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Abstract
In cut sparsification, all cuts of a hypergraph H = (V, E, w) are approximated within 1 ± ϵ factor by
a small hypergraph H ′. This widely applied method was generalized recently to a setting where the
cost of cutting each hyperedge e is provided by a splitting function ge : 2e → R+. This generalization
is called a submodular hypergraph when the functions {ge}e∈E are submodular, and it arises in
machine learning, combinatorial optimization, and algorithmic game theory.

Previous work studied the setting where H ′ is a reweighted sub-hypergraph of H, and measured
the size of H ′ by the number of hyperedges in it. In this setting, we present two results: (i) all
submodular hypergraphs admit sparsifiers of size polynomial in n = |V | and ϵ−1; (ii) we propose a
new parameter, called spread, and use it to obtain smaller sparsifiers in some cases.

We also show that for a natural family of splitting functions, relaxing the requirement that H ′ be
a reweighted sub-hypergraph of H yields a substantially smaller encoding of the cuts of H (almost a
factor n in the number of bits). This is in contrast to graphs, where the most succinct representation
is attained by reweighted subgraphs. A new tool in our construction of succinct representation is the
notion of deformation, where a splitting function ge is decomposed into a sum of functions of small
description, and we provide upper and lower bounds for deformation of common splitting functions.
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1 Introduction

A powerful tool for many graph problems is sparsification, where an input graph is replaced
by a small graph that preserves (perhaps approximately) certain properties, for example all
the input graph’s cuts [7] or its spectrum [42, 6, 26]. Downstream applications can then be
executed on the small graph, which improves the overall running time, and the small graph
can also be stored (or sent to another site) instead of the input graph, which improves the
memory (or communication) requirements. The extensive research on cut sparsification has
started with the seminal work of Benczúr and Karger on cuts in graphs [7], and was later
extended to hypergraphs [29, 5, 10] and to directed hypergraphs [40, 9, 27, 36]. In recent
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97:2 Cut Sparsification and Succinct Representation of Submodular Hypergraphs

months the study of sparsification has been extended to even more general objects such as
semi-norms [25], matroid quotients [38], and linear codes [28]. We focus on sparsifying a
generalized form of hypergraphs, as explained next.

In recent years, the notion of cuts in a weighted hypergraph H = (V, E, w) has been
generalized to a setting where each hyperedge e ∈ E has a splitting function ge : 2e → R+,
such that ge(∅) = 0, and the value of a cut S ⊆ V is defined as

cutH(S) :=
∑
e∈E

ge(S ∩ e). (1)

Associating every e ∈ E with the all-or-nothing splitting function, given by gaon
e : S 7→

we · 1{S ̸=∅,e}, clearly models an ordinary hypergraph H = (V, E, w), where the value of a
cut is the total weight of hyperedges that intersect both sides; in fact, a simple extension
can model a directed hypergraph. Such a generalized hypergraph H = (V, E, g), where
g = {ge}e∈E , is called a submodular hypergraph if all its splitting functions ge are submodular.
Recall that a set function g : 2e → R+ is submodular if

∀S, T ⊆ e, g(S ∪ T ) + g(S ∩ T ) ≤ g(S) + g(T ).

Submodular hypergraphs are useful in clustering data with higher-order relations that are
not captured by ordinary hyperedges [31, 32, 44, 34, 45, 48]. For example, the small-side
splitting function, given by gsml

e : S 7→ min(|S|, |e \ S|), is employed when unbalanced cuts
are preferable. Cut functions of submodular hypergraphs were studied also under a different
name of decomposable submodular functions. A submodular function f : 2V → R+ is called
decomposable if it can be written as f =

∑
i fi, where each fi : 2V → R+ is submodular. This

notion is widely applied in data summarization [23, 33, 43], where each fi is a submodular
similarity function, and the task of summarizing the data under a given budget k is modeled
by maximizing f(S) over all S ⊂ V of size |S| ≤ k. Decomposable submodular functions
arise also in welfare maximization, where each agent has a submodular utility function, for
instance in approximation algorithms [16, 17] and in truthful mechanisms [15, 4].

We study how to succinctly represent all the cuts of a submodular hypergraph H up to
1 ± ϵ factor. We examine two complementary approaches: (1) sparsification, which reduces
the number of hyperedges, i.e., H is represented using a sparse H ′; and (2) deformation,
which replaces large hyperedges or complicated splitting functions by new ones of low space
complexity, i.e., H is represented using H ′ whose hyperedges can be stored succinctly. These
approaches can yield (separately and/or together) a sparsifier H ′ that can be encoded using
a small number of bits. More generally, we may consider a general encoding that need not
rely on a sparsifier H ′, e.g., an explicit list of all the 2|V | cut values.

Let us introduce some basic notation to make the discussion more precise. Throughout,
let n := |V |; we write Õ(t) or Ω̃(t) to suppress a polylogarithmic factor in t, and Oα(t) or
Ωα(t) to hide a factor that depends only on α.

▶ Definition 1.1 (Sparsifier). A cut sparsifier of quality 1 + ϵ for H = (V, E, g), or in short
a (1 + ϵ)-sparsifier, is a submodular hypergraph H ′ = (V, E′, g′) such that

∀S ⊆ V, cutH′(S) ∈ (1 ± ϵ) · cutH(S). (2)

The size of the sparsifier is |E′|. We call H ′ a reweighted subgraph of H if E′ ⊆ E and each
function g′

e for e ∈ E′ is a scaling of ge (i.e., g′
e ≡ sege for some se > 0).

▶ Question 1.2 (Sparsification). Do all submodular hypergraphs admit a reweighted-subgraph
sparsifier with few hyperedges, say poly(ϵ−1n)? And which families of splitting functions
admit even smaller sparsifiers, like Õϵ(n2) or even Õϵ(n)?
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The first question (about a polynomial bound) was previously answered for several families
of splitting functions (see Section 1.1 for a detailed account), but despite this significant
progress, the case of general submodular splitting was left open in [39], where the bound on
the sparsifier size depends on g and is exponential in n in the worst case. We answer this
first question in the affirmative, and also address the second question by showing families of
splitting functions that admit even smaller sparsifiers.

We further ask about a more general notion, of encoding an approximation of all the cuts
of H, which can potentially be more succinct than a sparsifier.

▶ Question 1.3 (Succinct Representation). What is the smallest encoding (in bits of space)
that stores a submodular hypergraph H so as to report (1 + ϵ)-approximation to every cut
value? In particular, what is the smallest number of bits s = s(ϵ, n) that suffices to store a
sparsifier for H?

For simplicity, we ask above only about the existence of a sparsifier or an encoding, but
we are of course interested also in fast algorithms to build them. Fortunately, an algorithmic
solution follows from the existential ones because our proofs are constructive. Furthermore,
the running times are polynomial under the assumption that every ge takes integral values
and maxS⊆e ge(S) ≤ poly(n).1

1.1 Sparsification: All Submodular Hypergraphs
We start with addressing Question 1.2. Our first result (proved in Section 2) provides the
first polynomial (in n) bound for all submodular splitting functions; the previous bound,
due to [39], was Oϵ(n2BH), where BH := maxe∈E |B(ge)| and B(ge) is the set of extreme
points in the polytope of ge.2 In general, BH can be exponential in n, for example small-side
splitting gsml

e has |B(gsml
e )| = 2Θ(|e|).

▶ Theorem 1.4. Every submodular hypergraph admits a (1 + ϵ)-sparsifier of size O(ϵ−2n3),
which is in fact a reweighted sub-hypergraph.

This bound is within factor Oϵ(n) of the Ω(n2/ϵ) lower bound known for cut sparsification of
directed hypergraphs [36]. We also show that if all the splitting functions are monotone (i.e.,
ge(S) ≤ ge(T ) for all S ⊆ T ), then the sparsifier size can be improved to Oϵ(n2). Monotone
submodular functions arise in many applications, however no sparsification bound was
previously known for this family.3 The formal statement and its proof appear in Section 2.

Related Work. Previous work on sparsification focused mostly on specific splitting functions.
The study of this problem began with sparsifiers for undirected graph cut; the current
size bound is O(ϵ−2n) edges [6], which improves over [7] and is known to be tight [2, 8].
Furthermore, sparsifiers of size Õϵ(n) are known for all-or-nothing splitting gaon

e [10] (see
also [38]) and for product splitting, given by gprd

e : S 7→ |S| · |e \ S| [13]. In contrast, for
the splitting that models cuts in a directed hypergraph, the best construction known has
size Õϵ(n2) [36], which is near-tight with an Ω(n2/ϵ) lower bound [36]; this function, called

1 The running times of Theorem 1.4 and Theorem 1.9 are polynomial in general. Theorem 1.6 is polynomial
under the stated assumption.

2 A recent manuscript [30] claims that the proof in [39] has a flaw and holds only for monotone submodular
hypergraphs.

3 The running time of [39] was improved in [30], where a sparsifier of size O(ϵ−2n2B) for monotone
functions with low curvature is constructed in polynomial time.
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directed all-or-nothing splitting, is given by gd-aon
e : S 7→ 1{eT ∩S ̸=∅ ∧ eH ̸⊆S}, where eH , eT ⊆ e

are the hyperedge’s head and tail, respectively. A recent result is more general and shows
that the entire family of symmetric splitting functions admits sparsifiers of size Õϵ(n) [25].

Figure 1 depicts several families of splitting functions and the sparsification bounds known
for them, including our results from above and from Section 1.2.

Techniques. Our sparsification method follows the importance-sampling approach, which
has been used extensively in the literature. Every hyperedge e ∈ E is assigned an importance
σe, and sampled with probability pe that is (at least) proportional to σe, and the splitting
function of every sampled e is scaled by 1/pe. The expected sparsifier size is clearly
proportional to

∑
e∈E σe.

A standard method to set the importance of a hyperedge e ∈ E, is to consider all its
possible cuts, namely, σe := maxS⊆V ge(S ∩ e)/cutH(S), and this method was indeed used
in [39]. Bounding

∑
e∈E σe naively by replacing the maximization over S ⊆ V by summation

yields an exponential size bound. An improved bound was given in [39] based on a quantity
BH related to the polytopes of the splitting functions. Unfortunately, this improved bound
is still exponential for many families of splitting functions.

Our main contribution is to identify a set of “basic” quantities for each hyperedge e that
can serve as coarse approximations of its splitting function ge. These approximations allow
us to define new sampling probabilities and achieve an improved size bound: Given e ∈ E,
define the minimum directed cut between u, v ∈ V to be gu→v

e := minS⊆V :u∈S,v ̸∈S ge(S ∩ e);4
then our main technical lemma bounds ge(·) from below and from above by

∀S ⊆ V, max
u∈S,v∈V \S

gu→v
e ≤ ge(S ∩ e) ≤

∑
u∈S,v∈V \S

gu→v
e . (3)

The lower bound holds by definition, and the upper bound is analogous to bounding the
value of a graph cut by the sum of the maximum flows between all pairs of vertices across the
cut. It is well-known that importance sampling will produce a sparsifier even if σe is replaced
with an over-estimate for it. We replace σe with ρe :=

∑
(u,v)∈V ×V gu→v

e /
∑

f∈E gu→v
f , which

we can easily see is an over-estimate, i.e., ρe ≥ σe, by using the two bounds from (3) to verify
that

∀S ⊆ V,
ge(S ∩ e)
cutH(S) = ge(S ∩ e)∑

f∈E gf (S ∩ f) ≤
∑

u∈S,v∈V \S

gu→v
e∑

f∈E gu→v
f

≤ ρe.

The expected number of hyperedges in the sparsifier H ′ equals to
∑

e∈E ρe times an amp-
lification factor M , where M = O(ϵ−2n) is sufficient by standard arguments (combining
a concentration bound and a union bound). The crux here is that it is easy to bound∑

e∈E ρe ≤ O(n2), basically swapping the order of a double summation. Another advantage
of ρe is that it can be computed in polynomial time, while computing σe requires maximizing
the ratio of two submodular functions, which is NP-hard in general.

In the monotone case, we follow the same approach but employ a simpler over-estimate
ρ′

e :=
∑

v∈e ge({v})/cutH({v}). The proof is similar to the general case, except that instead
of (3) we use the straightforward bound

∀S ⊆ V, max
v∈S

ge({v} ∩ e) ≤ ge(S ∩ e) ≤
∑
v∈S

ge({v} ∩ e).

4 The most natural case is u, v ∈ e, but considering all u, v ∈ V streamlines the presentation.
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finite-spread submodular
|E′| = min(µn, n3, n2BH )

symmetric
|E′| = n

hypergraph cuts
cardinality based

|E′| = min(n2, µn)

monotone
|E′| = min(µn, n2)

graph cuts

submodular functions
|E′| = min(n3, n2BH )

matroid rank
|E′| = min(n2, µn)

directed hypergraphs
|E′| = n2

Figure 1 Sparsification bounds for various families of submodular functions, omitting for simplicity
poly(ϵ−1 log n) factors.

1.2 Sparsification: Parameterized by Spread
We already know that submodular splitting functions can have very different optimal
sparsification bounds, see e.g. the bounds Θ̃ϵ(n) and Θ̃ϵ(n2) mentioned above. However,
there are too many submodular functions to analyze each one separately, and we thus seek
a parameter that can control the sparsifier size. Our approach is inspired by the notion of
imbalance in a directed graph G = (V, E, w), defined as the worst ratio between antiparallel
edge weights, i.e., βG := max{w(i, j)/w(j, i) : i, j ∈ V }. This parameter can be used to show
that every directed graph admits a sparsifier of size Õϵ(βGn).5 For submodular hypergraphs,
we propose an analogous parameter, which is basically the ratio between the maximum and
minimum values of the splitting function, excluding certain trivial cuts.

▶ Definition 1.5 (Spread). For hyperedge e ∈ E with splitting function ge, let We := {∅},
unless ge(e) = 0 in which case We := {∅, e}. The spread of e is

µe := maxT ⊆e ge(T )
minS⊆e:S /∈We

ge(S) . (4)

Our third result (proved in the full version) constructs a sparsifier whose size depends
on the spread of the input H, defined as µH := maxe∈E µe. By convention, the spread µe

is called finite if it is well-defined (the denominator in (4) is non-zero), and similarly µH is
called finite if it is well-defined (all the terms µe are finite).

▶ Theorem 1.6 (Sparsifier Parameterized by Spread). Every submodular hypergraph H =
(V, E, g) with finite spread admits a (1 + ϵ)-sparsifier of size Õ(ϵ−2µHn), which is a sub
reweighted-subgraph.

Many natural submodular functions have finite spread, and in many common cases
even µH ≤ n. This can be seen, for example, in an easy application of Theorem 1.6 to
approximation of coverage functions, see the full version for details. Another example is the

5 This condition can actually be relaxed significantly to βG := max{cutG(S)/cutG(S̄) : S ⊂ V }, and the
same sparsification bound still holds [9].

ICALP 2024
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sparsification of the capped version of small-side splitting, given by ge : S 7→ min(|S|, |e\S|, K)
for K > 0, which clearly has spread µe ≤ K. This function is part of a much larger family,
cardinality-based splitting functions, a notion formalized in [46] as follows: A submodular
function ge : 2e → R+ is called cardinality-based if there exists a function fe : [|e|] → R+ such
that ge : S 7→ fe(|S|). Cardinality-based functions, which are commonly used in submodular
hypergraph clustering, all have spread µe ≤ n, which is an easy consequence of the symmetry
and subadditivity of ge. By Theorem 1.6, these splitting function admit a (1 + ϵ)-sparsifier
of size Õ(ϵ−2n2), which is the first bound for this family.

It is easily verified that for monotone splitting functions, the spread is approximately
equal to the imbalance, when we generalize the imbalance from above to hyperedges by
βe := max{ge(S)/ge(e \ S) : S ⊂ V }.6 Hence, we immediately obtain the following.

▶ Corollary 1.7. Every finite-spread monotone splitting function admits a (1 + ϵ)-sparsisfier
of size Õ(ϵ−2βHn).

Two other examples of commonly used monotone functions with finite spread are set-
coverage functions (defined in the full version) and the matroid-rank functions,7 which have
µe = r where r is the rank of the matroid.

We remark that spread does not fully characterize the sparsifier size. Indeed, symmetric
functions can have a large spread µe but still admit Õϵ(n) sparsifier due to [25], consider e.g.
product splitting gprd

e which has µe = O(n). Furthermore, directed all-or-nothing splitting
gd-aon

e does not have finite spread, and nevertheless admits a sparsifier of size Õϵ(n2) [36].
Figure 1 depicts different families of splitting functions including that of finite spread, and
the sparsification bounds known for them.

Techniques. Our technique is based on approximate H as an undirected hypergraph and
use the sampling probabilities of [10] but amplified by µe for each hyperedge. This is a
known technique in generalizing sampling mechanisms. Our main contribution is to identify
the spread as a relevant and useful parameter. We remark that the generalization of balance,
which is known to control the size of sparsifier in directed graphs, to submodular hypergraphs
does not suffice for sparsification. Furthermore, we prove that the spread also characterizes
other traits of splitting function, such as the deformation lower bound.

1.3 Succinct Representation

We provide the first example of submodular splitting functions for which sparsifiers that
are not subgraphs are provably (much) more succinct than sparsifiers that are reweighted
subgraphs.8 To be more precise, we exhibit a natural family of splitting functions, where
the former (1 + ϵ)-sparsifiers take only Õϵ(n) bits (Corollary 1.10), while the latter (1 + ϵ)-
sparsifiers require Ω̃ϵ(n2) bits (Theorem 1.11). It follows that a reweighted subgraph need
not be the smallest encoding that stores a (1 + ϵ)-approximation of the cuts values, and by a
wide margin!

6 For a monotone ge, the spread is µe = ge(V )/ minv∈V ge({v}) and the imbalance is βe = maxv∈V ge(V \
{v})/ge({v}), and they differ by at most a constant factor by the subadditivity of ge.

7 For a matroid with ground set e and independent sets I, the rank function is given by ge : S 7→
maxT ⊆S:T ∈I |T |. This rank function is submodular and monotone.

8 Previously, a non-subgraph sparsifier was shown in [1] for small-side splitting, however it optimizes the
number of hyperedges and not the encoding size.
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Our plan for constructing a succinct representation has two stages. The first stage creates
a (1 + ϵ)-sparsifier H ′, by deforming each e ∈ E into multiple small hyperedges. The second
stage computes for this H ′ a (1 + ϵ)-sparsifier H ′′ that is a reweighted subgraph. It then
follows that H ′′ is a (1 + ϵ)2-sparsifier, and has a few hyperedges that are all small.

▶ Definition 1.8. A splitting function ge : 2e → R+ on hyperedge e is called (1 + ϵ)-
approximable with support size p if there are submodular functions gei

: 2ei → R+ for
i = 1, . . . , r, each on a hyperedge ei ⊆ e of size |ei| ≤ p, such that

∀S ⊆ e,

r∑
i=1

gei(S ∩ ei) ∈ (1 ± ϵ)ge(S).

Our example is the family of additive splitting functions, defined as functions ge that can
be written as either ge : S 7→ min(|S|, K) or ge : S 7→ min(|S|, |e \ S|, K) for some K > 0.
The next theorem (proved in the full version) achieves the first stage in our plan above; it
shows that additive functions can be (1 + ϵ)-approximated by creating several copies of e

and sampling the vertices.

▶ Theorem 1.9 (Deformation of Additive Functions). Let ge be an additive splitting function
on hyperedge e. Then ge can be (1 + ϵ)-approximated with support size O(ϵ−2(|e|/K) log |e|).

Following our plan, suppose that given an input H, we first apply Theorem 1.9 to obtain
a sparsifier H ′ with small support size. The construction of H ′ also implies that it has small
spread, µH′ ≤ O(ϵ−2 log n). Applying Theorem 1.6 on H ′ we obtain a succinct representation
H ′′. A straightforward encoding of H ′′ then proves the following corollary (see the full
version for details).

▶ Corollary 1.10 (Additive Functions admit Small Representation). Let H = (V, E, {ge}) be
a submodular hypergraph such that every ge is additive with parameter Ke > 0, and let
K̂ := mine∈E Ke/|e| be a normalized bound on Ke over all hyperedges. Then H admits a
(1 + ϵ)-sparsifier with encoding size O(ϵ−6K̂−1n log4 n) bits.

The next theorem (proved in the full version) shows that reweighted-subgraph sparsifiers
of additive functions require Ω(n2) bits in the worst-case. Putting this together with our
succinct representation from Corollary 1.10, we conclude that relaxing the (natural) restriction
to reweighted subgraphs improves the space complexity by a factor of Ω̃ϵ(nK̂), observe that
this can be Ω̃ϵ(n) when K̂ ∈ Ω(1).

▶ Theorem 1.11 (Reweighted Sparsifiers Require Ω(n2) Bits). There exists a family H of
hypergraphs with additive splitting functions with parameter 1 ≤ K ≤ n/3, such that encoding
a reweighted-subgraph (1 + ϵ)-sparsifier for an input H ∈ H requires Ω(n2) bits.

This lower bound is surprising because in the case of undirected graphs, the best encoding
size is achieved by a reweighted-subgraph sparsifier [6, 2, 8]. Our proof is based on a technical
lemma that can be applied to many cardinality-based splitting functions. Furthermore,
Theorem 1.11 can be extended to the directed all-or-nothing splitting function gd-aon

e , to
show a lower bound of Ω(n3/ϵ) bits. For details see the full version.

Finally, we can also prove a space lower bound for an arbitrary encoding of cuts in a
directed hypergraph (arbitrary means that it need not represent a reweighted-subgraph
sparsifier, see the full version for details). This proof provides an ϵ−1 factor improvement over
the trivial lower bound of Ω

(
n2) bits. The proof combines the techniques from Theorem 1.11

with a lower bound from [36] on the number of edges in a reweighted-subgraph sparsifier.

▶ Theorem 1.12. There exists a family of directed hypergraphs H such that encoding a
(1 + ϵ)-approximation of their cuts requires Ω(n2/ϵ) bits.

ICALP 2024
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Techniques. Our lower bound for the encoding size of reweighted-subgraph sparsifiers
(Theorem 1.11) boils down to a counting argument on a large family of hypergraphs H,
that have sufficiently different cut values and thus require distinct encodings. We construct
hypergraphs in this family H by partitioning the vertices into three parts V, U, W , and adding
hyperedges that contain vertices from all three parts. We first create hyperedges consisting
of a large random subset of vertices from V ; this adds entropy that will differentiate between
hypergraphs in H. We then augment each hyperedge with vertices from U , where each
hyperedge is defined by a word in the Hadamard code. We use the structure of this code to
show that by making cut queries to a hypergraph H ∈ H, one can recover the random bits
encoded in the adjacency matrix of H induced on V . We use W to create an unsparsifiable
hypergraph, i.e., one where removing any hyperedge will violate the approximation guarantee.
Finally, every hyperedge on V ∪ U is combined with a hyperedge on W .

1.4 Deformation Lower Bounds
Our success in finding a small succinct representation for additive functions motivates
searching for deformations of other splitting functions.

A similar problem, of approximating a submodular function by functions of small support
but over the uniform distribution (i.e., in average-case rather than worst-case), has received
significant attention [19, 11, 24, 18, 20], and it is known that every submodular function
f : 2V → [0, 1] can be approximated within additive error ϵ using support size O(ϵ−2 log ϵ−1)
[20]. We show (see the full version) that a similar result is unfortunately not possible in our
setting (multiplicative error for worst-case approximation).

▶ Theorem 1.13 (Approximation Requires Large Support Size). Let ge be an additive splitting
function on a hyperedge e. Then every 1.1-approximation of ge must have support size
p ≥ Ω(|e|/K).

Techniques. The proof of Theorem 1.13 is based on a technical lemma that can be applied
to many splitting functions. The main idea is to examine a certain quantity δt, which is
related the notion of curvature (of a submodular function). The curvature is often used to
parameterize approximation guarantees in maximization of submodular optimization [12, 47].
Intuitively, both the curvature and δt characterize the locality of the function, i.e., how
much error is introduced by decomposing the function into smaller parts and summing
them. The main difference between the two quantities is that the curvature looks at the
marginal contributions and δt characterizes the curvature of the union of two sets of size
t. Furthermore, in the approximation setting, a low worst-case curvature is desirable while
for our proof it suffices that δt is high for many sets of size t. Specifically, we show that if a
constant fraction of pairs of subsets of size t have constant positive δt, then ge cannot be
approximated with support size smaller than O(δ2

t n/t).
By applying the technical lemma, we obtain lower bounds on the support size required to

approximate several natural splitting functions, as presented in Table 1.

1.5 Related Work
Submodular functions appear in many applications, and have been studied extensively in
the literature. In particular, the problem of finding a simple representation for submodular
functions has been studied in several works. An O(

√
n log n)-approximation for monotone

submodular functions by functions of the form f(S) =
√∑

v∈S cv, where cv > 0 are weights
for all v ∈ V , was obtained in [22]. A later result [14] showed the same approximation using
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Table 1 Our lower bounds on the support size for several families of splitting functions. They
are all obtained by applying the technical lemma, stated for simplicity for sufficiently small fixed
ϵ > 0 and |e| = n.

Function Family Example Support Size See
additive functions ge(S) = min(|S|, K) Ω (n/K) Lemma 1.13
polynomial ge(S) = |S|α for α ∈ (0, 1) Ω (n) The full version
logarithmic ge(S) = log(|S| + 1) Ω (n) The full version
cardinality based ge(S) = f (|S|) for concave f Ω

(
n/µ1.5

e

)
The full version

unweighted ge(v) = 1 for all v ∈ V Ω
(
n/µ3

e

)
The full version

coverage and budget-additive functions. The same paper also provided a lower bound of
Ω(n1/3 log−2 n) for approximating monotone submodular functions by coverage and budget
additive. Approximating the all-or-nothing splitting function on n vertices using hyperedges
with the all-or-nothing function and with support size r must incur approximation factor
Ω(n/r) [37, Section 2.3].

It was previously shown that every symmetric cardinality-based splitting functions can
be deformed into a sum of |e|/2 hyperedges with capped small-side splitting function, while
preserving the value of ge exactly [46]. Subsequent work by the same authors [45], achieves a
similar deformation but with (1 + ϵ)-approximation and using only O(ϵ−1 log |e|) hyperedges.
Notice the difference from our work, which focuses on an approximation with small support
size.

1.6 Concluding Remarks
Our work provides several promising directions for future work. We prove that all submodular
hypergraph admit sparsifiers of polynomial size (Theorem 1.4), leaving a gap of Ω̃ϵ(n) between
the upper and lower bounds. We conjecture that submodular hypergraphs admit the same
sparsification bounds as (the special case of) directed hypergraphs.

▶ Conjecture 1.14. Every submodular hypergraph admits a (1+ϵ)-sparsifier of size O(ϵ−2n2),
which is in fact a reweighted sub-hypergraph.

Notice that the known lower bound of Ω(n2/ϵ) is not tight with this conjecture, and
improving it is an interesting open problem. The main challenge in bridging the gap between
our upper bound in Theorem 1.4 and the conjecture is the use of a union bound over all
2n cuts. This challenge was overcome in graph and hypergraph sparsification by different
methods, such as cut counting [7, 21, 10, 28], a matrix Chernoff bound [41], and chaining
which uses progressively finer discretizations [5, 27, 36, 25]. Unfortunately, the matrix
Chernoff bound is based on linear-algebra tools that are clearly inapplicable to hypergraphs.
The cut-counting methods partition the cuts so that a union bound can be applied separately
on each part; however these partitions rely on the binary nature of the all-or-nothing splitting
function, which seems challenging in the submodular hypergraph setting, because the same
ge can contribute very different values to different cuts S ⊆ V . The chaining methods seem
more promising, especially the recent one [25] for all symmetric submodular functions, in
which the contribution of a single ge is not binary, although it seems to rely on the splitting
functions being symmetric.

In the sparsification setting, we obtain smaller sparsifiers for several families (monotone
and finite-spread), however characterizing the optimal sparsifier size for each family remains
open. In the succinct-representation setting, we found a useful deformation only for additive
splitting functions (Theorem 1.9), and it would be desirable to find deformations for more
families.

ICALP 2024
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Another interesting avenue is to find applications or connections to other problems. For
example, we show that Theorem 1.6 can be used to approximate a set-coverage function using
a small ground set. Another potential application is constructing succinct representations
for terminal cuts in a graph, see the full version for details on both applications.

2 Polynomial-Size Sparsifiers for Submodular Hypergraphs

This section proves Theorem 1.4 and its improvement in the monotone case. Our sparsification
method is based on importance sampling, where hyperedges are sampled with probability
that is (at least) proportional to their maximum relative contribution to any cut. A standard
choice, that was indeed used in [39], is to sample every e ∈ E with probability exactly
proportional to its importance, defined as

σe := max
S⊆V

ge(S ∩ e)∑
f∈E gf (S ∩ f) .

The expected size of this sparsifier is proportional to the total importance
∑

e∈E σe, which is
non-trivial to bound (e.g., naively replacing the maximization over S ⊆ V by summation
yields an exponential size bound). An improved bound on the size of a sparsifier constructed
in this manner is given in [39], based on a quantity BH related to the polytopes of the
splitting functions. Unfortunately, this improved bound is still exponential for many families
of splitting functions.

Our approach achieves a polynomial bound by using a different set of sampling probabilities
and a different analysis. Our main insight is that it suffices to consider only a few cuts.
Formally, define the minimum directed cut of ge between (u, v) ∈ V × V as

gu→v
e := min

S⊆V :u∈S,v ̸∈S
ge(S ∩ e). (5)

Notice that we do not require u, v ∈ e; clearly, gu→v
e = 0 if u ̸∈ e, but gu→v

e can be positive
if v ̸∈ e. Our sampling probabilities are proportional to

ρe :=
∑

(u,v)∈V ×V

gu→v
e∑

f∈E gu→v
f

,

where by convention the fraction is equal to zero if the denominator (and thus also the
numerator) is zero. The proof follows by showing that ρe ≥ σe, hence sampling every e ∈ E

with probability proportional to ρe suffices to approximate the cuts, and that the expected
number of hyperedges in the sparsifier O(ϵ−2n3). Since ρe ≥ σe, our analysis implies that
the same size bound holds also for sampling with probabilities proportional to σe, i.e., for
the sparsifier of [39] but with our amplification factor M = O(ϵ−2n).

Finally, observe that the directed minimum cuts gu→v
e can be computed in polynomial

time using standard submodular minimization techniques [35].9 In contrast, calculating
σe requires maximizing the ratio of two submodular functions, which is NP-hard. In the
monotone case, previous work had achieved a polynomial running time [39, 30].

Proof of Theorem 1.4. Our construction of a quality (1 + ϵ)-sparsifier for H utilizes the
importance sampling method, where each hyperedge is sampled independently with probability
pe that is defined below, and the splitting functions of every sampled hyperedge d is scaled
by factor 1/pe.

9 In fact, computing an O(1)-approximation to ρe would suffice, and this may be used to speed up the
computation, at the cost of increasing the sparsifier size only by a constant factor.
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We will use the following claim to bound cuts of H by minimum directed cuts. Throughout,
we denote S̄ = V \ S.

▷ Claim 2.1. For every e ∈ E and S ⊂ V ,

max
u∈S,v∈S̄

gu→v
e ≤ ge(S ∩ e) ≤

∑
u∈S

∑
v∈S̄

gu→v
e .

The proof of Claim 2.1 appears later. Intuitively, it is similar to bounding the capacity of a
cut in a graph by the sum of maximum flows between each vertex from S and each vertex
from S̄. We proceed assuming this claim, to show that ρe ≥ σe.

▶ Corollary 2.2. For every e ∈ E and S ⊆ V , we have ρe ≥ ge(S ∩ e)/cutH(S).

Proof. By Claim 2.1, using both the upper bound and the lower bound on ge(·),

ge(S ∩ e)
cutH(S) = ge(S ∩ e)∑

f∈E gf (S ∩ f) ≤
∑

u∈S,v∈S̄

gu→v
e∑

f∈E gu→v
f

≤ ρe.

Note that the first inequality holds even if cutH(S) = 0, by our convention that if the
denominator (and thus also numerator) is zero then the fraction is zero. ◀

For every hyperedge e ∈ E, set ρ′
e := ge(e)/

∑
f∈E gf (f) as the importance of the cuts

that contain the entire hyperedge (the case S = V ), and let pe := min(1, M(ρe + ρ′
e)) for a

suitable parameter M = O(ϵ−2n). Now sample every hyperedge e ∈ E independently with
probability pe and rescale the splitting functions of every sampled hyperedge by factor 1/pe.
Let H ′ be the resulting hypergraph.

We first prove that the number of hyperedges in the sparsifier H ′ is O(Mn2), which
satisfies the claimed size bound by our choice of M = O(ϵ−2n). Let Ie be an indicator
for the event that the hyperedge e is sampled into H ′. The expected number of sampled
hyperedges is

E

[∑
e∈E

Ie

]
=
∑
e∈E

pe ≤ M
∑
e∈E

 ge(e)∑
f∈E gf (f) +

∑
(u,v)∈V ×V

gu→v
e∑

f∈E gu→v
f


≤ M

1 +
∑

(u,v)∈V ×V

∑
e∈E gu→v

e∑
f∈E gu→v

f

 ≤ Mn2,

where the second inequality follows by changing the order of summation and the last one
is because |V × V | = n2, but we can exclude from the summation the case u = v (as it
contributes 0 by our convention). By Markov’s inequality, with high constant probability the
sparsifier has at most O(Mn2) hyperedges.

Let us prove that the sparsifier H ′ indeed approximates the cuts of H. Fix some S ⊆ V

and notice that

E [cutH′(S)] = E

[∑
e∈E

Ie · 1
pe

ge(S ∩ e)
]

=
∑
e∈E

ge(S ∩ e)
pe

· E [Ie]

=
∑
e∈E

ge(S ∩ e) = cutH(S).
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Hence, the cut is preserved in expectation. We shall now prove that the value of the cut is
concentrated around its expectation. Let QS = {e ∈ E : pe ∈ (0, 1) ∧ ge(S ∩ e) > 0} be the
set of all hyperedges whose contribution to cutH′(S) is random. Furthermore, denote the
maximum contribution of any such hyperedge to cutH′(S) by b := maxe∈QS

p−1
e ge(S ∩ e).

By the Chernoff bound for bounded variables (Theorem A.1),

Pr [cutH′(S) ̸∈ (1 ± ϵ) · cutH(S)] ≤ 2 · exp
(

−ϵ2 · cutH(S)
b

)
. (6)

We first analyze the special case S = V . Observe that if cutH(V ) = 0 then the cut is
preserved trivially. Otherwise, note that pe ≥ Mρ′

e = Mge(e)∑
f∈E

gf (f)
and hence

b = max
e∈QV

ge(e)
pe

≤ max
e∈QV

ge(e)
∑

f∈E gf (f)
Mge(e) = cutH(V )

M
.

Plugging this into Equation (6), we find Pr [cutH′(V ) ̸∈ (1 ± ϵ) · cutH(V )] ≤ 2 · exp
(
−ϵ2M

)
.

Now turning to the general case S ⊂ V , observe that by Corollary 2.2, pe ≥ Mge(S ∩
e)/cutH(S). Hence, we again obtain that

b ≤ max
e∈E

ge(S ∩ e) · cutH(S)
Mge(S ∩ e) = cutH(S)

M
. (7)

Plugging this back into our concentration bound, Equation (6), we get

Pr [cutH′(S) ̸∈ (1 ± ϵ) · cutH(S)] ≤ 2 · exp
(
−ϵ2M

)
.

Notice that this is the same probability as the case S = V . Setting M := c · ϵ−2n for
large enough but fixed c > 0, we get that cutH′(S) approximates cutH(S) up to a 1 ± ϵ

factor with probability at least 1 − 2 exp(−cn). Applying a union bound over all S ⊆ V

we get that the sparsifier approximates all cuts simultaneously with probability at least
1 − 2 exp(−cn) · 2n ≥ 1 − 2 exp(−n). This completes the construction of a quality 1 + ϵ

sparsifier for H with O(ϵ−2n3) hyperedges.
We now turn back to proving Claim 2.1.

Proof of Claim 2.1. Fix some e ∈ E and S ⊂ V . For each directed minimum cut, let
P u→v

e := arg minS⊆V :S∩{u,v}={u} ge(S) be some set S ⊆ V attaining the minimum cut value
(breaking ties arbitrarily). We need to show that

max
u∈S,v∈S̄

ge(P u→v
e ) ≤ ge(S ∩ e) ≤

∑
u∈S

∑
v∈S̄

ge(P u→v
e ). (8)

The lower bound is immediate because ge(P u→v
e ) is a minimizer over the cuts separating u

from v. For the upper bound, since ge is submodular and non-negative,

∀A, B ⊆ e, ge(A) + ge(B) ≥ ge(A ∩ B) + ge(A ∪ B) ≥ ge(A ∩ B),

and similarly, ge(A) + ge(B) ≥ ge(A ∪ B). Using these two inequalities and summing over all
v ∈ S and u ∈ S, we get

∑
u∈S

∑
v∈S

ge(P u→v
e ) ≥

∑
u∈S

ge

⋂
v∈S

P u→v
e

 ≥ ge

⋃
u∈S

⋂
v∈S

P u→v
e

 .

To conclude the proof we show that S ∩ e =
⋃

u∈S

⋂
v∈S P u→v

e . For all u ∈ S ∩ e we have
{u} ⊆

⋂
v∈S̄ P u→v

e , therefore S ∩ e ⊆
⋃

u∈S

⋂
v∈S P u→v

e . In addition, for all u ∈ S we have⋂
v∈S P u→v

e ⊆ S ∩ e if u ∈ e and P u→v
e = ∅ otherwise, therefore S ∩ e =

⋃
u∈S

⋂
v∈S P u→v

e .
We conclude that Equation (8) holds. ◁

This completes the proof of Theorem 1.4. ◀
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2.1 Monotone Submodular Hypergraphs
This section proves that every monotone submodular hypergraph admits a quality (1 + ϵ)-
sparsifier of size O(ϵ−2n2).

▶ Theorem 2.3. Every hypergraph with monotone splitting functions admits a quality (1 + ϵ)-
sparsifier of size O(ϵ−2n2), which is a reweighted sub-hypergraph.

The proof for the monotone case is similar to the general case. However, since monotone
splitting functions are more structured it suffices to examine the importance of all the
singleton cuts for each hyperedge. This results in smaller sampling probabilities and a better
bound on the number of hyperedges in the sparsifier. The proof utilizes the following well
known property of monotone submodular functions.

▷ Claim 2.4. Let ge : 2e → R+ be a monotone submodular splitting function. Then

∀S ⊆ V, max
v∈S

ge({v} ∩ e) ≤ ge(S ∩ e) ≤
∑
v∈S

ge({v} ∩ e).

Proof. The lower bound holds as ge is monotone. For the upper bound, since ge is submodular
and non-negative,∑

v∈S

ge({v} ∩ e) ≥ ge

(⋃
v∈S

{v} ∩ e

)
= ge(S ∩ e). ◀

Similarly to the general case, our over sampling probabilities are proportional to

ρe =
∑
v∈V

ge({v} ∩ e)∑
f∈E gf ({v} ∩ f) .

The following corollary shows that ρe ≥ σe. This implies that sampling every e ∈ E with
probability proportional to ρe suffices to approximate the cuts of H, in the same manner as
in the general case.

▶ Corollary 2.5. For every e ∈ E and S ⊆ V , we have ρe ≥ ge(S ∩ e)/cutH(S).

Proof. Observe that by Claim 2.4,
ge(S ∩ e)
cutH(S) = ge(S ∩ e)∑

f∈E gf (S ∩ f) ≤
∑
v∈S

ge({v} ∩ e)∑
f∈E gf ({v} ∩ f) ≤ ρe.

Notice that the first inequality is well-defined by the convention that if the denominator (and
thus also the numerator) is zero then the fraction is zero. ◀

We now turn to proving Theorem 2.3

Proof of Theorem 2.3. To construct H ′, sample each hyperedge with probability pe =
min(1, M · ρe) for a suitable parameter M = O(ϵ−2n). Then, reweigh every sampled
hyperedge by factor p−1

e . The proof that H ′ is with high probability a (1 + ϵ)-sparsifier is
similar to the general case because ρe ≥ σe, and we omit it.

To bound the number of hyperedges in the sparsifier, let Ie be an indicator for the event
that the hyperedge e is sampled into H ′. Then the expected number of sampled hyperedges
is,

E

[∑
e∈E

Ie

]
=
∑
e∈E

pe ≤ M
∑
e∈E

∑
v∈V

ge({v} ∩ e)∑
f∈E gf ({v} ∩ f)

≤ M
∑
v∈V

∑
e∈E

ge({v} ∩ e)∑
f∈E gf ({v} ∩ f) ≤ Mn,
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where the second inequality is from changing the order of summation. Hence, by Markov’s
inequality we find that with high constant probability the size of the sparsifier is at most
O(Mn) = O(ϵ−2n2). This concludes the proof. ◀
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A Chernoff Bounds

We use the following version of the Chernoff bound throughout the paper.

▶ Theorem A.1 (Chernoff bound for bounded random variables, Theorem 6.1 in [3]). Let
X1, . . . , Xm ≥ 0 be independent random variables such that either Xi is deterministic or
Xi ∈ [0, b]. Let X denote their sum and µ = E [X], then,

∀δ > 0, Pr [X − µ ≥ δµ] ≤ 2 · exp
(

− δ2µ

(2 + δ)b

)
.

Additionally,

∀δ ∈ [0, 1], Pr [|X − µ| ≥ δµ] ≤ 2 · exp
(

−δ2µ

3b

)
.
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