the problem of minimizing a given symmetric strictly convex function over the Minkowski
sum of an integral base-polyhedron and an M-convex set. This problem has a hybrid of continuous
and discrete structures. This emerges from the problem of allocating mixed goods, consisting of both
divisible and indivisible goods, to agents with binary valuations so that the fairness measure, such as
the Nash welfare, is maximized. It is known that both an integral base-polyhedron and an M-convex
set have similar and nice properties, and the non-hybrid case can be solved in polynomial time.
While the hybrid case lacks some of these properties, we show the structure of an optimal solution.
Moreover, we exploit a proximity inherent in the problem. Through our findings, we demonstrate
that our problem is NP-hard even in the fair allocation setting where all indivisible goods are
identical. Moreover, we provide a polynomial-time algorithm for the fair allocation problem when
all divisible goods are identical.
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1 Introduction

In this paper, we study the hybrid problem of discrete and continuous structures. We are
given a finite set N , a symmetric strictly convex function Φ: RN → R and two supermodular
functions fC , fM : 2N → Z+. We assume that function values can be accessed by an oracle.
For a supermodular function f , we call

B =
{

x ∈ RN : x(N) = f(N) and x(X) ≥ f(X) (∀X ⊆ N)
}

the integral base-polyhedron of f , and B̈ = B ∩ ZN the M-convex set. Let BC , BM be the
integral base-polyhedra of fC , fM , respectively, and let B̈M = BM ∩ ZN . In addition, let

EA
T

C
S

© Yasushi Kawase, Koichi Nishimura, and Hanna Sumita;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 96; pp. 96:1–96:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5626-779X
https://orcid.org/0000-0003-4005-3206
https://doi.org/10.4230/LIPIcs.ICALP.2024.96
https://doi.org/10.48550/arXiv.2306.05986
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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BE be the Minkowski sum of B̈M and BC , i.e., BE = {x + y : x ∈ B̈M , y ∈ BC}. The goal
of the problem is to find a vector z that attains

minz∈BE
Φ(z) (= minx∈B̈M

miny∈BC
Φ(x + y)). (1)

An optimal solution of this problem is called Φ-minimizer (on BE).
When fM = 0 (i.e., BE = BC), it is known that an integral base-polyhedron has a

common unique minimizer independent of Φ, and the minimizer can be characterized by
a structure called the principal partition [18, 34] (see Section 2.2 for the definition and
details). By this structure, the problem (1) can be solved in polynomial time [38]. When
fC = 0, it is known that a Φ-minimizer on an M-convex set can be characterized by the
canonical partition [15], which is an aggregation of the principal partition. Additionally,
the set of Φ-minimizers does not depend on Φ [15] and a Φ-minimizer can be found in
polynomial time [16]. Furthermore, a proximity theorem has been established [17]. This
theorem states that a Φ-minimizer in an M-convex set lies within a unit hypercube that
contains the Φ-minimizer in the corresponding integral base-polyhedron.

The hybrid problem (1) appears in the fair allocation of a mix of divisible and indivisible
goods, which has recently been attracting attention [5,7,10,31,32,33,40]. Let N = {1, 2, . . . , n}
be the set of agents. Let C and M be the sets of divisible and indivisible goods, respectively,
and let also E = C ∪M . Each agent i has a binary valuation vie ∈ {0, 1} for each good
e. An allocation is a matrix π ∈ [0, 1]N×E such that πie ∈ {0, 1} for all i ∈ N and e ∈ M .
The entry πie means the allocated amount of good e to agent i. Throughout this paper, we
only consider utilitarian optimum allocations, that is, πie > 0 only if vie = 1. Agents have
additive utility, and the utility of agent i in allocation π is πi(E) =

∑
e∈E vieπie. For an

allocation π, a vector z = (π1(E), . . . , πn(E)) is called a utility vector of π.
The problem of finding a utility vector with the maximum Nash welfare (MNW), which is

a prominent fairness measure, can be reduced to our problem (1). Roughly speaking, the set
of possible utility vectors by divisible goods C forms an integral base-polyhedron BC , and
the set by indivisible goods M forms an M-convex set B̈M , which is the set of integral vectors
in an integral base-polyhedron. Maximizing the Nash welfare corresponds to minimizing a
symmetric strictly convex function Φ(z) = −

∑
i∈N log(zi + ε) for sufficiently small ε > 0

(depending on the instance). Another standard fairness measure called egalitarian social
welfare (max-min fairness) also can be represented by a symmetric strictly convex function.
For a given symmetric strictly convex function Φ, we call an allocation π Φ-fair if its utility
vector z = (π1(E), . . . , πn(E)) is a Φ-minimizer. We will detail these in Section 2.

Unfortunately, the hybrid case does not inherit nice properties of continuous or discrete
cases even in the fair allocation case. The set BE is not necessarily an integral base-polyhedron
or an M-convex set. It also does not work to find allocations of divisible and indivisible
goods separately and combine them. We can observe these from the following example.

▶ Example 1. Suppose that there are one indivisible good g, one divisible good c, and three
agents who desire both goods. Let Φ(z) = −z1 · z2 · z3. In this case, allocating c equally to
the three agents minimizes Φ when considering only c. However, allocating g to agent 1 and
c to agents 2 and 3 equally minimizes Φ for mixed goods. In addition, the set of possible
utility vectors is not an M-convex set since it contains fractional utility vectors and not an
integral base-polyhedron since it is not convex (see Figure 1).

In addition, we will see that the uniqueness of a Φ-minimizer set no longer holds (Example 7).
Therefore, existing results are not applicable to our problem.
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z1

z2

z3

(1/2,1,1/2)
(1,1/2,1/2)

(1/2,1/2,1)

Figure 1 The set of possible utility vectors in Example 1. The blue points are minimizers of Φ.

1.1 Our contribution
First, we investigate the structure of the problem (1). Fortunately, we show that the hybrid
problem still retains a structure of the canonical partition (Lemma 28), which is originally
defined for the discrete case [15]. Namely, there exists integers β1 > · · · > βq and a partition
N1, . . . , Nq of N such that βj − 1 ≤ z∗

i ≤ βj for any Φ-minimizer z∗, each j = 1, . . . , q and
i ∈ Nj . The proof is based on exchanging element values of a solution. Since existing exchange
properties in the discrete case are insufficient to deal with the hybrid problem, we need to
introduce new exchange properties. Moreover, we discuss an optimality criterion in terms of
an exchange graph, and unlike the discrete case, elaborate analysis of the graph is required.
By this result, we can see that an optimal integral solution (i.e., arg minz∈B̈M +B̈C

Φ(z)) is
a good approximation solution for (1) in the sense that the ℓ∞ distance from the optimal
solution is at most 1. We remark that the canonical partition together can be found in
polynomial time, and an optimal integral solution can be easily obtained from it.

In addition, by using the canonical partition, we can demonstrate a proximity theorem
(Theorem 2). Namely, Φ-minimizer on BE lies within a unit box containing the Φ-minimizer
on an integral base-polyhedron BE of fE = fM + fC . This generalizes a proximity theorem
for the discrete case [17].

▶ Theorem 2. Let Φ be a symmetric strictly convex function. For any z∗ ∈ arg minz∈BE
Φ(z)

and z ∈ arg minz∈BE
Φ(z), we have ⌊zi⌋ ≤ z∗

i ≤ ⌈zi⌉ for all i ∈ N .

Second, by applying the above results, we analyze the computational complexity of the
problem (1) where BC and B̈M arise from fair allocation. As a negative result, we show
that the problem is NP-hard even when indivisible goods are identical, i.e., for each agent i,
either vie = 1 (∀e ∈M) or vie = 0 (∀e ∈M).

▶ Theorem 3. For any fixed symmetric strictly convex function Φ, finding a Φ-fair allocation
is NP-hard even when indivisible goods are identical.

We also prove that computing an MNW allocation and an optimal egalitarian allocation
are both NP-hard. These results highlight the difficulty of the mixed goods case because
the problems can be solved in polynomial time when there are only divisible goods or only
indivisible goods.

As a positive result, we show the following tractability when divisible goods are identical.
This class includes the case when the divisible goods are money.

ICALP 2024



96:4 Hybrid of Continuous and Discrete Convex Sets

▶ Theorem 4. Let Φ be a symmetric strictly convex function. There exists a polynomial-time
algorithm that finds a Φ-fair allocation if all the divisible goods are identical.

This result may be interesting, because in fact, finding an allocation that attains a given
utility vector is NP-hard (see Appendix B in the full version [29]). Nevertheless, Theorem 4
says that we can obtain not only a Φ-minimizer (utility vector) but also an allocation that
attains the utility vector.

A key tool to construct our algorithm is the canonical partition for the mixed goods. By
applying it, we can partition goods as E1, . . . , Eq and agents as N1, . . . , Nq so that goods
in Ej are allocated to agents in Nj in a Φ-fair allocation (Theorem 29). Thanks to this
structure, a Φ-minimizer can be found by independently solving the subproblems of assigning
Ej to Nj for j = 1, 2, . . . , q. In each subproblem, the utility of every agent is almost the
same. However, unlike the continuous or discrete case, an optimal allocation depends on
Φ (see Examples 6 and 7). Thus, it is not easy to obtain a full characterization of minimizers.

Due to the space limitation, some proofs are omitted. They can be found in the full
version [29].

1.2 Related work
The (integral) base-polyhedron has been studied in the theory of matroids and submodular
functions [19]. The concept of M-convex sets [36] is defined as a set of integral vectors
satisfying certain exchange axioms. Discrete convex analysis [37] is a framework of convex
analysis in discrete settings, including M-convexity.

The concepts of continuous/discrete hybrid convexity have been proposed previously [35,
44]. In particular, an optimality criterion for an integral polyhedral hybrid M-convex function
minimization is known [35]. However, the functions treated in the present paper are hybrid
M-convex functions that are not necessarily integral polyhedral.

For the fair allocation of divisible homogeneous goods with additive valuations (not
restricted to binary), an MNW allocation corresponds to a market equilibrium of a special
case of the Fisher’s market model (see, e.g., [39]). Moreover, an MNW allocation is envy-free
(EF) [43,45], that is, no agent envies any other agent. It is known that this problem can be
solved in strongly polynomial time [41,46].

For the fair allocation of indivisible goods with additive valuations, Caragiannis et al. [10]
proved that an MNW allocation is envy-free up to one good (EF1), that is, each agent i does
not envy another agent j if some indivisible good is removed from the bundle of agent j.
Since computing an MNW allocation is hard in general [30], there is a series of research to
design an approximation algorithm [1, 11, 12, 13, 22]. Benabbou et al. [6] proved that the
set of MNW allocations coincides with that of minimizers of any symmetric strictly convex
function, even when the utility of each agent is represented by a matroid rank function.1
Harvey et al. [26] proposed efficient algorithms for computing an allocation that minimizes a
certain symmetric strictly convex function. When agents have binary additive valuations, an
MNW allocation can be computed in polynomial time [4, 14]. Truthful mechanisms to find
an MNW allocation are also proposed [2, 24].

Fair allocation with a mixture of divisible and indivisible goods has recently gained
attention. Bei et al. [5] introduced a fairness notion called envy-freeness for mixed goods
(EFM) as a generalization of EF and EF1 notions. Very recently, Li et al. [31] proposed a
truthful mechanism that outputs an EFM allocation for the case where agents have binary

1 Note that Theorem 2 is an extension of this result. Specifically, we construct an “augmenting” path of
[6, Section 3.2] for a hybrid situation.
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additive valuations on indivisible goods and a common valuation on a single divisible good
(e.g., money). They also showed that their mechanism runs in polynomial time, and its
output achieves MNW. We remark that their algorithm does not work in our problem even
when divisible goods are identical because we allow some agents to have value 0 on them. In
addition, fair allocation of indivisible goods with subsidy [3,8, 9, 23,25,28] is related to the
problem since subsidy could be viewed as a divisible good. For more details, see a survey
paper by Liu et al. [32].

2 Preliminaries

In this section, we explain the relationship between fair allocation of mixed goods and the
hybrid problem (1). Then we introduce the canonical partition for the discrete case.

For k ∈ N, we denote [k] = {1, 2, . . . , k}. Let N = [n] be a finite set. A set function f

over N is called supermodular if

f(X) + f(Y ) ≤ f(X ∪ Y ) + f(X ∩ Y ) (∀X, Y ⊆ N)

and submodular if −f is supermodular. For a subset X ⊆ N and a vector x ∈ RN , we
denote x(X) =

∑
i∈X xi. For an integer-valued supermodular set function f on N for which

f(∅) = 0 (normalized), the integral base-polyhedron B of f is defined as

B =
{

x ∈ RN : x(N) = f(N) and x(X) ≥ f(X) (∀X ⊆ N)
}

.

In addition, we call the set B̈ of the integer vectors in an integral base-polyhedron B an
M-convex set. Note that an M-convex set B̈ induces an integral base-polyhedron B as its
convex hull.

We say that a function Φ: RN → R is symmetric if

Φ(z1, z2, . . . , zn) = Φ(zσ(1), zσ(2), . . . , zσ(n))

for all permutations σ over [n]. We say that a function Φ: RN → R is strictly convex if

λΦ(z) + (1− λ)Φ(z′) > Φ(λz + (1− λ)z′)

for all z, z′ ∈ RN and λ ∈ (0, 1). A typical example of symmetric strictly convex functions is
the square-sum Φ(z) =

∑
i∈N z2

i .
In general, for z ∈ RN and i, j ∈ N with zi > zj , we have Φ(z − ε(χi − χj)) < Φ(z) for

any ε ∈ (0, zi − zj) because

Φ(z) = λΦ(z − (zi − zj)(χi − χj)) + (1− λ)Φ(z)
> Φ(λ(z − (zi − zj)(χi − χj)) + (1− λ)z) = Φ(z − λ(zi − zj)(χi − χj)) (2)

for any λ ∈ (0, 1). Here, χi represents a unit vector where only the ith component is equal
to 1, while all other components are equal to 0.

2.1 Relationship to fair allocation
Let N = [n] represent the set of n agents. We have two types of goods: M = {g1, g2, . . . , gm}
represents the set of indivisible goods, and C = {c1, c2, . . . , cr} denotes the set of homogeneous
divisible goods, that is, the valuation for a piece of a good is proportional to its fraction.
The set of all goods is denoted by E = M ∪ C. Let vie be the valuation of good e ∈ E for

ICALP 2024



96:6 Hybrid of Continuous and Discrete Convex Sets

agent i ∈ N . We assume that agents have binary valuations, that is, the valuation vie for the
whole of good e is either 0 or 1 for all i ∈ N and e ∈ E. An instance of the fair allocation we
deal with in this paper is described as (N, M, C, v). Without loss of generality, we assume
that, for any e ∈ E, there exists i ∈ N such that vie = 1.

A relaxed allocation is defined as a matrix π ∈ [0, 1]N×E that satisfies (i)
∑

i∈N πie = 1
for all e ∈ E and (ii) πie = 0 for any i ∈ N and e ∈ E with vie = 0. In a relaxed allocation
π, each agent i receives each good e in the proportion of πie. Relaxed allocations treat
indivisible goods as divisible. A relaxed allocation π is an allocation if it additionally satisfies
πie ∈ {0, 1} for all i ∈ N and e ∈ M . A relaxed allocation π is an integral allocation if it
additionally satisfies πie ∈ {0, 1} for all i ∈ N and e ∈ E. For an allocation π, an agent
i ∈ N , and a subset of goods E′ ⊆ E, let πi(E′) =

∑
e∈E′ πie, which is the valuation of agent

i’s bundle from E′. For an allocation π, the utility of agent i ∈ N is defined as πi(E). For
an allocation π, let π(E) be the utility vector (π1(E), . . . , πn(E)).

Here we rewrite the set of possible utility vectors in terms of an integral base-polyhedron.
We define fM , fC , fE : 2N → Z+ as follows: for a subset X ⊆ N of agents,

fM (X) = |{g ∈M : vig = 0 (∀i ̸∈ X)}| is the number of indivisible goods that must be
allocated to agents in X,
fC(X) = |{c ∈ C : vic = 0 (∀i ̸∈ X)}| is the number of divisible goods that must be
allocated to agents in X, and
fE(X) = fM (X) + fC(X) is the number of goods that must be allocated to agents in X.

It is not difficult to see that the functions fM , fC , fE are normalized integer-valued supermod-
ular.2 Let B̈M and BC be the M-convex set of fM and the integral base-polyhedron
of fC , respectively. In addition, let BE be the Minkowski sum of B̈M and BC , i.e.,
BE = {x + y : x ∈ B̈M , y ∈ BC}. Then, BE is the set of possible utility vectors.

Recall that BM = conv(B̈M ) and B̈C = BC ∩ ZN . We denote BE = conv(BE), and
B̈E = BE ∩ ZN . Note that BE is not necessarily an M-convex set or an integral base-
polyhedron as we have seen in Example 1.

For a symmetric strictly convex function Φ, an allocation π is called Φ-fair if the utility
vector (π1(E), . . . , πn(E)) minimizes Φ among allocations.

Some prominent fairness notions are naturally represented as Φ-fairness for some Φ. An
allocation π is said to achieve the maximum Nash welfare (MNW) if the number of agents with
positive utilities is maximized, and subject to that, the Nash welfare (

∏
i∈N :πi(E)>0 πi(E))1/n

is maximized. Finding a utility vector of an MNW allocation is equivalent to minimizing
−
∏

i∈N :zi>0(zi + ε) for some sufficiently small ε > 0 (see Appendix A in the full version [29]).
The egalitarian social welfare is defined by the smallest utility among agents. Maximizing
the egalitarian social welfare is a weaker notion of increasingly maximal (inc-max, for short)
allocations; an allocation is inc-max if its smallest utility is as large as possible, within
this, its second smallest utility is as large as possible, and so on. Similarly, we say that an
allocation is decreasingly minimal (dec-min, for short) if its largest utility is as small as
possible, within this, its second largest utility is as small as possible, and so on. We show
that a certain symmetric strictly convex function Φ induces the dec-min and inc-max solution
as a Φ-fair allocation.

2 Most of our results can be extended to the case when each agent evaluates indivisible goods with a
matroid rank function and divisible goods with the concave closure of a matroid rank function because
the functions fM , fC , fE continue to be normalized integer-valued supermodular in this scenario.
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▶ Proposition 5. Let (N, M, C, v) be a fair allocation instance. There exists a symmetric
strictly convex function Φ such that a dec-min allocation is Φ-fair. In addition, there exists
a symmetric strictly convex function Φ′ such that an inc-max allocation is Φ′-fair.

Then for a symmetric strictly convex function Φ: RN → R, we can rewrite finding a
utility vector z∗ of a Φ-fair allocation as the hybrid problem (1). If M = ∅ or C = ∅, the
problem (1) can be solved in polynomial time [15,16,17,18,34].

When there are only divisible goods or only indivisible goods, once we obtain a Φ-mimizer
z∗ of (1), a Φ-fair allocation π is obtained by using the maximum flow problem. Since we can
find an integral maximum flow in the indivisible goods case, π can be an integral allocation.
However, when both types of goods exist, it is not straightforward to construct an allocation
from a given utility vector. Indeed, given a vector u (not necessarily in BE), checking the
existence of an allocation whose utility vector is u is NP-hard (see Appendix B in the full
version [29]).

As mentioned in Introduction, when BE = BC (continuous case) or BE = B̈M (discrete
case), the set of Φ-minimizers is independent of Φ. However, this is not the case in general
even in fair allocation with both types of goods (i.e., M ̸= ∅ and C ̸= ∅). Thus, our problem
is challenging.

▶ Example 6. Consider an instance with five agents N = {1, 2, 3, 4, 5}, five indivisible
goods M = {g1, g2, g3, g4, g5}, and three divisible goods C = {c1, c2, c3}. Suppose that
agents 1, 2, 3, and 4 desire all the goods, but agent 5 desires only the indivisible goods (see
Table 1). Then, an allocation π with π(E) = (7/4, 7/4, 7/4, 7/4, 1) is dec-min. However, an
allocation ρ with ρ(E) = (6/4, 6/4, 6/4, 6/4, 2) is inc-max and square-sum minimizer. Indeed,∑

i∈N πi(E)2 = 13.25 and
∑

i∈N ρi(E)2 = 13.

▶ Example 7. Consider an instance with five agents N = {1, 2, 3, 4, 5}, five indivisible goods
M = {g1, g2, g3, g4, g5}, and two divisible goods C = {c1, c2}. Suppose that agents 1, 2, 3,
and 4 desire all the goods, but agent 5 desires only the indivisible goods. Then, an allocation
π with π(E) = ( 6

4 , 6
4 , 6

4 , 6
4 , 1) is dec-min and square-sum minimizer. However, an allocation ρ

with ρ(E) = ( 5
4 , 5

4 , 5
4 , 5

4 , 2) is inc-max. Indeed,
∑

i∈N πi(E)2 = 10 and
∑

i∈N ρi(E)2 = 10.25.

Table 1 Valuations in Example 6.

agents g1 g2 g3 g4 g5 c1 c2 c3

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1
5 1 1 1 1 1 0 0 0

Table 2 Valuations in Example 7.

agents g1 g2 g3 g4 g5 c1 c2

1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1
5 1 1 1 1 1 0 0

2.2 Principal Partition and Canonical Partition
Consider the integral base-polyhedron B and the M-convex set B̈ of a supermodular function
f : 2N → Z+. For any real number λ, let L(λ) be the set of all maximizers of f(X)− λ|X|,
i.e., L(λ) = arg maxX⊆N (f(X)− λ|X|). Note that L has a lattice structure, i.e., L is closed
under union and intersection. Let L(λ) be the smallest member in L(λ). It is known that
L(λ) ⊆ L(λ′) for any λ > λ′ (see, e.g., [17, Proposition 3.1]).

Fujishige [18] characterized the optimal utility vectors by the principal partition of N .
There are at most |N | number of λ for which |L(λ)| ≥ 2. Let us denote such numbers
as λ1 > λ2 > · · · > λr, which are called the critical values. The principal partition
N̂1, N̂2, . . . , N̂r is a partition of N defined by

ICALP 2024



96:8 Hybrid of Continuous and Discrete Convex Sets

N̂j = L(λ′
j)− L(λj) (j = 1, 2, . . . , r),

where λ′
j is an arbitrary real satisfying λj > λ′

j > λj+1 (assuming that λr+1 = −∞).

▶ Theorem 8 (Fujishige [18] and Maruyama [34]). The unique minimizer x∗ of minx∈B Φ(x)
satisfies x∗

i = λj for each i ∈ N̂j and j ∈ [r].

The principal partition and critical values can be found in strongly polynomial time by using
the submodular function minimization [27,42]; see also [38]. For more details of the principal
partition, see a book and a survey of Fujishige [19,20].

Frank and Murota [15] characterized the optimal utility vectors of miny∈B̈ Φ(y) by the
canonical partition of N . There are at most |N | number of β ∈ Z for which L(β) ̸= L(β − 1).
Let us denote such numbers as β1 > β2 > · · · > βq, which are called the essential values.
The canonical partition N1, N2, . . . , Nq is a partition of N defined by

Ni = L(βi − 1)− L(βi) (i = 1, 2, . . . , q).

Alternatively, the canonical partition and the essential values can be obtained by the following
procedure [17, Section 3]: for j = 1, 2, . . . , q, define

βj = max∅̸=X⊆N\
⋃j−1

j′=1
Nj′

⌈
(f(X ∪

⋃j−1
j′=1 Nj′)− f(

⋃j−1
j′=1 Nj′))/|X|

⌉
, (3)

hj(X) = f(X ∪
⋃j−1

j′=1 Nj′)− (βj − 1)|X| − f(
⋃j−1

j′=1 Nj′) (∀X ⊆ N \
⋃j−1

j′=1 Nj′),

Nj = smallest subset of N \
⋃j−1

j′=1 Nj′ maximizing hj .

They provided a strongly polynomial-time algorithm to compute the canonical partition and
the essential values by using this structure and a strongly polynomial-time algorithm for the
submodular function minimization [27,42].

▶ Theorem 9 (Frank and Murota [15,16,17]). The essential values β1 > β2 > · · · > βq are
obtained from the critical values λ1 > λ2 > · · · > λr as the distinct members of the rounded-up
integers ⌈λ1⌉ ≥ ⌈λ2⌉ ≥ · · · ≥ ⌈λr⌉. Moreover, the canonical partition is an aggregation of the
principal partition as Ni =

⋃
j: ⌈λj⌉=βi

N̂j for each i ∈ [q]. Any minimizer y∗ of miny∈B̈ Φ(y)
satisfies βj − 1 ≤ y∗

i ≤ βj for each i ∈ Nj and j ∈ [q]. The minimizer y∗, the canonical
partition, and essential values can be found in strongly polynomial time with respect to |N |.

3 Exchange properties of integral base-polyhedra and M-convex sets

In this section, we review exchange properties of an integral base-polyhedron and an M-convex
set. We also add new exchange properties for our hybrid case.

Let f : 2N → Z be a supermodular function. Let B be an integral base-polyhedra and let
B̈ be an M-convex set defined by f . It is known that the M-convex set B̈ and the integral
base-polyhedron B satisfy the exchange properties, respectively. For a vector z ∈ RN , define
supp+(z) := {i ∈ N : zi > 0} and supp−(z) := {i ∈ N : zi < 0}.

▶ Proposition 10 ([37]). For any x, y ∈ B̈ and i ∈ supp+(x − y), there exists some
j ∈ supp−(x− y) such that x− χi + χj ∈ B̈ and y + χi − χj ∈ B̈.

▶ Proposition 11 ([37]). For any x, y ∈ B and i ∈ supp+(x − y), there exists some
j ∈ supp−(x− y) and a positive real α0 such that x−α(χi−χj) ∈ B and y + α(χi−χj) ∈ B
for all α ∈ [0, α0].
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In addition, we show the following variants of exchange properties.

▶ Proposition 12. For any x, y ∈ B̈ and X ⊆ N with x(X) > y(X), there exist i ∈ X and
j ∈ N \X such that x − χi + χj ∈ B̈. Moreover, if x(X) > f(X), there exist i ∈ X and
j ∈ N \X such that x− χi + χj ∈ B̈.

▶ Proposition 13. For any x, y ∈ B and X ⊆ N with x(X) > y(X), there exist i ∈ X,
j ∈ N \X, and ε > 0 such that x− ε(χi − χj) ∈ B. Moreover, if x(X) > f(X), there exist
i ∈ X, j ∈ N \X, and ε > 0 such that x− ε(χi − χj) ∈ B.

▶ Proposition 14. For any x ∈ B̈ and disjoint subsets I, J ⊆ N such that x(J) < f(I ∪
J)− f(I), there exist i ∈ I and j ∈ J such that x− χi + χj ∈ B̈.

Then we show an exchange property for the hybrid situation.

▶ Proposition 15. For any x ∈ B̈ and y ∈ B, and i ∈ supp+(x − y), there exists j ∈
supp−(x−y) such that x−χi +χj ∈ B̈. Also, for any x ∈ B̈ and y ∈ B, and i ∈ supp−(x−y),
there exists j ∈ supp+(x− y) such that x + χi − χj ∈ B̈.

Proof. We only provide a proof for the former part, as the latter part can be demonstrated
in a similar manner. By Proposition 11, there exists some j ∈ supp−(x− y) and a positive
real α0 such that x′ := x−α0(χi−χj) ∈ B. For any X ⊆ N with i ∈ X and j ̸∈ X, we have
x′(X) = x(X)− α0 ≥ f(X), and hence x(X)− 1 ≥ f(X) since x(X) and f(X) are integers.
Therefore, x− χi + χj ∈ B̈ holds. ◀

4 Structure of Φ-minimizers

In this section, we prove a proximity theorem (Theorem 2) by using the structure (Lemma 28)
based on the canonical partition. Moreover, in the case of fair allocation, we also show that
the problem has a canonical partition of goods (Theorem 29).

Let fM and fC be two supermodular functions over M and C, respectively. Let also
fE = fM + fC . Recall that B̈M and BC are a corresponding M-convex set and integral
base-polyhedron, respectively. In addition, BE is the Minkowski sum of B̈M and BC .

It should be noted that, for the integral base-polyhedron B and the M-convex set B̈ of a
common supermodular function, the following proximity theorem has been shown by Frank
and Murota [17].

▶ Theorem 16 ([17, Theorem 4.1]). Let Φ be a symmetric strictly convex function. For any
x∗ ∈ arg minx∈B̈ Φ(x) and y∗ ∈ arg miny∈B Φ(y), we have ⌊y∗

i ⌋ ≤ x∗
i ≤ ⌈y∗

i ⌉ for all i ∈ N .

Note that this is a special case of our Theorem 2 when fC(X) = 0 (∀X ⊆ N). We prove
Theorem 2 following the same approach as for Theorem 16. However, we need to conduct a
more detailed analysis to handle BC .

Throughout this section, we fix a symmetric strictly convex function Φ: RN → R and
its minimizer z∗ ∈ arg minz∈BE

Φ(z). By definition, z∗ can be represented as x∗ + y∗ by
x∗ ∈ B̈M and y∗ ∈ BC . Moreover, let N1, . . . , Nq and β1, . . . , βq be the canonical partition
and the essential values of the M-convex set B̈E .

In subsequent subsections, we prove Theorem 2 through the following steps. First, in
Section 4.1, we demonstrate that z∗

i lies within the interval [β1 − 1, β1] for i ∈ N1. Then, in
Section 4.2, we decompose the problem of finding z∗ into two independent problems on N1
and N \N1. By iteratively applying the same procedure, we obtain the desired structure. In
Section 4.3, we show an additional result when BE emerges from the fair allocation.
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4.1 The peak-set N1

In this subsection, we prove that β1 − 1 ≤ z∗
i ≤ β1 (∀i ∈ N1) and z∗(N1) = fE(N1). The

main idea to prove these is to transfer some amounts from elements with high value to those
with low value, which improves the objective value. Here, we need to be careful about the
constraint.

We first introduce the basic properties for an M-convex set B̈ and an integral base-
polyhedron B.

▶ Proposition 17. For any x ∈ B̈, if x− χi + χj ∈ B̈ and x− χj + χk ∈ B̈, then it holds
that x− χi + χk ∈ B̈.

▶ Proposition 18 ([19, Lemma 4.5]). Let x ∈ B̈. Suppose that there exist a sequence
i1, j1, . . . , ir, jr of 2r distinct elements in N such that x − χih

+ χjk
∈ B̈ if h = k and

x− χih
+ χjk

̸∈ B̈ if h > k for h, k ∈ [r]. Then, it holds that x−
∑

k∈[r](χik
− χjk

) ∈ B̈.

▶ Proposition 19 ([37]). For any x ∈ B, we have x ∈ conv(B ∩ {y ∈ ZN : ∥x− y∥∞ < 1}).

▶ Lemma 20. If y∗ + ε(χi − χj) ∈ BC for some i, j ∈ N and ε > 0, then z∗
i = x∗

i +
y∗

i ≥ x∗
j + y∗

j = z∗
j . In addition, for any β ∈ R, it holds that y∗(N ′) = fC(N ′) with

N ′ = {i ∈ N : z∗
i ≥ β}.

Proof. For the former statement, suppose to the contrary that y∗ +ε(χi−χj) ∈ BC for some
i, j ∈ N such that x∗

i +y∗
i < x∗

j +y∗
j and ε > 0. Then, y = y∗+min{ε, (y∗

j−y∗
i )/2}·(χi−χj) ∈

BC and Φ(x∗ + y) < Φ(x∗ + y∗) by (2). This contradicts the assumption that z∗ = x∗ + y∗

is a Φ-minimizer.
For the latter statement, suppose that y∗(N ′) > fC(N ′) for some N ′ = {i ∈ N : z∗

i ≥ β}
with β ∈ R. Then, by Proposition 13, there exist i ∈ N ′, j ∈ N \ N ′, and ε > 0 such
that y∗ + ε(χj − χi) ∈ BC . By the former statement, this implies z∗

j ≥ z∗
i , contradicting

j ̸∈ N ′. ◀

We define a graph whose edge represents that transferring a unit amount of elements
does not violate the constraints. Then we show that transferring a unit amount along a path
will improve the objective value.

▶ Lemma 21. Let β be an integer and N ′ ⊆ N . Define N> = {i ∈ N : z∗
i > β},

N= = {i ∈ N : z∗
i = β}, and N< = {i ∈ N : z∗

i < β}. Construct a graph

G =
(
N ′,

{
(i, j) ∈ N ′ ×N ′ : x∗ − χi + χj ∈ B̈M or y∗ − χi + χj ∈ BC

})
.

If G has a path from some i ∈ N ′ ∩N> to some j ∈ N ′ ∩N> with i ≠ j, then there exists a
vector z′′ such that Φ(z′′) < Φ(z∗).

Proof. We first observe that Lemma 20 implies y∗(N>) = fC(N>) and y∗(N> ∪ N=) =
fC(N> ∪N=).

Let P = (i1, i2, . . . , ik) be a shortest path from some i1 ∈ N ′ ∩N> to some ik ∈ N ′ ∩N<.
Then we have i1 ∈ N>, i2, . . . , ik−1 ∈ N=, and ik ∈ N<. Since z∗

i2
< z∗

i1
, Lemma 20 implies

that y∗ − χi1 + χi2 /∈ BC , and thus x∗ − χi1 + χi2 ∈ B̈M . If x∗ − χi2 + χi3 ∈ B̈M , then
x∗ − χi1 + χi3 ∈ B̈M by Proposition 17, which leads to a shortcut of P . Thus, we have
x∗ − χi2 + χi3 /∈ B̈M and instead, y∗ − χi2 + χi3 ∈ BC holds. Next, let us assume that
y∗ − χi3 + χi4 ∈ BC and i4 ∈ N=, and derive a contradiction. Consider

B= =
{

ỹ ∈ RN=
: ỹ(N=) = fC(N= ∪ N>) − fC(N>),

ỹ(X) ≥ fC(X ∪ N>) − fC(N>) (∀X ⊆ N=)

}
,
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which is also an integral base-polyhedron of a supermodular function. Since β is an integer,
y∗

N= is also integral. Thus, the vectors y∗
N= − χi2 + χi3 and y∗

N= − χi3 + χi4 are contained in
B̈=, since y∗(N>) = fC(N>) and i2, i3, i4 ∈ N=. Then y∗

N= − χi2 + χi4 ∈ B̈= follows from
Proposition 17, which means that y∗ − χi2 + χi4 ∈ BC

3. However, this implies a shortcut
of P . Therefore, if i4 ∈ N=, then y∗ − χi3 + χi4 /∈ BC , and hence x∗ − χi3 + χi4 ∈ B̈M . By
the same argument, we have x∗ − χiℓ

+ χiℓ+1 ∈ B̈M if ℓ is an odd number and iℓ+1 ∈ N=,
and y∗ − χiℓ

+ χiℓ+1 ∈ BC if ℓ is an even number. Note that k must be an even number,
because y∗ − χik−1 + χik

/∈ BC follows from Lemma 20 and z∗
ik

< z∗
ik−1

. Moreover, for any
integers ℓ and h with ℓ ≥ h + 2, we have x∗ − χiℓ

+ χih
̸∈ B̈M and y∗ − χiℓ

+ χih
̸∈ BC .

Let x′ = x∗ −
∑

ℓ: odd(χiℓ
− χiℓ+1), y′ = y∗ −

∑
ℓ: even(χiℓ

− χiℓ+1), and z′ = x′ + y′. By
Proposition 18, we have x′ ∈ B̈M , y′ ∈ BC , and z′ ∈ BE . Note that z′ = z∗ − χi1 + χik

,
y′(N>) = y∗(N>) (= fC(N>)) and y′(N> ∪N=) = y∗(N> ∪N=) (= fC(N> ∪N=)) by the
construction. For notational convenience, we denote i∗ = i1 and j∗ = ik in the following.

If z∗
i∗ > z∗

j∗ + 1, then Φ(z′) < Φ(z∗). Thus, suppose that z∗
i∗ ≤ z∗

j∗ + 1 (< β + 1). In
this case, β − 1 < z′

i∗ < β and β < z′
j∗ < β + 1. By Proposition 19, y′ can be represented

by a convex combination of its integral neighbors in BC . Let y′ =
∑r

t=1 λ(t) · y(t), where
y(t) ∈ B̈C ∩ {y ∈ ZN : ∥y − y′∥ < 1} (∀t ∈ [r]),

∑r
t=1 λ(t) = 1, and λ(t) ≥ 0 (∀t ∈ [r]).

Define z(t) = x′ + y(t) for each t. Thus, we also obtain z′ =
∑r

t=1 λ(t) · z(t). Note that
z

(t)
i∗ ∈ {β − 1, β} and z

(t)
j∗ ∈ {β, β + 1} for each t. In addition, for each t, it holds that

y(t)(N>) = fC(N>) because
∑r

t=1 λ(t) · y(t)(N>) = y′(N>) = y∗(N>) = fC(N>) and
y(t)(N>) ≥ fC(N>). Similarly, we can see that y(t)(N> ∪N=) = fC(N> ∪N=) for each t.

Let us choose an arbitrary t with z
(t)
i∗ = β − 1. Let

B> = {ỹ ∈ RN>

: ỹ(N>) = fC(N>) and ỹ(X) ≥ fC(X) (∀X ⊆ N>)}

(the restriction of BC to N>), and B̈> be the M-convex set induced from B>. Then it holds
that y

(t)
N> ∈ B̈>, y′

N> ∈ B> and i∗ ∈ supp−(y(t)
N> − y′

N>). We apply Proposition 15 to them.
Then we can choose an index i(t) ∈ supp+(y(t)

N> − y′
N>) such that y

(t)
N> + χi∗ − χi(t) ∈ B>.

We show that this implies ŷ(t) := y(t) + χi∗ − χi(t) ∈ BC . Indeed, for any X with i∗ /∈ X

and i(t) ∈ X (the other cases are trivial), since y(t)(X ∩N>)− 1 ≥ fC(X ∩N>), we have

y(t)(X) = y(t)(X ∩N>) + y(t)(X ∪N>)− y(t)(N>)
> fC(X ∩N>) + fC(X ∪N>)− fC(N>) ≥ fC(X),

which implies that ŷ(t)(X) ≥ fC(X). In addition, we observe that z
(t)
i(t) = y

(t)
i(t) + x′

i(t) >

y′
i(t) + x′

i(t) = z′
i(t) = zi(t) > β. Thus, since z

(t)
i(t) is an integer,

ŷ
(t)
i(t) + x′

i(t) = z
(t)
i(t) − 1 ≥ β. (4)

On the other hand, for each t with z
(t)
i∗ = β, we denote ŷ(t) = y(t). We also remark that

ŷ(t)(N> ∪N=) = y(t)(N> ∪N=) and ŷ
(t)
i = y

(t)
i for each t and i ∈ N \N>.

We will do similar operations for indices in N<. Let us choose an arbitrary t with
z

(t)
j∗ = β1 + 1. We show that we can choose j(t) ∈ N< with z

(t)
j(t) ≤ β1 − 1 such that

ŷ(t) − χj∗ + χj(t) ∈ BC by applying Proposition 15. We denote N≥ = N> ∪N=. Let also

B< =
{

ỹ ∈ RN<

: ỹ(N<) = fC(N) − fC(N≥),
ỹ(X) ≥ fC(X ∪ N≥) − fC(N≥) (∀X ⊆ N<)

}
.

3 We need to check for each X such that i2 ∈ X but i4 /∈ X. The case when X ⊇ {i2, i3} follows by
y∗ − χi3 + χi4 ∈ BC , and the case when i2 ∈ X but i3 /∈ X follows by y∗ − χi2 + χi3 ∈ BC .

ICALP 2024



96:12 Hybrid of Continuous and Discrete Convex Sets

(the contraction of BC by N≥), and B̈< be the M-convex set induced from B<. Then it holds
that ŷ

(t)
N< ∈ B̈<, y′

N< ∈ B< and j∗ ∈ supp+(ŷ(t)
N< − y′

N<). We apply Proposition 15 to them.
Then we can choose an index j(t) ∈ supp−(ŷ(t)

N< − y′
N<) such that ŷ

(t)
N< − χj∗ + χj(t) ∈ B<.

Then we can observe that ŷ(t)−χj∗ +χj(t) ∈ BC . Indeed, for any X with j∗ ∈ X and j(t) /∈ X,
since y(t)(X ∩N<)− 1 ≥ fC((X ∩N<) ∪N≥)− fC(N≥) and y(t)(X ∩N≥) ≥ fC(X ∩N≥),
we have

y(t)(X) = y(t)(X ∩N<) + y(t)(X ∩N≥)
> fC(X ∩N<)− fC(N≥) + fC(X ∪N≥) ≥ fC(X).

Moreover, z
(t)
j(t) < y′

j(t) + x′
j(t) = z′

j(t) = zj(t) < β, which implies that

ŷ
(t)
j(t) + 1 + x′

j(t) = z
(t)
j(t) + 1 ≤ β. (5)

For simplicity, let j(t) = j∗ for each t with z
(t)
j∗ = β. Then, y′′ :=

∑r
t=1 λ(t)·(ŷ(t)−χj∗ +χj(t)) ∈

BC .
Let z′′ = x′ + y′′. Note that this operation to produce z′′ first reduces the value of

elements more than β while keeping them at least β by (4), and then increases the value of
elements less than β while keeping them at most β by (5). In other words, β1 ≤ z′′

i ≤ z∗
i for

i ∈ N>, z′′
i = z∗

i for i ∈ N=, and z∗
i ≤ z′′

i ≤ β1 for i ∈ N<. Therefore, Φ(z′′) < Φ(z∗) holds.
This contradicts to the optimality of z∗. ◀

To prove β1− 1 ≤ z∗
i ≤ β1, we find a path on the graph by supposing the contrary. While

it is easy for the continuous or discrete case, elaborate analysis is required in the hybrid case.
Recall that β1 = max{⌈fE(X)/|X|⌉ : ∅ ≠ X ⊆ N} by (3).

▶ Lemma 22. z∗
i ≤ β1 for all i ∈ N .

Proof. Define the sets N> = {i ∈ N : z∗
i > β1}, N= = {i ∈ N : z∗

i = β1}, and N< = {i ∈
N : z∗

i < β1}. By Lemma 20, y∗(N>) = fC(N>) and y∗(N> ∪N=) = fC(N> ∪N=).
Suppose to the contrary that N> is nonempty. We construct a graph

G =
(
N,
{

(i, j) ∈ N2 : x∗ − χi + χj ∈ B̈M or y∗ − χi + χj ∈ BC

})
.

We observe that for any Z with N> ⊆ Z ⊆ N> ∪N=, it holds that

z∗(Z) > fE(Z) (6)

because fM (Z) + fC(Z) = x∗(Z) + y∗(Z) = z∗(Z) > β1 · |Z| ≥ fE(Z) = fM (Z) + fC(Z),
where the last inequality holds by the definition of β1. This implies the following claim.

▷ Claim 23. For any Z satisfying (6), there exists an edge (i, j) ∈ Z × (N \ Z).

▷ Claim 24. There exist paths in G from some vertex in N> to some vertex in N<.

By the above claim and Lemma 21 with N ′ = N and β = β1, there exists a vector z

with Φ(z) < ϕ(z∗), which contradicts to the optimality of z∗. This completes the proof of
Lemma 22. ◀

We then prove that z∗
i is at least β1−1 for all i ∈ N1 by a similar technique to Lemma 22.

Recall that N1 is the smallest subset of N maximizing fE(X)− (β1 − 1)|X|.

▶ Lemma 25. z∗
i ≥ β1 − 1 for all i ∈ N1.
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We then show that we cannot decrease the values of elements in N1 (which have high
values) anymore. In the words of fair allocation, this means that goods not required to be
assigned to N1 are not assigned to N1.

▶ Lemma 26. x∗(N1) = fM (N1), y∗(N1) = fC(N1), and z∗(N1) = fE(N1).

Proof. It is sufficient to prove that z∗(N1) = fE(N1). Let N> := {i ∈ N : z∗
i > β1 − 1},

N= := {i ∈ N : z∗
i = β1 − 1}, and N< := {i ∈ N : z∗

i < β1 − 1}.
Suppose to the contrary that z∗(N1) > fE(N1). We construct a graph

G =
(
N,
{

(i, j) ∈ N ×N : x∗ − χi + χj ∈ B̈M or y∗ − χi + χj ∈ BC

})
.

Since N1 ∈ arg maxS⊆N fE(S)− (β1−1)|S|, we have fE(N1)− (β1−1)|N1| ≥ fE(X)− (β1−
1)|X| for any X ⊆ N . For any X with N> ⊆ X ⊆ N> ∪N=, it holds that

z∗(X) = z∗(N>) + z∗(X \N>) = z∗(N>) + (β1 − 1) · (|X| − |N>|)
≥ z∗(N> ∩N1) + (β1 − 1) · (|X| − |N> ∩N1|)
= z∗(N1)− (β1 − 1) · (|N1| − |N> ∩N1|) + (β1 − 1) · (|X| − |N> ∩N1|)

(by Lemma 25)
= z∗(N1)− (β1 − 1)|N1|+ (β1 − 1)|X|
> fE(N1)− (β1 − 1)|N1|+ (β1 − 1)|X| (by assumption)
≥ fE(X)− (β1 − 1)|X|+ (β1 − 1)|X| = fE(X).

Hence, by the same proofs of Claims 23 and 24, there exist paths in G from an agent in N>

to an agent in N<. Then, by applying Lemma 21 with N ′ = N and β = β1 − 1, we can
decrease the value of Φ, which is a contradiction. Hence, we obtain z∗(N1) = fE(N1). This
implies that x∗(N1) = fM (N1) and y∗(N1) = fC(N1). ◀

4.2 Decomposition
We describe that we can derive a similar result for N2, . . . , Nq.

Let N ′
1 = N \N1. For a supermodular function f , we denote f (1) : 2N ′

1 → Z to be the
supermodular function obtained from f by contracting N1, i.e., f (1)(X) = f(X ∪N1)−f(N1)
for each X ⊆ N ′

1. We consider the M-convex set B̈(1)
M of f

(1)
M , integral base-polyhedra B(1)

C

of f
(1)
C , and B(1)

E = B̈(1)
M + B(1)

C .
By Lemma 26, we have z∗

N ′
1
∈ B(1)

E . In addition, for any zN ′
1
∈ B(1)

E , an extended
vector z = (z∗

N1
, zN ′

1
) is contained in BE because z(X) ≥ fE(X ∩ N1) + f

(1)
E (X ∩ N ′

1) =
fE(X ∩N1) + fE(X ∪N1)− f(N1) ≥ fE(X) for all X ⊆ N by the supermodularity of fE .
Hence, we obtain the following lemma. Let Φ′ : RN ′

1 → R be the symmetric strictly convex
function such that Φ′(zN ′

1
) = Φ(z∗

N1
, zN ′

1
).

▶ Lemma 27. For any zN ′
1
∈ B(1)

E , a vector z = (z∗
N1

, zN ′
1
) is a Φ-minimizer of BE if and

only if zN ′
1

is a Φ′-minimizer of B(1)
E .

Therefore, we can apply the results in Section 4.1 to N ′
1, f

(1)
M , f

(1)
C and f

(1)
E , and repeat the

same procedure. By the definition of the canonical partition and the essential values, we
obtain the following lemma.

▶ Lemma 28. For each j = 1, . . . , q, it holds that βj − 1 ≤ z∗
i ≤ βj for every i ∈ Nj.
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We can prove Theorem 2 by using Theorem 9 and Lemma 28, and basic results for the
integral base-polyhedra.

Proof of Theorem 2. Recall that the partition N1, . . . , Nq is the canonical partition of
B̈E , and β1, . . . , βq are the corresponding essential values. Let N̂1, . . . , N̂r be the principal
partition of BE , and let λ1, . . . , λr be the critical values. We fix i ∈ N arbitrarily. Let
j ∈ [q] and k ∈ [r] be the unique indices such that i ∈ Nj and i ∈ N̂k. By invoking
Theorem 9, we have βj = ⌈λk⌉. Consequently, by Theorem 8 and Lemma 28, we obtain
z∗

i ≤ βj = ⌈λk⌉ = ⌈zi⌉.
To show the other inequality, let Φ′ : RN → R be a symmetric strictly convex function

such that Φ′(z) = Φ(−z) for z ∈ RN . Let B′
E = −BE and B′

E = −BE . Then, −z∗ and −z

are Φ′-minimizers of B′
E and B′

E , respectively. By applying the same argument as above, we
obtain −z∗

i ≤ ⌈−zi⌉, which is equivalent to z∗
i ≥ ⌊zi⌋. ◀

4.3 Structures in Fair Allocation
We establish the structure in the case of fair allocations. We partition the goods according to
the canonical partition as follows. Let M1 and C1 denote the subset of indivisible goods M

and divisible goods C, respectively, that must be allocated to agents in N1. We iteratively
define Mj and Cj as the subset of M \

⋃j−1
j′=1 Mj′ and C \

⋃j−1
j′=1 Cj′ , respectively, that must

be allocated to agents in
⋃j

j′=1 Nj′ . In other words, Mj and Cj (j = 1, . . . , q) is defined as

Mj =
{

g ∈M \
⋃j−1

j′=1 Mj′ : vig = 0 (∀i ∈ N \
⋃j

j′=1 Nj′)
}

, (7)

Cj =
{

c ∈ C \
⋃j−1

j′=1 Cj′ : vic = 0 (∀i ∈ N \
⋃j

j′=1 Nj′)
}

. (8)

We refer M1, . . . , Mq and C1, . . . , Cq as the canonical partitions of the indivisible goods and
the divisible goods, respectively. By Lemmas 26 and 27, we show the following.

▶ Theorem 29. For any allocation π∗ whose utility vector is a Φ-minimizer over BE, it
holds that

∑
i∈Nj

π∗
ie = 1 for every good e ∈Mj ∪ Cj and j = 1, 2, . . . , q.

Proof. Let z∗ be the utility vector of π∗. Let x∗ and y∗ be the utility vectors for indivisible
and divisible goods in π∗, respectively. Thus, z∗ = x∗ + y∗.

First, since fM (N1) = |M1| and fC(N1) = |C1|, we have z∗(N1) = |M1 ∪ C1| by
Lemma 26. Next, let N ′

j = N \
⋃j

j′=1 Nj′ for j = 1, . . . , q − 1. By Lemma 27, z∗
N ′

1
is a

Φ′-minimizer, where Φ′(z) = ϕ(z∗
N1

, z). Thus by the definition of N2 and Lemma 26 again,
x∗

N ′
1
(N2) = f

(1)
M (N2) = fM (N1 ∪N2)− fM (N1) = |M2| and y∗

N ′
1
(N2) = f

(1)
C (N2) = |C2|. By

iteratively applying this argument, we observe that z∗(Nj) = |Mj ∪ Cj | for j = 2, . . . , q.
Because agents in Nq want only the goods in Mq ∪ Cq, these goods are allocated to the

agents in Nq. Then, for each j = q − 1, . . . , 1, since agents in Nj want only the goods in⋃q
j′=j(Mj′∪Cj′) but the goods in

⋃q
j′=j+1(Mj′∪Cj′) are allocated to agents in Nj+1∪· · ·∪Nq,

the goods in Mj ∪ Cj are allocated to agents in Nj . Therefore, the theorem holds. ◀

5 Tractability for Identical Divisible Goods

In this section, we focus on the setting where all the divisible goods are identical, i.e.,
vic = vic′ for any c, c′ ∈ C and i ∈ N . Let Φ be a symmetric strictly convex function. The
main result of this section is Theorem 4, i.e., a polynomial-time algorithm to find a Φ-fair
allocation. As a corollary, an MNW allocation for mixed goods can be found in polynomial
time when the divisible goods are identical.
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Our algorithm utilizes structures discussed in the previous section. Namely, we seek
allocations whose utility vectors satisfy the statements in Lemma 28 and Theorem 29, which
are necessary conditions to be optimal. The high-level idea of our algorithm is described as
follows.

First, we find a discrete Φ-minimizer z̈∗ ∈ arg minz∈B̈E
Φ(z), the canonical partition

N1, . . . , Nq, and the essential values β1, . . . , βq of B̈E . These can be found in polynomial
time by Theorem 9. Note that z̈∗ is an optimal utility vector if every good is assumed to be
indivisible. We also compute the canonical partition of the indivisible goods M1, . . . , Mq and
that of the divisible ones C1, . . . , Cq by (7) and (8). Since all divisible goods are identical,
only one of C1, . . . , Cq can be non-empty. Let j∗ be the index such that Cj∗ = C.

Next, we decide on an allocation for agents in Nj for each j ̸= j∗. Let us fix j ≠ j∗.
Theorem 29 implies that in an optimal allocation, the agents in Nj receive only the indivisible
goods in Mj . Moreover, by Lemma 28, some agents in Nj must receive βj goods and the
others must receive βj − 1. Because βj − 1 ≤ z̈∗

i ≤ βj holds by Theorem 9, we allocate
goods in Mj so that each agent i ∈ N \Nj∗ receives z̈∗

i goods. Such an allocation can be
computed by solving a bipartite matching problem.4 For agents in Nj , the utility vector of
this allocation is the same as an optimal one up to arrangement of elements. Thus, we have
found an optimal allocation for agents in Nj .

The remaining task is to determine the allocation of Mj∗ ∪ C to agents Nj∗ . Since the
optimal allocation of Mj∗ ∪ C depends on Φ, we conduct an enumeration-based approach
rather than performing a full characterization.

Let π∗ be an optimal allocation. Let N+
j∗ be the set of agents in Nj∗ who desire the

divisible goods, i.e., N+
j∗ = {i ∈ Nj∗ : vi(c) = 1 (∀c ∈ C)}. Let N−

j∗ = Nj∗ \ N+
j∗ . The

following lemma indicates that there are a finite number of candidates for a Φ-minimizer.

▶ Lemma 30. All the agents receiving divisible goods (i.e., π∗
i (C) > 0) have the same utility.

Let k be the number of agents in N+
j∗ who receive βj∗ indivisible goods and let ℓ be the

total number of indivisible goods received by agents in N+
j∗ . Note that k < |N+

j∗ |. The key
observation is the following lemma.

▶ Lemma 31. The following properties hold:
1. |N+

j∗ | · (βj∗ − 1) + k ≤ ℓ + |C| ≤ |N+
j∗ | · βj∗ ;

2. there exist X ⊆ N+
j∗ such that |X| = k and

a. for each i ∈ X: π∗
i (Mj∗) = βj∗ and π∗

i (C) = 0;
b. for each i ∈ N+

j∗ \ X: π∗
i (Mj∗) ≤ βj∗ − 1 and π∗

i (E) = βj∗ − (|N+
j∗ | · βj∗ − ℓ −

|C|)/(|N+
j∗ | − k);

3. π∗
i (Mj∗) ∈ {βj∗ , βj∗ − 1} and π∗

i (C) = 0 for each i ∈ N−
j∗ .

Since Lemma 31 specifies the utility vector (i.e., π∗
i (E) for each i ∈ Nj∗) of an optimal

allocation up to arrangement, it suffices to find an allocation whose utility vector satisfies the
statement in Lemma 31. In fact, if we are given ℓ, an optimal allocation can be computed as
follows. For each k = 0, . . . , |N+

j∗ | such that property 1 in Lemma 31 is satisfied,
1. find an allocation πk,ℓ ∈ {0, 1}Nj∗ ×Mj∗ of indivisible goods in Mj∗ such that (a) |{i ∈

N+
j∗ : πi(Mj∗) = βj∗}| ≤ k, (b) πi(Mj∗) ≤ βj∗ for each i ∈ N+

j∗ , (c)
∑

i∈N+
j∗

πi(Mj∗) = ℓ,
(d) πi(Mj∗) ∈ {βj∗ , βj∗ − 1} for each i ∈ N−

j∗ ;

4 It can also be calculated directly with a method of Harvey et al. [26].
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2. if πk,ℓ exists, let π̂k,ℓ be the allocation by allocating indivisible goods according to πk,ℓ,
and allocating divisible goods by a water-filling policy so that

π̂k,ℓ
i (c) = 1

|C|
·

(
βj∗ −

|N+
j∗ | · βj∗ − ℓ− |C|
|N+

j∗ | − k
− πk,ℓ

i (M)
)

for each i ∈ N+
j∗ such that πk,ℓ

i (M) < βj∗ and c ∈ C.
Let us see that this indeed works. Since Φ(π̂k,ℓ) ≤ Φ(π̂k+1,ℓ) holds (if πk,ℓ exists), the
smallest k such that πk,ℓ exists is the number in Lemma 31. For such an integer k, we have
|{i ∈ N+

j∗ : πi(Mj∗) = βj∗}| = k, and the properties in Lemma 31 are satisfied except the
allocation of divisible goods. Once we have decided on an allocation of indivisible goods, an
optimal allocation of divisible goods is found by the water-filling policy.

Now, we explain how to find an allocation πk,ℓ at step 1 in polynomial time. We reduce
this problem to the submodular flow problem. Let G = (V, A) be a directed graph constructed
as follows. The set of vertices V is Mj∗ ∪Nj∗ ∪N ′

j∗ where N ′
j∗ is a set of copy i′ of each

i ∈ Nj∗ . The set of edges A is A1 ∪ A2 ∪ A3 where A1 = {(g, i′) ∈ Mj∗ ×N ′
j∗ : vi(g) = 1},

A2 = {(i′, i) : i ∈ N+
j∗}, and A3 = {(i′, i) : i ∈ N−

j∗}. We define c, c : A → Z as c(a) = 0
and c(a) = 1 for each a ∈ A1; c(a) = 0 and c(a) = βj∗ for each a ∈ A2; c(a) = βj∗ − 1 and
c(a) = βj∗ for each a ∈ A3. In addition, let fk,ℓ : 2V → Z be a function such that

fk,ℓ(X) = φk,ℓ(|X ∩N+
j∗ |) + (|Mj∗ | − ℓ)1X∩N−

j∗ ̸=∅ − |X ∩Mj∗ | (∀X ⊆ V ), (9)

where φk,ℓ(h) = min{βj∗h, (βj∗−1)h+k, ℓ}, and 1X∩N−
j∗ ̸=∅ takes the value 1 if X ∩N−

j∗ ̸= ∅
and 0 otherwise. We remark that fk,ℓ is a submodular function, and fk,ℓ(V ) = 0 since
ℓ ≤

∑
i∈N+

j∗
π∗

i (Mj∗) ≤ (βj∗ − 1)|N+
j∗ |+ k ≤ βj∗ |N+

j∗ |.

▶ Lemma 32. There exists an allocation π ∈ {0, 1}Nj∗ ×Mj∗ satisfying (a)–(d) if and only if
there exists an integral flow ξ : A → Z satisfying c(a) ≤ ξ(a) ≤ c(a) (capacity constraints)
and a constraint (called supply specification) that the boundary ∂ξ ∈ ZV of the flow ξ, which
is defined by ∂ξ(v) =

∑
a=(v,u)∈A ξ(a)−

∑
a=(u,v)∈A ξ(a), is in the M-convex set B̈ of fk,ℓ.

Since the feasibility of the submodular flow problem can be determined in polynomial
time [19], the existence of an allocation satisfying conditions (a)–(d) can be determined in
polynomial time by Lemma 32. Moreover, if such an allocation exists, we can find one of
such allocations in polynomial time.

Finally, because we do not know ℓ in advance, we enumerate all possibilities. That is,
find a best allocation πk,ℓ for each ℓ = 0, 1, . . . , |Mj∗ | by the above procedure, and choose
the best one. Then the resulting allocation is as good as an optimal allocation π∗.

We give the formal description of our algorithm in Algorithm 1. By summarizing the
discussions thus far, we can prove Theorem 4.

6 Hardness for Identical Indivisible Goods

In this section, we show a hardness result on the fair allocation setting when divisible goods
are non-identical but indivisible goods are identical. By using Theorem 2, we prove the
NP-hardness of finding a Φ-fair allocation by using the 3-dimensional matching (3DM)
problem, which is known to be NP-hard [21].

▶ Theorem 33 (restatement of Theorem 3). For any fixed symmetric strictly convex function
Φ, the problem (1) is NP-hard even in the fair allocation setting with identical indivisible
goods. Hence, finding a Φ-fair allocation is NP-hard.
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Algorithm 1 Allocation algorithm when the divisible goods are identical.

input : A fair allocation instance (N, M, C, v) and a symmetric strictly convex
function Φ

output : A Φ-fair allocation
1 Compute the canonical partition N1, . . . , Nq, the essential values β1, . . . , βq, the

canonical partition of the indivisible goods M1, . . . , Mq, and the canonical partition
of the divisible goods C1, . . . , Cq;

2 Let j∗ be the index such that Cj∗ = C;
3 for j ← 1, . . . , j∗ − 1, j∗ + 1, . . . , q do
4 Allocate Mj to Nj so that each agent receives βj or βj − 1;
5 Let N+

j∗ ← {j ∈ Nj∗ : vi(c) = 1 (∀c ∈ C)} and N−
j∗ ← {j ∈ Nj∗ : vi(c) = 0 (∀c ∈ C)};

6 Let Π← ∅ be a set of candidate allocations;
7 for k ← 0, 1, . . . , |N+

j∗ | and ℓ← 0, 1, . . . , |Mj∗ | do
8 if |N+

j∗ | · (βj∗ − 1) + k ≤ ℓ + |C| ≤ |N+
j∗ | · βj∗ then

9 Determine the existence an allocation πk,ℓ ∈ {0, 1}Nj∗ ×Mj∗ satisfying the
following conditions via the submodular flow problem:
|{i ∈ N+

j∗ : πi(Mj∗) = βj∗}| ≤ k, πi(Mj∗) ≤ βj∗ for each i ∈ N+
j∗ ,∑

i∈N+
j∗

πi(Mj∗) = ℓ, πi(Mj∗) ∈ {βj∗ , βj∗ − 1} for each i ∈ N−
j∗ ;

10 if Such an allocation πk,ℓ exists then
11 Let π be an allocation such that indivisible goods are allocated according

to Algorithm 1 and πk,ℓ, and the divisible goods are allocated to agents
in N+

j∗ by a water-filling policy;
12 Π← Π ∪ {π};

13 return π∗ ∈ arg minπ∈Π Φ(π(E));

We can also prove the following from the same proof of this theorem.

▶ Corollary 34. The problems of finding an MNW allocation and an optimal egalitarian
allocation are both NP-hard, even when indivisible goods are identical.
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