
Almost-Tight Bounds on Preserving Cuts in
Classes of Submodular Hypergraphs
Sanjeev Khanna # Ñ

School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA

Aaron (Louie) Putterman #Ñ

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

Madhu Sudan # Ñ

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

Abstract
Recently, a number of variants of the notion of cut-preserving hypergraph sparsification have been
studied in the literature. These variants include directed hypergraph sparsification, submodular
hypergraph sparsification, general notions of approximation including spectral approximations,
and more general notions like sketching that can answer cut queries using more general data
structures than just sparsifiers. In this work, we provide reductions between these different variants
of hypergraph sparsification and establish new upper and lower bounds on the space complexity of
preserving their cuts. Specifically, we show that:

1. (1 ± ϵ) directed hypergraph spectral (respectively cut) sparsification on n vertices efficiently
reduces to (1±ϵ) undirected hypergraph spectral (respectively cut) sparsification on n2+1 vertices.
Using the work of Lee and Jambulapati, Liu, and Sidford (STOC 2023) this gives us directed
hypergraph spectral sparsifiers with O(n2 log2(n)/ϵ2) hyperedges and directed hypergraph cut
sparsifiers with O(n2 log(n)/ϵ2) hyperedges by using the work of Chen, Khanna, and Nagda
(FOCS 2020), both of which improve upon the work of Oko, Sakaue, and Tanigawa (ICALP
2023).

2. Any cut sketching scheme which preserves all cuts in any directed hypergraph on n vertices to a
(1 ± ϵ) factor (for ϵ = 1

2O(
√

log(n))) must have worst-case bit complexity n3−o(1). Because directed
hypergraphs are a subclass of submodular hypergraphs, this also shows a worst-case sketching
lower bound of n3−o(1) bits for sketching cuts in general submodular hypergraphs.

3. (1 ± ϵ) monotone submodular hypergraph cut sparsification on n vertices efficiently reduces to
(1 ± ϵ) symmetric submodular hypergraph sparsification on n + 1 vertices. Using the work of
Jambulapati et. al. (FOCS 2023) this gives us monotone submodular hypergraph sparsifiers with
Õ(n/ϵ2) hyperedges, improving on the O(n3/ϵ2) hyperedge bound of Kenneth and Krauthgamer
(arxiv 2023).

At a high level, our results use the same general principle, namely, by showing that cuts in one
class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs, we can leverage
sparsification results for the simpler class of hypergraphs.

2012 ACM Subject Classification Theory of computation → Sketching and sampling

Keywords and phrases Sparsification, sketching, hypergraphs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.98

Category Track A: Algorithms, Complexity and Games

Funding Sanjeev Khanna: Supported in part by NSF awards CCF-1934876 and CCF-2008305.
Aaron (Louie) Putterman: Supported in part by the Simons Investigator Awards of Madhu Sudan
and Salil Vadhan, NSF Award CCF 2152413 and a Hudson River Trading PhD Research Scholarship.
Madhu Sudan: Supported in part by a Simons Investigator Award and NSF Award CCF 2152413.

EA
T

C
S

© Sanjeev Khanna, Aaron Putterman, and Madhu Sudan;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 98; pp. 98:1–98:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sanjeev@cis.upenn.edu
https://www.cis.upenn.edu/~sanjeev/
https://orcid.org/0009-0000-2601-1689
mailto:aputterman@g.harvard.edu
https://www.louieputterman.com/
https://orcid.org/0000-0001-9737-2406
mailto:madhu@cs.harvard.edu
https://madhu.seas.harvard.edu/
https://orcid.org/0000-0003-3718-6489
https://doi.org/10.4230/LIPIcs.ICALP.2024.98
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

98:2 Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs

1 Introduction

Sparsification deals with the following natural question: given a large object, how much
can we compress it while still retaining some of its key properties? In the realm of graphs,
this has been a well-studied notion spanning decades of research. Starting with the work
of Karger [9], the question of how sparse we can make a graph while still preserving the
approximate sizes of every cut has been a central topic of research. Since then, numerous
works by many authors have resolved this question (starting with the work of Benczúr and
Karger [2]) and pushed the boundaries of this research beyond just graph cuts [1, 21, 12, 3].

More rigorously, for a weighted graph G = (V,E) on n vertices, we can define a cut in the
graph corresponding to each set S ⊆ V . For such a set S, we define the vector 1S ∈ {0, 1}|V |

as the indicator vector of whether the ith vertex is in S. Using this vector, we say that
cutG(S) =

∑
(u,v)∈E w(u,v)(1Su − 1Sv)2, i.e., the weight of the edges crossing between S and

V − S. A cut-sparsifier asks for a reweighted subset of edges Ê ⊆ E such that in the graph
G = (V, Ê), with the corresponding new weights ŵ, for every S ⊆ V

(1 − ε)cutG(S) ≤ cutĜ(S) ≤ (1 + ε)cutG(S).

The seminal work of [2] was the first to show the existence of such sparsifiers Ĝ for any graph
G such that |Ê| = Õ(n/ε2). Subsequent work in the spectral regime asked whether such
sparsifiers still exist when we consider real-valued vectors as opposed to cut-vectors. In this
setting, we define a Laplacian LG for our graph G. We say that for x ∈ R|V |

xTLGx =
∑

(u,v)∈E

w(u,v)(xu − xv)2.

The goal in this regime instead becomes finding a reweighted subgraph Ĝ such that for every
x ∈ R|V |,

(1 − ε)xTLĜx ≤ xTLGx ≤ (1 + ε)xTLĜx.

Work by Batson, Spielman, and Srivastava, and Spielman and Teng [1, 21] settled the
size complexity of spectral sparsifiers for ordinary graphs by showing the existence of such
sparsifiers of size O(n/ε2).

Recently, starting with the work of Kogan and Krauthgamer [12], a natural extension
to the study of graph sparsification has been the study of sparsifying hypergraphs. In this
setting, one is given a hypergraph H = (V,E), and asked to preserve to a (1 ± ε) factor the
weight of all hyperedges crossing a particular cut. A cut is given by a bichromatic coloring
of the vertices and a hyperedge is considered cut if it is not monochromatic. Work by Chen,
Khanna, and Nagda [3] was the first to completely characterize the cut-sparsifiability of
hypergraphs, which showed that there exist (1 ± ε)-cut-sparsifiers for any hypergraph on n

vertices of size O(n log(n)/ε2). As in the graph setting, where the natural next step from
cut-sparsifiers was spectral-sparsifiers, Soma and Yoshida [20] later introduced this notion
of spectral hypergraph sparsification. More explicitly, the “energy function” (also called the
Laplacian) of an undirected hypergraph H = (V,E) is as follows:

LH(x) = cutH(x) =
∑
e∈E

we max
u,v∈e

(xu − xv)2.

A (1 ± ε)-spectral sparsifier for an undirected hypergraph then corresponds to a reweighted
subhypergraph of H, denoted by Ĥ such that for any x ∈ R|V |,

(1 − ε)LH(x) ≤ LĤ(x) ≤ (1 + ε)LH(x).

S. Khanna, A. Putterman, and M. Sudan 98:3

This question of whether one could preserve the Laplacian of undirected hypergraphs with only
a near-linear number of hyperedges was then resolved by Kapralov et. al. [7], Jambulapati,
Liu, and Sidford [6], and Lee [14] in the affirmative.

More recently however, work has sought to generalize hypergraph sparsification even
further. Indeed, given a hypergraph H = (V,E), instead of viewing edge-cuts in the
traditional way (i.e., for a bichromatic coloring of the vertices counting how many hyperedges
are not one color), a more general splitting function is assigned to each hyperedge e ⊆ V .
This splitting function is a set function ge : 2e → R≥0. One natural extension to the case
of ordinary hypergraphs that has received particular attention is the case in which these
splitting functions ge are also required to be submodular [10, 13] (though there has also
been work on the regime where these functions are not submodular, for instance with parity
functions in [11]). Such submodular hypergraphs appear in numerous contexts, for instance in
clustering data points with complex relationships [15, 16, 22, 23] and summarizing data [17].
For such a submodular hypergraph H = (V,E), the value on any cut S ⊂ V is

cutH(S) =
∑
e∈E

ge(S ∩ e).

Recall that a function g : 2V → R≥0 is said to be submodular if it has the property of
diminishing returns. That is, for any S ⊂ T ⊂ V , and any element x ∈ V, x /∈ T ,

g(S ∪ {x}) − g(S) ≥ g(T ∪ {x}) − g(T).

Under this definition, one type of submodular hypergraph is a directed hypergraph. In a
directed hypergraph, one can view each directed hyperedge instead as a tuple (etail, ehead)
of subsets of V . The cut function of a directed hyperedge e on cut S is 1 if and only if
an element from S is in etail and an element from V − S is in ehead. More explicitly, for a
directed hypergraph G = (V,E,w) on n vertices, and a vector x ∈ Rn, we can define the
Laplacian for G as

LG(x) =
∑
e∈E

max
u∈L(e),v∈R(e)

(xu − xv)2
+.

In this context, (xu − xv)+ = max((xu − xv), 0), and directed hypergraph cuts are simply
the restriction of the vector x to be in {0, 1}|V | (seen as the indicator vector for a set S ⊆ V).
A non-zero contribution from a hyperedge occurs only if a tail vertex of the hyperedge has a
larger value than a head vertex of the hyperedge.

One can check that in the cut regime (i.e. x ∈ {0, 1}n), each directed hyperedge cut yields
a submodular function ge : 2ehead∪etail → R≥0. In what follows, we describe our contributions
to various problems in this area.

1.1 Improved Bounds for Directed Hypergraph Sparsification
In the graph case, it is known that directed graph cut-sparsifiers for graphs with n vertices
can require as many as Ω(n2) edges to preserve cuts to a (1 ± ε) factor. In this sense,
directed graph cut-sparsification is a trivial task, as any graph has at most O(n2) edges
to begin with. Contrary to this however, directed hypergraph sparsification is non-trivial.
While the same Ω(n2) lower bound exists, a directed hypergraph can have as many as 4n
directed hyperedges to start with, so a sparsifier with O(n2) directed hyperedges is a vast
improvement. This observation has led to a rich line of research studying the feasibility of
sparsifying directed hypergraphs. The first work on this front was the work of [20] which

ICALP 2024

98:4 Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs

showed the existence of directed hypergraph sparsifiers with O(n3/ε2) directed hyperedges
and gave a polynomial time algorithm for computing them. Later work by [7] presented a
proof of sparsifiers with Õ(nr/ε2) (where r is the maximum size of any hyperedge) hyperedges
for undirected hypergraph spectral sparsification, and with Õ(n2r3/ε2) directed hyperedges
for directed hypergraph spectral sparsification by tuning their algorithm and performing a
different analysis. In particular, this improved upon the result of [20] in the regime where r
is constant. Note that as with graphs, spectral sparsification is a stronger notion than cut
sparsification, so in particular, these proofs imply the existence of cut-sparsifiers of the same
complexity.

Ultimately however, the complexity of directed spectral hypergraph sparsification was
nearly settled by the work of Oko, Sakaue, and Tanigawa [18], who showed (1 ± ε) spectral-
sparsifiers with O(n2 log3(n/ε)/ε2) directed hyperedges exist for directed hypergraphs on n

vertices.
Continuing this line of research, we show that fundamentally, the task of directed

hypergraph sparsification can be reduced in a black-box manner to undirected hypergraph
spectral sparsification.

More specifically, we show there is a lifting from a directed hypergraph on n vertices to
an undirected hypergraph on n2 + 1 vertices such that the Laplacian of every individual
hyperedge is simultaneously preserved. That is, we show the following theorem:

▶ Theorem 1. For H = (V,E) an a directed hypergraph on n vertices, one can compute
an undirected hypergraph ψ(H) on n2 + 1 vertices in time O(mr2) (where m is the number
of hyperedges in H, and r is the maximum size of any hyperedge in H), such that for any
x ∈ Rn, one can also compute ϑ(x) ∈ Rn2+1 in time O(n2) such that

LH(x) = Lψ(H)(ϑ(x)).

Moreover, for any hyperedge e ∈ H, there is a single corresponding hyperedge ψ(e) in
ψ(H) such that

Le(x) = Lψ(e)(ϑ(x)).

The size of ψ(e) is at most |e|2. Further, for x ∈ {0, 1}n, i.e. corresponding to a cut, ϑ(x)
will be in {0, 1}n2+1, i.e. also corresponding to a cut.

We can then use the existing state of the art literature of undirected spectral hypergraph
sparsification [6, 14] to conclude the existence of directed spectral hypergraph sparsifiers
with only O(n2 log(n) log(r)/ε2) hyperedges which can be found in time Õ(mr2), where m
is the original number of hyperedges and r is the maximum size of any hyperedge. Note
that this bound on the size of sparsifiers improves on the result of [18], and in particular,
makes the dependence on ε exactly O(1/ε2), which now matches the literature for undirected
sparsification. That is, we show the following:

▶ Theorem 2. For any directed hypergraph H = (V,E) on n vertices, and any 0 < ε < 1
there exists a weighted sub-hypergraph Ĥ such that for all x ∈ Rn:

(1 − ε)LH(x) ≤ LĤ(x) ≤ (1 + ε)LH(x),

and Ĥ only has O(n2 log(n) log(r)/ε2) hyperedges, where r is the maximum size of any
hyperedge of H.

As an additional benefit, because the reduction of Theorem 1 preserves cut vectors, we can
also invoke the result of [3] to conclude the existence of directed hypergraph cut-sparsifiers
with O(n2 log(n)/ε2) hyperedges.

S. Khanna, A. Putterman, and M. Sudan 98:5

1.2 Lower Bounds for Sketching Cuts in Directed Hypergraphs
We next focus on the bit complexity of creating cut-sparsifiers for directed hypergraphs. This
is done in hopes of answering an open question from [10] regarding the bit-complexity of
arbitrary sketching schemes for submodular hypergraphs. In prior work [18, 10], a lower
bound of size Ω(n3) (ignoring ε) was established for the bit complexity of any directed
hypergraph cut-sparsifier. However, lower bounds for sparsifiers explicitly take advantage of
the sparsifier structure by starting with known examples of sparsifiers that require Ω(n2)
hyperedges, and then padding these hyperedges with random vertices in their tail such
that the bit complexity of each hyperedge becomes Ω(n). One can trivially show that
this padding does not change the requirement of preserving Ω(n2) hyperedges. Because
sparsifiers are limited to storing only hyperedges that were originally present, this then forces
a bit complexity lower bound of Ω(n3). However, this same technique is not amenable to a
sketching lower bound as the padding procedure only adds complexity to each hyperedge,
and not necessarily to the cut function as a whole. Thus, the difficulty is in showing that the
cut function itself requires a large description size, regardless of how we choose to represent
it. This marks a fundamental difference.

Addressing this, we show the following theorem:

▶ Theorem 3. Any (1 ± ε) cut-sketching scheme for directed hypergraphs on n vertices must
have worst-case space n3

2O(
√

log(n))
bits (for ε = 1

2O(
√

log(n))
).

At a high level, our proof takes advantage of a result of Kapralov et. al. [8]. In this
work, the authors show that there exists a family of undirected hypergraphs on n vertices,
each with at most n hyperedges, such that any sketching scheme which can sketch cuts in
any of the hypergraphs in this family to an additive error of εn (for ε = 1

2O(
√

log(n))
) must

have worst-case size at least n2

2O(
√

log(n))
. We show that by using a specific construction of a

directed hypergraph, along with a specific reconstruction procedure, we can actually store an
additive cut-approximation to n distinct undirected hypergraphs in a single cut-sketch of a
directed hypergraph. That is, we show the following theorem:

▶ Theorem 4. For any undirected hypergraphs H1, . . . Hn, each on vertex set V , with |V | = n,
there exists a directed hypergraph G on 2n vertices, such that given a (1 ± ε) cut-sketch for
G, for any of the undirected hypergraphs Hi = (V,Ei), one can recover cutHi

(S) to within
additive error 3ε|Ei|.

Now, by sampling these undirected hypergraphs H1, . . . Hn from a specific family of
hypergraphs, we can argue that simultaneously preserving the cut-values in all of these
hypergraphs (even to an additive error) requires a data structure of size n2

2O(
√

log(n))
· n =

n3

2O(
√

log(n))
. In particular, by the previous reduction, any general scheme for sketching directed

hypergraphs or submodular hypergraphs would be such a scheme, and therefore must have
worst-case size at least Ω(n3−o(1)) (for ε = 1

2O(
√

log(n))
).

Prior to our work, there was no known super-quadratic (in n) lower bound on the sketching
complexity of cuts in directed hypergraphs. In conjunction with our positive results on the
sparsifiability of directed hypergraphs, this shows that directed hypergraph sparsification
is almost-optimal even among all possible sketches for preserving cut values. That is, from
the previous section, we know that directed hypergraph sparsifiers approximately preserve
the sizes of all cuts in a directed hypergraph to a factor (1 ± ε) using Õ(n3/ε2) bits. In
conjunction with our lower bound, we can conclude that this is almost the best possible
(among any sketching scheme) in the regime where ε = 1

2O(
√

log(n))
. Thus, we show that for

approximately storing cuts in directed hypergraphs using as few bits as possible, using a
sparsifier is almost optimal. We view this as an important contribution of our work.

ICALP 2024

98:6 Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs

1.3 Cut Sparsifiers for Monotone Submodular Hypergraphs
Finally, we show that one can simulate cuts in monotone submodular hypergraphs with
cuts in symmetric submodular hypergraphs. Recall that a set function is monotone if
f(S ∪ {t}) ≥ f(S), and we say that a submodular hypergraph is monotone if every splitting
function is also monotone. This model of hypergraphs was specifically studied in the work
of [10], where their sparsifiers ultimately achieved a complexity of O(n3/ε2) hyperedges. In
particular, monotone submodular functions capture a wide variety of natural and common
functions such as matroid rank and entropy of random variables.

With respect to this, we show the following theorem:

▶ Theorem 5. Suppose f : 2V → R≥0 is a monotone, submodular function. Then, f ′ :
2V ∪{∗} → R≥0 defined as ∀S ⊆ V

f ′(S) = f(S) = f ′(V − S ∪ {∗})

is submodular and symmetric.

Next, we show that given an arbitrary monotone, submodular hypergraph on n vertices,
we can lift this to a symmetric submodular hypergraph on n+ 1 vertices, where the single
extra vertex is the {∗} vertex from the preceding theorem. Next, for each individual splitting
function ge : 2e → R+ in the monotone, submodular hypergraph, we replace ge with g′

e,
again using the preceding theorem.

Note that for each monotone submodular function, we re-use the same {∗} vertex. Thus,
the increase in the size of the vertex set is only 1. Finally, we can then invoke a result from
[5], which states that for any submodular hypergraph H where each splitting function is
symmetric, one can calculate a sparsifier for H with only Õ(n/ε2) hyperedges.

We then get the following:

▶ Theorem 6. Let H = (V,E) be a hypergraph, such that ∀e ∈ E, the corresponding splitting
function ge : 2e → R≥0 is submodular and monotone. Then there exists a (1±ε) cut-sparsifier
for H retaining only Õ(n/ε2) hyperedges.

Prior to this work, the best known upper bound for the size complexity (in hyperedges) for
(1 ± ε)-sparsifying any monotone submodular hypergraph was O(n3/ε2) hyperedges, proved
in the work of [10]. Our result essentially improves this to the best possible, where we now
only have a near-linear dependence on the size of the vertex set. We view it as an interesting
open question if one can extend our proof method used here to general submodular functions
(although this case will necessarily require a blow-up of at least quadratic size).

1.4 Overview
At a high level, all of our results use the same general principle, namely, by showing that
cuts in one class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs,
we can leverage sparsification results for the simpler class of hypergraphs. This leads to our
proofs being quite simple despite the fact that the results improve upon the state-of-the-art
knowledge in hypergraph sparsification.

In Section 2 we introduce formal definitions and other preliminaries. In Section 3
we present the algorithms for sparsifying directed hypergraphs by reducing to undirected
hypergraph sparsification. Next, in Section 4, we show how to simultaneously simulate cuts
in many different undirected graphs thereby leading to new lower bounds for the worst case
size of sketching cuts in directed hypergraphs. Finally, in Section 5, we show how to sparsify
arbitrary monotone, submodular hypergraphs to near-optimal size.

S. Khanna, A. Putterman, and M. Sudan 98:7

2 Preliminaries

First, we introduce the definitions of undirected and directed hypergraphs.

▶ Definition 7. An undirected hypergraph G = (V,E) is a collection of vertices V , with
associated hyperedges e ∈ E, where e ⊆ V can be of arbitrary size.

▶ Definition 8. A directed hypergraph H = (V,E) is a collection of vertices V along
with directed hyperedges e ∈ E. Each directed hyperedge is of the form e = (etail, ehead),
where ehead, etail ⊆ V . We will use L(e) = etail, R(e) = ehead. Note that ehead, etail are not
necessarily disjoint.

Next, we introduce the definition of spectral sparsifiers for both undirected and directed
hypergraphs.

▶ Definition 9. For an undirected hypergraph G = (V,E,w) on n vertices, and a vector
x ∈ Rn, the quadratic form of the Laplacian of G is

LG(x) =
∑
e∈E

max
u,v∈e

(xu − xv)2.

▶ Definition 10. For a directed hypergraph G = (V,E,w) on n vertices, and a vector x ∈ Rn,
the directed quadratic form of the Laplacian of G is

LG(x) =
∑
e∈E

max
u∈L(e),v∈R(e)

(xu − xv)2
+.

In this context, (xu − xv)+ = max((xu − xv), 0). A non-zero contribution from a hyperedge
occurs only if a tail vertex of the hyperedge has a larger value than a head vertex of the
hyperedge. Note that the head set and tail set of a directed hyperedge are not necessarily
disjoint.

▶ Definition 11. For a (directed or undirected) hypergraph G = (V,E) on n vertices, a
(1 ± ε)-spectral sparsifier for G is a weighted (directed or undirected) sub-hypergraph H
such that for every x ∈ Rn,

(1 − ε)LG(x) ≤ LH(x) ≤ (1 + ε)LG(x).

Further, we require that the hyperedges of H are a subset of the hyperedges of G.

▶ Remark 12. For all the above definitions, if a reweighted sub-hypergraph H of G preserves
the quadratic form for vectors x ∈ {0, 1}n to (1 ± ε) multiplicative error, we say that H is a
cut-sparsifiers. Note that all spectral sparsifiers are cut-sparsifiers, while the converse is
not necessarily true.

We also refer to cut-sizes in hypergraphs. A cut is specified by a set S ⊆ V , and we say
the size of the cut S in G (denoted |cutG(S)|) is LG(1S)T , where 1S is the indicator vector
in {0, 1}n for the set S. Combinatorially, this refers to the weight of the hyperedges that are
“leaving” the set S.

Next we define submodular functions and submodular hypergraphs.

▶ Definition 13. A function g : 2V → R≥0 is said to be submodular if for any S ⊂ T ⊂ V ,
and any x ∈ V − T ,

g(S ∪ {x}) − g(S) ≥ g(T ∪ {x}) − g(T).

ICALP 2024

98:8 Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs

Using this, we can define a submodular hypergraph.

▶ Definition 14. A submodular hypergraph H = (V,E) is a set of n vertices along with a set
of hyperedges E. For each hyperedge e ∈ E, there is a corresponding submodular splitting
function ge : 2e → R≥0. For any subset S ⊆ V , the corresponding cut of the submodular
hypergraph is

cutH(S) =
∑
e∈E

ge(S ∩ e).

▶ Definition 15. We say that a data structure G is a (1 ± ε)-cut sketch of a submodular
hypergraph H = (V,E), if for any S ⊆ V one can deterministically recover cutH(S) to within
a (1 ± ε) factor using only the data structure G, and the set S.

We will use the following result from [5] regarding the sparsifiability of symmetric,
submodular hypergraphs. Note that a submodular function f : 2V → R+ is said to be
symmetric if ∀S ⊆ V, f(S) = f(V − S).

▶ Theorem 16 (Corollary 1.2 of [5]). For any symmetric submodular hypergraph H on n

vertices, there is a (1 ± ε)-sparsifier for H with Õ(n/ε2) hyperedges.

3 Directed to Undirected Hypergraph Sparsification

In this section, we will show that any algorithm that produces an undirected spectral
hypergraph sparsifier with f(n, r) hyperedges (for a vertex set of size n, and maximum
hyperedge size r), can be used in a black-box manner to create a spectral sparsifier with
f(n2 + 1, r2) hyperedges for any n-vertex directed hypergraph.

To this end, we first have to define the “lifting” operation from a directed hypergraph on
n vertices to an undirected hypergraph on n2 + 1 vertices.

▶ Definition 17. For a directed hypergraph H = (V,E) on n vertices, let ψ(H) be an
undirected hypergraph on n2 + 1 vertices defined as follows. For the first n2 vertices of
ψ(H), associate these vertices with tuples of vertices from H, that is, each of these vertices
is associated with an element from the set V × V . The final vertex in ψ(H) will be a special
vertex we denote by ∗. Now, for each hyperedge e ∈ E of H, define a corresponding hyperedge
φ(e) in ψ(H) as follows: let the vertices in L(e) be u1, . . . uℓ, and let the vertices in R(e) be
v1, . . . vr. Let φ(e) contain

L(e) × R(e) ∪ {∗} = {(u1, v1), (u1, v2), . . . (u1, vr), (u2, v1), . . . (u2, vr), . . . (u3, v1), . . . (uℓ, vr), ∗}.

Note that this transformation is invertible. If we are given an undirected hyperedge of
the form φ(e) = L(e) ×R(e) ∪ {∗}, we can invert this transformation to recover the directed
hyperedge e = (L(e), R(e)). Additionally, note that this transformation and its inverse are
efficiently computable (running in time O(r2), where r is the size of the undirected hyperedge).

Next, we define the lifting of a test vector.

▶ Definition 18. For a vector x ∈ Rn, we define the lifting of x denoted as ϑ(x). ϑ(x) is in
Rn2+1, and in particular, for the first n2 entries, we associate these with the set [n] × [n].
We say that (ϑ(x))u,v = max(xu − xv, 0). For the final entry, which we associate with the
special vertex ∗ in the lifted H, we let ϑ(x)∗ = 0.

Note again that ϑ(x) is efficiently computable in time O(n2) where n is the dimension
of x.

S. Khanna, A. Putterman, and M. Sudan 98:9

▶ Theorem 19. Let H = (V,E) be a directed hypergraph on n vertices. Then, for any
x ∈ Rn,

LH(x) = Lψ(H)(ϑ(x)).

Proof. It suffices to show that for a single hyperedge e ∈ E,

max
u∈L(e),v∈R(e)

(xu − xv)2
+ = max

(y,z)∈φ(e)
(ϑ(x)y − ϑ(x)z)2.

The reason this suffices is that there is one φ(e) for each corresponding hyperedge e ∈ E. So,
we are in effect showing that every term in the sum of the quadratic form of the Laplacians
is the same.

To see why this equality is true, let some û ∈ L(e), v̂ ∈ R(e) be the maximizers for the
expression on the left. Then, note that the corresponding entry ϑ(x)

û,̂v
is exactly (x

û
−x

v̂
)+.

Now, because û ∈ L(e) and v̂ ∈ R(e), it follows that (û, v̂) ∈ φ(e). Because the special vertex
∗ ∈ φ(e), it follows that in the above expression

max
(y,z)∈φ(e)

(ϑ(x)y − ϑ(x)z)2 ≥ (ϑ(x)(û,̂v) − ϑ(x)∗)2 = (x
û

− x
v̂
)2
+ = max

u∈L(e),v∈R(e)
(xu − xv)2

+.

Now, we will show the opposite direction. Indeed, suppose that some elements ŷ, ẑ are
maximizers for max(y,z)∈φ(e)(ϑ(x)y −ϑ(x)z)2. Note that by construction, every entry in ϑ(x)
is ≥ 0. This means that without loss of generality, we can assume that ẑ = ∗ (the special
vertex), as this vertex attains the smallest possible value 0. This means that the maximizing
value of the expression is exactly ϑ(x)2

ŷ
, where ŷ is one of the first n2 vertices in ψ(H). So,

let us write ŷ = (â, b̂), where â, b̂ are both vertices in G. By construction, because ŷ ∈ ê, it
follows that â ∈ L(e), and b̂ ∈ R(e). As such it follows that

max
u∈L(e),v∈R(e)

(xu − xv)2
+ ≥ (x

â
− x̂

b
)2
+ = ϑ(x)2

ŷ
= max

(y,z)∈ê
(ϑ(x)y − ϑ(x)z)2.

Thus, it follows that

max
u∈L(e),v∈R(e)

(xu − xv)2
+ = max

(y,z)∈φ(e)
(ϑ(x)y − ϑ(x)z)2,

as claimed. ◀

▶ Corollary 20. Let H be a directed hypergraph on n vertices. Suppose that ψ̂(H) is a (1 ± ε)
undirected hypergraph spectral sparsifier to ψ(H). Then, it follows that the unlifted graph Ĥ
which is calculated by applying φ−1 to each hyperedge in ψ̂(H), is a (1±ε) directed hypergraph
spectral sparsifier to H.

Proof. Indeed, suppose H,ψ(H), Ĥ, ψ̂(H) are as specified above, and let x ∈ Rn. It follows
that

(1 − ε)LH(x) = (1 − ε)Lψ(H)(ϑ(x)) ≤ L
ψ̂(H)(ϑ(x)) = L

Ĥ
(x)

= L
ψ̂(H)(ϑ(x)) ≤ (1 + ε)Lψ(H)(ϑ(x)) = (1 + ε)LH(x).

To conclude, this implies that for Ĥ,H as above,

(1 − ε)LH(x) ≤ L
Ĥ

(x) ≤ (1 + ε)LH(x). ◀

ICALP 2024

98:10 Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs

▶ Theorem 21. For a directed hypergraph H on n vertices, one can find a directed hypergraph
spectral sparsifier Ĥ of H, with O(n2 log(n) log(r)/ε2) hyperedges in time Õ(mr2), where m
is the number of directed hyperedges in H and r is the maximum size of a hyperedge in H.

Proof. If the number of hyperedges in H is less than n2, simply return H. Otherwise, lift
H to ψ(H), and spectrally sparsify ψ(H) using [6]. This will result in a (1 ± ε) spectral
sparsifier ψ̂(H) to ψ(H), with at most O(n2 log(n2) log(r2)/ε2) hyperedges, as we desire.
Here, we have used that the maximum rank of a hyperedge in Ĝ is at most the squared rank
of a hyperedge in G. Further, the running time of this algorithm is Õ(mr2), as the number
of hyperedges in Ĝ is the same as the number of hyperedges in G, and the rank, again, is at
most r2. Now, we can unlift ψ̂(H) to Ĥ by applying φ−1 to each hyperedge, and use the
previous corollary to conclude our theorem. ◀

▶ Remark 22. Note that if we restrict our original vector x to be in {0, 1}n, it follows that
ϑ(x) ∈ {0, 1}n2+1. By repeating the exact same steps above, this means that we can use
the same reduction from above to get directed hypergraph cut sparsifiers, by only using
algorithms from undirected hypergraph cut sparsifiers.

▶ Corollary 23. For a directed hypergraph H on n vertices, one can find a directed hypergraph
cut sparsifier Ĥ of H, with O(n2 log(n)/ε2) hyperedges in time Õ(mr2/ε2), where m is the
number of directed hyperedges in H, and r the maximum size of any hyperedge.

Proof. Simply perform the reduction from above, and invoke the algorithm for undirected
hypergraph cut-sparsification from Theorem 1.3 of [19]. Specifically, for an undirected
hypergraph G, Quanrud presents an algorithm running in time Õ(p(G)) which constructs
(1 ± ε) k-cut sparsifiers (a stronger requirement than the cut-sparsifiers required here), where
p(G) =

∑
e∈G |e|. In our setting, for a directed hypergraph H, when we construct the

undirected lifting ψ(H), it will be the case that p(ψ(H)) =
∑
e∈ψ(H) |e| ≤

∑
e∈H |e|2 ≤ mr2,

yielding the desired runtime. ◀

4 Space Lower-bounds for Sketching Cuts in Directed Hypergraphs

In this section, we will establish an Ω(n3−o(1)) lower-bound for worst-case sketching of the
cuts in a directed hypergraph on n vertices to a (1 ± ε) factor for ε being 1

2O(
√

log(n))
. As

mentioned in the introduction, this improves upon a result of [10] who showed a lower bound
of size Ω(n3) for the bit complexity of any sparsifier. However, their lower bound explicitly
takes advantage of the sparsifier structure by starting with known examples of sparsifiers
that require Ω(n2) hyperedges, and then padding these hyperedges with random vertices in
their tail such that the bit complexity is Ω(n). One can trivially show that this padding does
not change the requirement of preserving Ω(n2) hyperedges. Because sparsifiers are limited
to storing only hyperedges that were originally present, this then forces a bit complexity
lower bound of Ω(n3). However, this same technique is not amenable to a sketching lower
bound as the padding procedure only adds complexity to each hyperedge, and not necessarily
to the cut function as a whole.

To overcome this, we take advantage of a result of [8] who showed that, in general, any
(1 ± ε) cut-sketching scheme for undirected hypergraphs on n vertices, with ε = 1

2O(
√

log(n))

must have worst case bit complexity n2

2O(
√

log(n))
. This result uses encodings of Rusza-Szemerédi

graphs into undirected hypergraphs, along with a reconstruction argument to show that
general (1 ± ε) cut-sketching schemes in undirected hypergraphs give very non-trivial string

S. Khanna, A. Putterman, and M. Sudan 98:11

compression schemes. Then, by invoking known results on size lower bounds for string
compression schemes, they are able to conclude worst-case lower bounds of n2

2O(
√

log(n))
for the

bit complexity of sketching cuts in undirected hypergraphs. To this end, we first reintroduce
their notion of a string compression scheme:

▶ Definition 24 ([4]). Let ℓ, k be positive integers, and let ε, g > 0. We say that a pair of
functions Encode : {0, 1}ℓ → {0, 1}k and Decode : {0, 1}k × 2[ℓ] → N is an (ℓ, k, ε, g) string
compression scheme (SCS) if there exists a set of strings G ⊆ {0, 1}ℓ such that:
1. |G| ≥ g · 2ℓ.
2. For every string s ∈ G, and every query q ∈ 2[ℓ],

|Decode(Encode(s), q) − |s ∩ q|| ≤ εℓ/2.

The work of [8] takes advantage of the following theorem, which is proved in [4]:

▶ Theorem 25 ([4]). Suppose (Encode,Decode) is an (ℓ, k, ε, g)-SCS, where ε ≤ 1/10. Then,

k ≥ log(g) + 3ℓ/50
log 2 − 1.

Qualitatively, [8] shows that for a specific family of undirected hypergraphs with n

vertices, for some ε = 1
2O(

√
log(n))

any (1 ± ε) cut-sketching scheme for these hypergraphs

using ≤ k bits implicitly gives an
(

n2

2O(
√

log(n))
, k, 1/10, 1/2

)
-SCS. Thus, by invoking the

previous theorem, these sparsifiers must have bit complexity n2

2O(
√

log(n))
. However, their

proof actually provides a stronger result than stated. Although the sparsifiers they use give
(1 ± ε) multiplicative approximations to cut-sizes, their argument makes uses of an additive
error bound of ε · (# of hyperedges). We take advantage of this in our method by showing
that a (1 ± ε) cut-sketch for a directed hypergraph can be used to retrieve cut sizes in n

distinct undirected hypergraphs with only additive error ε (with respect to each of these
undirected hypergraphs). We first state the result of [8] more succinctly, and then describe
our construction in more detail.

▶ Theorem 26 ([8]). For any n, and some ℓ = n2

2O(
√

log(n))
, for at least 2ℓ/2 strings s ∈ {0, 1}ℓ,

there exists an undirected hypergraph Hs = (V,Es) on n vertices, with ≤ n hyperedges,
such that any data structure which can approximate cuts in Hs to within additive error
|Es|/2O(

√
log(n)) can for any query q ⊆ [ℓ], answer the subset sum |q ∩ s| to within additive

error ℓ/20.

Now, we will prove our theorem regarding capability of directed hypergraphs to simulate
cuts in undirected hypergraphs with only additive error.

▶ Theorem 27. Given any undirected hypergraphs H1, . . . Hn, each on vertex set V , with
|V | = n, there exists a directed hypergraph G on 2n vertices, such that given a (1 ± ε)
cut-sketch for G, for any of the undirected hypergraphs Hi = (V,Ei) and any set S ⊆ V , one
can recover |cutHi

(S)| to within additive error 3ε|Ei|.

Proof. As stated, each of the undirected hypergraphs H1, . . . Hn are on a vertex set of size
n, which we denote by V . We also create a vertex set W of size n, which we associate
with w1, . . . wn. Now, we create the directed hypergraph G, which lives on the vertex set
V ∪W as follows: for each undirected hypergraph Hi for i = 1, . . . n, and for each undirected
hyperedge e in Hi, we add the corresponding directed hyperedge (e, wi). That is, the head
of the directed hyperedge has the vertices from V corresponding to e, and the tail of the
directed hyperedge has only vertex wi.

ICALP 2024

98:12 Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs

Clearly, G has 2n vertices, so now it suffices to argue that for any Hi = (V,Ei), and for
any cut S ⊆ V , we can recover cutHi

(S) within additive error ε|Ei|. Indeed, let any such Hi

be given, and let S ⊆ V be given as well. Then, suppose we have a (1 ± ε) cut-sketch for
G, which we denote by G̃. Let us consider the query to G̃ with the set S ∪ W − {wi}. A
directed hyperedge e ∈ G is crossing this cut if and only if ehead ∩ (S ∪W − {wi}) ̸= ∅ and
etail ∩ ((V ∪W) − (S ∪W − {wi})) ̸= ∅. In particular, note that by construction, ehead is a
subset of V and etail is a subset of W . This means that a directed hyperedge e is crossing the
cut if and only if ehead ∩S ̸= ∅ and etail ∩ {wi} ≠ ∅. The only directed hyperedges in G which
satisfy this second condition are exactly those directed hyperedges in G which correspond
to Hi. By construction, this means that the number of directed hyperedges crossing this
cut S ∪ W − {wi} in G is exactly the number of undirected hyperedges e ∈ Ei such that
e ∩ S ̸= ∅. Thus this query to G̃ returns a (1 ± ε) approximation to |{e ∈ Ei|S ∩ e ≠ ∅}|.
Note that the actual size of the cut S in Hi is |{e ∈ Ei|S ∩ e ̸= ∅ ∧ S ∩ e ̸= e}|.

However, note that by symmetry, we can also query G̃ with (V − S) ∪ (W − {wi}). By
symmetry, this query to G̃ returns a (1 ± ε) approximation to |{e ∈ Ei|(V − S) ∩ e ̸= ∅}|,
which is the same as |{e ∈ Ei|S ∩ e ̸= e}|. Lastly, we can query G̃ with V ∪ (W − {wi}).
This query to G̃ returns a (1 ± ε) approximation to |{e ∈ Ei|V ∩ e ̸= ∅}|, which is exactly
|{e ∈ Ei}|.

Now, we operate by the principle of inclusion-exclusion (PIE). Let A be the event that a
hyperedge e ∈ Ei satisfies e ∩ S ̸= ∅, and let B be the event that e satisfies e ∩ S ̸= e. By
PIE,

|{e ∈ Ei|e satisfies A ∧ satisfies B}| =|{e ∈ Ei|e satisfies A}| + |{e ∈ Ei|e satisfies B}|
− |{e ∈ Ei|e satisfies A ∨ satisfies B}|.

Note that this final expression is trivially satisfied, i.e. |{e ∈ Ei|e satisfies A ∨
satisfies B}| = |{e ∈ Ei}| as a hyperedge cannot simultaneously have an empty and a

non-trivial intersection. Thus, we get that

cutHi
(S) =|{e ∈ Ei|e satisfies A ∧ satisfies B}|

=|{e ∈ Ei|e satisfies A}| + |{e ∈ Ei|e satisfies B}| − |{e ∈ Ei}|.

Now, note that our query to G̃ with the set S ∪W − {wi} gave us a (1 ± ε) approximation
to |{e ∈ Ei|e satisfies A}|, our query with (V −S)∪W −{wi} gave us a (1±ε) approximation
to |{e ∈ Ei|e satisfies B}|, and our query with V ∪W − {wi} gave us a (1 ± ε) approximation
to |{e ∈ Ei}|. Because each of these has additive error at most ε|Ei| (as the error from G̃ is
a multiplicative guarantee), in total, the expression

cut
G̃

(S ∪W − {wi}) + cut
G̃

((V − S) ∪W − {wi}) − cut
G̃

(V ∪W − {wi})

gives us a (3ε|Ei|)-additive approximation to cutHi
(S), as we desire. ◀

Now, we will show how we can use the above construction to argue a lower bound of
size n3

2O(
√

log(n))
on the bit complexity of directed hypergraph cut-sketching. We will do

this by showing that we can use a directed hypergraph cut-sketch of size k to create a
(ℓ, k, 1/10, 2−n)-SCS, for ℓ = Ω

(
n3

2O(
√

log(n))

)
.

▶ Theorem 28. A general unweighted directed hypergraph (1 ± 1
2O(

√
log(n))

) cut-sketching
scheme on n vertices with maximum sketch size of k bits yields an (n · ℓ, k, 1/10, 2−n)-SCS
for ℓ = n2

2O(
√

log(n))
.

S. Khanna, A. Putterman, and M. Sudan 98:13

Proof. First, we will define the set G of size 2n·ℓ

2n . Indeed, from Theorem 26, let L be the
strings of length ℓ which are able to be compressed and still allow for estimating subset sum
queries. Now, let G = L ◦ L ◦ L ◦ · · · ◦ L (n times), where the S1 ◦ S2 operation takes every
string in S1 and prepends it to every string in S2 (resulting in a new set of size |S1| · |S2|).
Note that this means that strings in G will be of length n · n2

2O(
√

log(n))
= n3

2O(
√

log(n))
and G

obtains the stated size bound.
Now we describe our string compression scheme. Indeed, for any string s ∈ G, decompose

s into s1, . . . sn such that each si ∈ L. Now, because each si ∈ L, we know there exists a
corresponding undirected hypergraph Hsi

= (V,Esi
) on n vertices such that preserving cuts

in Hsi
to within additive error |Esi

|/2O(
√

log(n)) allows us to answer subset sum queries in
Hsi

to within additive error ℓ/20. Now let G be the directed hypergraph on 2n vertices,
built with hypergraphs Hs1 , Hs2 , . . . Hsn as guaranteed by Theorem 27. It follows that G is
an unweighted directed hypergraph on 2n vertices.

Now, suppose there exists a general, unweighted, directed hypergraph cut-sketching scheme
on n vertices with maximum sketch size of k bits which preserves cuts to a (1 ± 1

2O(
√

log(n))
)

multiplicative factor. Then, we can invoke such a scheme on the directed hypergraph G as
specified by Theorem 27 to conclude that such a scheme allows us to recover cutHsi

(S) for
any S ⊆ V to within additive error |Esi

/2O(
√

log(n))|. As a result, this means that for any
si, and any query to si, denoted by qi ∈ [ℓ], we can recover |qi ∩ si| to within additive error
ℓ/20.

Finally, suppose we are given any subset query q ⊆ [n · ℓ]. We want to show that we
can compute the size of |s ∩ q| (i.e. the sum of the bits of s on the positions indicated by
q) to within additive error nℓ

20 . For convenience, we view q as a bit string of length n · ℓ,
where a bit is 1 if and only if the corresponding element of [n · ℓ] was in the subset. Then,
we break q into q1, . . . qn such that each qi is of length ℓ. Now, we use the aforementioned
sketch to compute |si ∩ qi| to within additive error ℓ/20 for every i. Adding these together,
we get an estimate to |s ∩ q| with additive error at most nℓ/20. Thus, a general directed
hypergraph cut-sketching scheme of size k bits to multiplicative error (1 ± 1

2O(
√

log(n))
) yields

a (n · ℓ, k, 1/10, 2−n)-SCS. ◀

▶ Theorem 29. Any cut-sketching scheme for directed hypergraphs on 2n vertices which
preserves cuts to a (1 ± ε) factor, for ε = 1

2O(
√

log(n))
must have worst case bit complexity

n3

2O(
√

log(n))
.

Proof. Indeed, by the preceding theorem (Theorem 28), any such scheme for ε = 1
2O(

√
log(n))

,

with bit complexity k implies a (n·ℓ, k, 1/10, 2−n)-SCS, for ℓ = n2

2O(
√

log(n))
. By Theorem 25 [4],

this means that

k ≥ log(2−n) + 3n · ℓ
log 2 − 1 ≥ n3

2O(
√

log(n))
. ◀

▶ Corollary 30. Any cut-sketching scheme for submodular hypergraphs on 2n vertices which
preserves cuts to a (1 ± ε) factor, for ε = 1

2O(
√

log(n))
must have bit complexity n3

2O(
√

log(n))
.

Proof. This follows simply by noting that directed hypergraphs are a subclass of submodular
hypergraphs, so in particular the lower bound from Theorem 29 must extend to this case. ◀

ICALP 2024

98:14 Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs

5 Monotone Hypergraph Sparsifiers

In this section, we show how to reduce sparsifying monotone submodular hypergraphs to
sparsifying symmetric submodular hypergraphs. At this point, we then invoke the result
of [5] to conclude. First, we detail the reduction:

▶ Theorem 31. Suppose f : 2V → R≥0 is a monotone, submodular function. Then,
f ′ : 2V ∪{∗} → R≥0 defined as ∀S ⊆ V

f ′(S) = f(S) = f ′(V − S ∪ {∗})

is submodular and symmetric.

Proof. First, the symmetry of f ′ is easy to see. Indeed, for any set S ⊆ V ∪ {∗}, it follows
that f ′(S) = f ′(V ∪ {∗} − S). So, all that remains to be shown is that f ′ is submodular. To
do this, we will show that f ′ has decreasing marginals. So consider any T ⊂ U ⊂ V ∪ {∗}.
We will show that for any x /∈ U that

f ′(T ∪ {x}) − f ′(T) ≥ f ′(U ∪ {x}) − f ′(U).

We will do this by cases.

1. Suppose that x = ∗. Then, it must be the case that x /∈ U, T . So, f ′(U) = f(U), f ′(T) =
f(T). Because T ⊂ U , it must also therefore be the case that f ′(T) ≤ f ′(U) (by
the monotonicity of f). Next, we note that because x = ∗, f ′(T ∪ {x}) = f(V −
T), f ′(U ∪ {x}) = f(V −U). Because T ⊂ U and f is monotone, it must be the case that
f ′(T ∪ {x}) = f(V − T) ≥ f ′(U ∪ {x}) = f(V −U). Putting this together, we get that it
must be the case that

f ′(T ∪ {x}) − f ′(T) ≥ f ′(U ∪ {x}) − f ′(U),

as we desire.
2. Suppose that x ̸= ∗, and that neither U, T contain ∗. Then the submodularity of f ′

follows by the submodularity of f .
3. Suppose that x ̸= ∗, and that both U, T contain ∗. Then, let Û , T̂ be U − {∗}, T − {∗}

respectively. It follows that T̂ ⊂ Û . Further, f ′(T∪{x}) = f(V −(T̂∪{x})), f ′(U∪{x}) =
f(V − (Û ∪ {x})), and likewise f ′(T) = f(V − T̂), f ′(U) = f(V − Û). It follows that

f ′(T ∪ {x}) − f ′(T) = f(V − (T̂ ∪ {x})) − f(V − T̂)

= f(V − (T̂ ∪ {x})) − f(V − (T̂ ∪ {x}) ∪ {x})

≥ f(V − (Û ∪ {x})) − f(V − (Û ∪ {x}) ∪ {x})
= f ′(U ∪ {x}) − f ′(U).

The inequality in the middle holds because V − (Û ∪ {x}) ⊂ V − (T̂ ∪ {x}). Thus, the
marginal gain from adding x to V − (Û ∪ {x}) is larger than the marginal gain from
adding x to V − (T̂ ∪ {x}) by the submodularity of f .

4. Suppose that x ̸= ∗, but that ∗ /∈ T, ∗ ∈ U . Then, by the monotonicity of f , f ′(T ∪
{x}) − f ′(T) = f(T ∪ {x}) − f(T) ≥ 0. Likewise,

f ′(U ∪ {x}) − f ′(U) = f(V − (Û ∪ {x})) − f(V − Û) ≤ 0,

again using the monotonicity of f . Therefore, it must be the case that

f ′(T ∪ {x}) − f ′(T) ≥ f ′(U ∪ {x}) − f ′(U),

as we desire. ◀

S. Khanna, A. Putterman, and M. Sudan 98:15

Next, we show how to use this reduction to create sparsifiers.

▶ Corollary 32. Let H = (V,E) be a hypergraph, such that ∀e ∈ E, the corresponding
splitting function ge : 2e → R≥0 is submodular and monotone. Then there exists a (1 ± ε)
cut-sparsifier for H with Õ(|V |/ε2) hyperedges.

Proof. We first define the lifting of a monotone, submodular hypergraph into a symmetric
submodular hypergraph.

▶ Definition 33. Let H = (V,E) be a monotone submodular hypergraph. Then, define H ′ to
be the corresponding hypergraph defined on vertex set V ∪ {∗}, where for each edge e ∈ E,
we replace it with a hyperedge e′ = e ∪ {∗}, and replace the function ge with the symmetric,
submodular splitting function g′

e : 2e′ → R≥0 defined in accordance with Theorem 31.

Now, we construct this hypergraph H ′. Because each g′
e is symmetric and submodular, we

can invoke Theorem 16 to conclude the existence of a hypergraph Ĥ ′ such that ∀S ⊆ V ∪ {∗}

(1 − ε)cutH′(S) ≤ cutĤ′(S) ≤ (1 + ε)cutH′(S),

and Ĥ ′ only has Õ(|V |/ε2) hyperedges remaining.
It follows that because ∀S ⊆ V , g′

e(S) = ge(S), the corresponding hyperedges chosen
to create a (1 ± ε) cut-sparsifier for H ′ also create a (1 ± ε) cut-sparsifier for H. That is,
if we create the hypergraph Ĥ by replacing e′ ∈ Ĥ ′ with e ∈ H (but keeping the same
corresponding weights that Ĥ ′ assigns), it will be the case that ∀S ⊆ V

(1−ε)cutH′(S) = (1−ε)cutH(S) ≤ cutĤ′(S) = cutĤ(S) ≤ (1+ε)cutH′(S) = (1+ε)cutH(S).

Thus, Ĥ will be a (1±ε)-sparsifier for H, and Ĥ will only keep Õ(|V |/ε2) hyperedges. ◀

References
1 Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. In

Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 255–262. ACM,
2009. doi:10.1145/1536414.1536451.

2 András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time.
In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 47–55. ACM,
1996. doi:10.1145/237814.237827.

3 Yu Chen, Sanjeev Khanna, and Ansh Nagda. Near-linear size hypergraph cut sparsifiers.
In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 61–72. IEEE, 2020. doi:
10.1109/FOCS46700.2020.00015.

4 Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Frank Neven,
Catriel Beeri, and Tova Milo, editors, Proceedings of the Twenty-Second ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 9-12, 2003, San
Diego, CA, USA, pages 202–210. ACM, 2003. doi:10.1145/773153.773173.

5 Arun Jambulapati, James R. Lee, Yang P. Liu, and Aaron Sidford. Sparsifying sums of norms.
CoRR, abs/2305.09049, 2023. doi:10.48550/arXiv.2305.09049.

6 Arun Jambulapati, Yang P. Liu, and Aaron Sidford. Chaining, group leverage score
overestimates, and fast spectral hypergraph sparsification. In Barna Saha and Rocco A.
Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Com-
puting, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 196–206. ACM, 2023.
doi:10.1145/3564246.3585136.

ICALP 2024

https://doi.org/10.1145/1536414.1536451
https://doi.org/10.1145/237814.237827
https://doi.org/10.1109/FOCS46700.2020.00015
https://doi.org/10.1109/FOCS46700.2020.00015
https://doi.org/10.1145/773153.773173
https://doi.org/10.48550/arXiv.2305.09049
https://doi.org/10.1145/3564246.3585136

98:16 Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs

7 Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Spectral hyper-
graph sparsifiers of nearly linear size. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1159–1170.
IEEE, 2021. doi:10.1109/FOCS52979.2021.00114.

8 Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Towards tight
bounds for spectral sparsification of hypergraphs. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 598–611. ACM, 2021. doi:10.1145/3406325.
3451061.

9 David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm.
In Vijaya Ramachandran, editor, Proceedings of the Fourth Annual ACM/SIGACT-SIAM
Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA, pages 21–30.
ACM/SIAM, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.313605.

10 Yotam Kenneth and Robert Krauthgamer. Cut sparsification and succinct representation of
submodular hypergraphs. CoRR, abs/2307.09110, 2023. arXiv:2307.09110.

11 Sanjeev Khanna, Aaron Putterman, and Madhu Sudan. Code sparsification and its applications.
In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 5145–5168. SIAM, 2024.

12 Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In
Tim Roughgarden, editor, Proceedings of the 2015 Conference on Innovations in Theoretical
Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages 367–376. ACM,
2015. doi:10.1145/2688073.2688093.

13 Jannik Kudla and Stanislav Zivný. Sparsification of monotone k-submodular functions of low
curvature. CoRR, abs/2302.03143, 2023. doi:10.48550/arXiv.2302.03143.

14 James R. Lee. Spectral hypergraph sparsification via chaining. In Barna Saha and Rocco A.
Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 207–218. ACM, 2023. doi:10.1145/
3564246.3585165.

15 Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applications. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 2308–2318, 2017. URL: https://proceedings.neurips.
cc/paper/2017/hash/a50abba8132a77191791390c3eb19fe7-Abstract.html.

16 Pan Li and Olgica Milenkovic. Submodular hypergraphs: p-laplacians, cheeger inequalities and
spectral clustering. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
3020–3029. PMLR, 2018. URL: http://proceedings.mlr.press/v80/li18e.html.

17 Hui Lin and Jeff A. Bilmes. A class of submodular functions for document summarization. In
Dekang Lin, Yuji Matsumoto, and Rada Mihalcea, editors, The 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, Proceedings of the
Conference, 19-24 June, 2011, Portland, Oregon, USA, pages 510–520. The Association for
Computer Linguistics, 2011. URL: https://aclanthology.org/P11-1052/.

18 Kazusato Oko, Shinsaku Sakaue, and Shin-ichi Tanigawa. Nearly tight spectral sparsification
of directed hypergraphs. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th
International Colloquium on Automata, Languages, and Programming, ICALP 2023, July
10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 94:1–94:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ICALP.2023.94.

19 Kent Quanrud. Quotient sparsification for submodular functions, pages 5209–5248. SIAM,
2024. doi:10.1137/1.9781611977912.187.

https://doi.org/10.1109/FOCS52979.2021.00114
https://doi.org/10.1145/3406325.3451061
https://doi.org/10.1145/3406325.3451061
http://dl.acm.org/citation.cfm?id=313559.313605
https://arxiv.org/abs/2307.09110
https://doi.org/10.1145/2688073.2688093
https://doi.org/10.48550/arXiv.2302.03143
https://doi.org/10.1145/3564246.3585165
https://doi.org/10.1145/3564246.3585165
https://proceedings.neurips.cc/paper/2017/hash/a50abba8132a77191791390c3eb19fe7-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/a50abba8132a77191791390c3eb19fe7-Abstract.html
http://proceedings.mlr.press/v80/li18e.html
https://aclanthology.org/P11-1052/
https://doi.org/10.4230/LIPIcs.ICALP.2023.94
https://doi.org/10.1137/1.9781611977912.187

S. Khanna, A. Putterman, and M. Sudan 98:17

20 Tasuku Soma and Yuichi Yoshida. Spectral sparsification of hypergraphs. In Timothy M. Chan,
editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2570–2581. SIAM, 2019.
doi:10.1137/1.9781611975482.159.

21 Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J. Comput.,
40(4):981–1025, 2011. doi:10.1137/08074489X.

22 Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Minimizing localized ratio cut objectives
in hypergraphs. In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash, editors,
KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Virtual Event, CA, USA, August 23-27, 2020, pages 1708–1718. ACM, 2020. doi:10.1145/
3394486.3403222.

23 Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Approximate decomposable sub-
modular function minimization for cardinality-based components. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
editors, Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pages 3744–3756, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/
1e8a19426224ca89e83cef47f1e7f53b-Abstract.html.

ICALP 2024

https://doi.org/10.1137/1.9781611975482.159
https://doi.org/10.1137/08074489X
https://doi.org/10.1145/3394486.3403222
https://doi.org/10.1145/3394486.3403222
https://proceedings.neurips.cc/paper/2021/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html

	1 Introduction
	1.1 Improved Bounds for Directed Hypergraph Sparsification
	1.2 Lower Bounds for Sketching Cuts in Directed Hypergraphs
	1.3 Cut Sparsifiers for Monotone Submodular Hypergraphs
	1.4 Overview

	2 Preliminaries
	3 Directed to Undirected Hypergraph Sparsification
	4 Space Lower-bounds for Sketching Cuts in Directed Hypergraphs
	5 Monotone Hypergraph Sparsifiers

