
Crêpe: Clock-Reconfiguration–Aware Preemption
Control in Real-Time Systems with Devices
Eva Dengler #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Peter Wägemann
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract
The domain of energy-constrained real-time systems that are operated on modern embedded system-
on-chip (SoC) platforms brings numerous novel challenges for optimal resource minimization. These
modern hardware platforms offer a heterogeneous variety of features to configure the tradeoff
between temporal performance and energy efficiency, which goes beyond the state-of-the-art of
existing dynamic-voltage-frequency-scaling (DVFS) scheduling schemes. The control center for
configuring this tradeoff on platforms are complex clock subsystems that are intertwined with
requirements of the SoC’s components (e.g., transceiver/memory/sensor devices). That is, several
devices have precedence constraints with respect to specific clock sources and their settings. The
challenge of dynamically adapting the various clock sources to select resource-optimal configurations
becomes especially challenging in the presence of asynchronous preemptions, which are inherent to
systems that use devices.

In this paper, we present Crêpe, an approach to clock-reconfiguration–aware preemption
control: Crêpe has an understanding of the target platform’s clock subsystem, its sleep states, and
penalties to reconfigure clock sources for adapting clock frequencies. Crêpe’s hardware model is
combined with an awareness of the application’s device requirements for each executed task, as
well as possible interrupts that cause preemptions during runtime. Using these software/hardware
constraints, Crêpe employs, in its offline phase, a mathematical formalization in order to select energy-
minimal configurations while meeting given deadlines. This optimizing formalization, processed by
standard mathematical solver tools, accounts for potentially occurring interrupts and the respective
clock reconfigurations, which are then forwarded as alternative schedules to Crêpe’s runtime
system. During runtime, the dispatcher assesses these offline-determined alternative schedules and
reconfigures the clock sources for energy minimization. We developed an implementation based
on a widely-used SoC platform (i.e., ESP32-C3) and an automated testbed for comprehensive
energy-consumption evaluations to validate Crêpe’s claim of selecting resource-optimal settings
under worst-case considerations.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Embedded systems

Keywords and phrases energy-constrained real-time systems, time/energy tradeoff, system-on-chip,
energy-aware real-time scheduling, resource minimization, preemption control, worst-case energy
consumption (WCEC), worst-case execution time (WCET), static whole-system analysis

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2024.10

Supplementary Material Software (ECRTS 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.1.2
Software (Source Code): https://gitos.rrze.fau.de/crepe/ecrts24-artifact-evaluation

archived at swh:1:dir:7565661d0acdbb0e01393213fdc6cf880a0de2c4
Software (Hardware Description): https://gitos.rrze.fau.de/crepe/hardware

archived at swh:1:dir:07450b5fd19c531c16e70d5af98748b65bb260c2

Funding This work is funded by the German Research Foundation (Deutsche Forschungsgemeinschaft,
DFG) under the project number 502947440 (WA 5186/1-1, Watwa: Whole-System Optimality
Analysis and Tailoring of Worst-Case–Constrained Applications).

C
o
n
si
st

en
t *
Complete * W

ell D
o
cu
m
ented * Easy t

o R

eu
se
 *

 *
 Evaluated

 *
 E
C
R
T
S
 *

 Ar
tifact *

 A
E

© Eva Dengler and Peter Wägemann;
licensed under Creative Commons License CC-BY 4.0

36th Euromicro Conference on Real-Time Systems (ECRTS 2024).
Editor: Rodolfo Pellizzoni; Article No. 10; pp. 10:1–10:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dengler+ecrts24@cs.fau.de
https://orcid.org/0009-0001-3444-852X
https://orcid.org/0000-0002-3730-533X
https://doi.org/10.4230/LIPIcs.ECRTS.2024.10
https://doi.org/10.4230/DARTS.10.1.2
https://doi.org/10.4230/DARTS.10.1.2
https://gitos.rrze.fau.de/crepe/ecrts24-artifact-evaluation
https://archive.softwareheritage.org/swh:1:dir:7565661d0acdbb0e01393213fdc6cf880a0de2c4;origin=https://gitos.rrze.fau.de/crepe/ecrts24-artifact-evaluation;visit=swh:1:snp:76787e6640ab022f40015c5a3a7f1509e1f32563;anchor=swh:1:rev:5525ce20228087dcab607883336286fec8f90484
https://gitos.rrze.fau.de/crepe/hardware
https://archive.softwareheritage.org/swh:1:dir:07450b5fd19c531c16e70d5af98748b65bb260c2;origin=https://gitos.rrze.fau.de/crepe/hardware;visit=swh:1:snp:b7a752b99282c29c3e91b8b77e0ec079793efc7f;anchor=swh:1:rev:bee7fa060621eaf9333e2531b8d19c14075c5d82
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Crêpe: Clock-Reconfiguration–Aware Preemption Control

1 Introduction

Time- & Energy-Constrained Applications. The increasing number of embedded (IoT)
devices [57] comes with several novel challenges for scheduling under resource constraints:
On the one hand, these systems can have real-time requirements for the timeliness of results.
On the other hand, they are often battery-operated or even harvest their energy from the
environment as part of the Internet of Batteryless Things [1]. For their proper operation,
these energy-harvesting systems have to provide results under available energy budgets. Some
of these devices are embedded within uncritical environments (e.g., consumer electronics).
However, also highly safety-critical devices, such as implantable medical devices, exist [40],
which are the main focus of the rest of this paper. Such safety-critical devices require provable
runtime guarantees for both the time and energy dimensions.

Runtime Guarantees by Static Analysis. Giving runtime guarantees for the execution
within time/energy budgets is possible by utilizing static analysis tools for the application’s
tasks: Thereby, the analysis tool builds an abstraction of the tasks’ execution paths and
combines this information with a resource-consumption model of the target hardware platform.
For the two dimensions of time and energy, numerous analyzers exist for the worst-case
execution time [6, 20, 21, 24, 26, 29, 33, 35, 38, 39, 50], as well as for the worst-case energy
consumption (WCEC) [31, 48, 51, 60, 61, 62, 64]. By employing these WCET and WCEC
values, schedulers can determine sequences of job executions that are optimal (i.e., minimal)
with respect to energy consumption under given real-time constraints. We refer to such
sequences as worst-case optimal solutions.

Energy-Aware Real-Time Systems with Devices. A vast body of literature on energy-aware
real-time scheduling exists, and we refer to the comprehensive survey article of Bambagini et
al. [7]. Of particular interest for the presented paper are scheduling schemes that consider
devices [13, 66, 67]. In this paper, we employ a generic notion for such devices: Any
component in the system that (1) can be switched on/off, (2) can be parameterized (e.g.,
speed scaling), and (3) consumes energy (i.e., power over time) is treated as a device. That
is, even the main processor is treated as a device. Further devices include sensors (i.e., all
analog-to-digital converters: temperature, air quality), actuators, co-processors (e.g., for
cryptographic operations), and especially transceivers. We assume that many devices in
energy-constrained (e.g., battery-operated) systems are more significant with respect to
power demand than the processor (device). While scheduling approaches exist for handling
devices and their respective power states [13, 66, 67], they have shortcomings with regard to
modern embedded system-on-chip (SoC) platforms. The novel characteristics of these SoC
platforms are that they feature numerous (integrated) devices and support a sophisticated
clock subsystem with reconfiguration options for all available clocks [15, 17, 54].

Time-Energy Tradeoff on Modern Clock Subsystems. The complexity of these clock
subsystems goes beyond classic dynamic-voltage-frequency-scaling (DVFS) schemes [7],
where usually only one clock source is configurable, and no further complex device constraints
exist. As we will detail, modern SoCs have a variety of clock sources with different temporal
performance and energy-efficiency characteristics to configure the time-energy tradeoff.
Besides this time-energy tradeoff, end devices (such as transceivers) on SoCs can require
specific clock settings as a precedence constraint for their service, which also needs to be
taken into account for energy-aware real-time scheduling. Furthermore, reconfiguring clocks

E. Dengler and P. Wägemann 10:3

can involve non-negligible penalties (both time- and energy-wise) that can range from a few
cycles up to hundreds of milliseconds [19, 54]. Such penalties, for example, originate from
the hardware characteristics that clocks are not reconfigurable in place. That is, the SoC
requires an intermediate clock source while reconfiguring the original clock. After that, the
system can switch back to the reconfigured, original clock source.

Presence of Interrupts. Recent works on Power Clocks [15], ScaleClock [54], and Fusion-
Clock [17] underline the need to account for the clock subsystem in modern embedded systems.
However, all these works miss an essential property that arguably all embedded real-time
systems that interact with the environment inherit: the presence of interrupts. Many embed-
ded devices (e.g., sensors, transceivers) communicate with the CPU via interrupts. Once an
interrupt request is released by a device, for example, when a new packet is available and
interrupts are activated, the CPU preempts the currently running task to serve the interrupt
via the interrupt-service routine (ISR). The code for serving the interrupt usually involves
communicating (via busses) with the device and is thus not negligible. Such preemptions
are especially expensive in terms of energy when the system is executing in a high-power
state once the interrupt occurs. As a consequence thereof, time- and energy-aware scheduling
strategies need to address and control these interrupt-induced preemptions.

Contributions. In this paper, we present Crêpe, an approach for clock-reconfiguration–
aware preemption control. To the best of our knowledge, Crêpe is the first to address
preemption control in energy-aware real-time systems under consideration of modern clock
subsystems on embedded SoCs. The main goal of Crêpe is to find optimal sequences of clock
reconfigurations in the presence of interrupts under consideration of worst-case assumptions
for both time and energy. In summary, we propose the following three contributions:
1. Offline Formalization, Scheduling, & Optimization: This paper introduces a mathematical

formalization to identify decisions and control preemptions that are worst-case optimal
with regard to energy under real-time constraints. One aspect of this contribution is a
discussion on the shortcomings of existing, widely-used frequency-centric power models
in view of the complexity of modern embedded SoCs.

2. Online Preemption Control & Dispatching: Based on the possible worst-case optimal
schedules with alternative execution paths identified offline during design time, Crêpe
forwards schedule tables to an online dispatcher. Crêpe’s dispatcher controls preemptions
and configures worst-case optimal clock configurations for each task and interrupts during
runtime.

3. Testbed & Evaluation: We implemented our publicly-available approach based on a real-
world SoC platform that features a complex clock subsystem (i.e., the RISC-V–based
platform ESP32-C3). Further, we developed a surrounding testbed that allows us to
automate energy-consumption measurements to conduct a representative number of task
sets in our evaluations. These evaluations account for all constrained resources on our
target, precisely time, energy, and memory for Crêpe’s employed schedule tables.

Crêpe is based on and extends the FusionClock approach for clock-aware scheduling [17].
In contrast to this work, Crêpe has a different task-set model due to targeting preemption
control for real-time systems with interrupts. This leads to both changes in the offline
optimization as well as the online dispatching: The offline optimization automatically
generates variants of schedule tables with awareness of possible interrupt occurrences, while
the online dispatching of Crêpe makes use of the previously built schedules.

ECRTS 2024

10:4 Crêpe: Clock-Reconfiguration–Aware Preemption Control

� End-Device
Requirement

Time : En. Eff.

Phase-Locked
Loop (PLL)

9

Low-Speed
Osc. (RC)

8

Mid-Speed
Oscillator

/{1,2} Divider

/N Divider

2:
1

Mu
lt

ip
le

x

/N Divider

2:
1

Mu
lt

ip
le

x

CPU Ô

2:
1

Mu
lt

ip
le

x

Power
Gate Transceiver Û

Sensor O

Figure 1 The possibilities to configure the system’s clock and reconfigure it during runtime are
manifolds on modern embedded SoCs. Configuring the clock source, dividers, multiplexers, and
clock/power gates allows for balancing between the temporal performance and energy efficiency.

2 Background & System Model

Reconfiguring Clock Sources. We target highly resource-constrained embedded devices
with less than one megabyte of RAM, execution speeds up to 200 MHz, and sleep power
down to the µW range. For such SoCs, the ESP32-C3 serves as a representative platform [19].
On these systems, the heart for configuring the time-energy tradeoff is the clock subsystem:
Figure 1 gives a schematic excerpt of such a subsystem [19, Figure 6.2] from this platform,
which is later used in the evaluation in Section 7. The actual clock subsystem, which is
synonymously also referred to as a clock-distribution network or clock tree, has more than the
depicted configuration options and clock sources. Besides speed and energy efficiency, clock
sources differ in temperature stability and temporal accuracy. Further, some end devices (leaf
nodes in the overall network) have distinct requirements for the clock configuration (illustrated
with the � symbol): For example, the WiFi transceiver only runs with the phase-locked
loop (PLL). This clock, in turn, only has two speed settings (divider 1 or 2), while other
clock sources have more discrete frequencies (dividers from 1 to 1024). Routing the signal
from source to end devices happens via multiplexers, while power gates enable the system to
entirely switch off parts of power-consuming devices, including their leakage power.

Device, Temporal, & Power Behavior. Each component on the system that consumes
power –either by leakage or switching activities– is treated as a device. Devices have multiple
possible states (e.g., active, idle, off). As part of our system model, we describe the state
of the system, including all devices, with one clock configuration (CC). Each CC has an
assigned maximum power demand Pmax. For the execution of jobs Ji of a task τi in one
CC, we determine a WCET in Crêpe. We assume that the property of compositionality
exists for energy and time [25, 49], excluding the presence of timing anomalies. We consider
these assumptions to be realistic since they exemplarily hold for Crêpe’s RISC-V–based
target platform. With the Pmax value and the WCET, we can determine an upper bound
of the energy demand WCEC = Pmax · WCET . Refinements for this temporal model are
possible in two directions: (1) employing instruction-level energy models for the WCEC
value [12, 34, 37, 45, 48, 55, 56, 59, 64], or (2) refining the Pmax estimate by application-
specific knowledge [14]. However, this work focuses on assessing optimal energy savings with
preemption control and awareness of feasible CCs under worst-case assumptions.

E. Dengler and P. Wägemann 10:5

Penalties for Clock-Configuration Transitions. The transition between clock configurations
cN → cM requires special attention as the associated time and energy penalties are not
negligible: When executing with one clock source, adapting the frequency can require an
intermediate clock source when the frequency can not be changed in place, causing significant
overheads. A further aspect of transition penalties is the context sensitivity: The penalty for
changing to the new configuration cM depends on the previously active setting cN .

Sleep Modes. Crucial in energy-constrained systems is the use of the CPU’s sleep modes
because these modes can reduce the power demand by multiple orders of magnitude. Our
generic notion of “everything is a device” and the unambiguous description of system states
by CCs already integrate an understanding of sleep modes: In sleep mode, the CPU device
is switched off, and other devices are kept active (i.e., I/O pins for waking up the system).
Leaving a sleep mode and entering a CPU’s run mode usually requires a significant transition
penalty: For example, when exiting from a low-power deep sleep mode, with a Pmax in the
µW range, the transition involves a penalty of around 70 ms on Crêpe’s target platform.

Task Model. We assume a set of periodic tasks τi and a preempting interrupt service
routine ISR in our task model. The jobs Ji,j of the tasks τi and interrupts are executed on
a single-core processor with numerous other devices. The power-related behavior (i.e., CC

changes) is explicitly controlled by jobs/interrupts. The periodicity of the periodic tasks
is defined by pi, while the interrupt has a minimum inter-arrival time iISR. The WCET
of each task is smaller than the minimum inter-arrival time of each interrupt plus the ISR

execution; if this assumption is not fulfilled, long-running tasks must be split. This splitting is
comparable to dividing tasks into subjobs, as common in limited preemptive scheduling [11].
The set of tasks/interrupts is referred to as T . All elements in T are independent of each
other, except for the subsequent clock configuration. The total task set and the interrupt have
a relative deadline Di. Further, each task/interrupt uses at least one device: In any case, they
require the CPU device to execute instructions. Both tasks/interrupts can require specific
devices that, in turn, require specific clock configurations. Crêpe has an understanding
of the set of feasible CCs for each device. Crêpe knows how to transition from any clock
configuration to a target configuration (which may involve multiple intermediate CCs).

Controlling Interrupt Preemptions. We argue that all realistic embedded systems that
acquire data via sensors and communicate results face the challenge of interrupts. While
serving interrupt requests immediately, when the interrupt (e.g., level change of a pin)
occurs, minimizes the request’s response time, this strategy has numerous shortcomings given
the induced time and energy overhead: In most hardware architectures, the interrupt is
directly executed on the memory stack of the currently running job. This execution comes
with the problem of cache-related preemption delays [2, 10, 36] because interrupts share
the instruction and/or data cache with the executed job. In addition to the problem of
cache-related preemption delays, Crêpe is confronted with the problem that the interrupt is
executed with the currently active clock configuration and thus power demand, an aspect
which we will further detail in Section 3.1. For Crêpe, we require the possibility to control
interrupt preemptions [53] (i.e., defer pending interrupt requests) as part of an online

ECRTS 2024

10:6 Crêpe: Clock-Reconfiguration–Aware Preemption Control

Task τ1 Û

p = packets_next ()
tx_on ()
send_data (p)
tx_off ()

� Int. ISR1 O

d = sensor_get ()
data_append (d)

Energy for �1

Power

Time

Pmid

Phigh

1 2 3 4 5 6 7 8 9 10

�1

Energy for �2

Power

Time

Pmid

Phigh

1 2 3 4 5 6 7 8 9 10

�2

send_data(p)

Figure 2 When immediately executing interrupts without control, the associated service routine
can run in a comparably high power state, leading to energy inefficiency.

dispatcher unit1. This preemption control includes that interrupts are temporarily blocked:
When interrupts occur while their service is blocked, the associated service routines are
deferred until the interrupt is re-activated so that its ISR gets executed. Non-maskable
interrupts are uncommon in the domain of embedded systems and, thus, beyond the scope
of our system model.

3 Problem Statement

This section details the three problems that Crêpe tackles for controlling preemptions in
clock-reconfiguration–aware real-time systems. Crêpe’s goal is to find sequences of clock
reconfigurations with the objective of minimizing the system’s energy demand while reacting
to incoming interrupts in time. For this goal, the specific problems are power-state–unaware
preemptions (see Section 3.1), clock-agnostic preemption control (see Section 3.2), and
complex online scheduling (see Section 3.3), detailed in the following.

3.1 Problem # 1: Power-State–Unaware Preemptions

To illustrate the problem statement, we employ a running example, as shown in Figure 2.
The task τ1 uses a power-intensive transmitter device to send out packets. Activating the
device requires a penalty of one time unit (from t = 1 to t = 2) and, subsequently, makes
the system execute with a high-power state Phigh. After one further time unit, the device is
deactivated. In the presence of an interrupt ISR1, two corner cases are relevant in terms of
demanded energy: When the interrupt occurs during the high-power state (case �1), the
interrupt duration causes the system to execute longer with a higher power usage. From
a temporal point of view, the response times for both the task’s job and the interrupt are
identical. However, from an energy perspective, executing the interrupt in the low-power
mode is superior (case �2). The main problem is that the interrupt is immediately executed
without considering the system’s current power state, precisely its clock configuration CC.

1 Terminology for scheduler & dispatcher: We use the term scheduler for a component that determines
an order of jobs/interrupts and settings for reconfigurations. A dispatcher operates during runtime
and enforces the scheduling strategy based on distinct states (e.g., clock configurations) or binary
properties (e.g., the presence of a pending interrupt).

E. Dengler and P. Wägemann 10:7

Task τ1 Û

p = packets_next ()
tx_on ()
send_data (p)
tx_off ()

Task τ2 Ô

d = data_next ()
p = process (d)
packets_append (p)

� Int. ISR1 O

d = sensor_get ()
data_append (d)

Power

Time

Pmid

Phigh

Plow

1 2 3 4 5 6 7 8 9 10

Deadline

Power

Time

Pmid

Phigh

Plow

1 2 3 4 5 6 7 8 9 10

Deadline

Figure 3 Device- and clock-agnostic approaches lead to subpar energy efficiency.

Crêpe’s Approach to Power States. In a nutshell, Crêpe’s scheduling has an awareness
of the system’s power demand when serving pending interrupts. That is, the execution of
service routines is deferred to states where energy can be minimized while maintaining given
real-time constraints.

3.2 Problem # 2: Clock-Agnostic Preemption Control

Execution with Previous Clock Configurations. Subsequently, the running example is
extended in Figure 3 by a task τ2 for processing sensed data, which is directly dispatched
after τ1, and the interrupt is served after τ2. Thereby, the scenario completes standard
sense-compute-actuate processing schemes, which are inherent to numerous embedded ap-
plications. In the upper power trace, both τ2 and ISR1 run with the power demand (i.e.,
clock configuration) present at the termination of τ1 (Pmid). In this scenario, especially
running ISR1 without further consideration of the clock configuration leads to the problem
of subpar resource use upon the depicted deadline (for all tasks/interrupts): Accessing
sensor devices, as in the ISR1, often involves communication over low-level busses, such as
SPI [27], I2C [30], or I3C [41]. These busses often involve transactional semantics: Once the
device access is initiated, the code has to run preemption-free to completion. Besides the
transactional semantics, low-level busses are usually comparably slow compared to the CPU’s
possible execution speed. These observations when accessing devices make energy-demand
optimizations under real-time constraints possible: As illustrated in Figure 3’s lower trace,
the system’s speed is reduced, leading to a prolonged execution time of the ISR1. Further,
a penalty for reconfiguring the lower clock speed delays the interrupt’s execution, similar
to switching on the transceiver device. However, although these two factors increase the
execution time, the system’s overall energy demand is reduced with this reconfiguration. In
light of the fact that the deadline is met, the reconfigured variant shows a resource-optimal
solution here.

Related Clock & Preemption Approaches. The works on Power Clocks [15], ScaleClock [54],
and FusionClock [17] underline the need to account for modern embedded systems’ clock
subsystems. We refer to the model notion of the system’s power behavior as a clock-
oriented power model. However, these works miss the property of arguably all real-time
systems that interact with the environment, i.e., the presence of interrupts while giving

ECRTS 2024

10:8 Crêpe: Clock-Reconfiguration–Aware Preemption Control

timing guarantees. Consequently, these approaches can also not handle interrupts and
their potential reconfigurations, as shown in Figure 3. Works on real-time scheduling that
account for interrupts with preemption-control schemes [67] miss the complexity of modern
system-on-chip platforms and the option to configure the time-energy tradeoff, highlighted
as follows.

Shortcomings of the DVFS Power Model in View of Modern SoCs. A commonly used
model for modeling the power-related behavior for energy-constrained real-time systems [3,
4, 5, 13, 22, 42, 46, 65, 66, 67] uses the processor’s frequency f (i.e., processor’s speed) as
the only parameter P (f) = Ps + Pd(f). The parameter Ps determines the CPU’s static
power demand due to leakage, while Pd(f) represents the dynamic, frequency-dependent
power loss due to switching transistors. We thus refer to this model as the frequency-oriented
model. However, this model is not able to express the complexity of modern clock subsystems,
as detailed in Section 2, with (1) multiple clock sources (with different aspects regarding
speed or accuracy), (2) clock-specific frequency scalers and dividers (i.e., discrete clock
speeds), (3) clock multiplexers, (4) power gates for devices, (5) end-devices requirements of
clock settings (i.e., precedence constraints), and (6) device-state–dependent reconfiguration
penalties.

Crêpe’s Approach to Clock & Reconfiguration Awareness. In contrast to the frequency-
oriented model, the clock-oriented power model, as used for real-time scheduling in Fusion-
Clock [17], uses a generic abstraction of the clock subsystem and, thereby, meets the complexity
of modern SoCs. We leverage this abstraction for power demand in the context of Crêpe for
preemption control in real-time systems.

3.3 Problem # 3: Complexity of Online Scheduling
Our system model targets embedded SoCs with resource constraints (i.e., time, energy,
memory). Regarding memory, as detailed in Section 2, the systems we target support at
most one megabyte of RAM. In fact, the system targeted in the evaluation (see Section 7) is
equipped only with 400 KiB of SRAM memory. As a consequence, complex online scheduling
schemes are subpar for the goal of optimal resource use during runtime. That is, existing
preemption-control approaches [67] with (comparably complex) online scheduling contradict
our pursued system design (besides the fact that these approaches do not meet the complexity
of clock reconfigurability).

Crêpe’s Approach to Avoiding Online Complexity. In short, Crêpe comprises two design
decisions to avoid complex online scheduling for resource-constrained devices: First, the
scheduling strategy (considering possible preemptions) is part of the offline analysis, which
includes a mathematical optimization problem. This requires high computing costs during
the offline phase but relatively low online costs. Second, we make use of the tradeoff between
performance and memory demand: Crêpe stores alternative schedules as schedule tables
for each possible reconfiguration point in the system’s memory and, thereby, tolerates high
memory demand for low runtime overheads.

E. Dengler and P. Wägemann 10:9

Time

0 1 2 3 4 5 6 7

J1 J2 J3

ISR ISR

� �

Time

0 1 2 3 4 5 6 7

J1 ISR J2 J3 ISR

� �

J1 J2 ISR J3 ISR

Figure 4 Crêpe’s approach to interrupts at rearrangement points: In this example, for the first
interrupt occurrence ISR, two rearrangement points are possible: after J1 and after J2. The second
occurrence ISR has to be executed after J3. Therefore, in this case, there are two possible schedules
to run the interrupts in time.

4 The Crêpe Approach

This section outlines the main approach of Crêpe for controlling preemptions in energy-aware
real-time systems under clock reconfigurability, while the next Section 5 is devoted to the
description of our mathematical optimization formulation. The outcomes of the optimization
are interrupt-aware schedule tables, which are dispatched during Crêpe’s runtime.

Clock Configurations for Tasks. We have a set of tasks, where we have a set of possible
CCs for each of them. Subsequently, we assume one interrupt, also with a set of possible CCs
as precedence constraints. Multiple interrupt sources can conceptually be served in Crêpe
by one interrupt considered at the minimum inter-arrival time ii along with server techniques
and execution-time budgets accounting for each interrupt’s WCET [58]. We further use a 1:1
mapping from tasks to jobs in the following description. The task set is executed periodically
with an overall period derived from the periods of the single tasks to determine the overall
length, after which the execution of the task set starts again. The minimum inter-arrival
time is equal to the deadline D of the interrupt (i.e., implicit deadlines). Between the end
of our task set’s execution and the next iteration, the system may idle. By allowing our
optimization to vary the tasks’ CCs, we select more energy-efficient CCs. For each task,
we can determine the worst-case execution time of the task τi in the clock configuration c

(Cτi(c)) as well as the worst-case energy consumption (Eτi(c)).

Reconfiguration Penalties. Between two CCs, we have to reconfigure the system such that
the new CC is selected. This introduces reconfiguration penalties, both regarding time and
energy consumption of the system. For each reconfiguration from clock configuration c to
CC c′, the worst-case time penalty Creconf(c, c′) as well as the worst-case energy penalty
Ereconf(c, c′) are known. We aim to determine the optimal configuration and reconfiguration
dispatching strategy for the task set to minimize the overall energy consumption.

Inclusion of Interrupt Handling. During the task set’s execution, an interrupt (a sporadic
task) can occur, whose ISR needs to be executed in time. This means that the execution of
the ISR has to be finished before a relative deadline D. As an interrupted program also
introduces overheads with regard to context switching and caching behavior, we actively
avoid the immediate execution or dispatching of the ISR. In contrast, we determine the
energy-optimal point between all available tasks for the ISR so that each incoming interrupt
is still handled in time. We assume that the tasks are sufficiently small to allow the execution
after each task and still meet its relative deadline. If this is not possible with the initial
task set, this can be achieved by dividing single tasks into multiple subtasks to meet this

ECRTS 2024

10:10 Crêpe: Clock-Reconfiguration–Aware Preemption Control

Power

Time

1 2 3 4 5 6 7 8 9 10 11 12

J1 J2 J3 ISR idle ISR idle ISR

D D D

Power

Time

1 2 3 4 5 6 7 8 9 10 11 12

J1

ISR
J2

ISR
J3

ISR

D D D

Figure 5 Effect of different CCs on the execution time (x-axis) and power demand (y-axis):
In the first schedule, the three jobs J1, J2, J3, and the three executions of the interrupt ISR are
executed in fast but power-intensive CCs. Therefore, the execution of all three tasks is finished
before the first interrupt is executed. The remaining time between the interrupt execution can be
spent in a power-saving idle mode. In the second schedule, the execution uses low-power CCs for
the tasks and the different interrupt executions. As a consequence, the system never enters an idle
mode but saves energy during the execution itself.

precondition [11]. As our primary goal is to have a sound schedule in every possible case,
we assume the maximum amount of interrupts to occur during task execution. To be able
to manage these arrivals, we introduce a rearrangement point, or RAP for short, after each
task. We use this term to emphasize the contrast to preemption points, initially introduced
by Burns [9], for preemptive scheduling. RAPs are an extension to these (fixed) preemption
points as well as an extension to reconfiguration points: At each of such points, a clock
reconfiguration can also take place and, consequently, the system can run in an entirely
different configuration following a RAP. They are additionally used to check for an interrupt
and possibly dispatch it during the following tasks. Figure 4 demonstrates two possible
execution plans for an example task set. In summary, at each RAP, two decisions take place
in Crêpe: (1) reconfigure the clock or not, (2) execute an interrupt or not. The order of
these decisions is relevant since the interrupt can run with a just previously reconfigured CC.

Determining the Optimal Clock Configuration Strategy. To determine the best strategy
for an energy-optimal execution, we define a mathematical minimization problem over the
total energy consumption of the system for one hyperperiod. It has to consider all parts of
the systems with influence on the energy consumption. Therefore, the minimization objective
is the sum of the following:

Tasks at Different CCs: Each task has a different energy consumption and time behavior,
depending on the selected CC. Therefore, we add a set of binary decision variables
for each task, each specifying one of the possible configurations. To exactly choose one
CC, the constraint that these variables have to sum up to exactly 1 is added to the
optimization problem.
Interrupt Occurrences at Different CCs: Similar to tasks, the ISR has multiple possible
CCs, modeled with binary decision variables. But, as the ISRs are not necessarily
executed after each task, we constrain the sum of the variables to be ≤ 1. An additional
constraint enforcing that all interrupt occurrences are handled in time is detailed later in
this section.
Costs of Idle Phases: After the execution of all tasks and the ISRs in between, the
remaining time can be spent in idle modes. The costs for these and the interrupt handling
during these idle phases will also be detailed later.

E. Dengler and P. Wägemann 10:11

Reconfiguration Penalties: Between two CCs, the system is reconfigured to switch from
the previous CC to the new CC. These time/energy costs are considered when optimizing
the overall energy consumption and, therefore, also added to the optimization objective.

Figure 5 summarizes these costs and shows two possible executions for the same task set. The
first schedule uses fast but power-intensive CCs, resulting in fast execution of all tasks and
allowing for entering idle modes. The second schedule selects low-power CCs and, therefore,
saves energy during the execution of the tasks itself instead of opting for idle modes. Crêpe’s
optimization problem describes all these possibilities during execution and determines the
energy-optimal execution strategy for the underlying task set.

Controlling the Actual Execution of Interrupts. To make sure that interrupts are handled
in time, the formalization contains additional constraints on the actual number of interrupts.
After each task, there is the possibility that an ISR has to be executed. In order to exactly
execute the required amount of ISRs, we count the number of interrupts at each possible
execution and compare that to the overall time up until then. Before the execution of the i-th
ISR, the lowest possible time since the start of the period to meet the timing requirements
is that i − 1 ISRs have been executed so far. The assumption that the maximum amount of
interrupts enters the system means that the lower bound of the total time before the i-th
ISR starts executing is t = (i − 1) · D. The highest possible time after the i-th ISR is when
the end of the ISR execution exactly meets its deadline. Therefore, the upper bound of
the total time directly after the execution of the i-th ISR is t = i · D. To model that for
the mathematical optimization problem solver, we sum up the binary variables for all ISRs
until the i-th one. By using this constraint, we get the number of scheduled ISRs up until
this point because if the execution of an ISR is selected, its corresponding CC has to be
activated by enabling the binary selection variable. This number is then compared to the
current time (with or without the i-th ISR). By adding all these constraints, we can let
the mathematical optimization problem solver decide where to enable the binary decision
variable. Therefore, it decides where to actually position the i-th execution of the ISR in
which CC without violating the timing requirements when receiving the maximum possible
number of interrupts.

Modeling the Idle Phases. The remaining time after executing all tasks and ISRs in
between can be used for exploiting a low-power idling mode of the SoC. Usually, using an idle
or sleep mode saves substantial amounts of energy. We want to utilize this property and add
the possibility of reconfiguring our system in such ways during the idle phase. During idling,
the system still has to be able to execute each possible occurrence of an interrupt in time. As
a consequence, it has to be awake early enough to react to incoming ISR requests in a timely
manner. For this, we calculate the longest possible sleep time for each interval by subtracting
the WCET of the ISR in its selected CC and the enter-/exit-idle times for the chosen idle
mode from the available total time until the interrupt’s deadline. With this approach, we can
enter, spend time in, and then leave the idle mode and still have enough time left to execute
the ISR. Adding new variables (for each CC for all sleep modes and all associated ISR

executions in between) and their constraints on the maximum sleep time for each CC at each
sleep mode guarantee that our optimization procedure can determine the configurations for
the lowest overall energy consumption. We also use these variables to place the constraint on
the total execution time: We sum up all times of the reconfigurations, idle modes, and ISRs
and add these to the overall time, which has to be equal to the total hyperperiod. After all
tasks are finished, the remaining time is spent idling, while the minimal inter-arrival time of
the interrupt still defines timeslots for each ISR execution. Therefore, Crêpe uses three
different types of idle sequences:

ECRTS 2024

10:12 Crêpe: Clock-Reconfiguration–Aware Preemption Control

1. The first idle phase is the remaining timeslot until the interrupt’s deadline directly after
the last task, which can be shorter than the interrupt deadline as the last tasks of our
task set extend into that deadline.

2. The last idle phase is the part directly before the next task-set execution starts. We want
to clear any outstanding interrupts to continue with the optimized schedule in the next
iteration and be able to execute the maximum number of ISRs.

3. All others are intervals with the length of the interrupt deadline, where we check at the
end whether an interrupt occurred or not since the last one was handled.

We assign an index to each timeslot defined by the interrupt’s minimum inter-arrival time
and also use these indices for each possible sleep phase. This means that some sleep
phases are completely covered by the task-set execution and, therefore, do not belong to
any of the three types above. To model which idle phases are not occupied by the task-
set execution, and if not, belong to which idle type, we define two equations: First, we
calculate the maximum number of interrupts that can occur during the remaining period with
H = ma · D + ua, 0 < ua ≤ D (constant expression, determined before solving). Based on its
outcome, we know that at most ma + 1 interrupts can happen, whereby the length of the last
slot is ua time units. Second, we determine how many interrupts have to be executed after
the task-set execution with the equation t(taskset) = mb · D + ub, 0 < ub ≤ D (determined
by the solver). Depending on those formulae, we can determine the type of idling for each
sleep index and its length:
1. The last idle phase occurs when i == ma. As ma is predefined by the period and D of

the interrupt, we can predetermine the formula for the last sleep length as well as the
index. Therefore, we do not need an extra variable to indicate that. If ma > mb, then
the total time of the idle phase will be ua. If the last idle phase is also the first idle phase
(ma == mb), then the total time will be ua − ub.

2. The first idle phase occurs when i == mb and i < ma. As mb is only available during
solving, we add a decision variable for the first sleep phase. When mb == ma, there will
not be a single variable meeting this requirement, so there will not be any first sleep
phase (as this is also the last). In every other case, the time available will be D − ub. For
this, we also ensure that we do not schedule an ISR after the last task such that the
ISR is executed at the end of the interrupt deadline.

3. The default idle phase occurs when mb < i < ma. As for the first sleep type, i < ma is
always true for 0 ≤ i < ma, so we only need to check whether mb < i. When mb == ma,
there will not be a single variable meeting this requirement, so there will not be any
intermediate sleep. In every other case, the total maximum time of that idle phase is D.

4. If i < mb, no idle phase can be scheduled since the task set is still in execution. In these
cases, the binary variable for the idle phase is unset.

With these constraints, we can minimize the worst-case energy consumption of our system
if the maximum number of interrupts occurs. Instead of leaving an idle mode after the
predetermined point in time, one could also rely on the chosen target hardware to be woken
up by an interrupt. The reconfiguration time when leaving the chosen idle mode must allow
the execution of the ISR in time. With this optimization, it is possible to save even more
energy if the interrupt occurs less frequently than expected.

Handling at Rearrangement Points. The previous paragraphs detailed the optimization
procedure for a task set. As mentioned previously, there is a rearrangement point after each
task, where, on the one hand the CC can be changed, but we also check whether an interrupt
occurred or not. As the solution of the mathematical optimization problem assumes that

E. Dengler and P. Wägemann 10:13

the maximum number of interrupts is received, the behavior at these RAPs is as follows: If
there is an interrupt to be handled, the system has actually received the maximum number
of interrupts possible so far, and we can continue with the currently optimized plan. If no
interrupt occurred, there might be a better plan to distribute the tasks over the available time,
which additionally enables us to spend more time in the low-power idle modes. Therefore, we
also determine the optimal schedule starting at each RAP, assuming the maximum number
of interrupts occurring from that point in time. Each situation is defined by the number of
tasks already finished, the number of interrupts handled so far, and the remaining time for
the task-set execution. If the execution now reaches a RAP with no interrupt to be executed,
it then switches to the new, better-optimized strategy before starting the next task.

Comparison to Strictly Periodic Task Sets. The topic of managing the clock subsystem
of modern embedded devices is covered by multiple works, the closest related one being
FusionClock [17]. Similar to Crêpe, FusionClock targets energy-consumption reduction
under real-time constraints. However, in contrast to the presented approach of Crêpe,
FusionClock assumes a strictly periodic task set, and therefore lacks any control of handling
interrupts. Crêpe accounts for sporadic interrupts, which arise both during the task-set
execution and the idle phases, and need to be handled with care to not violate any deadline.
Crêpe not only acquires the necessary time to execute but is also able to select one of
the multiple possible execution times and clock configurations for each occurrence. These
dispatching strategies are managed by a table-based scheduling approach, which is favorable
in the context of highly resource-constrained embedded systems [43]. At runtime, Crêpe
considers these tables and decides, depending on the actual presence of an interrupt, whether
to reconfigure the system or not.

Exploiting Three Tradeoffs. From a generic point of view, Crêpe considers three funda-
mental tradeoffs: (1) In the search space of the energy-time tradeoff, Crêpe’s goal is to find
worst-case optimal solutions with the outlined strategy. (2) Crêpe’s table-based scheduling
exploits the memory-performance tradeoff and favors a larger memory footprint for reducing
time/energy effort during runtime. (3) Regarding the offline-online tradeoff, Crêpe shifts
efforts for making scheduling decisions and clock reconfigurations to the system’s offline
phase, which will be further detailed as follows in Section 5.

5 Formalization: Offline Optimization

This section formalizes the informative description of our optimization problem in Section 4.
The table in Figure 7 introduces the variables used in the formula, whereby we follow the
Burns Standard Notation [16] as closely as possible. Each optimization problem at an RAP
is described with the following set of variables: The start task s is the task where the current
RAP is placed before. The current configuration ccurr defines the configuration the system is
in at this RAP. The time H represents the remaining time in the current hyperperiod until
the task set has to be finished with execution. We predetermine H = ma · D + ua, ua > 0.
We also define two helper functions tasks and idle (see Figure 6): tasks([C, E], s, v, w) sums
up the time or energy consumption of all tasks starting from task s up to task v and possible
ISR execution w. idle([C, E]) calculates the overall costs for all idle phases, including all
reconfigurations and ISR executions. The first parameter to both functions describes whether
the WCET (for idle(C)) or the WCEC (for idle(E)) is returned. For tasks, the following
parameters describe the first (s) and the last task (v) to consider, and the last ISR during

ECRTS 2024

10:14 Crêpe: Clock-Reconfiguration–Aware Preemption Control

tasks([C, E], s, v, w) =
∑

c∈Xs

ns,c · [C, E]ccurr→c +
v−1∑
t=s

∑
c∈Xt

nt,c[C, E]t(c)

+
w−1∑
t=s

∑
d∈Xĵ

ot,d[C,E]t(d) +
v−1∑
t=s

∑
c∈Xt

∑
d∈Xĵ

nt,c · ot,d · [C, E]c→d +

w−1∑
t=s

∑
d∈Xĵ

∑
c′∈Xt+1

ot,d ·o(t+1),c′ ·[C, E]d→c′ +
v−1∑
t=s

∑
c∈Xt

∑
c′∈Xt+1

(1−ot)·nt,c ·nt+1,c′ ·[C, E]c→c′

idle([C, E]) =
∑
i∈Î

∑
c∈XN−1

∑
d∈Xî

nN−1,c ·qi,d ·[C, E]c→d +
∑
i∈Î

∑
c∈Xĵ

∑
d∈Xî

ri−1,c ·pi,d ·[C, E]c→d

+
∑
i∈Î

∑
c∈Xî

pi,c·tsi,c·[1, Pi,c] +
∑
i∈Î

∑
c∈Xî

∑
d∈Xĵ

pi,c·ri,d·[C, E]c→d +
∑
i∈Î

∑
c∈Xĵ

ri,c·[C,E]i(c)

Figure 6 Formalization of tasks([C, E], s, v, w) and idle([C, E]).

task execution (w). The tasks function sums up the costs from the current configuration
ccurr to the start task, the costs for all tasks, all ISRs if selected, and the reconfigurations.
The reconfigurations are twofold: if the ISR is active, the costs for reconfiguring from the
task before to the ISR and from the ISR to the following task are added; otherwise, the
costs from the current to the next task. The idle function sums up the reconfiguration from
the last task to the first idle phase, the reconfiguration costs between the idle phases and
the following ISR and vice versa, the execution of the ISR, and the costs of the idle phase
executions.

With these preconditions, we are able to formulate the description from Section 4: We
want to minimize the overall energy consumption (minimize tasks(E, s, N, N − 1) + idle(E))
with the following constraints on the variables:

The total time has to sum up to the remaining time:

H = tasks(C, s, N, N − 1) + idle(C)

For the idle phases, we determine the end of the task-set execution in relation to D:

tasks(C, s, N, N − 1) = mb · D + ub, 0 < ub ≤ D

Per task, exactly one configuration is selected by a binary decision variable:

∀t ∈ T̂ :
∑
c∈Xt

nt,c = 1

After each task, an ISR can be executed (ot = 1) or not (ot = 0):

∀t ∈ Û :
∑

d∈Xĵ

ot,d = ot, ot ∈ {0, 1}

Depending on the task-set execution, an idle phase is active or not:

∀i ∈ Î : pi = min(max(1 + i − mb, 0), 1)

E. Dengler and P. Wägemann 10:15

H remaining time in current period of corresponding task set
N number of tasks in task set
D deadline of interrupt
T̂ ordered set of global indices corresponding to tasks in start-time order;

∀i ∈ T̂ : 0 ≤ i < N

Û ord. set of glob. indices cor. to interrupts in between tasks; ∀i ∈ Û : 0 ≤ i < N − 1
Î ord. set of glob. indices cor. to idle phases; ∀î ∈ Î : 0 ≤ î ≤ ⌈H/D⌉
Xi set of CCs meeting required precedence constraints for task i

respectively also Xî for the idle phases and Xĵ for interrupts
ni,c binary decision variable for configuration c of task i

oi,c binary decision variable for configuration c of interrupt after task i

pi,c binary decision variable for configuration c of idle phase i

qi,c binary decision variable for configuration c of idle phase i, indicating first idle phase
ri,c binary decision variable for configuration c of interrupt during idle phase î

Cı̂(c) WCET of task corresponding to task index ı̂ in configuration c

Cĵ(c) WCET of interrupt corresponding to index ĵ in configuration c

Cc→c′ worst-case time penalty for reconfiguration from c to c′

Eı̂(c) WCEC of task corresponding to global task index ı̂ in configuration c

Ei(c) WCEC of interrupt corresponding to idle index i in configuration c

Ec→c′ worst-case energy penalty for reconfiguration from c to c′

tsi,c duration of idle phase i in configuration c

Pi,c power consumption for configuration c in idle phase i

Figure 7 Overview of the notation used for Crêpe’s formalization.

The first idle phase has an additional constraint:

∀i ∈ Î : qi = min(max(1 + mb − i, 0), 1) · pi

Only one configuration for each active idle phase and the following ISR:

∀i ∈ Î :
∑
c∈Xî

pi,c = pi = ri =
∑

c∈Xĵ

ri,c

We enforce the required amount of ISR executions:

∀w ∈ {x ∈ Û|s ≤ x} : tasks(C, s, w, w − 1) ≥ (
w−1∑
t=s

ot − 1) · D

∀w ∈ {x ∈ Û|s ≤ x} : tasks(C, s, w, w) ≤ (
w−1∑
t=s

ot) · D

Idle times of the idle phases are bounded: ∀i ∈ Î, i < ⌈H/D⌉:

tsi ≤ pi ·D−qi ·ub−
∑

c∈Xĵ

ri,c ·Ci(c)−
∑

c∈Xĵ

∑
d∈Xî

ri−1,c ·pi,d ·Cc→d−
∑

d∈Xî

∑
c′∈Xĵ

pi,d ·ri,c′ ·Cd→c′

Special constraint for the last idle phase: i = ⌈H/D⌉, sel = (1 − min(ma − mb, 1)):

tsi ≤ ua−sel·ub−
∑

c∈Xĵ

ri,c ·Ci(c)−
∑

c∈Xĵ

∑
d∈Xî

ri−1,c ·pi,d ·Cc→d−
∑

d∈Xî

∑
c′∈Xĵ

pi,d ·ri,c′ ·Cd→c′

ECRTS 2024

10:16 Crêpe: Clock-Reconfiguration–Aware Preemption Control

SoC
PCB

Relays

Programming

Figure 8 Crêpe’s testbed.

6 Implementation

To show the usability and feasibility of Crêpe, we implemented our approach for the ESP32-
C3 SoC [18, 19]. After introducing the hardware facts, its advantages, and its disadvantages,
we explain the workflow to generate an optimized binary from a task-set definition.

Evaluation Hardware. The target platform of Crêpe is the ESP32-C3 SoC (shown in
Figure 8). It is a RISC-V single-core processor with configurable CPU clock frequencies up
to 160MHz. One of its core features, making it attractive for Crêpe, is its large number of
available devices, such as WiFi, Bluetooth, SPI, or I2C. Additionally, it offers four different
power modes (i.e., active, modem sleep, light sleep, and deep sleep). Therefore, the ESP32-
C3 offers many possibilities for managing the system’s energy requirements concerning its
activated devices and performance. To evaluate the energy consumption and the timing
behavior of the device under test as accurately as possible, we designed our own PCB.
This circumvents the influence of any interference factors, such as debugging support or
other hardware equipped on development boards, such as LEDs, drawing additional power.
The ESP32-C3 is equipped with 384 kB internal ROM, 400 kB internal SRAM, and 8 kB
RTC memory. The SRAM features single-cycle access to the CPU, making the WCET
analysis of cache-related preemption delays obsolete. Therefore, the ESP32-C3 is sufficiently
deterministic in its timing and energetic behavior to derive a clock-configuration–aware time-
and energy-consumption model (detailed in Section 7.1).

Crêpe’s Workflow. To optimize a task set, Crêpe needs two sets of information. The
first is the information about the possible CCs (timing behavior as clock frequency, energy
consumption) and the reconfiguration costs between two CCs. The second is the detailed
information about the given task set and the occurring interrupt with its ISR. This
corresponds to the possible CCs for each task/the interrupt in combination with the WCET
Ci(c)/Ci(c) as well as the WCEC Ei(c)/Ei(c) for each CC c. With this information, Crêpe
automatically generates a mathematical optimization problem.

A quadratic problem solver determines the solution for all variables. The quadratic
property is necessary since at least the energy costs of the idle phases are described by two
variables: (1) the time actually spent in the idle mode, and (2) the decision variable which
configuration is selected for the corresponding idle phase. We receive the energy consumption
of an idle phase by multiplying these two variables, hence quadratic, with the previously

E. Dengler and P. Wägemann 10:17

5 10 15
0

100

200

300

Task-Set Size

A
na

ly
sis

T
im

e
(s

)

(a) Total runtime of optimizing regime.

5 10 15
0

1,000

2,000

Task-Set Size

#
Sc

he
du

le
s

(b) Number of schedule tables.

Figure 9 Runtime requirements of optimization regime with the Gurobi solver, compared to the
number of necessary schedules being optimized during the generation process.

known constants on the energy consumption of the selected mode. Both variables depend on
the other variables of the system: the length of the current idle phase depends on the selection
of the ISR configuration, and the selected configuration of the idle mode is influenced by the
other parameters of the formalization. Therefore, as these variables cannot be transformed
into linear constraints, the formalization gets quadratic and requires an appropriate solver.
Crêpe transforms the output of the quadratic solver into optimized code. This code consists
of a sequence for each determined schedule per RAP. If a check returns no available interrupt,
the schedule needs to be changed. A goto statement transfers the program flow to the new
schedule. Therefore, Crêpe features the minimal possible online overhead for scheduling
decisions. This code is then compiled into the optimized binary.

7 Evaluation

This section first describes our energy-consumption model used for the evaluation (Section 7.1)
and provides details on the developed testbed (Section 7.2). Then, we present our evaluation
results in Section 7.3, where we also discuss the feasibility and usability of Crêpe.

7.1 Energy-Consumption Model
Unfortunately, none of the manuals of the ESP32-C3 goes into detail about the energy
consumption of the SoC. Therefore, we based our energy consumption model on the worst-
observed power consumption over a set of measurements. To measure the power drawn by
the ESP32-C3, we use a Joulescope JS220 precision DC energy analyzer [32]. It can measure
the current, voltage, and power demand of the device under test. Additionally, one can start
and stop measurements automatically with multiple general-purpose inputs and outputs.
Therefore, it is used both to determine an appropriate energy-consumption model and to
perform the overall evaluation measurements. For our WCEC model, we overestimate the
power consumption of a specific clock configuration by multiplying the maximum observed
power consumption by the time spent in that clock configuration: E(c) = Pmax,c · C(c).
The goal for this is to have a bounding energy model despite the absence of detailed
documentation in the manuals. This linear approach has been shown to be overly pessimistic
for reconfigurations such as entering or leaving sleep modes. Consequently, we determine
these penalties by additional analysis of multiple measurements, still using the worst-observed
power consumption.

ECRTS 2024

10:18 Crêpe: Clock-Reconfiguration–Aware Preemption Control

4 5 6 7 8 9 10 11 12 13 14 150

100

200

300

400

Task-Set Size

M
em

or
y

(K
B)

Figure 10 Total memory requirements of optimized binary for different task sets, including the
operating system and associated components.

7.2 Testbed
For measuring the energy consumption of a device under test, there are many steps to
evaluate a single task set, including several manual interactions, such as (un-)plugging cables
and pressing buttons. We extend the setup of the device under test (i.e., ESP32-C3), the
energy-measurement device (i.e., Joulescope JS220), and the computer (connected to the
SoC with a programming adapter for flashing the binaries) by a USB-controlled relay card
as shown in Figure 8. The relay card modifies the test setup such that the computer can
build and flash new binaries while the device under test is decoupled from the computer to
reduce measurement noise. While this automation is also helpful in avoiding mistakes during
the measurements, the main benefit is that this enables us to test a large number of task
sets without any human interaction.

7.3 Task Sets
In our evaluation, we generate 115 executable task sets with up to 15 tasks. In comparison,
embedded real-time system benchmarks, representative for real-world applications, usually
have around a dozen tasks. Specifically, the DEBIE software has 8 tasks [28], PapaBench
has 13 tasks [44], and the Rosace case study has 10 tasks [47]. Consequently, we consider
our evaluated task-set sizes to be more complex than existing real-world benchmarks for
real-time systems, which is essential to assess the limits of Crêpe.

We generate task sets to test several properties of Crêpe with the following goals in
mind: (1) evaluate the runtime requirements of the optimization procedure, (2) assess the
memory requirements of the schedule tables on the device, and (3) compare our system’s
actual measured energy consumption to a clock-agnostic system. For this, we use an adapted
version of an energy-aware task-set generator [63] based on the UUniFast algorithm [8]. We
allow 5 different CCs for all tasks and ISR executions and additionally add two idle modes
(light sleep, deep sleep) to the possible CCs for the idle phases. The overall period of the
task sets ranges from single-digit millisecond periods up to one second. To simulate different
usage patterns of the devices on the SoC, we assume that interaction with devices consists of
three phases: First, the device senses data from its environment via sensors (e.g., ADCs).
Then, the CPU processes the collected data before the results are used to actuate upon the
computation outcome. This is modeled by dividing the tasks into two groups: 60 % are
device interaction (sensing & actuating), often with a fixed-frequency timing behavior; 40 %
of the tasks model compute-only tasks, heavily depending on the clock frequency of the CPU.
Each of the resulting task sets is optimized and analyzed on hardware.

E. Dengler and P. Wägemann 10:19

0 10 20 30 400

20

40

60

80

Time (ms)

Po
we

r
(m

W
)

(a) Execution with all interrupts.

0 10 20 30 400

20

40

60

80

Time (ms)

Po
we

r
(m

W
)

(b) Execution without any interrupt.

Figure 11 Power traces on the target platform of one task set with three tasks and an interrupt
with deadline D = 10 ms and overall time of 40 ms.

Offline Properties. To solve the optimization problem, Crêpe requires a powerful math-
ematical problem solver capable of solving quadratic problems. We deploy the python
programming interface of Gurobi v11.0.0 [23], which is capable of handling quadratic ex-
pressions, on a machine equipped with an AMD Opteron 6180 SE with a total of 48 cores,
running at 2.5 GHz, with 64 GB of RAM. Figure 9 shows the analysis time of all task sets
for all steps: from reading the configuration data, over optimizing each schedule table, to
writing the optimized code. The smaller task sets, starting at a total of 4 tasks, are solved
in less than 1 s. The largest task sets take more time but are still finished after at most
350 s, which is still a considerable amount of solving time. Therefore, the tradeoff to move
all scheduling decisions into the offline phase to achieve a fast online dispatching scheme is
an acceptable solving time for Crêpe to generate optimized schedule tables.

Memory Requirements. The tradeoff of providing a table-based scheduling approach is
increased memory usage in favor of low runtime overheads. Our selected hardware platform,
the ESP32-C3, has 400 kB of SRAM, which is the maximum possible memory size for a
binary. The possibility exists to also store schedule tables in the ROM, but that was not
necessary in our case. We use the Espressif IoT Development (esp-idf) framework to build
the binaries, which extends the FreeRTOS kernel [52]. Therefore, we analyze the binary size
of the finished binary in Figure 10. With an increasing task-set size, the memory requirements
increase while already being around 150 kB for the smallest task sets. This is due to the
size of the underlying FreeRTOS operating system. Nevertheless, the measured binary sizes
prove the usability of our approach and support a successful tradeoff between the larger
memory footprint and the low time and energy effort during runtime. For SoCs with even
smaller memory sizes, reducing the memory overhead, while thereby likely achieving less
energy-consumption savings, is possible by decreasing the number of RAPs. This topic is
considered future work.

Single Task-Set Evaluation. Before diving into the final evaluation of the energy savings,
Figure 11 describes example executions of a single task set. In the first instance, shown in
Figure 11a, each possible interrupt arrives at the earliest point in time, whereas its minimum
inter-arrival time and deadline is D = 10 ms. As a consequence, the system has to execute
each planned ISR. The first ISR is executed between the first and second jobs, while
the remaining ISRs are executed after an idle section. In the second instance depicted in
Figure 11b, no interrupt occurs. Therefore, the three jobs are executed directly behind each

ECRTS 2024

10:20 Crêpe: Clock-Reconfiguration–Aware Preemption Control

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
0.2
0.4
0.6
0.8

1

Saved Energy due to Crêpe

Utilization

En
er

gy

Figure 12 Crêpe’s achieved energy savings (70 % on average) over the utilization of task sets.

other before the system enters an idle mode. In the end, the system is awake early enough
to handle a possible interrupt, even if none is to be handled, as in this case. These two
approaches, in comparison, show that on top of the energy savings achieved by optimizing the
clock configurations, the different execution strategies –even if this just means substituting
the ISR execution time with an idle mode– can save additional energy, depending on the
actual execution conditions.

Energy Savings in Comparison to Clock-Agnostic Approaches. The final part of our
evaluation compares Crêpe to a clock-agnostic approach. Clock-agnostic describes that the
system under investigation uses its default clock configuration, which allows the execution
of all tasks and does not reconfigure the system at any time. A static, randomly generated
binary sequence defines when an interrupt is available for the execution at a certain time.
For the binaries generated by Crêpe, this means that at each possible reconfiguration point,
there is a check on the existence of an interrupt. If there is one, the current schedule is kept.
Otherwise, the execution strategy is changed to the next schedule table. The clock-agnostic
approach executes the interrupt’s ISR immediately after a task, therefore also preempting
the immediate execution, but without reconfiguring the system. Figure 12 shows the results
for all task sets. On average, Crêpe reduces energy consumption by 70 % while still giving
runtime guarantees. Therefore, this evaluation shows the success of Crêpe in achieving
energy savings while still providing worst-case optimal solutions for both energy and timing
guarantees.

8 Related Work

Our work on Crêpe has two major areas of related work, which are discussed below. However,
to the best of our knowledge, Crêpe is the first approach that tackles preemption control
on modern SoCs with their unique reconfigurability of clocks/devices. The first topic of
related work touches on energy-aware real-time scheduling along with preemption control.
The second paragraph discusses the reconfigurability of modern clocks and the influence of
making use of the clock-distribution network of embedded SoCs.

Energy-Aware Scheduling & Preemption Control. Energy-aware scheduling comprises
a substantial amount of research, and we refer to the survey of Bambagini et al. [7] for a
comprehensive overview. In this context, several works include devices [13, 67, 66], also
referred to as non-DVFS components. However, these works have shortcomings in view
of the complexity of modern clock subsystems: That is, they need to catch up on the
configurability of multiple clock sources and end-device requirements with regard to clock

E. Dengler and P. Wägemann 10:21

configurations in modern SoCs. As a further example, the work of Yang et al. [66] handles
penalties for increasing and later decreasing the clock speed as a single penalty. However,
our evaluations show that different, context-dependent penalties are involved when switching
between arbitrary clock configurations c1 → c2. Crêpe handles such context-dependent
configurations and allows arbitrary transitions between clock settings. Crêpe further makes
use of controlling by deferring preemptions, a topic part of limited preemptive scheduling,
where we refer to the survey of Buttazzo et al. [11]. For Crêpe, we make use of fixed
preemption points [9] termed as rearrangement points, in order to emphasize their possibility
of reconfiguring the entire system’s clock state. We envision that future scheduling approaches
make use of the clock-oriented power model, used by Crêpe, in favor of the frequency-oriented
model to meet the requirements of modern SoCs.

Reconfigurability of Modern Clocks. The reconfigurability of clock subsystems has gained
attention over the last few years, with the works on Power Clocks [15], ScaleClock [54], and
FusionClock [17]. All agree upon the fact that selective clock reconfigurations play a key role
in the time-energy tradeoff on embedded SoCs. While having the same goal –reducing energy
by reconfiguring the clock subsystem– each approach achieves the goal differently: ScaleClock
by exploring the clock subsystem during runtime to build its power model, Power Clocks by
dynamically choosing the most efficient clock, and FusionClock by relying on extensive a-priori
hard- and software analysis. Crêpe builds upon their understanding of the clock-centric
power model and targets the energy-consumption optimization for preemption control.

9 Conclusion

Modern clock subsystems on highly integrated embedded SoC platforms offer a comparably
large configuration space for trading-off between timeliness and energy efficiency. On these
platforms, dynamically reconfiguring clock speeds and even entire clock sources comes with
new challenges and opportunities for energy-aware real-time scheduling beyond the state of
the art on DVFS.

With Crêpe, we bring this reconfigurability together with the presence of interrupts
and an associated preemption-control scheme. Crêpe’s goal is to find worst-case optimal
configurations during the system’s compile time under consideration of possibly occurring
interrupts. At runtime, the actual presence of interrupts is assessed and, based on this
information, different clock configurations are dispatched. Crêpe tolerates comparably long
analysis times during design time in favor of worst-case optimal and task-aware clock settings.
A further tradeoff in Crêpe concerns the memory demand: The offline-determined tables
demand a considerable amount of memory. This tradeoff is in favor of low energy/time
overhead during runtime, meaning the avoidance of complex, performance-intensive online
scheduling. In our evaluation, the analysis durations for representative task-set sizes for our
targeted embedded applications show acceptable effort, with always less than six minutes for
each task set. For our assessing the energy savings of Crêpe, we developed a testbed for
automatically analyzing many task sets: The evaluations show that Crêpe is able to save
around 70 % on average in comparison to clock-agnostic approaches. Crêpe’s software (i.e.,
offline optimizer and runtime system), hardware implementation (SoC board and testbed),
and artifact evaluation are publicly available under an open-source license:

Source code of Crêpe: https://gitos.rrze.fau.de/crepe

ECRTS 2024

https://gitos.rrze.fau.de/crepe

10:22 Crêpe: Clock-Reconfiguration–Aware Preemption Control

References
1 S. Ahmed, B. Islam, K. S. Yildirim, M. Zimmerling, P. Pawełczak, M. H. Alizai, B. Lucia,

L. Mottola, J. Sorber, and J. Hester. The internet of batteryless things. Communications of
the ACM, 67(3):64–73, 2024. doi:10.1145/3624718.

2 Sebastian Altmeyer, Robert I Davis, and Claire Maiza. Cache related pre-emption delay
aware response time analysis for fixed priority pre-emptive systems. Real-Time Systems,
48(5):499–526, 2012. doi:10.1007/s11241-012-9152-2.

3 J. H. Anderson and S. K.. Baruah. Energy-efficient synthesis of periodic task systems upon
identical multiprocessor platforms. In Proceedings of the 24th International Conference on
Distributed Computing Systems (ICDCS ’04), pages 428–435, 2004. doi:10.1109/ICDCS.2004.
1281609.

4 H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Determining optimal processor speeds
for periodic real-time tasks with different power characteristics. In Proceedings 13th Euromicro
Conference on Real-Time Systems (ECRTS ’01), pages 225–232, 2001.

5 Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedro Mejía-Alvarez. Power-aware scheduling
for periodic real-time tasks. IEEE Transactions on Computers, 53(05):584–600, 2004. doi:
10.1109/TC.2004.1275298.

6 C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: An open toolbox for
adaptive WCET analysis. In Proceedings of the 8th International Workshop on Software
Technolgies for Embedded and Ubiquitous Systems (SEUS ’10), pages 35–46, 2010. doi:
10.1007/978-3-642-16256-5_6.

7 Mario Bambagini, Mauro Marinoni, Hakan Aydin, and Giorgio Buttazzo. Energy-aware
scheduling for real-time systems: A survey. ACM Transactions on Embedded Computing
Systems (ACM TECS), 15(1):7:1–7:34, 2016. doi:10.1145/2808231.

8 Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30:129–154, 2005. doi:10.1007/s11241-005-0507-9.

9 Alan Burns. Preemptive priority-based scheduling: an appropriate engineering approach. In
Advances in Real-Time Systems, pages 225–248. Prentice-Hall, Inc., 1995.

10 J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings. Adding instruction
cache effect to schedulability analysis of preemptive real-time systems. In Proceedings of the
2nd Real-Time Technology and Applications Symposium (RTAS ’96), pages 204–212, 1996.

11 Giorgio C. Buttazzo, Marko Bertogna, and Gang Yao. Limited preemptive scheduling for
real-time systems. a survey. IEEE Transactions on Industrial Informatics, 9(1):3–15, 2013.
doi:10.1109/TII.2012.2188805.

12 N. Chang, K. Kim, and H. G. Lee. Cycle-accurate energy consumption measurement and
analysis: Case study of ARM7TDMI. In Proceedings of the International Symposium on Low
Power Electronics and Design (ISLPED ’00), pages 185–190, 2000.

13 Jian-Jia Chen and Tei-Wei Kuo. Procrastination determination for periodic real-time tasks in
leakage-aware dynamic voltage scaling systems. In Proceedings of the International Conference
on Computer-Aided Design (ICCAD ’07), pages 289–294, 2007. doi:10.1109/ICCAD.2007.
4397279.

14 Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John Sartori. Determining
application-specific peak power and energy requirements for ultra-low-power processors. ACM
Transactions on Computer Systems (TOCS), 35(3):9:1–9:33, 2017. doi:10.1145/3148052.

15 Holly Chiang, Hudson Ayers, Daniel Giffin, Amit Levy, and Philip Levis. Power Clocks:
Dynamic multi-clock management for embedded systems. In Proceedings of the International
Conference on Embedded Wireless Systems and Networks (EWSN ’21), pages 139–150, 2021.

16 Robert I Davis. Burns standard notation for real time scheduling. Real-Time Systems: The
past, the present, and the future. N. Audsley, SK Baruah Editors, pages 38–41, 2013.

17 Eva Dengler, Phillip Raffeck, Simon Schuster, and Peter Wägemann. FusionClock: Energy-
optimal clock-tree reconfigurations for energy-constrained real-time systems. In Proceedings
of the 35th Euromicro Conference on Real-Time Systems (ECRTS ’23), volume 262, pages
6:1–6:24, 2023. doi:10.4230/LIPIcs.ECRTS.2023.6.

https://doi.org/10.1145/3624718
https://doi.org/10.1007/s11241-012-9152-2
https://doi.org/10.1109/ICDCS.2004.1281609
https://doi.org/10.1109/ICDCS.2004.1281609
https://doi.org/10.1109/TC.2004.1275298
https://doi.org/10.1109/TC.2004.1275298
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.1145/2808231
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1109/TII.2012.2188805
https://doi.org/10.1109/ICCAD.2007.4397279
https://doi.org/10.1109/ICCAD.2007.4397279
https://doi.org/10.1145/3148052
https://doi.org/10.4230/LIPIcs.ECRTS.2023.6

E. Dengler and P. Wägemann 10:23

18 Espressif Systems. ESP32-C3 Technical Reference Manual, 2022. Pre-release
v0.7. URL: https://www.espressif.com/sites/default/files/documentation/esp32-c3_
technical_reference_manual_en.pdf.

19 Espressif Systems. ESP32-C3 Series Datasheet Ultra-Low-Power SoC with RISC-V Single-
Core CPU, 2023. Version 1.4. URL: https://www.espressif.com/sites/default/files/
documentation/esp32-c3_datasheet_en.pdf.

20 H. Falk and P. Lokuciejewski. A compiler framework for the reduction of worst-case execution
times. Real-time Systems, 46(2):251–300, 2010. doi:10.1007/s11241-010-9101-x.

21 Christian Ferdinand and Reinhold Heckmann. aiT: Worst-case execution time prediction
by static program analysis. Building the Information Society, 156:377–383, 2004. doi:
10.1007/978-1-4020-8157-6_29.

22 Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan, and Haoyi Xiong. Energy-
efficient multi-core scheduling for real-time dag tasks. In Proceedings of the 29th Euromicro
Conference on Real-Time Systems (ECRTS ’17), volume 76 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 22:1–22:21, 2017. doi:10.4230/LIPIcs.ECRTS.2017.22.

23 Gurobi Optimization, LLC. Gurobi optimizer reference manual. https://www.gurobi.com/.
24 Sebastian Hahn, Michael Jacobs, Nils Hölscher, Kuan-Hsun Chen, Jian-Jia Chen, and Jan

Reineke. LLVMTA: An llvm-based wcet analysis tool. In Proceedings of the 20th International
Workshop on Worst-Case Execution Time Analysis (WCET ’22), pages 2:1–2:17, 2022. doi:
10.4230/OASIcs.WCET.2022.2.

25 Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Towards compositionality in execution
time analysis: Definition and challenges. ACM SIGBED Review, 12(1):28–36, 2015. doi:
10.1145/2752801.2752805.

26 Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. The Heptane static worst-case execution
time estimation tool. In Proceedings of the 17th International Workshop on Worst-Case
Execution Time Analysis (WCET ’17), pages 8:1–8:12, 2017. doi:10.4230/OASIcs.WCET.
2017.8.

27 Mark Heene, Susan Hill, and Joseph Jelemensky. Queued serial peripheral interface for use in
a data processing system, 1989. patent.

28 N. Holsti, T. Langbacka, and S. Saarinen. Using a worst-case execution time tool for real-time
verification of the DEBIE software. In Proceedings of the Data Systems in Aerospace Conference
(DASIA ’00), pages 1–6, 2000.

29 N. Holsti and S. Saarinen. Status of the Bound-T WCET tool. In Proceedings of the 2nd
International Workshop on Worst-Case Execution Time Analysis (WCET ’02), pages 36–41,
2002.

30 J.-M. Irazabal and S. Blozis. AN10216-01 I2C MANUAL, 2003.
31 Ramkumar Jayaseelan, Tulika Mitra, and Xianfeng Li. Estimating the worst-case energy

consumption of embedded software. In Proceedings of the 12th Real-Time and Embedded
Technology and Applications Symposium (RTAS ’06), pages 81–90, 2006. doi:10.1109/RTAS.
2006.17.

32 Jetperch LLC. Joulescope JS220 User’s Guide Precision DC Energy Analyzer, 2022. Revision
1.3. URL: https://download.joulescope.com/products/JS220/JS220-K000/users_guide/.

33 Daniel Kästner, Markus Pister, Simon Wegener, and Christian Ferdinand. TimeWeaver: A
tool for hybrid worst-case execution time analysis. In Proceedings of the 19th International
Workshop on Worst-Case Execution Time Analysis (WCET ’19), pages 1:1–1:11, 2019. doi:
10.4230/OASIcs.WCET.2019.1.

34 S. Kerrison and K. Eder. Energy modeling of software for a hardware multithreaded embedded
microprocessor. ACM Transactions on Embedded Computing Systems (ACM TECS), 14(3):56,
2015.

35 Raimund Kirner. The wcet analysis tool CalcWcet167. In Proceedings of the International
Symposium On Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
’12), pages 158–172, 2012. doi:10.1007/978-3-642-34032-1_17.

ECRTS 2024

https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://doi.org/10.1007/s11241-010-9101-x
https://doi.org/10.1007/978-1-4020-8157-6_29
https://doi.org/10.1007/978-1-4020-8157-6_29
https://doi.org/10.4230/LIPIcs.ECRTS.2017.22
https://www.gurobi.com/
https://doi.org/10.4230/OASIcs.WCET.2022.2
https://doi.org/10.4230/OASIcs.WCET.2022.2
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.4230/OASIcs.WCET.2017.8
https://doi.org/10.4230/OASIcs.WCET.2017.8
https://doi.org/10.1109/RTAS.2006.17
https://doi.org/10.1109/RTAS.2006.17
https://download.joulescope.com/products/JS220/JS220-K000/users_guide/
https://doi.org/10.4230/OASIcs.WCET.2019.1
https://doi.org/10.4230/OASIcs.WCET.2019.1
https://doi.org/10.1007/978-3-642-34032-1_17

10:24 Crêpe: Clock-Reconfiguration–Aware Preemption Control

36 Chang-Gun Lee, Hoosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha, Seongsoo Hong,
Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Analysis of cache-related preemption
delay in fixed-priority preemptive scheduling. IEEE Transactions on Computers, 47(6):700–713,
1998. doi:10.1109/12.689649.

37 S. Lee, A. Ermedahl, S. L. Min, and N. Chang. An accurate instruction-level energy consump-
tion model for embedded RISC processors. SIGPLAN Notices, 36(8):1–10, 2001.

38 Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Chronos: A timing analyzer
for embedded software. Science of Computer Programming, 69(1):56–67, 2007. doi:10.1016/
j.scico.2007.01.014.

39 B. Lisper. SWEET – a tool for WCET flow analysis. In Proceedings of the 6th International
Symposium On Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
’14), pages 482–485, 2014. doi:10.1007/978-3-662-45231-8_38.

40 Dominique Méry, Bernhard Schätz, and Alan Wassyng. The pacemaker challenge: Developing
certifiable medical devices (dagstuhl seminar 14062). Dagstuhl Reports, 4(2):17–37, 2014.
doi:10.4230/DagRep.4.2.17.

41 MIPI Alliance, Inc. MIPI I3C & MIPI I3C Basic, 2018.
42 S. Narayana, P. Huang, G. Giannopoulou, L. Thiele, and R. V. Prasad. Exploring energy

saving for mixed-criticality systems on multi-cores. In Proceedings of the Real-Time and
Embedded Technology and Applications Symposium (RTAS ’16), pages 1–12, 2016.

43 Mitra Nasri and Björn B. Brandenburg. Offline equivalence: A non-preemptive scheduling
technique for resource-constrained embedded real-time systems (outstanding paper). In
Proceedings of the Real-Time and Embedded Technology and Applications Symposium (RTAS
’17), pages 75–86, 2017. doi:10.1109/RTAS.2017.34.

44 F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and M. De Michiel. PapaBench: A free real-time
benchmark. In Proceedings of the 6th International Workshop on Worst-Case Execution Time
Analysis (WCET ’06), pages 1–6, 2006.

45 S. Nikolaidis, N. Kavvadias, P. Neofotistos, K. Kosmatopoulos, T. Laopoulos, and L. Bisdounis.
Instrumentation set-up for instruction level power modeling. In Integrated Circuit Design,
pages 71–80, 2002.

46 Santiago Pagani and Jian-Jia Chen. Energy efficient task partitioning based on the single
frequency approximation scheme. In Proceedings of the 34th Real-Time Systems Symposium
(RTSS ’13), pages 308–318, 2013.

47 Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron. The rosace
case study: From simulink specification to multi/many-core execution. In Proceedings of the
19th Real-Time and Embedded Technology and Applications Symposium (RTAS ’13), pages
309–318, 2014. doi:10.1109/RTAS.2014.6926012.

48 James Pallister, Steve Kerrison, Jeremy Morse, and Kerstin Eder. Data dependent energy
modeling for worst case energy consumption analysis. In Proceedings of the 20th Workshop
on Software and Compilers for Embedded Systems, pages 51–59, 2017. doi:10.1145/3078659.
3078666.

49 Peter Puschner, Raimund Kirner, and Robert G Pettit. Towards composable timing for
real-time programs. In Proceedings of the 1st International Workshop on Software Technologies
for Future Dependable Distributed Systems (STFSSD ’09), pages 1–5, 2009. doi:10.1109/
STFSSD.2009.26.

50 Peter Puschner, Daniel Prokesch, Benedikt Huber, Jens Knoop, Stefan Hepp, and Gernot
Gebhard. The t-crest approach of compiler and wcet-analysis integration. In Proceedings
of the 16th IEEE International Symposium on Object/component/service-oriented Real-time
distributed Computing (ISORC 2013), pages 1–8, 2013. doi:10.1109/ISORC.2013.6913220.

51 Phillip Raffeck, Johannes Maier, and Peter Wägemann. WoCA: Avoiding intermittent execution
in embedded systems by worst-case analyses with device states. In Proceedings of the 25th
ACM International Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES ’24), 2024. doi:10.1145/3652032.3657569.

https://doi.org/10.1109/12.689649
https://doi.org/10.1016/j.scico.2007.01.014
https://doi.org/10.1016/j.scico.2007.01.014
https://doi.org/10.1007/978-3-662-45231-8_38
https://doi.org/10.4230/DagRep.4.2.17
https://doi.org/10.1109/RTAS.2017.34
https://doi.org/10.1109/RTAS.2014.6926012
https://doi.org/10.1145/3078659.3078666
https://doi.org/10.1145/3078659.3078666
https://doi.org/10.1109/STFSSD.2009.26
https://doi.org/10.1109/STFSSD.2009.26
https://doi.org/10.1109/ISORC.2013.6913220
https://doi.org/10.1145/3652032.3657569

E. Dengler and P. Wägemann 10:25

52 Real Time Engineers Ltd. The FreeRTOS reference manual: Api functions and configuration
options v9.0.0, 2016.

53 John Regehr and Usit Duongsaa. Preventing interrupt overload. In Proceedings of the 2005
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES ’05), pages 50–58, 2005. doi:10.1145/1065910.1065918.

54 M. Rottleuthner, T. C. Schmidt, and M. Wahlisch. Dynamic clock reconfiguration for the
constrained iot and its application to energy-efficient networking. In Proc. of the International
Conference On Embedded Wireless Systems And Networks (EWSN ’22), pages 168–179, 2023.

55 Y. S. Shao and D. Brooks. Energy characterization and instruction-level energy model of
Intel’s Xeon Phi processor. In Proceedings of the International Symposium on Low Power
Electronics and Design (ISLPED ’13), pages 389–394, 2013.

56 V. Sieh, R. Burlacu, T. Hönig, H. Janker, P. Raffeck, P. Wägemann, and W. Schröder-
Preikschat. An end-to-end toolchain: From automated cost modeling to static WCET and
WCEC analysis. In Proceedings of the 20th International Symposium on Real-Time Distributed
Computing (ISORC ’17), pages 1–10, 2017. doi:10.1109/ISORC.2017.10.

57 Philip Sparks. White paper: The economics of a trillion connected devices, 2017.
58 Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic task scheduling for hard-real-time

systems. Real-Time Systems, 1:27–60, 1989. doi:10.1007/BF02341920.
59 V. Tiwari and M. T.-C. Lee. Power analysis of a 32-bit embedded microcontroller. VLSI

Design, 7(3):225–242, 1998. doi:10.1155/1998/89432.
60 D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla. Worst-case energy consumption: A new

challenge for battery-powered critical devices. IEEE Transactions on Sustainable Computing,
pages 1–8, 2019. doi:10.1109/TSUSC.2019.2943142.

61 Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-
Preikschat. Whole-system worst-case energy-consumption analysis for energy-constrained
real-time systems. In Proceedings of the 30th Euromicro Conference on Real-Time Systems
(ECRTS ’18), volume 106, pages 24:1–24:25, 2018. doi:10.4230/LIPIcs.ECRTS.2018.24.

62 Peter Wägemann, Tobias Distler, Timo Hönig, Heiko Janker, Rüdiger Kapitza, and Wolfgang
Schröder-Preikschat. Worst-case energy consumption analysis for energy-constrained embedded
systems. In Proceedings of the 27th Euromicro Conference on Real-Time Systems (ECRTS
’15), pages 105–114, 2015. doi:10.1109/ECRTS.2015.17.

63 Peter Wägemann, Tobias Distler, Heiko Janker, Phillip Raffeck, Volkmar Sieh, and Wolfgang
Schröder-Preikschat. Operating energy-neutral real-time systems. ACM Transactions on
Embedded Computing Systems (ACM TECS), 17(1):11:1–11:25, 2017. doi:10.1145/3078631.

64 Simon Wegener, Kris K. Nikov, Jose Nunez-Yanez, and Kerstin Eder. EnergyAnalyzer: Using
static wcet analysis techniques to estimate the energy consumption of embedded applications.
In Proceedings of the 21th International Workshop on Worst-Case Execution Time Analysis
(WCET ’23), pages 9:1–9:14, 2023. doi:10.4230/OASIcs.WCET.2023.9.

65 Ruibin Xu, Dakai Zhu, Cosmin Rusu, Rami Melhem, and Daniel Mossé. Energy-efficient
policies for embedded clusters. ACM SIGPLAN Notices, 40(7):1–10, 2005. doi:10.1145/
1065910.1065912.

66 C.-Y. Yang, J.-J. Chen, T.-W. Kuo, and L. Thiele. Energy reduction techniques for systems
with non-dvs components. In Proceedings of the IEEE Conference on Emerging Technologies
& Factory Automation (ETFA ’09), pages 1–8, 2009. doi:10.1109/ETFA.2009.5347153.

67 Chuan-Yue Yang, Jian-Jia Chen, and Tei-Wei Kuo. Preemption control for energy-efficient
task scheduling in systems with a dvs processor and non-dvs devices. In Proceedings of the 13th
International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA ’07), pages 293–300, 2007. doi:10.1109/RTCSA.2007.56.

ECRTS 2024

https://doi.org/10.1145/1065910.1065918
https://doi.org/10.1109/ISORC.2017.10
https://doi.org/10.1007/BF02341920
https://doi.org/10.1155/1998/89432
https://doi.org/10.1109/TSUSC.2019.2943142
https://doi.org/10.4230/LIPIcs.ECRTS.2018.24
https://doi.org/10.1109/ECRTS.2015.17
https://doi.org/10.1145/3078631
https://doi.org/10.4230/OASIcs.WCET.2023.9
https://doi.org/10.1145/1065910.1065912
https://doi.org/10.1145/1065910.1065912
https://doi.org/10.1109/ETFA.2009.5347153
https://doi.org/10.1109/RTCSA.2007.56

	1 Introduction
	2 Background & System Model
	3 Problem Statement
	3.1 Problem # 1: Power-State–Unaware Preemptions
	3.2 Problem # 2: Clock-Agnostic Preemption Control
	3.3 Problem # 3: Complexity of Online Scheduling

	4 The Crêpe Approach
	5 Formalization: Offline Optimization
	6 Implementation
	7 Evaluation
	7.1 Energy-Consumption Model
	7.2 Testbed
	7.3 Task Sets

	8 Related Work
	9 Conclusion

