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Abstract
This paper presents a real-time locking protocol whose design was motivated by the goal of enabling
safe GPU sharing in time-sliced component-based systems. This locking protocol enables a GPU to
be shared concurrently across, and utilized within, isolated components with predictable execution
times. It relies on a novel resizing technique where GPU work is dimensioned on-the-fly to run on
partitions of an NVIDIA GPU. This technique can be applied to any component that internally
utilizes global CPU scheduling. The proposed locking protocol enables increased GPU parallelism
and reduces GPU capacity loss with analytically provable benefits.
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1 Introduction

Advances in computationally intensive AI and ML workloads require state-of-the-art hardware
capable of providing significant parallelism. GPUs meet the demands of such work, which
would otherwise execute too slow on general-purpose CPUs. When supporting such intensive
workloads on computationally diverse hardware platforms composed of both multicore CPUs
and GPUs, certifying real-time safety can be challenging. One way to ease this challenge
is by breaking a large monolithic system into separate components that can be validated
independently. However, such an approach requires some means for safe GPU sharing, both
across components and by tasks within the same component.

Unfortunately, how a GPU can be safely shared in this way is not clear. Components
require isolation guarantees that necessitate judicious management of compute resources,
such as CPUs and GPUs. A shared GPU makes isolation guarantees difficult, as GPU work
in one component may slow other concurrent GPU work in other components. Requiring
each component to have a dedicated GPU largely solves interference concerns, but such a
solution may require an excessive number of GPUs that will likely be underutilized. Efficient
GPU usage is crucial as size, weight, and power, and cost (SWaP-C) constraints may inhibit
the ability to add more hardware.
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15:2 Predictable GPU Sharing in Component-Based Real-Time Systems

Additional concerns stem from how a component may internally utilize a GPU. Coarse-
grain locking of the entire GPU enables predictable execution times but comes at the cost
of inefficient utilization. This utilization loss is suffered when tasks block on one another
when waiting for exclusive GPU access. Reliably and efficiently meeting the increasing
computational demands of modern systems motivates designing a fine-grain real-time locking
protocol that realizes concurrent GPU sharing and can be accommodated using existing
real-time schedulability-analysis techniques.

Fine-Grain GPU Sharing. Existing methods for predictable GPU sharing require modifying
the GPU-side workload to achieve temporally isolated access to the full GPU [13, 20, 15]. In
such methods, GPU code, which is typically non-preemptive, must be modified to stop and
resume within allotted access times. Other recently proposed methods allow concurrently
scheduled GPU work by limiting what can be co-scheduled [16, 21]. In these methods,
interference from co-scheduled work can be mitigated analytically by always assuming the
worst observed interference.

Recent work on libsmctrl [3] enables GPU sharing by spatially partitioning the com-
pute units on an NVIDIA GPU. That work enables the allocation of individual streaming
multiprocessors (SMs). An SM consists of a set of processing elements (CUDA cores) and is
the basic unit of hardware compute allocation on an NVIDIA GPU. Using libsmctrl [3]
has the benefit of not requiring GPU workload modifications. Instead, only the manner in
which CPU-side code launches GPU work changes. However, to enable the safe concurrent
execution of work on a spatially partitioned GPU, some mechanism for allocating a GPU’s
internal processing elements is needed.

When a component is guaranteed access to a set of SMs, a locking protocol can be utilized
within the component for fine-grain exclusive locking of individual SMs. However, current
locking protocols are ill-suited for doing this. Coarse-grain locks on the entire GPU do not
efficiently utilize the available compute capacity. Simple mutex-based locks on SMs do not
allow work to run on any SM available. A k-exclusion lock, where a lock is placed on any
k SMs, results in inefficient GPU utilization as a job must wait for its specified number of
SMs to become available. In contrast, libsmctrl [3] can initiate work on any number of
available SMs. To exploit this feature, a locking protocol is needed that allows GPU work to
be dimensioned on-the-fly to fit on the available SMs.

This work proposes the Streaming Multiprocessor Locking Protocol (SMLP), a fine-grain
SM locking protocol for systems implemented within time-sliced, isolated components. Shown
in Fig. 1 is a component-based system where jobs (CPU-side work) in component A initiate
GPU-side work on SMs allocated by the SMLP. Job J1 utilizes all SMs available to A but
cannot utilize SM2 as it is guaranteed to component B. Assume J2 does not benefit from
being allocated more than one SM. In this case, the SMLP allocates only one SM to J2,
efficiently matching its compute requirements. As shown by J3, the SMLP may also delay
GPU-side work if it cannot finish before the end of its component’s current time slice.

This work extends TimeWall [1], a component-based scheduling framework, to enable
efficient GPU sharing across components. Within a component, the SMLP employs a novel
resizing technique where arriving GPU work is dynamically pinned to available SMs using
libsmctrl [3]. We specifically analyze globally scheduled job-level fixed-priority (JLFP) task
systems within a component. We analytically derive bounds on priority-inversion blocking
(pi-blocking), i.e., the duration for which a task is delayed by lower-priority tasks. We prove
that pi-blocking under the SMLP is lower than existing coarse-grain GPU locking protocols.
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Figure 1 An example schedule with three components, A, B, and C. Components A and B run
concurrently and are allocated distinct SMs within the same GPU. Shown within component A are
jobs that utilize the allocated SMs. Efficiency is improved by allowing J4 access to unallocated SMs.

Related Work. Brandenburg and Anderson [8] presented suspension-oblivious (s-oblivious)
pi-blocking analysis where waiting realized by suspending is viewed as processor execution
time in JLFP schedulability analysis. They also proved a per-lock-request pi-blocking lower
bound of Ω(m), where m is the processor count. Therefore, O(m) per request pi-blocking is
asymptotically optimal. Minimizing pi-blocking durations is desirable as inflating execution
times to account for pi-blocking may result in an unschedulable system.

Component-based systems are not new [2, 4, 5, 6], but due to space constraints, we limit
our focus to the most relevant prior work. In avionics, ARINC 653 [17] details real-time
operating system design specifications for enabling hardware sharing in component-based
systems. It requires components to execute in time slices, uninterrupted durations during
which isolated access to hardware resources is guaranteed. Amert et al. [1] proposed a
component-based framework for multicore+accelerator platforms called TimeWall (Time-
Isolated Multicore Execution With AcceLerator Locking), which is directed at time-sliced
components as in ARINC 653. TimeWall does not allow concurrent cross-component GPU
sharing and instead allocates entire GPUs to components. Voronov et al. [19] presented
schedulability analysis for processing graphs (as often found in AI and ML workloads) within
component-based frameworks like TimeWall. They also derived asymptotically optimal
intra-component pi-blocking bounds for coarse-grain accelerator locking.

Bakita and Anderson [3] created libsmctrl, a library that allows GPU work to be
launched on a subset of SMs in NVIDIA GPUs. Due to the highly parallel nature of GPU
work, GPU execution time is a function of the number of SMs that service that work.
However, the number of SMs that can be effectively used hinges on the extent of parallelism
in said work, as shown in Sec. 6. As such, any greedy strategy that utilizes the maximum
number of SMs available will not necessarily yield reduced GPU execution costs.

Contributions. We consider the problem of sharing GPUs across isolated components.
First, we extend TimeWall [1] to enable concurrent cross-component GPU sharing through

SM reservations. Second, we present the Streaming Multiprocessor Locking Protocol (SMLP), a
locking protocol that dynamically resizes GPU requests to enable concurrent GPU utilization.
Third, we derive a pi-blocking bound for jobs within a component. Finally, we discuss the
results of experiments conducted to assess the pi-blocking reductions enabled by the SMLP.
Our experiments show that the SMLP improves worst-case pi-blocking by up to 50%.
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15:4 Predictable GPU Sharing in Component-Based Real-Time Systems

Figure 2 A simplified diagram of an NVIDIA GPU. Hardware manufacturing errors may result
in disabled SMs in a TPC, shown by the crossed out SM.

Organization. In Sec. 2, we provide background information necessary to analyze the SMLP.
In Sec. 3, we present rules describing the SMLP. In Sec. 4, we derive analytical pi-blocking
bounds using the previously established rules. In Sec. 5, we detail SM allocation strategies
that reduce execution time on the GPU when allocated relatively few SMs. In Sec. 6, we
discuss the results of experiments conducted to evaluate pi-blocking under the SMLP.

2 System Model and Background

In this section, we present relevant background work and definitions needed to analyze the
problem of locking SMs in a component-based system.

GPU Architecture. Fig. 2 depicts the high-level architectural layout of an NVIDIA GPU.
General Processing Clusters (GPCs) contain Thread Processing Clusters (TPCs). Each TPC
contains the SMs that execute a GPU kernel, code that runs on the GPU. An SM is a highly
parallel processor composed of many concurrent threads of execution. The GPU’s VRAM is
the last level cache of memory shared by all GPCs. This memory is connected to the GPCs
through the memory crossbar. The memory crossbar also connects the GPU to the rest
of the system (e.g., CPUs, storage, etc). Also shown in the figure are the encode, decode,
and copy engines respectively used for video encoding, decoding, and asynchronous memory
copying. Some NVIDIA GPUs do not group SMs into TPCs. Such architectures can be
abstracted away by assuming that a TPC contains one SM.

SM Partitions. We partition an NVIDIA GPU along SM boundaries, where kernels may be
pinned to TPCs as enabled by libsmctrl [3]. There may be hardware manufacturing errors
where not all TPCs contain the same number of SMs, as shown in Fig. 2 where one SM is
disabled. Therefore, we reason that GPU execution time is contingent upon the number
of SMs that service a launched kernel rather than TPCs of varying compute capacity. As
a simplifying assumption, we assume each TPC contains the same number of SMs. For
example, most NVIDIA GPUs released in the last decade contain two SMs per TPC. The
analysis presented herein allows for two TPCs with one SM each to act as one TPC, but we
do not track such bookkeeping. Additionally, we show how unused, non-uniform TPCs can
improve safety margins by reducing average execution time in Sec. 5. Currently, libsmctrl
does not allow TPC allocations to be changed for a launched kernel. In our pi-blocking
analysis, we assume the same non-preemptable limitation.
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Partitioning a GPU along SM boundaries does not preclude the use of established analysis
techniques for kernel execution times. When kernels utilize the encode, decode, or copy
engines, Elliott [10] showed how a kernel’s execution time can be analytically inflated by
giving each concurrently running kernel round-robin use of the engine for one chunk of
memory at a time. In this work we assume such GPU overheads, like data copying and
decoding, takes zero time as a simplification. Also, VRAM access times can be made
predictable through using spatial partitioning techniques and associated analysis [3, 10].
SM partitioning is orthogonal to the usage of these various other techniques, so we do not
consider them further.

Component Model. The TimeWall [1] framework defines a component Γ as a tuple (Θ, Π, Υ).
Component Γ requires access to the hardware resources specified in Υ. We require Υ to
specify M and H such that Γ is guaranteed exclusive access to M specific CPUs1 and H
specific SMs. The parameters Θ and Π define a periodic component reservation (PCR) [1]
where Γ is scheduled for an uninterrupted time slice duration of Θ, and each time slice begins
every Π time units. We define Φ as the start time of Γ’s most recent time slice. When Γ is
not scheduled, the resources in Υ may be allocated to other components that also require
exclusive, isolated access.

In-Partition Task Model. Within a component is its in-partition scheduler, which schedules
work that utilizes the resources in Υ. We characterize this work as a system of n sporadic
tasks τ1, τ2, ..., τn scheduled on M identical processors. Each task τi releases jobs Ji,1, Ji,2, ...

where an arbitrary job of τi is given by Ji. A task τi has parameters (Ci, Ti, Di), which
respectively denote its worst-case CPU execution cost, the minimum separation between its
successive job releases, and the relative deadline by which each of its jobs must complete
after release. We say that a job is pending from its release until it finishes execution. A
pending job may be in one of two states: a ready job is available for execution, while a
suspended job cannot be scheduled. Henceforth, all mentioned jobs are assumed to be in the
same component Γ unless stated otherwise. Also, we assume time is discrete.

A job’s priority determines whether it is scheduled in favor of other jobs in its component.
We focus our analysis to job-level fixed-priority (JLFP) in-partition scheduling where a
job’s priority is fixed upon release. We say that job Ji blocks on Jk at time t when Jk

holds mutually exclusive access to resources required by Ji. A locking protocol can modify
a job’s initial priority to achieve bounded blocking times. Under s-oblivious analysis [8],
the pi-blocking of an arbitrary job Ji is the duration when Ji makes no progress towards
completion, and the delay cannot be attributed to higher-priority work.

▶ Definition 1. Under s-oblivious schedulability analysis, a job Ji incurs s-oblivious pi-
blocking at time t if Ji is pending but not scheduled and fewer than M higher-priority jobs
are pending.

Under the SMLP, pi-blocking occurs when Ji has sufficient priority to be scheduled on
its CPU but is prevented from launching GPU kernels. The pi-blocking duration is then
analytically viewed as CPU execution time. By adding the worst-case GPU execution time
and pi-blocking duration to a job’s worst-case execution cost on the CPU, the analysis
presented herein is compatible with years of established real-time schedulability analysis. As
the overarching goal is to ensure that all jobs meet their deadline, any inflation to execution
costs should be bounded.

1 We use the term “CPU” somewhat interchangeably to mean a specific CPU core and the entire set of
such cores. The intent should be clear from context.

ECRTS 2024
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Figure 3 Request timeline. Figure 4 Forbidden-zone blocking where R3

would violate B’s isolation guarantees if satisfied.

Resource Model. Let L be the set of H identical SMs allocated only to Γ during its time
slice. An arbitrary job, Ji, may issue a request, Ri, to launch a GPU kernel pinned to
some subset of SMs in L. The locking protocol may delay Ji’s request to initiate GPU
work, where this acquisition delay may contribute to pi-blocking. In the SMLP, jobs realize
waiting by suspending and relinquishing any held CPU. The locking protocol satisfies Ri

with exclusive access to a set of SMs upon which Ji may launch its GPU kernel. We only
consider synchronous kernels that run uninterrupted on the GPU while the initiating CPU
job suspends and is ineligible to be scheduled on the CPU until the kernel is complete.

Fig. 3 illustrates the timeline of a request Ri. The critical-section duration is the GPU
kernel’s execution duration. The request Ri is complete when the GPU kernel completes.
When complete, Ji may lack sufficient priority to be scheduled, thus being unable to execute
an unlock procedure on the CPU. We consider Ri finalized the first moment when Ri is
complete and Ji is scheduled. In the analysis presented in Sec. 4, we consider the critical-
section duration as CPU time (in keeping with s-oblivious analysis). We define Lmax as the
largest critical-section duration of any GPU kernel launched by jobs in Γ.

Forbidden Zones. Shown in Fig. 4 is an example where a launched kernel’s execution time
exceeds the remaining time in its component’s time slice. In this example, R3 in component
A is satisfied and launches a non-preemptible kernel on SM0 and SM1 that executes when
component B is scheduled. If jobs in component B access these SMs, the interference caused
by non-exclusive SM access may result in missed deadlines.

To prevent this scenario, a job is forbidden to launch non-preemptible work that would
violate isolation guarantees. This forbidden-zone blocking (fz-blocking) is not new and has
been explored in many earlier works [1, 4, 5, 12, 19]. Component-based frameworks such as
TimeWall [1] utilize fz-blocking to guarantee isolated access to non-preemptible hardware
accelerators such as GPUs.

Priority Inheritance. Under global JLFP in-partition scheduling, a job Ji is scheduled on
one of M processors when Ji is ready at that time and its priority is among the M highest
priorities in Γ. If Ji issues a lock request and no SMs are available, then a progress mechanism
ensures Ji makes progress towards acquiring SMs.

Suppose within Γ that the priority of Ji is within the top M priorities at time t, and
Ji issues a request Ri for SMs when all SMs in L are allocated to other satisfied requests.
Further, suppose that a lower-priority job, Jk, does not have a priority in the top M priorities
at time t and is not scheduled but has a completed request that has not been finalized. The
SMLP utilizes the priority inheritance [18] progress mechanism to allow Jk to inherit Ji’s
priority so that Jk can execute its CPU-side unlock code.
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Figure 5 Left: the global OMLP queues where a priority queue feeds into an M-length FIFO
queue. Right: the SMLP queues where the SQ (Satisfied Queue) is not a FIFO queue.

This work builds upon the global OMLP (the O(M) locking protocol) [8] as requests
arrive at a priority queue feeding into an M-length FIFO queue. The OMLP has an optimal
pi-blocking bound of O(M) [8] when used in a component-based scheduler [19]. A request is
only satisfied when at the head of the FIFO queue. The SMLP builds on the OMLP queues
and allows multiple requests to be concurrently satisfied. Specifically, the SMLP satisfies
requests earlier than a k-exclusion lock by launching GPU kernels on any available number
of SMs rather than requiring requests to specify and wait for a specific number of SMs to
become available. Fig. 5 provides a comparison of the OMLP and SMLP queues.

3 The SMLP

We now introduce the Streaming Multiprocessor Locking Protocol (SMLP). We first provide
additional definitions and properties used to compose the rules of the SMLP. Then, we
describe how the SMLP functions in a global JLFP system without time slicing. Lastly, we
define rules that enable component-level isolation.

A job Ji in Γ may issue a lock request Ri to launch a GPU kernel. Much like the OMLP,
Ri first arrives in the priority queue (PQ) that feeds into the M-length FIFO queue (FQ).
In the SMLP, the FQ is followed by another arrival-ordered queue called the Satisfied Queue
(SQ). When Ri is satisfied with an SM allocation, Ji may launch its GPU kernel pinned to
the allocated SMs and Ri moves to the SQ until finalized. When finalized, Ri is removed
from the SQ and the held SMs are unlocked.

Satisfied Queue. The SQ is not a FIFO queue. Any request arriving in the SQ is ordered
by its arrival time, where some consistent tie-breaking mechanism may be employed to ensure
that no two requests occupy the same position. However, satisfied requests in the SQ may
complete, finalize, and leave earlier than preceding requests. Thus, the SQ is first-in ordered,
but is not first-out.

Analysis Assumptions. The lock and unlock procedures for the SMLP are assumed to take
ε time, where strictly for analysis purposes, we assume that ε → 0. We later show how
the unlock code is subject to priority inheritance, such that, at any time after a job with a
completed request incurs pi-blocking on another job, then the request is finalized in ε time.

▶ Definition 2. Let each Γ define a positive integer h that divides H. Each request in Γ will
be satisfied with some multiple of h SMs.

We show in Sec. 5 that h can be configured to reduce the critical-section duration of requests
that exhibit lengthy execution times under small SM allocations.

▶ Definition 3. Each request Ri defines an ordered set Li = {Li,h, Li,2h, ..., Li,H}. Each
Li,k represents the worst-case critical-section duration of Ri when Ri is satisfied with k SMs.

ECRTS 2024
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When more SMs are allocated to a request, the critical-section duration is shorter. However,
this trend ceases when an SM allocation exceeds the parallelism requirements of Ri.

▶ Example 4. Consider a GPU kernel that performs vector addition on two vectors of length
2,048. Each SM contains 1,024 threads, and for the purpose of this example, each SM can
perform 1,024 additions in parallel per cycle. When the kernel is allocated one SM, two
cycles are required to perform the 2,048 additions. When the kernel is allocated two SMs,
only one cycle is required to perform the additions as each SM performs addition on half
of the vectors. However, when the kernel is allocated more than two SMs, the kernel still
requires one cycle to complete, wasting the additional parallelism provided by the extra SMs.
Thus, excessive SM allocations result in GPU capacity loss where those SMs could have been
allocated to other requests.

To prevent allocating more SMs than necessary, we must impose some restrictions on the
SM allocations used to satisfy requests. We first define a set that contains the SMs in Γ not
allocated to any request at time t. Then, we apply an upper bound on how many of those
SMs can be allocated to Ri.

▶ Definition 5. Let I(t) be the set of SMs not allocated to any job at time t, where I(t) ⊆ L.

▶ Definition 6. Let zi(t) be an upper bound on the number of allocable SMs to an unsatisfied
request Ri at time t where zi(t) ≤ |I(t)|.

The goal of zi(t) is to prevent large SM allocations where additional SMs make no
meaningful improvement in critical-section duration. One method of deriving zi(t) is to find
the minimum number of SMs, j, where Li,j ≈ Li,|I(t)|. We leave such optimizations of zi(t)
to the system designer to ensure that Ri is allocated at most the minimal number of SMs
that appropriately satisfy its parallelism requirements.

3.1 SMLP Resizing Technique
We first define the SMLP with Rules 1–5 when there is no time slicing by assuming Γ has an
infinite duration (Θ = ∞). In such a component, according to Rule 1 below, when a request
is satisfiable, it is provided with an SM allocation and moved to the SQ. Later, when we
introduce time slicing in Sec. 3.2, we will see that a satisfiable request may not necessarily
be immediately satisfied.

▶ Rule 1. A newly issued request Ri at time t is immediately satisfiable if |I(t)| ≥ h. If SMs
are unavailable (|I(t)| < h), then Ri is appended to the FQ if fewer than M total requests
exist in the FQ. Otherwise, Ri is added to the PQ.

This rule implies that a newly arriving request can be immediately allocated SMs and
moved to the SQ if h or more SMs are available. This can allow for more than M concurrent
requests to be satisfied in the SQ if H > M.

The next rule describes the resizing technique of the SMLP to allow GPU kernels to
execute on any number of SMs, as enabled by libsmctrl [3], while also avoiding excessive
allocations that do not match the parallelism requirements of that request’s kernel.

▶ Rule 2. When Ri enters the SQ at time t, it is satisfied with zi(t) SMs.

To reduce the GPU capacity loss of Ex. 4, the SMLP may satisfy Ri with fewer than
|I(t)| SMs where zi(t) ensures the capacity allocated does not exceed Ri’s parallelism needs.
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Figure 6 Timeline of events in Ex. 8 that illustrate both the necessity of priority inheritance and
the operation of Rules 1–4.

Priority Inheritance. In the SMLP, we exploit the following property of non-preemptible
GPU execution to ensure the progress of jobs with satisfied requests.

▶ Property 7. A satisfied, incomplete request Ri continues to execute on the GPU at any
time t until completion, even if Ji’s CPU priority is not among the top M. As GPU time is
analytically viewed as CPU time, Ji continues to make progress even when not scheduled on
the CPU.

In conjunction with Prop. 7, we show how priority inheritance can be applied to ensure
that jobs with completed kernels promptly execute their CPU-side unlock code.

▶ Rule 3. A job Ji with a request Ri is suspended on the CPU if Ri is in the PQ or FQ. If
completed requests exist in the SQ, then let Rk denote the one with the earliest completion
time, where ties are broken by SQ position. If Jk is not in the top M CPU priorities, then
Jk inherits the CPU priority of the highest-priority suspended job in the SQ, FQ, or PQ.

A key property of this rule is that priority inheritance is only applied to one job whose
request is in the SQ. This is done to expedite the execution of its CPU-side unlock code after
its GPU kernel is complete. If the inherited priority is not in the top M priorities of Γ at
that time, then none of the jobs with requests in any queue are experiencing pi-blocking.

Prop. 7 is sufficient to ensure that any satisfied request Ri makes progress towards
completion on the GPU whether or not its job Ji is scheduled on the CPU. With such a
progress property, why is priority inheritance needed in Rule 3? While Prop. 7 ensures that
Ri makes progress, requests waiting on Ri can still be delayed after Ri completes without
priority inheritance.

▶ Example 8. Consider Fig. 6 where for component Γ, h = 1, M = 2, and H = 3. At t = 0,
|I(t)| = H, and there are no requests in Γ. At t = 1, job J1 is released, and immediately
issues R1, where L1 = {5, 3, 3}. By Rule 1, R1 is appended to the SQ, and by Rule 2, it is
satisfied with two SMs as z1(1) = 2, which means that R1 cannot benefit from any additional
parallelism. At t = 2, job J2 is released with a higher priority than J1, and immediately
issues R2, where L2 = {3, 2, 1}. By Rule 1, R2 is also appended to the SQ, and by Rule 2, it
is satisfied with the only remaining SM. At t = 3, a job J3 is released with a higher priority

ECRTS 2024
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than J1 and J2, and immediately issues R3 where L3 = {3, 1, 1}. By Rule 1, since |I(3)| = 0
and the number of requests in the FQ is less than M, R3 is appended to the FQ. At t = 4,
R1 completes. If no progress mechanism is used, then J1 does not have sufficient priority to
be scheduled on the CPU to unlock the available SMs at time t = 4. In this case, SMs are
idle and J3 is among the M highest priority jobs, but R3 is not satisfied. Since R3 can be
satisfied using the two available SMs at t = 4, J3 thus experiences unnecessary pi-blocking.
With Rule 3, J1 inherits the priority of J3 and has sufficient priority to be scheduled on the
CPU to unlock the SMs needed by J3, allowing R3 to be satisfied.

Priority inheritance in Rule 3 ensures that the job belonging to the first completed
request in the SQ inherits the highest priority of all jobs in the SMLP queues, thus avoiding
unnecessary pi-blocking. Should two requests in the SQ complete simultaneously, they can
be consistently tie-broken by their position in the SQ. As such, the SMLP relies on the fact
that the CPU-side unlock code inevitably has to run sequentially, one job at a time.

When a job Ji relinquishes its lock after its request Ri completes, we say that Ri is
finalized. From Rule 3, we have the following property.

▶ Property 9. A request Ri is finalized and leaves the SQ at the first time instant after Ri

is complete and Ji’s base or inherited priority is among the M highest in Γ.

The next two rules describe how the SMLP queues function to ensure requests are satisfied
without undue pi-blocking.

▶ Rule 4. At any time t when |I(t)| ≥ h, the head request in the FQ (if any) is satisfiable.

▶ Rule 5. At any time t, if there exist fewer than M requests in the FQ, then the head
request in the PQ (if any) is enqueued in the FQ.

Note that Rules 4 and 5 are applied each time a request is finalized as SMs become
available and the number of requests in the SQ changes. The operation of the above rules
are demonstrated by the following example. This example is a continuation of Ex. 8.

▶ Example 10. Consider the same job arrivals and request parameters as Ex. 8. At t = 4,
R1 completes, inherits a higher priority from Rule 3 and is finalized. By Rule 4 because
|I(4)| = 2, R3 is also satisfied and moved to the SQ. By Rule 2, R3 becomes satisfied with
two SMs, thus removing the unnecessary pi-blocking.

From Ex. 10, we see that after a request Ri is finalized at time t, |I(t)| is at least h.
Thus, Rules 4 and 5, in conjunction with Rule 2, guarantee that the request at the head
of the FQ is satisfied when |I(t)| ≥ h and Γ is not time sliced. As requests are resized by
Rule 2 to “fit” in the available SMs at time t, we eliminate starvation by always satisfying
requests when SMs are available.

3.2 SMLP with Time Slicing
Rules 1–5 describe the operation of the SMLP under a global JLFP in-partition scheduler.
For the locking protocol to additionally maintain component-level isolation, a GPU kernel in
a component must not execute past its component’s time-slice boundaries. To provide such
guarantees, we extend the concept of forbidden zones from TimeWall [1].

▶ Definition 11. A request Ri in the FQ or PQ is fz-blocked at time t and cannot be
satisfied when t + Li,zi(t) > Φ + Θ, where zi(t) ≤ |I(t)| from Def 6.
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In Fig. 4, a request in its forbidden zone is satisfied and violates component-level isolation
guarantees. Def. 11 describes when such a request should be fz-blocked to prevent a non-
preemptable GPU kernel from executing past the component’s scheduled time slice. The
next rule details how requests are satisfied and enter the SQ with respect to fz-blocking.

▶ Rule 6. A satisfiable request from Rule 1 or 4 is satisfied and moved to the SQ when not
fz-blocked. Additionally, Rule 4 is applied when t = Φ to ensure queued requests are satisfied
when Γ’s time slice begins.

The next rule enables a skip-ahead mechanism where later-arriving or lower-priority
requests may be satisfied earlier to reduce worst-case pi-blocking time.

▶ Rule 7. In Γ, if Ri is satisfiable at time t by Rules 1 or 4, and is fz-blocked, then the first
request Rk in the FQ (or first by job priority in the PQ if no such request exists in the FQ)
that is not fz-blocked is satisfied and moved to the SQ instead.

We now prove that the SMLP does not assign any two concurrent jobs the same SM.

▶ Definition 12. Let Ki represent set of SMs allocated to Ri when satisfied, where Ki ⊆ L.

▶ Theorem 13. For any two concurrently satisfied, incomplete requests Ri and Rk where
Ri ̸= Rk, Ki ∩ Kk = ∅ holds.

Proof. Let ti, tk denote the time when Ri and Rk are satisfied respectively. Without loss of
generality, assume ti < tk where any ties are broken by position in the SQ. By Def. 5, I(tk)
cannot contain any SMs in Ki as Ri was allocated SMs earlier at time ti and both requests
are incomplete at time tk. By Rule 2, Kk is assigned SMs in I(tk), which, as shown, does
not contain any SMs in Ki. Thus, Ki ∩ Kk = ∅. ◀

This theorem proves the necessary safety property of the SMLP where no two jobs are
allocated the same SM. In the next section, we prove an upper bound on the worst-case
pi-blocking duration of the SMLP.

4 Suspension-Oblivious Pi-Blocking

In this section, we analytically derive an upper bound on the worst-case pi-blocking duration
for any request in the SMLP. Prior work by Nemitz et al. [14] determined that computing a
tight s-oblivious pi-blocking bound for the locking of multiple identical resource replicas is
NP-hard. However, in their analysis, the number of replicas that satisfy a request cannot
be determined without analyzing the underlying task set. By allowing the dynamic resizing
of GPU requests to fit on available SMs with Rule 2, we can compute a reasonable upper
bound on s-oblivious pi-blocking in polynomial time.

In Sec. 4.1, we prove a pi-blocking bound when Γ is not time sliced (Θ = ∞). We
first prove a bound on pi-blocking time incurred by a request in the FQ, then a bound on
pi-blocking time incurred by a request in the PQ. In Sec. 4.2, we extend the analysis with
Rules 6 and 7 when Γ is time sliced (Θ ̸= ∞).

4.1 SMLP Blocking Without Component Time Slicing
The results provided in this section pertain to a component Γ that is not time-sliced. In such
components, satisfiable requests are immediately satisfied.
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▶ Lemma 14. Consider a request Ri that is issued at time t0 and is satisfied at time t1. If
Ji is pi-blocked at time t ∈ [t0, t1), then |I(t)| = 0.

Proof. If Ji is pi-blocked, then Ji’s priority is in the top M priorities in Γ. By Rule 3, any
completed requests can be finalized by inheriting Ji’s priority. Thus, all available SMs have
been unlocked by the CPU-side unlock procedure for any completed requests. If |I(t)| > 0,
then by Def. 2, |I(t)| ≥ h as requests are only satisfied with a multiple of h SMs. If |I(t)| ≥ h,
then by Rule 4, some request is satisfied, reducing available SMs until Rule 4 cannot be
applied. If Ri is satisfied, then Ji is not pi-blocked. If no request is satisfied, then by Rule 4,
it must be that |I(t)| = 0. ◀

Lem. 14 ensures that whenever an unsatisfied request Ri incurs pi-blocking on Ji, all
H SMs assigned to Γ are fully utilized. We now quantify the total SM utilization time of
individual requests with the next two definitions.

▶ Definition 15. Let Ai,k denote the work of Ri when allocated k SMs such that Ai,k = k·Li,k

▶ Definition 16. Let Amax
i denote the largest Ai,k, where h ≤ k ≤ H and k SMs can be

allocated by the function zi.

Intuitively, the work Ai,k of a request Ri captures the worst-case amount of computation
required to complete Ri using k SMs. First, we determine an upper bound on the amount of
work done on the GPU when Ji is pi-blocked. This upper bound on total work is then used
to compute an upper bound on the total pi-blocking duration incurred by Ri.

From Prop. 7, when |I(t)| = 0, each SM completes one unit of work on requests in the
SQ per unit of time. Thus, at each unit of time where |I(t)| = 0, a total of H units of work
are completed on requests in the SQ. Therefore, we have the following corollary of Lem. 14.

▶ Corollary 17. For each unit of time that Ji is pi-blocked, the GPU completes H units of
work on requests in the SQ.

FQ Pi-Blocking. We first analyze the pi-blocking incurred by a request Ri in the FQ. When
Ri is in the M-length FQ, then there are at most M − 1 other requests in the FQ. We
require the following lemma to ensure this property.

▶ Lemma 18. At any given time, at most M requests are enqueued in the FQ.

Proof. By Rule 1, an issued request enters the FQ when less than M requests are in the
FQ. By Rule 5, a request in the PQ enters the FQ under the same assumptions. ◀

We now provide some definitions necessary to the analysis of the SMLP.

▶ Definition 19. Let prec(Ri) be the set consisting of all requests in the SQ and all requests
that precede Ri in the FQ when Ri first enters the FQ.

▶ Definition 20. Let top(k) be any set of k requests with the largest work values in Γ.

▶ Lemma 21. The total work incurred by M − 1 requests is at most∑
Rk∈top(M−1)

Amax
k . (1)

Proof. The total work of requests in a set of M − 1 requests is maximized when those
requests are the largest work-inducing requests, i.e., the requests are in top(M − 1). ◀
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From Lem. 21, we obtain the following corollary.

▶ Corollary 22. If |prec(Ri)| ≤ M− 1, then the total work of requests in prec(Ri) is at most∑
Rk∈prec(Ri)

Amax
k ≤

∑
Rk∈top(M−1)

Amax
k .

We now upper-bound the pi-blocking duration incurred by a request Ri while in the FQ.

▶ Definition 23. Let BF Q be an upper bound on pi-blocking incurred by a request in the FQ.

▶ Lemma 24. A suitable value for BF Q is

BF Q = Lmax +
∑

Rk∈top(M−1)

Amax
k

H
.

Proof. Let Ri be a request in the FQ. By Rule 3, all completed requests are finalized,
otherwise Ji is not pi-blocked. The SMLP allows for more than M concurrently satisfied
requests. By Prop. 7, all satisfied requests in the SQ complete within Lmax units of time. By
Lem. 18, Ji is pi-blocked by at most M − 1 preceding requests in the FQ. From Lem. 21
and Cor. 22, the total work incurred by the M − 1 requests is upper bounded in (1). From
Cor. 17, for each unit of time that a job Ji is pi-blocked, H units of work are completed.
Thus, Ri in the FQ incurs pi-blocking of at most BF Q units of time. ◀

PQ Pi-Blocking. We now analyze the pi-blocking incurred by a request in the PQ. First,
we determine an upper bound on the number of requests that leave the PQ when Ji is
pi-blocked.

▶ Lemma 25. Let t0 be the time Ri is enqueued at the PQ, and t1 be the time Ri is
enqueued in the FQ. For each time t ∈ [t0, t1), let entered(t) denote the number of requests
that leave the PQ and enter the FQ in the interval [t0, t]. If Ji is pi-blocked at time t, then
entered(t) < M.

Proof. By contradiction. Suppose Ji is pi-blocked at time t (with a request Ri in the PQ)
and entered(t) ≥ M. By Rule 5, because Ri has not entered the FQ, there must be M
requests in the FQ. Because entered(t) ≥ M, at least M requests from higher-priority jobs
are enqueued in the FQ in the interval [t0, t]. By Def. 1, the presence of M higher-priority
jobs with requests in the FQ imply that Ji is not pi-blocked. ◀

▶ Lemma 26. For each request that is finalized when the PQ is non-empty, one request
moves from the PQ to the FQ.

Proof. By Rule 4, if SMs are available, then the head request in the FQ (if any) is satisfied
and moves to the SQ. By Rule 6, if a request leaves the FQ, then the head request in the
non-empty PQ moves to the FQ. ◀

▶ Lemma 27. At time t, if no complete request is finalized, then no request incurs pi-blocking.

Proof. By Rule 3, if the inherited priority, which is the highest priority of all jobs with an
issued request, is not in the top M CPU priorities, then all jobs with issued requests are not
in the top M priorities, and thus, are not pi-blocked at this time. ◀
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Figure 7 An example timeline for requests where H = 5, M = 6, and h = 1. The kth row shows
the allocation of SMs to satisfied requests at the kth unit of time. In rows 1–4, requests are assigned
all H SMs. In rows 5–7, requests are only assigned some of the SMs guaranteed to Γ.

By Lem. 25 and 26, the pi-blocking duration incurred while Ri is in the PQ is at most
the time to finalize M requests. By Lem. 27, any time when requests are completed but not
finalized does not contribute towards pi-blocking. We now determine the total amount of
work incurred by completing M requests to determine the PQ pi-blocking duration.

In Fig. 7, we visualize the time it takes for M requests to finalize in two phases where
M = 6. In the first phase, all H SMs are allocated to some subset of the M requests. In the
second phase, fewer than H SMs are allocated to some subset of the M requests, as some
requests have been finalized. If any requests are already satisfied when a request enters the
PQ, then those satisfied requests will contribute to the M requests that will finalize. Thus,
the time to finalize M requests is maximized when starting with M newly issued requests
with no prior satisfied requests.

▶ Definition 28. Let W be the worst-case sequence of M satisfied requests where the sequence
results in the longest duration for all requests in W to be finalized. Let Ry denote the last
request in W to be finalized. Additionally, let tx denote the first time instant when each SM
is utilized by one of the requests in W , and ty denote the time that Ry is satisfied.

▶ Lemma 29. The latest time that ty, the time that Ry is satisfied, can occur is

tx +
∑

Rk∈top(M−1)

Amax
k

H
. (2)

Proof. By contradiction. Suppose that ty is greater than (2). By Lem. 14, all H SMs must
have been executing the M − 1 requests in W other than Ry during [tx, ty). The amount of
work completed during this interval is given by

H (ty − tx) > H
∑

Rk∈top(M−1)

Amax
k

H

=
∑

Rk∈top(M−1)

Amax
k .
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This contradicts Lem. 21, as more work than that which can be incurred by M − 1 requests
must have executed during [tx, ty). ◀

▶ Lemma 30. In the sequence of M satisfied requests, the latest request to finalize, Ry, is
finalized at the latest by the time:

tx + Lmax +
∑

Rk∈top(M−1)

Amax
k

H
. (3)

Proof. By Lem. 29, the latest time Ry will be satisfied is tx +
∑

Rk∈top(M−1) Amax
k /H. By

definition, the largest critical-section duration is Lmax. Thus, the request Ry will finalize at
the latest by Lmax time units after being satisfied. ◀

▶ Definition 31. Let BP Q be an upper bound on the pi-blocking duration incurred by Ri

when in the PQ.

▶ Lemma 32. A suitable value for BP Q is

BP Q = Lmax +
∑

Rk∈top(M−1)

Amax
k

H
.

Proof. By Lem. 25 and 26, the total duration Ri incurs pi-blocking while in the PQ is at
most the duration to finalize M requests. By Lem. 30, we obtain BP Q. ◀

Total Pi-Blocking Without Time Slicing. We now derive a bound for the total amount of
time a request incurs pi-blocking in the SMLP when Θ = ∞.

▶ Definition 33. Let X denote the worst-case pi-blocking time incurred by any request when
Γ is not time sliced.

▶ Theorem 34. The pi-blocking time a request incurs under s-oblivious analysis is at most

X = BF Q + BP Q.

Proof. Under the SMLP, a request can incur pi-blocking when it is in the PQ and the FQ.
According to Lem. 24 and 32, the worst-case pi-blocking incurred by a request in the FQ
and PQ is at most BF Q and BP Q, respectively. Thus, X = BF Q + BP Q. ◀

4.2 SMLP Blocking With Component Time-Slicing
We now modify the analysis in Sec. 4.1 to account for pi-blocking time incurred from time
slicing Γ where Θ ̸= ∞. First, we establish the maximum number of forbidden zones
encountered when Ri is incomplete and Ji is suspended.

▶ Definition 35. Let Lmax
i denote the largest critical-section duration in Li.

▶ Lemma 36. The number of forbidden zones crossed by Ji with an incomplete request Ri

is at most⌈
X + Lmax

i

Θ − Lmax
i

⌉
.
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Proof. This proof is similar to the one presented by Vornov et al. [19]. From Rules 6, 7,
and Def. 11, the worst-case forbidden-zone duration for Ri is Lmax

i . In each time slice of Γ,
Ri is not fz-blocked for a duration at least Θ − Lmax

i . The most time Ri spends pi-blocked
without forbidden zones is given by X. Additionally, Ri may fz-block immediately when
issued. This necessitates inflating the blocking time by an extra forbidden zone. Thus, the
total number of boundaries crossed is ⌈(X + Lmax

i )/(Θ − Lmax
i )⌉. ◀

With an upper bound on the number of forbidden zones that Ji crosses before Ri is
satisfied, we can derive the worst-case total pi-blocking time.

▶ Theorem 37. Within a component, the pi-blocking time incurred by Ri is at most

X +
⌈

X + Lmax
i

Θ − Lmax
i

⌉
Lmax

i .

Proof. By Thm. 34, the pi-blocking incurred by Ri without time slicing is X. Each time Ri

is fz-blocked, it is blocked for a duration at most Lmax
i . From Lem. 36, this happens at most⌈

X+Lmax
i

Θ−Lmax
i

⌉
times. Thus, the total pi-blocking is at most X +

⌈
X+Lmax

i

Θ−Lmax
i

⌉
Lmax

i . ◀

▶ Theorem 38. The total worst-case pi-blocking time incurred by Ji is bi where

bi =
∑

Rk∈Ji

(
X +

⌈
X + Lmax

k

Θ − Lmax
k

⌉
Lmax

k

)
.

Proof. This is a summation of all the pi-blocking incurred by every request issued by Ji and
follows from Thm. 37. ◀

5 Blocking Optimization

Recall from Sec. 2 and illustrated in Fig. 2 that there may exist TPC partitions that contain
disabled SMs. Because the SMLP only utilizes uniform SM allocations, this may result in
“left-over” TPCs. For example, consider eight TPCs each with two SMs, and one TPC has a
disabled SM for a total of 15 SMs when h = 2. The left-over TPC only contains one SM,
and cannot be combined with another TPC to provide a comparable level of compute.

Additionally, consider the SMs that are not reserved by any component at a specific time.
Shown in Fig. 1 is one such scenario where component B’s scheduled time slice ends, but the
next component that utilizes the SMs previously reserved by B is scheduled some time later.
The SMLP can be augmented to utilize SMs that are not reserved by a component.

▶ Definition 39. Let ℓi denote an arbitrary set of SMs partitioned by libsmctrl.

▶ Definition 40. Let vi(t) denote the remaining time from t until an unallocated ℓi is reserved
by a component. If ℓi is allocated to a request or reserved by a component, then vi(t) = 0.

Average-case GPU utilization can be improved by allocating these SMs to newly satisfied
requests, provided that the SM usage time is less than vi(t). Shown in Fig. 8 is an example of
such an allocation where R4 utilizes SMs beyond the H guaranteed SMs. So long as requests
are not entirely satisfied with “extra” SMs, the SMLP allows such an allocation without
needing any change in the blocking analysis. We show in the experimental evaluation that
the addition of even a single SM may halve the response time of some GPU kernels, thus, it
may be beneficial to only allocate these extra SMs when requests are otherwise satisfied with
their minimum h SMs. By improving the GPU kernel execution time on average, we improve
safety margins by ensuring the worst-case kernel execution times are less likely to occur.
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Figure 8 Example timeline where
a component requires H = 4 SMs,
but may utilize an extra SM not
initially promised to Γ, if it reduces
R4’s completion time.

Figure 9 Example request satisfaction timelines with
values of h configured as labeled. By increasing h from 1 to
2, R4 can complete faster, resulting in lower values for Lmax

and reducing the cost inflation bi.

Pi-Blocking Optimizations. A GPU kernel may be forced to execute on as few as h SMs.
Consider a request Ri to launch a highly parallelizable GPU kernel where the minimal SM
allocation, Li,h is disproportionately larger than when satisfied with many SMs. Because the
pi-blocking bound under the SMLP is dependent on Lmax from Lem. 32, reducing the value
of Lmax may greatly reduce the pi-blocking bound of requests under the SMLP.

Fig. 9 shows how increasing h can decrease Lmax, thereby improving the pi-blocking bound
of requests in SMLP. Such optimization can only be obtained by analyzing the underlying
task set, as increasing h also results in all requests being satisfied with more SMs, and thus,
fewer requests may run simultaneously.

6 Experimental Evaluation

In this section, we evaluate the SMLP via two sets of experiments. First, we present the
results of a simulation study in which the worst-observed pi-blocking is compared among
the SMLP and OMLP [8]. Second, we observe critical-section durations when utilizing
libsmctrl [3] as measured on an NVIDIA RTX 4080, and use those observations to further
elucidate our simulation results.

Task Generation. We consider periodic tasks where each task’s period, Ti, is sampled
uniformly from small, medium, and large ranges given by (3, 33)ms, (10, 100)ms, and
(50, 200)ms, respectively. For each Ti sample range, we consider components with a processor
count of M ∈ {4, 8, 12, 16} processors. For each processor count, we chose the number
of tasks, n, uniformly, where n ∼ U(2M, 150). We then consider normalized utilizations
U ∈ {0.2, 0.3, 0.4, ..., 0.9}, where U = (

∑n
i=1

ui/M) and each task has a utilization ui = Ci/Ti.
For each normalized utilization, we generate values for the worst-case execution time, Ci,
for each task τi as described in [11]. For each generated task set, we observe pi-blocking
when H ∈ {8, 16, 24, 32, 40, 48, 56, 64} and Θ ∈ {1.5, 2.0, 2.5, 3.0, ∞}. For each combination
of Ti sample range, M, U , Θ, and H, we generate 1,000 task sets and determine the worst-
observed pi-blocking time when each task set utilizes the SMLP and the OMLP. We call
each combination a scenario.

ECRTS 2024



15:18 Predictable GPU Sharing in Component-Based Real-Time Systems

Figure 10 Shown are the largest observed
pi-blocking durations across values of H when
M = 8, Θ = 2.5, Ti ∈ [10, 100], preq = 0.5,
and U = 0.6.

Figure 11 Shown are mean pi-blocking times
across normalized utilization values when H = 16,
M = 8, Θ = 2.5, Ti ∈ [10, 100], and preq = 0.5.

Request Generation. For every generated task set, we select a task τi with probability
preq where the jobs of a selected τi issue a request Ri when released. We repeat the above
task generation for each preq ∈ {0.1, 0.25, 0.5}. For each Ri, we determine the worst-possible
critical-section duration where Lmax

i ∼ U(0, Ci). We then uniformly sample a maximum
parallelism amount, ρmax

i in the range [1, H], where any reduction in critical-section duration
ceases when allocated above ρmax

i SMs. In our second set of experiments, we observe that
additional SM allocations do not scale linearly. Thus, we pick the values for each Li,j :

Li,j = Lmax
i

ρmax
i

· max
(⌈

ρmax
i − j + 1

j

⌉
, 1

)
.

The maximum parallelism amount simulates requests that cannot utilize all H SMs. We
justify the step-graph generated by the Li,j equation in the second set of experiments.

For the SMLP, we define zi(t) to be the smallest number of SMs, j, where Li,j ≤ Li,|I(t)|.
For the OMLP, we define zi(t) = H where the entire GPU is locked.

Experiment 1. We present a representative sample of our results in Fig. 10 and 11. Each
locking protocol was scheduled under global EDF scheduling [9]. For each scenario, we
determined the largest observed pi-blocking.

Shown in Fig. 10, we see the largest observed pi-blocking for the SMLP is significantly
lower than that of the OMLP. With small values for H, where the entire GPU is utilized
by most requests, the SMLP still performs well when compared to the OMLP. With large
values for H, there is relatively low pi-blocking as there are plenty of available SMs for both
locking protocols. We also observed that with small values for Θ, most of the pi-blocking
incurred is from fz-blocking.

Shown in Fig. 11, when the normalized utilization is low, then the GPU is lightly utilized,
and as such, the SMLP performs relatively similarly to the OMLP. Unsurprisingly, larger
utilizations show both locking protocols incurring more pi-blocking as more tasks request
GPU access. In higher utilizations, where it is more likely to have lengthy requests with
small SM allocations, we observed that the SMLP still obtained lower pi-blocking times due
to the increased parallelism afforded. Under most scenarios, we see pi-blocking improvements
by up to 50% when compared to the OMLP.
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Figure 12 Shown are critical-section durations when a kernel is optimally satisfied with 8 SMs.

Experiment 2. In our second set of experiments, we determine GPU kernel critical-section
durations when executed on an NVIDIA 4080 using libsmctrl [3]. This experiment seeks to
validate the assumption that GPU kernel execution durations can be reduced when the kernel
can utilize the additional parallelism afforded by increasing the number of SMs. Importantly,
we also validate that SMs beyond the parallelism requirements of the GPU kernel provide
no meaningful benefit in execution duration. In this experiment, we perform vector math
on vectors that are sized to utilize 8 SMs (needing 16,384 simultaneous operations). Any
additional SMs afford no benefit as the vectors have only so much data that needs processing.

Shown in Fig. 12, we test the execution time when allocated between 1 and 19 SMs. We
observe that additional SM allocations beyond the parallelism requirements of a GPU kernel
afford no benefit. As such, this justifies why pi-blocking and request response times can be
reduced significantly when compared to locking the entire GPU.

Additionally, the step-graph in Fig. 12 justifies the step-graph generated for Li in the
first experiment. We see that GPU kernels have an optimal number of SMs, ρmax

i , where
additional SMs provide no meaningful reduction in execution cost. In this experiment,
the optimal allocation is ρmax

i = 8. This also justifies the definition of zi(t) where certain
ranges of SM allocations provide no meaningful benefit over a lower amount. Consider when
|I(t)| = 6, then zi(t) for this GPU kernel should return 4 as there is no meaningful benefit
to allocating 5 or 6 SMs.

7 Conclusion

We have presented the SMLP, a multiprocessor real-time locking protocol that enables safe
GPU sharing in time-sliced component-based systems. The SMLP utilizes a novel resizing
technique where GPU kernels are resized to fit on available SMs. We also provided an
upper bound on pi-blocking time that can be computed in linear time. While computing
a tight pi-blocking time is known to be an NP-hard problem [14] [7], the GPU request
satisfaction techniques of the SMLP allow for a reasonable upper bound approximation. This
approximation is made possible by allowing the SMLP analysis to upper-bound how requests
are sized rather than by analyzing the underlying task set. In conclusion, the results of this
paper show how a GPU can be shared across components in such a way that the worst-case
pi-blocking time is easily computable and lower than the coarse-grain locking of the OMLP.
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Future Work. This work creates a platform for sharing partitioned GPUs in component-
based systems. We would like to extend the SMLP to support additional in-component JLFP
schedulers such as clustered or partitioned scheduling. Such schedulers are not compatible
with priority inheritance, and thus, would require additional novel blocking analysis. Similarly,
the selection of an optimal value for minimum allocations (h) and the number of SMs optimally
assigned to a component (H) is left to future work. We also intend to explore how to size a
component’s periodic reservation (Θ, Π) when GPUs can be shared.
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A Summary of Notation

Given below is the summary of the notation used throughout this work. All definitions are
in the context of Γ, the current component, unless otherwise stated.

Table 1 Summary of Notation.

Γ The component in question
Θ The uninterrupted execution duration of Γ per time slice
Π The period of Γ
Φ The start time of Γ’s most recent time slice
Υ Set of resources required by Γ
M The number of required processors
H The number of required SMs
L The set of H identical SMs
τi An arbitrary task where τi = (Ci, Ti, Di)
τ The set of all tasks where τi ∈ τ

Ci The worst-case CPU execution cost of τi

Ti The minimum separation between job releases of τi

Di The relative deadline by which each job of τi must complete after releasing
Ji An arbitrary job of τi

Ri An arbitrary GPU request issued by Ji, contains Li

h A multiple of h SMs may satisfy Ri

Li An ordered set of critical-section durations {Li,h, Li,2h, ..., Li,H}
Li,k The critical-section duration of Ri when allocated k SMs
Lmax

i The largest critical-section duration in Li

Lmax The largest critical-section duration of any GPU kernel
Ai,k The work of Ri when allocated k SMs where Ai,k = k · Li,k

Amax
i The largest Ai,k for Ri when k SMs can be allocated by zi

I(t) The set of SMs not allocated to any job at time t, where I(t) ⊆ L
zi(t) An upper bound on the number of allocable SMs to request Ri at time t
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