
Analysis of TSN Time-Aware Shapers Using
Schedule Abstraction Graphs
Srinidhi Srinivasan #

Eindhoven University of Technology, The Netherlands

Geoffrey Nelissen #

Eindhoven University of Technology, The Netherlands

Reinder J. Bril
Eindhoven University of Technology, The Netherlands
Mälardalen University, Västeras, Sweden

Nirvana Meratnia #

Eindhoven University of Technology, The Netherlands

Abstract
IEEE Time-Sensitive Networking (TSN) is one of the main solutions considered by the industry
to support time-sensitive communication in data-intensive safety-critical and mission-critical ap-
plications such as autonomous driving and smart manufacturing. IEEE TSN standardizes several
mechanisms to support real-time traffic on Ethernet networks. Time-Aware Shapers (TAS) (IEEE
802.1Qbv) is the standardized mechanisms of TSN that is usually considered to provide the most
deterministic behavior for packet forwarding. TAS regulates when traffic classes may forward
incoming packets to the egress of a TSN switch using gates that are opened and closed according to
a time-triggered schedule.

State-of-the-art solutions to configure or analyze TAS do not allow for multiple traffic classes to
have their TAS gates opened at the same time according to any arbitrary schedule. In this paper, we
present the first response-time analysis for traffic shaped with TAS where no restriction is enforced
on the gate schedule. The proposed analysis is exact. It is a non-trivial variant of the schedule
abstraction graph analysis framework [18]. Experiments confirm the usefulness of the proposed
analysis and show that it is promising for doing design-space exploration where non-conventional
TAS gates configurations are investigated to, for instance, improve average-case performance without
degrading the worst-case.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Networks
→ Network protocols

Keywords and phrases TSN, Time-Aware Shapers, TAS, SAG, Schedule Abstraction, latency

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2024.16

Supplementary Material
Software (Source Code): https://github.com/orgs/SAG-org/repositories

1 Introduction

The amount of information exchanged between interconnected subsystems in distributed
safety-critical and mission-critical systems is rapidly increasing. Applications such as au-
tonomous driving, autonomous robots in automated warehouses and advanced heads-up
displays in aircraft, are all integrating complex, sometimes AI-based techniques that require
manipulation of large amount of data in the form of audio/video streams, radar and lidar
cloud-points and other sensory inputs.

Due to the critical nature of these systems, they must respect end-to-end timing constraints
on the typical operational sequence of the data acquisition, data fusion, analysis and decision
making and actuation steps. Since these operations may not be performed on the same
subsystem, the system timing requirements extend to the data exchange via communication
networks interconnecting the subsystems.

© Srinidhi Srinivasan, Geoffrey Nelissen, Reinder J. Bril, and Nirvana Meratnia;
licensed under Creative Commons License CC-BY 4.0

36th Euromicro Conference on Real-Time Systems (ECRTS 2024).
Editor: Rodolfo Pellizzoni; Article No. 16; pp. 16:1–16:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.srinivasan-1@tue.nl
https://orcid.org/0000-0002-9803-2865
mailto:g.r.r.j.p.nelissen@tue.nl
https://orcid.org/0000-0003-4141-6718
https://orcid.org/0000-0001-6234-5117
mailto:n.meratnia@ue.nl
https://doi.org/10.4230/LIPIcs.ECRTS.2024.16
https://github.com/orgs/SAG-org/repositories
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs

Time-sensitive Networking (TSN) is a set of standards [2] developed by the IEEE 802.1
TSN task group [1] that aims to provide the necessary functionality for real-time traffic
in Ethernet networks. These standards define various mechanisms to help meet timing
requirements on communication flows, thus improving the time-determinism of Ethernet. To
ensure bounded low latency, TSN introduces the concept of traffic shaping [3, 9]. Traffic
shaping refers to the timely distribution of the bandwidth among the packets of various
communication flows forwarded through TSN switches. The three prominent traffic shaping
mechanisms in TSN are Time-Aware Shapers (TAS) (802.1Qbv), Credit-Based Shapers (CBS)
(802.1Qav), and Asynchronous Traffic Shapers (ATS) (802.1Qcr). TAS use gates that open
and close according to a time-triggered schedule to shape the time intervals in which different
traffic classes may transmit packets through an egress port of the TSN switch. CBS and
ATS limit traffic burstiness and interference between different streams and traffic classes
using variations of the leaky bucket mechanism. Thanks to its time-triggered approach, TAS
is considered to be the shaper providing the highest degree of determinism among all the
shapers discussed in the TSN standards. For this reason, TAS is usually assumed to shape
the transmission of control traffic and high-priority traffic with the most stringent timing
requirements, whilst CBS and ATS are more appropriate for traffic with more dynamic, less
deterministic properties (e.g, with sporadic packet arrivals or with large runtime variations
on the packet payload). In this paper, we focus on the analysis of TAS, with a more flexible
view than traditionally assumed.

To ensure that the latency of time-sensitive communication flows is always within a
desirable range, one must determine the worst-case and best-case latency of each packet
transmitted through each switch in the network. Many types of worst-case analyses exist
to calculate safe upper bounds on the actual worst-case latency of the packets. Network
Calculus [26, 8, 31], Compositional Performance Analysis (CPA) [10, 11], eligibility interval [7],
trajectory approach [16] or more conventional response time analyses [6, 5] are many different
techniques used to analyze CBS. TAS was analyzed in [29, 30] using Network Calculus and
CPA. All solutions mentioned so far provide only sufficient analyses, meaning that they may
overestimate the worst-case delay experienced by packets.

Most existing work, including some of the examples provided in the annexes of the
TSN standards, assume higher priority traffic classes to be shaped by TAS, while medium
priority traffic is generally subject to credit-based shaping [13, 14]. State-of-the-art solutions
that either generate or analyze TAS schedules also usually assume that TAS-shaped classes
have their gates open in non-overlapping time intervals to avoid inter-class interference
[29, 25, 27, 17]. The drawback of having such a strict schedule for higher priority classes is
that it wastes resources. Lower priority classes are blocked during pre-defined time intervals
to let higher priority classes transmit, but higher priority classes may not always need to
transmit during the entirety of those time intervals and thus may not utilize the entire
bandwidth allocated to them. This means that transmission of some lower-priority packets
are intentionally prevented even when the switch egress is available, thereby wasting resources
and time. To the best of our knowledge, the only solution providing an analysis for systems
with overlapping TAS schedules of different classes (i.e., where lower and higher priority
classes may have their gates open at the same time) is [30]. [30] however restricts the gate
schedule of each class to have only one opening and one closing event that is periodically
repeated. It does not allow for arbitrary gate schedules. Furthermore, it is based on Network
Calculus that may be pessimistic and thus provides only a sufficient analysis.



S. Srinivasan, G. Nelissen, R. J. Bril, and N. Meratnia 16:3

Figure 1 TSN switch with FIFO queues and TAS gates.

In this paper, we propose a new latency analysis for TAS that allows for arbitrary TAS
gates schedules, thereby not imposing any restriction on how many gates may be open
simultaneously or when gates open or according to which pattern. Therefore, our analysis
allows for the introduction of flexible configurations in conventionally rigid use of TAS, and
analysis of more generic cases that are compliant with the description of TAS in the TSN
standard but were not analyzable so far. We build our analysis using a methodology inspired
by the Schedule Abstraction Graph (SAG) framework presented in a series of papers on
task scheduling [18, 21, 22, 24, 28, 23, 32, 15]. We adapt the SAG approach to support the
analysis of TAS-shaped communication flows in a TSN switch.

2 System Model

As shown in Figure 1, in a TSN switch that shapes its traffic with TAS, the incoming traffic
is sorted into prioritized traffic classes. Packets of the same priority are all assigned to the
same traffic class. Each traffic class has a dedicated queue that forwards packets in FIFO
order. At the exit of each queue, there is a gate that regulates the transmission of packets of
that queue. A packet from a queue can only be transmitted when the gate of that queue
is open. The opening and closing of the gates are controlled by a time-aware shaper. The
time-aware shaper opens and closes the gate according to a periodic time-triggered scheduled
recorded in a gate-control list (GCL) associated with each traffic class (see Section 2.2 for
more details). If multiple queues have a pending packet and an open gate, then the packet
with the highest priority is chosen as the next packet to be transmitted.

2.1 Flow model
In this paper, we propose an analysis to bound the worst-case latency of a set of communication
flows F transmitted through the egress port of a TSN switch and shaped with TAS. Each
communication flow Fj ∈ F may traverse several switches from its source to its destination.
Similar to previous work [30, 5], we assume that each communication flow Fj ∈ F injects
packets periodically at its source with a period Tj , and that each packet of Fj is subject to
an end-to-end deadline Dj ≤ Tj , i.e., a packet of Fj must have reached its destination before
the next packet is injected into the network. Thus, if all packets respect their end-to-end
deadline, at most one packet of Fj arrives in each switch traversed by Fj in every time
interval [k × Tj , (k + 1) × Tj) with k ∈ N. We further assume that the first period of each
communication flow aligns with the start of the observation window without any offsets. We

ECRTS 2024



16:4 Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs

analyze the transmission latency of every packet of Fj in each switch on its route separately.
Therefore, a packet Pi transmitted by flow Fj traversing a switch S on its route is defined by
its arrival time aPi

in the switch S, its length lPi
(in bytes), an absolute deadline dPi

smaller
or equal to the time left until the end-to-end deadline, and a priority level πPi defined as a
numerical value such that a lower numerical value corresponds to a higher priority.

To model non-determinism caused by, for instance, variable forwarding and queuing
delays in upstream switches, the exact arrival time aPi

of each packet Pi in a switch S is
assumed to be unknown a priori. Instead, we assume a lower and upper bound on the arrival
time of Pi in the switch, denoted as amin

Pi
and amax

Pi
, respectively. Similarly, to model the fact

that the payload carried by packets may vary over time due to the dynamism of applications
communicating through the network, we assume that the length of packet Pi is not exactly
known a priori. Only lower and upper bounds on the packet length are known and denoted
by lmin

Pi
and lmax

Pi
, respectively. The transmission time of a packet Pi (in time units) is thus

given by CPi = lPi

ρ and a lower and upper bound on that time are given by Cmin
Pi

= lmin
Pi

ρ and

Cmax
Pi

= lmax
Pi

ρ , respectively, where ρ is the egress port’s transmission rate (also sometimes
called link speed).

In this paper, we often refer to an execution scenario. An execution scenario is defined as
a concrete set of values for the arrival times and transmission times of packets in the switch.
Since TSN has a deterministic forwarding policy, there is also a single transmission order of
the packets for each execution scenario.

We define the finish time fPi
of a packet Pi in a given execution scenario as the time at

which its transmission ends. Adopting a similar definition of latency (or response time) as
Audsley et al. [4], the latency of a packet Pi, denoted by RPi , is defined as the difference
between the end of its transmission and its earliest possible arrival time, i.e., RPi

= fPi
−amin

Pi
.

The best- and worst-case latency of a packet Pi, denoted by BRPi and WRPi , respectively,
are thus the smallest and largest, possible value of Pi’s latency in any possible execution
scenario that can happen at run-time. If WRPi

≤ dPi
− amin

Pi
for all Pi ∈ P then all packets

will always meet their deadline and the system is deemed schedulable. Otherwise, if there is at
least one packet Pi such that WRPi

> dPi
− amin

Pi
, then the system is deemed unschedulable.

▶ Lemma 1. Given the system model, it is sufficient for a worst-case latency analysis to
analyze the latency of packets transmitted on a finite horizon of length H where H is the
least-common multiple of all the communication flows’ periods and the GCLs periods.

Proof. Because flows and GCLs are periodic, and because the first period of every flow and
GCL starts at time 0, then time H will coincide with the start of a new period of every flow
and every GCL. Since every flow has a constrained end-to-end deadline (i.e., Dj ≤ Tj), all
packets injected into the network before time H must have reached their destination at or
before H (otherwise they miss their deadline and the system is unschedulable). Since the
system state at H and at time 0 is the same (i.e., when a new period of each flow and GCL
starts and there is no pending packet), and because the TSN scheduling policy is deterministic
(i.e., its decision is always the same for an identical system state), the worst-case latency of
packets released after H cannot be worse than that of packets released in [0, H). ◀

Therefore, the analysis must analyze only a finite set of packets P containing all packets
transmitted by all communication flows during the first time interval of length H. We refer
to the time interval [0, H) as the observation window.



S. Srinivasan, G. Nelissen, R. J. Bril, and N. Meratnia 16:5

2.2 Switch model

As shown in Figure 1, TSN divides packets in traffic classes based on their priority. The
set of all traffic classes is denoted by C. Each traffic class Ca ∈ C has a unique priority πCa

.
All packets with the same priority as the class belong to that class. Therefore, the set of
packets belonging to traffic class Ca is denoted by PCa

= {Pi | πPi
= πCa

}. Similar to the
TSN standard, we do not limit the number of classes that may be present in the switch.

Each traffic class has a dedicated FIFO queue. Each packet that arrives in the switch
is placed into the queue of the class it belongs to. Each queue has a time-aware shaper
implemented as a gate that controls the transmission of packets in the queue. A queue may
only transmit packets on the egress port when its gate is open. The opening and closing
of a gate is controlled by a gate-control list (GCL) that contains a predefined periodically
repeating time-triggered schedule based on which the gates are opened or closed. We represent
the schedule recorded in the GCL for a class Ca as a set of time intervals GCa

where the gate of
Ca is open, i.e., GCa = {[goCa

1 , gcCa
1 ) ∪ [goCa

2 , gcCa
2 ) ∪ · · · ∪ [goCa

nCa
, gcCa

nCa
)]}, where [goCa

l , gcCa

l ) is
the lth time interval during which Ca’s gate is open and nCa

denotes the number of times Ca’s
gate opens in the observation window of length H. The time intervals in GCa

are assumed to
be non-overlapping, hence the condition gcCa

l < goCa

l+1 must hold ∀l : 1 ≤ l ≤ nCa
. Note that

because GCa
records all intervals during which Ca’s gate is open, Ca’s gate is by definition

closed between the intervals in GCa .
The TSN standard defines a guard-band to prevent a packet to start its transmission if it

may not complete transmitting before the gate of its class closes.
In summary, a packet Pi is said to be ready for transmission at time t if and only if the

following rules are respected:
R1 Pi is at the head of the FIFO queue of its class at time t.
R2 The gate of its class is open at time t.
R3 The gate of its class closes no earlier than time t + CPi

.

Whenever the egress port is free, a TSN switch transmits the highest priority ready packet.
If no such packet exists, then the egress port is kept idle. In this paper, packet transmissions
are assumed to be non-preemptive. That is, if a packet starts transmitting at time t then
it will complete its transmission at t + CPi

. Once a packet has completed its transmission
through the egress port, the Ethernet protocol requires that nothing is transmitted on the
egress port for a duration known as the Inter-Packet Gap (IPG) denoted by CIPG. Therefore,
the egress port becomes free again at time t + CPi

+ CIPG.

Operators definitions

For conciseness, we use min∞{X } where X is a set as a short-hand notation for min{X ∪ ∞}.
We also define the difference between two sets of time intervals IA and IB as IA \ IB =

{t | t ∈ IA ∧ t ̸∈ IB}, i.e., it removes the overlap between the two sets from IA.

3 Schedulability Analysis

The schedulability analysis proposed in this paper is inspired by the Schedule Abstraction
Graph (SAG) analysis framework detailed in [18], which was developed to compute the best-
and worst-case response times for non-preemptive tasks scheduled with a job-level fixed
priority algorithm on a uniprocessor platform.

ECRTS 2024



16:6 Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs

Figure 2 SAG of the packet set {P1, P2, P3, P4} with the properties presented in the table.

In this paper, we adapt the principles of the SAG framework to analyze the best- and
worst-case latency of packets non-preemptively transmitted through a TSN switch’s egress
port shaped by TAS1.

Our proposed schedulability analysis builds a directed acyclic graph denoted by G = (V, E),
where V is the set of vertices and E is the set of edges of the graph (see Figure 2 for an
example that will illustrate our analysis and be discussed throughout the paper). The graph
captures all possible orders in which packets may be transmitted through the egress port,
and all possible states in which the egress may be in after transmitting packets. A vertex
vk ∈ V represents a system state. A system state is defined by (1) the set of packets P(vk)
that have already been transmitted through the egress port, and (2) the time at which the
egress port will be available to transmit a new packet. Due to the non-deterministic arrival
time and length of the incoming packets, the precise availability time of the egress port
after sending a set of packets is not exactly known. Instead, the schedulability analysis
derives a lower- and an upper-bound on the time at which the egress may become available.
We denote those bounds by Amin(vk) and Amax(vk), respectively. Thus, we know that in
system state vk, the egress port is certainly unavailable before time Amin(vk) and is certainly
available for transmitting a new packet at or after time Amax(vk). At any time instant within
[Amin(vk), Amax(vk)), the egress may or may not be available to transmit a packet.

Edges of the graph represent state transitions and are labeled with packets. An edge
em ∈ E labeled with a packet Pi connecting a vertex vk ∈ V to a vertex vl ∈ V models the
transmission of the packet Pi when in system state vk, thereby resulting in the new system
state vl. Note that by its definition, P(vk) contains all packets labeling edges on a path
ending at vertex vk.

Key notations that have been presented until now have been summarized in Table 1.

3.1 Challenges
Building a SAG for the analysis of the worst-case latency of packets transmitted by a TSN
switch requires a completely different solution to that presented in [18] or any of the follow-up
papers on the schedule abstraction. This is mainly due to the fact that new challenges are
introduced by the existence of FIFO queues and TAS in TSN switches, as similar concepts
are currently not supported by the existing SAG analysis framework.

The SAG analysis presented in [18] assumes that there exists a fixed and consistent
priority ordering between jobs, i.e., jobs have either different priorities or if two pending jobs
have the same priority, the tie is broken consistently in any execution scenario. In this paper,
such an assumption cannot hold as the priority of a communication flow is based on the

1 Source code of the SAG framework available at https://github.com/orgs/SAG-org/repositories

https://github.com/orgs/SAG-org/repositories


S. Srinivasan, G. Nelissen, R. J. Bril, and N. Meratnia 16:7

Table 1 Key notations defined in the System Model for use throughout the paper.

Symbol Description
πCa Priority of traffic class Ca.
GCa Set of time intervals when the gate of class Ca is open.
πPi Priority of packet Pi.

[amin
Pi

, amax
Pi

] Bounds on the arrival time of packet Pi into the switch.
[Cmin

Pi
, Cmax

Pi
] Bounds on the transmission times of packet Pi.

dPi Deadline of packet Pi.
[Amin(vk), Amax(vk)] Bounds on the time at which the egress may become available.

P(vk) Set of all packets labeling edges on a path ending at vertex vk.

traffic class they belong to. This means that all packets of communication flows belonging to
the same traffic class have the same priority. Packets with the same priority are placed into a
FIFO queue when arriving in the TSN switch. Hence, the tie-breaking rule between packets
of the same priority depends on their arrival times, leading to different packets winning the
tie depending on the specific execution scenario. We discuss how we address this challenge
in Section 4.1.

The next challenge addressed in this paper is how TAS is considered in the SAG algorithm.
Since packets may only transmit when the gate of their class is open, the scheduling policy
becomes non-work conserving, i.e., the egress port may be kept idle even when there are
packets pending in the switch. Furthermore, the interference of higher priority flows becomes
much more challenging to account for. We discuss the solution to support TAS in the SAG
generation algorithm in Section 4.3.

3.2 SAG generation algorithm

In this section, we explain how to build a SAG for the transmission of packets shaped with
TAS. The SAG is built using Algorithm 1. In addition to building the SAG, Algorithm 1
computes bounds on the best- and worst-case latency of every packet in P. If at any point
during the analysis, the algorithm detects that the computed bound on the worst-case latency
of a packet is larger than its relative deadline, the algorithm stops and returns that the
system is unschedulable. Otherwise, if the SAG is successfully built without any deadline
miss for any packet, the algorithm concludes that the system is schedulable and returns the
best- and worst-case latency of every packet.

Algorithm 1 records the best- and worst-case latency of every packet Pi ∈ P in any
execution scenario analyzed by the SAG in the variable BRPi

and WRPi
, respectively. The

best-case latency BRPi
is initially set to ∞ and the worst-case latency WRPi

is initially set
to 0 for every packet Pi ∈ P when no execution scenario has been analyzed yet (lines 3 and 4).
Algorithm 1 then starts building the SAG G. It starts by adding a single vertex v0 modeling
the system state when no packet has been transmitted yet. That system state thus has an
empty set P(v0) of packets already-transmitted, and the egress port is certainly available at
time 0 for transmitting a first packet. Therefore, we have Amin(v0) = Amax(v0) = 0 (line 5).
The SAG G is then expanded in a breadth-first manner (lines 6 to 25). While there are
reachable system states in which not all packets have been transmitted yet, Algorithm 1 picks
a leaf vertex vk of the graph G with the shortest path i.e., the smallest set of transmitted
packets. Algorithm 1 finds all packets that can possibly be transmitted next in the system
state modeled by vk. These packets are called possibly eligible packets (refer to Section 4.2.3

ECRTS 2024



16:8 Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs

for details on how to find the possibly eligible packets). For each possibly eligible packet
Pi, we find the time intervals in which Pi can start its transmission considering the shaping
imposed by TAS on the gates, interference by higher priority packets and the availability of
the egress port. These time intervals are referred to as eligible transmission intervals for Pi

in vk and are stored in the set EPi
(vk) (line 8). We explain how to build the set EPi

(vk) in
Section 4.3. For each time interval in which the packet Pi may start transmitting, i.e., each
time interval Ej

Pi
(vk) in EPi

(vk), Algorithm 1 computes the earliest and latest time at which
Pi may start transmitting in the interval Ej

Pi
(vk), and use those times to compute the earliest

and latest time at which the transmission of Pi may complete. Those times are referred to
as the earliest finish time EFTi,j(vk) and latest finish time LFTi,j(vk), respectively (lines 11
and 10). The EFT and LFT of Pi are then used to update the best- and worst-case latency
of Pi (lines 12 and 13), and to compute the resulting system state after transmitting Pi in
Ej

Pi
(vk), i.e., the time at which the egress port becomes possibly and certainly available to

transmit the next packet (lines 15 and 16). A new vertex vl is created for that system state
and added to the graph G with an edge directed from the previous system state vk to the
newly reached system state vl. The edge is labeled with packet Pi.

Algorithm 1 Schedule Abstraction Graph generation algorithm with FIFO Queues and TAS.

1: Input: packet set P
2: Output: Schedule Abstraction Graph G = (V, E)
3: ∀Pi ∈ P, WRPi

← 0
4: ∀Pi ∈ P, BRPi

←∞
5: Initialize the graph G by adding v0 with Amin(v0) = Amax(v0) = 0
6: while ∃ path from v0 to a leaf vertex vk s.th. P(vk) ̸= P do
7: for each eligible packet Pi according to Section 4.2.3 do
8: EPi

(vk)← Eq. (12)
9: for each interval E l

Pi
(vk) in EPi

(vk) do
10: LF Ti,j(vk)← Eq. (13)
11: EF Ti,j(vk)← Eq. (14)
12: BRPi

← min{EF Ti,j(vk)− amin
Pi

, BRPi
}

13: WRPi
← max{LF Ti,j(vk)− amin

Pi
, WRPi

}
14: Create a new vertex vl

15: Amin(vl)← Eq. (15)
16: Amax(vl)← Eq. (16)
17: Connect vk to vl with an edge labeled Pi

18: if ∃ vm that can be merged with vl then
19: Merge vm and vl

20: Redirect all incoming edges of vl to vm

21: Remove vl from G
22: end if
23: end for
24: end for
25: end while

To curb the state space explosion inherent to reachability-based analyses, Algorithm 1
merges vertices together under the following conditions. Two vertices vl and vm can be
merged with each other if they have the same set of transmitted packets (irrespective of
the order in which they were transmitted) and if the intervals of time at which the egress
port may potentially become available in both system states are either overlapping or are
contiguous. We discuss why and how such system states are merged in Section 6. If there
exists a vertex vm that may be merged with vl, they will be merged, all incoming edges of vl

are redirected to vm, and vl is removed from the graph (lines 18 to 22).
Note that due to the properties of TAS, Algorithm 1 must compute the eligible intervals

for the transmission of packets in a given system state vk. Because more than one such
eligible interval may exist for a packet Pi in system state vk, there may be multiple different



S. Srinivasan, G. Nelissen, R. J. Bril, and N. Meratnia 16:9

system states that result from the transmission of a single eligible packet Pi in system state
vk. This is very different from previous SAG-based schedulability analyses such as those
presented in [18, 21, 22].

In the next sections, we explain how to find possibly eligible packets (Section 4.2), how
to compute their eligible transmission intervals (Section 4.3), how to compute their EFT
and LFT and derive the new system state after transmitting an eligible packet Pi within an
eligible interval (Section 5), and how to merge system states (Section 6).

4 Possibly Eligible Packets and Eligible Transmission Intervals

According to the SAG generation algorithm discussed in Section 3, in a system state vk, a
packet Pi may be transmitted next through the egress if it is the highest-priority packet that
is ready in that system state. Ready means that Pi is at the head of its FIFO queue, and the
gate of its class is open and will not close until Ci time units later. We discuss the impact
of FIFO ordering in Section 4.1, and how to obtain the intervals in which a packet is the
highest-priority ready packet in Sections 4.2 and 4.3.

4.1 Accounting for FIFO Queues
Each traffic class has a FIFO queue that stores the packets arriving into the switch. Packets
must be at the head of their FIFO queue to possibly be transmitted next on the switch’s
egress (by Rule R1, see Section 2.2). In the rest of this section, we derive the set of packets
that may be at the head of the FIFO queue when the system reached a system state vk. To
do so, we first derive the earliest time when a packet will certainly be in the queue of each
traffic class Ca ∈ C (Lemma 2). We denote that time instant by trmax

Ca
(vk). We then use that

time to get the set topCa
(vk) of all packets that may have entered Ca’s queue before trmax

Ca
(vk)

(Lemma 3), and we prove that a packet Pi may possibly be at the head of its queue if and
only if it is in topCa

(vk) (Theorem 6).

▶ Lemma 2. Let the system be in state vk. The earliest time when a packet is certainly in
the queue of class Ca is

trmax
Ca

(vk) = min
∞

{amax
Pi

|Pi ∈ Ca \ P(vk)} (1)

Proof. The earliest time when a packet is certainly in Ca’s queue is the earliest time a
packet of class Ca certainly arrives in the switch in system state vk. That time is the earliest
maximum arrival time of any packet of class Ca that was not transmitted yet in state vk (i.e.,
any packet Pl ∈ Ca \ P(vk)). Thus, trmax

Ca
(vk) is given by min∞{amax

Pi
|Pi ∈ Ca \ P(vk)}. ◀

We use trmax
Ca

(vk) in Lemma 3 to derive the set of packets that may possibly be in Ca’s
FIFO queue at trmax

Ca
(vk).

▶ Lemma 3. Let the system be in state vk. The set of packets that may possibly be in Ca’s
FIFO queue at trmax

Ca
(vk) is

topCa
(vk) = {Pi| Pi ∈ Ca \ P(vk) ∧ amin

Pi
≤ trmax

Ca
(vk)}. (2)

Proof. Only packets of class Ca that have not yet been transmitted (i.e., all packets in
Ca \ P(vk)) may be in Ca

′ s FIFO queue at trmax
Ca

(vk). Moreover, only packets that may
potentially arrive in the switch at or before trmax

Ca
(vk) may be in the queue by trmax

Ca
(vk).

Thus, only packets in Ca \ P(vk) with an earliest arrival time amin
Pi

such that amin
Pi

≤ trmax
Ca

(vk)
may be in Ca’s FIFO queue at trmax

Ca
(vk). ◀

ECRTS 2024



16:10 Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs

We now prove with the next two lemmas that all packets in topCa(vk) may be at the
head of Ca’s FIFO queue and that no packet outside of topCa

(vk) may be at the head of Ca’s
FIFO queue when in system state vk.

▶ Lemma 4. If packet Pi is in topCa
(vk), then there is at least one execution scenario where

Pi is at the head of Ca’s FIFO queue in system state vk.

Proof. A packet Pi is at the head of Ca’s FIFO queue if it is the first not-yet-transmitted
packet of Ca that arrives in the switch. We know that if packet Pi is in topCa(vk), then its
earliest arrival time amin

Pi
is such that amin

Pi
≤ trmax

Ca
(vk) (by Eq. (2)). Moreover, by Eq. (1), we

also know that for all packets Pl ∈ Ca \ P(vk) that have not yet been transmitted, their latest
arrival time is larger than or equal to trmax

Ca
(vk), i.e., ∀Pl ∈ Ca \ P(vk), amax

l ≥ trmax
Ca

(vk).
Therefore, there is at least one execution scenario where Pi arrives at aPi

such that amin
Pi

≤
aPi ≤ trmax

Ca
(vk) and all other packets of class Ca that have not yet been transmitted arrive

at or after trmax
Ca

(vk). In such execution scenario, Pi is the first to enter Ca’s queue and is
thus at the head of the queue. ◀

▶ Lemma 5. If Pi is not in topCa
(vk), then Pi cannot be at the head of Ca’s FIFO queue in

system state vk.

Proof. From Lemma 2, we know that there is certainly a packet in Ca’s FIFO queue at
time trmax

Ca
(vk) in system state vk. Thus, any packet at the head of Ca’s FIFO queue in

system state vk must (1) not have been transmitted yet in system state vk (i.e., it must
be in Ca \ P(vk)), and (2) must have arrived in the switch at or before trmax

Ca
(vk) (i.e.,

aPi
≤ trmax

Ca
(vk)). However, if Pi is not in topCa

(vk), then, by Eq. (2), either Pi ̸∈ Ca \ P(vk)
or amin

Pi
> trmax

Ca
(vk) and thus aPi

> trmax
Ca

(vk) (since amin
Pi

is a lower bound on Pi’s arrival
time). Therefore, if Pi is not in topCa(vk), then Pi cannot be at the head of Ca’s FIFO queue
in system state vk. ◀

We use the two lemmas above to derive our main theorem.

▶ Theorem 6. There is at least one execution scenario such that packet Pi will be at the
head of Ca’s FIFO queue in system state vk if and only if Pi ∈ topCa

(vk).

Proof. The “if” is proven by Lemma 4, and the “only if” is the contrapositive of Lemma 5. ◀

4.2 Potentially eligible packets

After computing all packets that can possibly be on the head of their respective queue,
we find which of these packets can potentially be the next packet to be transmitted on
the egress in system state vk. To decide whether a packet Pi is potentially eligible to be
the next transmitted packet, we first derive a lower bound, called tlb

Pi
(vk), on the earliest

time Pi may start its transmission in the system state vk (Section 4.2.1), and an upper
bound, called tub(vk), on the latest time by which Pi must start to transmit to be the next
packet transmitted on the egress (Section 4.2.2). If tlb

Pi
(vk) > tub(vk), then Pi cannot be the

next packet transmitted in system state vk as it would otherwise lead to a contradiction on
the definitions of tlb

Pi
(vk) and tub(vk). On the other hand, if tlb

Pi
(vk) ≤ tub(vk), then Pi is

potentially eligible to be transmitted next in system state vk.



S. Srinivasan, G. Nelissen, R. J. Bril, and N. Meratnia 16:11

4.2.1 Lower-bound on Pi’s start time
We first prove a lower bound on packet Pi’s start of transmission in a system state vk.

▶ Lemma 7. A packet Pi may not start being transmitted earlier than

tlb
Pi

(vk) = max{amin
Pi

, Amin(vk)}. (3)

Proof. Pi may not start being transmitted before the time it arrives in the switch, which is
lower bounded by amin

Pi
. Furthermore, it cannot be transmitted before the earliest time the

egress port is available in system state vk, which is lower bounded by Amin(vk). Thus, Pi

cannot be transmitted earlier than max{amin
Pi

, Amin(vk)}. ◀

4.2.2 Upper-bound on Pi’s start time
According to the TSN scheduling policy described in Section 2, a packet Pi will certainly
be transmitted when the egress port is available, Pi is ready, and it is the highest priority
packet that is ready for transmission. Therefore, as soon as there is a ready packet and the
egress port is available, a packet will certainly be transmitted. In the following, we compute
an upper bound on the time at which the egress port is available and a packet is certainly
ready.

According to Rule R1, see Section 2.2, to be ready, a packet must be at the head of its
queue. The following lemma directly follows.

▶ Lemma 8. The earliest time when the egress is certainly available and there is certainly a
packet at the head of Ca’s FIFO queue in system state vk is

t̂Ca
(vk) = max{trmax

Ca
(vk), Amax(vk)} (4)

Proof. Only packets in the set topCa(vk) of each class Ca may be ready in system state
vk. According to Lemma 2, a packet may reach the head of Ca’s FIFO queue at the
latest at trmax

Ca
(vk). Furthermore, by definition of Amax(vk), the egress becomes available

at the latest at Amax(vk) in system state vk. Thus, the earliest time when the egress
is certainly available and there is certainly a packet at the head of Ca’s FIFO queue is
max{trmax

Ca
(vk), Amax(vk)}. ◀

Then, according to Rules R2 and R3, for a packet Pi to be ready, the gate of its class
must be open and must not close until Ci time units later. To find the first time instant
when that condition is certainly true, Lemma 9 derives the set of intervals in which Pi may
not be able to start to be transmitted because either R2 and/or R3 is not respected.

▶ Lemma 9. A packet Pi of class Ca may not be able to start transmitting in any time
interval in the set Gpos

Pi
defined below due to not respecting Rule R2 and/or Rule R3.

Gpos
Pi

=
{

[0, goCa
1 ) ∪

 ⋃
1≤l<nCa

(gcCa

l − Cmax
Pi

, goCa

l+1)

 ∪ (gcCa
nCa

− Cmax
Pi

, ∞)
}

(5)

Proof. According to Rule R2 packet Pi may not start being transmitted in any interval
where the gate of its class is closed. Thus, Pi cannot be transmitted in any of the intervals{

[0, goCa
1 ) ∪

{⋃
1≤l<nCa

[gcCa

l , goCa

l+1)
}

∪ [gcCa
nCa

, ∞)
}

. Furthermore, according to Rule R3, Pi

may not start being transmitted during the Ci −ϵ time units before the gate closes (where ϵ is
an arbitrarily small value). Therefore, Pi may not start being transmitted in the time intervals

ECRTS 2024



16:12 Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs

in the set
⋃

1≤l≤nCa
(gcCa

l −Ci, gcCa

l ). The lengths of those intervals are maximized when
Ci = Cmax

Pi
. Therefore, Pi may not be able to start beng transmitted in any time interval in

the set
{

[0, goCa
1 ) ∪

{⋃
1≤l<nCa

[gcCa

l , goCa

l+1)
}

∪ [gcCa
nCa

, ∞)
}

∪

{ ⋃
1≤l≤nCa

(gcCa

l − Cmax
Pi

, gcCa

l )
}

=
{

[0, goCa
1 ) ∪

{ ⋃
1≤l<nCa

(gcCa

l − Cmax
Pi

, goCa

l+1)
}

∪ (gcCa
nCa

− Cmax
Pi

, ∞)
}

. ◀

Let gclast
i be that last time instant before time t̂Ca(vk) where Pi may not be able to be

transmitted according to Gpos
Pi

, and let gonext
i be the first time instant after gclast

i at which
packet Pi may start being transmitted according to Gpos

Pi
. That is, we have

gclast
i = max{t | t ∈ Gpos

Pi
∧ t ≤ t̂Ca(vk)} (6)

gonext
i = min{t | t ̸∈ Gpos

Pi
∧ t > gclast

i } (7)

Then, the following lemma holds.

▶ Lemma 10. If Pi ∈ topCa
(vk) is at the head of Ca’s FIFO queue, then the earliest time

when Pi is certainly ready and the egress is certainly available is

tready
Pi

= max{t̂Ca(vk), gonext
i } (8)

Proof. According to the TSN scheduling policy presented in Section 2, to be ready, a packet
Pi must respect Rules R1 to R3. By Lemma 8, the earliest time Pi certainly respects R1
and the egress is certainly available is at time t̂Ca(vk). If t̂Ca(vk) ≥ gonext

i , then by definition
of gonext

i and Lemma 9, Rules R2 and R3 are certainly respected at t̂Ca
(vk). Thus, Pi is

certainly ready (i.e., it respects R1, R2 and R3), and the egress is certainly available. This
proves the first case of Eq. (8). If, on the other hand, t̂Ca

(vk) < gonext
i , then by definition

of gonext
i and Lemma 9, Pi may not be able to start to transmit, and thus may not respect

Rules R2 and R3 until time gonext
i . Since by definition of gonext

i and Lemma 9, Rules R2
and R3 are certainly respected at gonext

i , gonext
i is the earliest time R1 to R3 are certainly

respected and the egress is certainly available after t̂Ca(vk). This prove the second case of
Eq. (8). ◀

Lemma 10 refers to a specific packet of class Ca, but, by Lemma 3, we know that any
packet in topCa

(vk) may be at the head of Ca’s FIFO queue. Thus, the earliest time when the
packet at the head of Ca’s FIFO queue is certainly ready and the egress is certainly available
in system state vk is given by

max
∀Pi∈topCa (vk)

{tready
Pi

}.

Since according to the TSN scheduling policy, a packet is transmitted when at least one
packet is ready and the egress is available, the earliest time the next packet of any class is
certainly being transmitted on the egress in system state vk is

tub(vk) = min
∀ Ca∈C

{
max

∀Pi∈topCa (vk)
{tready

Pi
}
}

. (9)

We state now our main result about tub(vk).

▶ Lemma 11. If packet Pi is the next packet transmitted in system state vk, then Pi is
transmitted no later than tub(vk).

Proof. Since there is certainly a packet transmitted at tub(vk), if Pi is the next packet
transmitted, then it must be transmitted at or before tub(vk). ◀



S. Srinivasan, G. Nelissen, R. J. Bril, and N. Meratnia 16:13

4.2.3 Packet’s potential eligibility
We say that a packet Pi is potentially eligible in system state vk if it may be the next packet
transmitted in system state vk. Lemma 12 below proves a condition that must be respected
for a packet Pi to be potentially eligible.

▶ Lemma 12. Packet Pi may be the next packet transmitted in system state vk only if
tlb
Pi

(vk) ≤ tub(vk).

Proof. According to Lemma 7, Pi cannot be transmitted earlier than tlb
Pi

(vk) in system state
vk. Moreover, according to Lemma 11, Pi must start being transmitted before tub(vk) if
it is the next packet transmitted in system state vk. Thus, Pi cannot be the next packet
transmitted in system state vk if tlb

Pi
(vk) > tub(vk). Taking the contrapositive of the last

statement proves the lemma. ◀

4.3 Eligible transmission intervals of potential eligible packets
In this section, we elaborate on how to find the eligible transmission intervals of potentially
eligible packets in system state vk. Let Pi be a potentially eligible packet of class Ca. tlb

Pi
(vk)

and tub(vk) provide lower and upper bounds on the time interval within which Pi may possibly
start being transmitted in system state vk. However, Pi cannot start being transmitted at
every time instance within [tlb

Pi
(vk), tub(vk)] because this interval does not fully consider the

shaping imposed by TAS on the gate of class Ca, nor does it account for interference from
ready packets of higher-priority classes. Lemmas 13 and 14 account for the former, and
Lemma 15 accounts for the latter.

▶ Lemma 13. A packet Pi can certainly not start its transmission in the set of time intervals

Gcert
Pi

=
{

[0, goCa
1 ) ∪

 ⋃
1≤l<nCa

(gcCa

l − Cmin
Pi

, goCa

l+1)

 ∪ (gcCa
nCa

− Cmin
Pi

, ∞)
}

(10)

Proof. According to Rule R2, packet Pi may never start being transmitted in any interval
where the gate of its class is closed. Thus, Pi cannot transmit in any of the intervals{

[0, goCa
1 ) ∪

{⋃
1≤l<nCa

[gcCa

l , goCa

l+1)
}

∪ [gcCa
nCa

, ∞)
}

. Furthermore, according to Rule R3, Pi

may not start being transmitted during the Ci time units before the gate closes. Therefore,
Pi may not start being transmitted in the time intervals in the set

⋃
1≤l≤nCa

(gcCa

l −Ci, gcCa

l ).
The lengths of those intervals is minimized when Ci = Cmin

Pi
. Therefore, Pi can certainly

not start transmitting in the union of the above two sets of time intervals, thus proving the
lemma. ◀

▶ Lemma 14. A potentially eligible packet Pi in system state vk may only start its transmis-
sion at the time instants in the set{ [

tlb
Pi

(vk), tub(vk)
] }

\ Gcert
Pi

Proof. Lemmas 7 and 11 prove that, if Pi is the next packet to be transmitted in system state
vk, then it cannot start transmitting outside the time interval

[
tlb
Pi

(vk), tub(vk)
]
. Furthermore,

Lemma 13 proves that Pi can certainly not start being transmitted in any interval in the set
Gcert

Pi
. Thus, Pi may only start transmitting at time instants in the set {

[
tlb
Pi

(vk), tub(vk)
]
} \

Gcert
Pi

. ◀

ECRTS 2024



16:14 Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs

▶ Lemma 15. Let Pm be the packet in topCb
(vk) with the largest possible transmission time,

i.e., Pm = argmax
∀Pl∈topCb

(vk)
{Cmax

l }. Then, there is certainly a packet of class Cb that is ready for

transmission in all time intervals in the set

Ihp
Cb

(vk) = [trmax
Cb

(vk), ∞) \ Gpos
Pm

. (11)

Proof. A packet is ready if it respects Rules R1, R2 and R3. According to Lemma 3, topCb
(vk)

contains all packets of class Cb that may be at the head of Cb’s FIFO queue in system state
vk. Thus, only packets in topCb

(vk) may respect R1. Lemma 2 proves that there is certainly
a packet at the head of the FIFO queue at time trmax

Cb
(vk). Thus, R1 is certainly respected at

and after trmax
Cb

(vk). Lemma 9 proves that Gpos
Pl

contains all time intervals in which a packet
Pl may not respect R2 and/or R3. According to Eq. (5), Gpos

Pl
contains the largest intervals

when Cmax
l is maximized. Thus, Gpos

Pm
contains the largest intervals in which R2 and/or R3

is not respected for the packet Pm as defined in the claim. Thus, the set of time intervals
during which R1, R2 and R3 are certainly respected is obtained when Pm is at the head of
Cb’s FIFO queue, and is given by [trmax

Cb
(vk), ∞) \ Gpos

Pm
. ◀

Combining Lemmas 14 and 15, we build the set EPi(vk) that contains all eligible trans-
mission intervals of a potentially eligible packet Pi.

EPi(vk) =
{ [

tlb
Pi

(vk), tub(vk)
]

\ Gcert
Pi

}
\

{ ⋃
∀ Cb∈C |πCb

<πCa

Ihp
Cb

(vk)
}

(12)

▶ Example 16. Let us consider 3 packets P1, P2 and P3 that are yet to be dispatched at
state vx, with parameters as given in Figure 3. Assume the egress becomes possibly available
at time 2 and certainly available at time 22. Assume all three packets are on the head of
their respective queues. Figure 3 also shows when the gates of each class is closed. For this
example, we aim to calculate the eligible transmission intervals of P3 i.e., EP3(vk).

The earliest time packet P3 can possibly start being transmitted is when it is arrived
and the egress is possibly available (as computed by Eq. (3)). This happens at time 3.
Moreover, if P3 is the first packet being transmitted in state vx, it must certainly have started
being transmitted no later than when the egress is certainly available, and there certainly
is a packet in any queue with an open gate for which the guard band did not start yet (as
computed by Eq. (9)). That happens at time 22 as the egress is certainly available and
P1, P2 and P3 are all certainly arrived in teir queue with an open gate for which the guard
band did not start. Thus, P3 will start being transmitted in the interval [3, 22], only if P3’s
gate is open, the guard-band is not started and no higher priority packet is eligible to be
transmitted.

As captured by Gcert
P3

(shaded region on P3’s timeline) calculated by Lemma 13, P3 can
certainly not transmit in the interval (5,14) as either its gate is closed or the guard band
started. On the other hand, classes C1 and C2 can certainly start transmitting a packet at or
after time 22 and 16, respectively, since there is certainly a packet in their queue and their
gate is open. It is captured by Ihp

C1
(vk) and Ihp

C2
(vk) calculated by Lemma 15 and depicted

by the shaded regions on the timelines of packets P1 and P2. Since P3 cannot start when
higher priority classes are able to transmit, the eligible transmission intervals of P3 are [3, 5]
and [14, 16) (i.e., [3, 22] \ (5, 14) \ [22, ∞) \ [16, ∞) as calculted by Eq. (12)).

We now prove that a packet Pi may start transmitting at a time instant t if an only if
t ∈ EPi

(vk).



S. Srinivasan, G. Nelissen, R. J. Bril, and N. Meratnia 16:15

Figure 3 Example that shows how eligible transmission intervals are calculated for packet P3.

▶ Lemma 17. In system state vk, a packet Pi ∈ topCa(vk) can start its transmission at any
time instant t ∈ EPi

(vk).

Proof. For a packet Pi ∈ Ca to possibly start its transmission at time t, it must meet the
following conditions: (i) it may be ready at t, (ii) all higher priority packets may not be
ready at t, and (iii) the egress may be available at t. By Eq. (12), EPi(vk) only contains time
instants at or later than tlb

Pi
(vk). Since, by Eq. (3), tlb

Pi
(vk) ≥ Amin(vk), Condition (iii) is

satisfied for every time instant t ∈ EPi(vk). Now, we prove that (i) is respected. To be ready,
and thus meet Condition (i), a packet Pi must satisfy R1, R2 and R3. Since Pi ∈ topCa

(vk), it
satisfies R1. Since, by Lemma 13, the set Gcert

Pi
contains all the time instants where R2 and/or

R3 is certainly not respected in all execution scenarios, by taking the contra-positive, there is
at least one execution scenario where Pi respects R2 and R3 for every time instant t ̸∈ Gcert

Pi
.

Since, by Eq. (12), EPi(vk) only contains time instants that are not in Gcert
Pi

, Condition (i)
is met. Similarly, since Ihp

Cb
(vk) contains all instants when a packet of class Cb is certainly

ready, and because Eq. (12) removes all such instants from EPi
(vk) for all classes with higher

priority than Pi, Condition (ii) is met. Thus, Conditions (i), (ii) and (ii) are met for all
t ∈ EPi

(vk), and thus Pi can possibly start at any time instant in EPi
(vk). ◀

▶ Lemma 18. In system state vk, a packet Pi ∈ topCa(vk) cannot start its transmission at
any time instant t ̸∈ EPi

(vk).

ECRTS 2024



16:16 Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs

Proof. Let us assume that packet Pi ∈ Ca begins its transmission at time t such that
t ̸∈ EPi

(vk). Then, Conditions (i), (ii) and (iii) as stated in Lemma 17 must be satisfied
at t. We analyze three cases: t < tlb

Pi
(vk), t > tub(vk) or t ∈ [tlb

Pi
(vk), tub(vk)]. Case 1: If

t < tlb
Pi

(vk) then, by Eq. (3), t < Amin(vk) or t < amin
Pi

. If the former is true, the egress canot
be available at t, contradicting Condition (iii). If the latter is true, then Pi cannot have
arrived in the switch yet and thus cannot be ready, contradicting Condition (i). Case 2: If
t > tub(vk), Lemma 11 proves that Pi cannot be the next packet transmitted in system state
vk. Thus, either Condition (i) or (ii) is not respected. Case 3: If t ∈ [tlb

Pi
(vk), tub(vk)] and

t ̸∈ EPi(vk), then, by Eq. (12), t ∈ Gcert
Pi

or ∃ Cb such that t ∈ Ihp
Cb

(vk) and the priority of Cb

is higher than Pi’s priority. If the former is true, then Lemma 13 proves that Pi is not ready
at t, contradicting Condition (i). If the latter is true, then Lemma 15 proves that a higher
priority packet of class Cb is certainly ready, contradicting Condition (ii).

Therefore, we reached a contradiction for all cases. Meaning that if Pi is the next
packet transmitted in system state vk, Pi cannot start transmitting at any time instant
t ̸∈ EPi

(vk). ◀

▶ Theorem 19. EPi
(vk) contains all the instants at which Pi ∈ topCa

(vk) may start trans-
mitting and does not contain any instant at which Pi may not start transmitting in system
state vk.

Proof. It is a direct application of Lemmas 17 and 18. ◀

5 Evolving System States

As a result of Theorem 19, if EPi
(vk) is not empty, then packet Pi may be the next packet

transmitted through the egress in system state vk. Pi’s transmission makes the system evolve
to a new state. Since the availability of the egress in the new system state vp depends on
when Pi starts transmitting. Since, according to our discussion in the previous section, there
may be more than one continuous time interval in which Pi may start transmitting (i.e.,
there may be more than one time interval in EPi

(vk)), Alg. 1 analyzes each continuous time
interval in which Pi may start separately, i.e., a new node vp encoding the new system state
after transmitting Pi is created for every interval in EPi

(vk) (line 9 in Alg. 1).
We denote the start of the jth time interval in EPi(vk) by Ej,start

Pi
(vk), and

its end by Ej,end
Pi

(vk). By Theorem 19, Pi may start transmitting at any time
within [Ej,start

Pi
(vk), Ej,end

Pi
(vk)]. Thus, Pi’s transmission may end at any time within

[Ej,start
Pi

(vk) +CPi
, Ej,end

Pi
(vk) +CPi

]. We also know from the definition of the guard-band
that Pi certainly finished its transmission when the gate of its class closes (see rule R3).
Therefore, the latest time Pi may finish its transmission when starting its transmission in the
jth interval in EPi

(vk) is either when Pi starts at Ej,end
Pi

(vk) and transmits for its maximum
transmission time Cmax

Pi
, or when the gate of Pi’s class (say Ca) closes for the first time after

Pi started transmitting. That is, it is given by LFTi,j(vk) as defined in Eq. (13).

LFTi,j(vk) = min{Ej,end
Pi

(vk) + Cmax
Pi

, gcnext
i } (13)

where gcnext
i = min{t | t ̸∈ GCa

∧ t > Ej,end
Pi

(vk)}.
Similarly, the earliest time Pi may finish its transmission when starting its transmission

in the jth interval in EPi
(vk) is when it starts at Ej,start

Pi
(vk) and transmits for its minimum

transmission time.

EFTi,j(vk) = Ej,start
Pi

(vk) + Cmin
Pi

(14)



S. Srinivasan, G. Nelissen, R. J. Bril, and N. Meratnia 16:17

Using the earliest and latest finish time of Pi, we get that the earliest and latest availability
time of the egress Amin(vp) and Amax(vp) after transmitting Pi are given by Eqs. (15) and (16),
respectively.

Amin(vp) = EFTi,j(vk) +CIPG (15)
Amax(vp) = LFTi,j(vk) +CIPG (16)

where CIPG is the length of the inter-packet gap, i.e., the minimum time duration defined by
the Ethernet protocol that must separate the transmission of any two packets.

▶ Lemma 20. The LFTi,j(vk) and EFTi,j(vk) calculated with Eqs. (13) and (14) are exact
lower and upper-bounds on the finish time of packet Pi if Pi starts transmitting in the jth

interval of EPi
(vk).

Proof. To prove a bound is exact, we must prove that there is at least one execution scenario
such that the bound is reached, and that no execution scenario may go beyond the bound.

We first prove the claim for EFTi,j(vk). Since Cmin
Pi

is a valid transmission time for Pi, if
Pi starts at Ej,start

Pi
(vk) ∈ EPi

(vk) and executes for Cmin
Pi

it finishes at EFTi,j(vk) as defined
by Eq. (14). Furthermore, to finish earlier than EFTi,j(vk) = Ej,start

Pi
(vk) + Cmin

Pi
, Pi must

either start earlier than Ej,start
Pi

(vk) or transmit for less than Cmin
Pi

. Any of those would either
contradict that Ej,start

Pi
(vk) is the start of EPi

(vk), or that Cmin
Pi

is a lower bound on Pi’s
transmission time.

We now prove the claim for LFTi,j(vk). Since Cmax
Pi

and lower values are valid values
for the transmission time of Pi, if Pi starts at Ej,end

Pi
(vk) ∈ EPi

(vk) and executes for Ci =
LFTi,j(vk) − Ej,end

Pi
(vk) ≤ Cmax

Pi
, it finishes at LFTi,j(vk) as defined by Eq. (13). Furthermore,

to finish later than LFTi,j(vk) = min{Ej,end
Pi

(vk) + Cmax
Pi

, gcnext
i }}, Pi must either start later

than Ej,end
Pi

(vk) or transmit for more than Cmax
Pi

or continues to transmit until later than
gcnext

i . Any of those would either contradict that Ej,end
Pi

(vk) is the end of EPi(vk), or that
Cmax

Pi
is an upper bound on Pi’s transmission time, or that rule R3 of TSN does not allow a

packet to start transmitting if it would finish later than the next closing event of Pi’s gate,
i.e., after gcnext

i . ◀

▶ Corollary 21. Amin(vp) and Amax(vp) calculated with Eq. (15) and (16) are exact lower
and upper-bounds on the availability time of the egress if Pi start transmitting in the jth

interval of EPi
(vk).

6 Merge of System States

As said in Section 3.2, to curb the growth of the graph, if there are two system states vx

and vy with the same set of transmitted packets P(vx) = P(vy), and with overlapping or
contiguous availability intervals, Alg. 1 merges vx and vy into an equivalent state vz (lines
18-22).

▶ Lemma 22. Let vx and vy be two states. If P(vx) = P(vy) and Amin(vx) ≤ Amin(vy) ≤
Amax(vx), then a state vz with P(vz) = P(vx) = P(vy), and Amin(vz) = Amin(vx) and
Amax(vz) = max{Amax(vx), Amax(vy)} covers all execution scenarios covered by vx and vy

and no execution scenario that is not covered by either vx or vy.

ECRTS 2024



16:18 Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs

Proof. We first prove that all execution scenarios covered by vz are also covered by either
vx or vy. If Amin(vx) ≤ Amin(vy) ≤ Amax(vx), then the time interval [Amin(vx), Amax(vx)) ∪
[Amin(vy), Amax(vy)) is a continuous interval. Thus, there is at least one execution scenario
covered by vx and/or vy in which all packets in P(vx) = P(vy) are transmitted and the
egress becomes available at any time t ∈ [Amin(vx), max{Amax(vx), Amax(vy)}).

We now prove that all execution scenarios covered by vx and vy are covered by vz.
In all execution scenarios covered by vx and vy, the egress is certainly available at time
max{Amax(vx), Amax(vy)}, and in no execution scenario covered by vx and vy, the egress
becomes available before Amin(vx). Since vz covers all scenario where the egress may become
available from Amin(vz) = Amin(vx) to Amax(vz) = max{Amax(vx), Amax(vy)}, it covers all
execution scenarios covered by vx and vy. ◀

7 Proof of Correctness

In this section, we establish that Alg. 1 analyzes all possible execution scenarios and returns
exact response time bounds for every packet in P.

▶ Lemma 23. If Alg. 1 does not create an edge labeled with packet Pi from system state vk,
then there exists no execution scenario where Pi is the next packet transmitted in vk.

Proof. If Algorithm 1 does not create an edge labeled with packet Pi from system state vk,
then either Pi is not possibly eligible, i.e., tlb

Pi
(vk) > tub(vk) (line 7 of Alg. 1) or the set of

eligible transmission intervals EPi
(vk) is empty (line 9 of Alg. 1). By contradiction, assume

that there exists an execution scenario where Pi is the next packet transmitted in system
state vk and tlb

Pi
(vk) > tub(vk) and/or EPi(vk) = ∅. Then, it contradicts Lemma 12 and/or

Theorem 19. ◀

▶ Lemma 24. If Alg. 1 creates an edge labeled with packet Pi originating from system state
vk, then there exists an execution scenario where Pi is the next packet transmitted in vk.

Proof. Algorithm 1 creates an edge labeled with packet Pi originating from system state vk

when tlb
Pi

(vk) ≤ tub(vk) (line 7 of Alg. 1) and EPi(vk) ̸= ∅ (line 9 of Alg. 1). If EPi(vk) ̸= ∅ then
we always have tlb

Pi
(vk) ≤ tub(vk) by Eq. (12), thereby making the condition tlb

Pi
(vk) ≤ tub(vk)

irrelevant to prove the claim. Moreover, Theorem 19 proves that EPi(vk) does not contain
any instant at which Pi cannot start transmitting in vk. Therefore, if EPi

(vk) ̸= ∅, there is
an execution scenario where Pi starts transmitting in vk. ◀

▶ Theorem 25. The SAG generated by Alg. 1 contains all reachable system states and the
response time bounds calculated by Alg. 1 are exact.

Proof. We prove the claim by proving that the SAG generated by Algorithm 1 contains all
states reachable by the system and does not contain any state that is not reachable by the
system. We prove it by induction. Furthermore, for each system state, we prove that the
bounds computed by Alg. 1 on the finish times of packets are exact.

Base case. The state v0 where the egress is free and no packet is transmitted yet is the
only possible system state when the system starts and Alg. 1 properly adds it to the SAG.



S. Srinivasan, G. Nelissen, R. J. Bril, and N. Meratnia 16:19

Induction step. Let vk be a reachable system state that was already added to the SAG by
Alg. 1, Lemmas 23 and 24 prove that Alg. 1 adds a new state vl connected to vk by an edge
labeled with Pi if and only if there is an execution scenario where Pi starts executing in vk.
Moreover, Lemma 20 and Corollary 21 prove that the bounds computed by Alg. 1 on the
finish time of Pi and the resulting availability of the egress are exact. Thus, Alg. 1 only adds
a state vl if it is reachable by the system, and all states reachable from vk are added to the
SAG by Alg. 1.

Applying the induction step until Alg. 1 ends proves the theorem. ◀

8 Evaluation

The analysis we proposed in the previous sections can analyze TSN switches configured such
that gates controlled by Time-Aware Shapers (TAS) adhere to any imaginable schedule,
including those where multiple gates are open simultaneously, a flexibility that goes beyond
what existing response time analyses for TAS can support. Therefore, we claim that the
strengths of our analysis are: (1) its flexibility, enabling design exploration of unconventional
configurations, and (2) its exactness. We already proved the exactness of the analysis in
Section 7. Therefore, in this section, we investigate whether stepping outside conventional
boundaries on how TAS gates are configured might bring new benefits since one may question
the necessity of such a comprehensive analysis for such a well-studied concept as TAS.

Experimental Setup. We generate systems made of 8 traffic classes (i.e., the default number
of classes mentioned in the TSN standard). We assume each traffic class comprises f flows
where f = 2 , f = 4, or f = 8 depending on the experiments (i.e., there are between 16 and
64 flows equally distributed between the 8 traffic classes). For each experiment, we start by
randomly generating a Gate Control List (GCL) for the time-aware shapers. To do so, for
each traffic class Ca ∈ C, we generate a utilization values Ua using the Emberson and Davis’
tool [12] such that the sum of the classes utilization

∑
Ca∈C Ua is equal to 100% of the switch

egress. That is, Ua represents the portion of the egress bandwidth reserved for class Ca.
Then, for each class Ca ∈ C, we randomly pick a period Ta from the log-uniformly distributed
set of values {x × 10y | x ∈ [1, 9] ∧ y ∈ [2, 4]}. The total duration Oa during which the gate
of class Ca is open within each period of length Ta is then calculated as Oa = Ua × Ta. Given
that a class comprises f communication flows, we assume the gate of each class Ca opens f

times within each period Ta, with each gate opening lasting Oa

f time.
We then use the CW-EDF scheduling algorithm [20, 19] to build the time-triggered

schedule deciding the exact times at which each gate of each class is opened and closed over
the hyperperiod of the traffic classes. This forms our baseline GCL. Note that CW-EDF
enforces that no two gates are open simultaneously.

To test alternative non-conventional GCL configurations, we construct variations of the
baseline GCL. We adjust the opening times of each gate in the GCL so that it opens when the
previous gate in the GCL has not closed yet. We investigate three distinct scenarios, setting
the the time two gates are open simultaneously at 50%, 99%, and 100% of the duration of
the previous gate’s opening. An example of how the GCL would look like after a 50% overlap
is added is shown in the bottom part of Figure 4. The initial GCL before adding the 50%
overlap is shown in the upper part of the figure.

In our experiments, we assume the communication flows share the same period as their
traffic class. To model the fact that communication flow of a class rarely use 100% of the
bandwidth reserved for that class, we distribute 80% of each class bandwidth between the

ECRTS 2024



16:20 Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs

Figure 4 Example that shows how overlapping gates are configured at 50% overlap.

flows of that class using Emberson and Davis’ tool [12] and enforcing that the maximum
transmission time of each packet does go over the time the class’ gate opens. We model the
variation in transmission times of the communication flow by assuming that the minimum
transmission time is set to 50% of its maximum transmission time.

Results. Our experiments are designed to explore whether allowing gates to overlap can
lead to lower latency for both best-case and worst-case scenarios in packet transmission.
The underlying idea is that in situations where there is uncertainty – be it in the timing of
packet arrivals at the switch ingress or in the length of their transmission times – overlapping
gates could help some classes benefit from the reserved bandwidth of other classes that
might otherwise go unused. By potentially starting the transmission of a packet of a class
sooner as another class transmission is concluding, we expect to see a significant drop in the
overall time packets spend in the switch queues. To test this hypothesis, we examine how
the worst-case and best-case latency change when gates are allowed to overlap.

Figure 5(a)-(d) shows the impact of gate overlap on the latency of packets transmitted
through a switch. We investigated two distinct scenarios: the first involves communication
flows with varying transmission times but no release jitter (Figure 5(a)-(b)), while the
second adds an additional layer of complexity by adding release jitter equal to 5% of each
flow’s period (Figure 5(c)-(d)). Figure 5(a)-(b) further show the impact of the number
of communication flows per traffic class on latency. The plots of Figure 5 are the result
of running 40 experiments per scenario. The latency is plotted relative to the latency in
the baseline scenario with no overlap, that is, if the average best-case latency is 0.5 for a
given scenario, then it means that, in average, the best-case latency of packets was half the
best-case latency of the same packets in comparison to the scenario without gate overlap.

The results across all scenarios are consistent: introducing gate overlap significantly
reduces the best-case latency of packets (Figure 5(b)-(d)), but probably more surprisingly, it
also improves the worst-case latency of packets (Figure 5(a),(c) and (d)). These results are
the first that allow to formally evaluate the cost of using strictly non-overlapping GCLs that
under-utilizes the available bandwidth, thereby particularly impacting best-case performance.



S. Srinivasan, G. Nelissen, R. J. Bril, and N. Meratnia 16:21

(a) Relative worst-case latency under transmis-
sion time variation.

(b) Relative best-case latency under transmis-
sion time variation.

(c) Relative best- and worst-case latency when
there is release jitter for 2 flows per traffic class.

(d) Relative best- and worst-case latency when
there is release jitter for 4 flows per traffic class.

Figure 5 Packets’ latency comparison for different gate overlap scenarios.

While we see a clear improvement of the average latency across all classes, we should
consider that TAS is usually used to shape traffic classes that deal with high priority or
control traffic that cannot tolerate interference by other traffic classes. Strict non-overlapping
gates are a way to ensure the absence of such interference. By allowing gate overlaps across
traffic classes, we bring the risk to lose that expected property of TAS. Thus, we tested
the impact of overlapping gates on the potential additional interference between classes
by checking whether the worst-case latency of packets may increase when gate overlaps
are allowed. The result of our tests showed that none of the packets experienced a missed
deadline even when gates overlap by 100%.

One concern with overlapping gates is that they introduce greater variability in the
response times of TAS packets, which is undesirable. Increased variability in a packet’s
departure from one switch can lead to larger uncertainity bounds on the arrival times at the
next switch in the network. The higher the uncertainty, the more difficiult it is to ascertain
predictability. However, our analysis remains exact for TAS packets, even when cosnidering
jitter in their arrival times. Thus, the SAG method effectively maintains the predictability of
TAS packets, even when overlapping gates cause increased variability in the response times.

The fact that we do not see any decrease in the ability to meet transmission deadlines
in scenarios with gate overlap suggests a promising TAS configuration strategy where it
is possible to ensure that high-priority packets are always sent on time without having to

ECRTS 2024



16:22 Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs

compromise as much on bandwidth usage. This insight could only be possibly obtained
thanks to proposing a new analysis able to test such TAS configuration scenarios. Our new
analysis is thus crucial for design-space exploration that may now explore non-conventional
TAS gates configurations.

9 Conclusion

We presented the first best-case and worst-case latency analysis for packets shaped with
Time-Aware Shapers with no restriction on their GCLs configuration. The analysis is a
variation of the SAG approach. We extend the SAG in non-obvious ways to support the
analysis of FIFO scheduling and TAS. We proved that the analysis is exact, meaning that it
returns tight bounds on the best-case and worst-case latency of each analyzed packet.

Our evaluation section highlights the utility of our new analysis, which allows to analyze
out-of-the-box solutions for configuring TAS. In our evaluation section, we extracted just
one of potentially many insights on how TAS could be configured to improve best-case and
average performance without degrading the worst-case performance of communication flows
in comparison to the conventional non-overlaping configuration of TAS. However, there are
many different settings and parameters that could be explored with our new analysis to
further our understanding of Time-Aware Shapers and potentially reveal more efficient ways
to use them. Their exploration is out of the scope of this paper, but our analysis is a first
step towards this broader goal, offering a way to explore any possible TAS configuration.

Another extention to this work would be to apply the analysis accross an entire netwrok
of swicthes. The best and worst-case latency that we obtain for each packet in a single switch
can model the minimum and maximum arrival time of each packet into the next switch in the
network, enabling us to analyze the end-to-end latency of packets in a network of switches.

References

1 Time-sensitive networking (TSN) task group. URL: https://1.ieee802.org/tsn/.
2 IEEE standard for local and metropolitan area networks–bridges and bridged networks, 2022.

IEEE Std 802.1Q-2022 (Revision of IEEE Std 802.1Q-2018).
3 Mohammad Ashjaei, Lucia Lo Bello, Masoud Daneshtalab, Gaetano Patti, Sergio Saponara,

and Saad Mubeen. Time-sensitive networking in automotive embedded systems: State of the
art and research opportunities. Journal of systems architecture, 117:102137, 2021.

4 Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. Wellings. Applying
new scheduling theory to static priority preemptive scheduling. Software Engineering Journal,
8(5):284–292, 1993.

5 Lucia Lo Bello, Mohammad Ashjaei, Gaetano Patti, and Moris Behnam. Schedulability
analysis of time-sensitive networks with scheduled traffic and preemption support. Journal of
Parallel and Distributed Computing, 144:153–171, 2020.

6 Unmesh D Bordoloi, Amir Aminifar, Petru Eles, and Zebo Peng. Schedulability analysis
of ethernet AVB switches. In 2014 IEEE 20th International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 1–10. IEEE, 2014.

7 Jingyue Cao, Pieter JL Cuijpers, Reinder J Bril, and Johan J Lukkien. Independent yet tight
WCRT analysis for individual priority classes in ethernet AVB. In Proc. 24th International
Conference on Real-Time Networks and Systems, pages 55–64, 2016.

8 Joan Adrià Ruiz De Azua and Marc Boyer. Complete modelling of AVB in network calculus
framework. In Proc. 22nd International Conference on Real-Time Networks and Systems,
pages 55–64, 2014.

https://1.ieee802.org/tsn/


S. Srinivasan, G. Nelissen, R. J. Bril, and N. Meratnia 16:23

9 Libing Deng, Guoqi Xie, Hong Liu, Yunbo Han, Renfa Li, and Keqin Li. A survey of real-time
ethernet modeling and design methodologies: From AVB to TSN. ACM Computing Surveys
(CSUR), 55(2):1–36, 2022.

10 Jonas Diemer, Jonas Rox, and Rolf Ernst. Modeling of ethernet AVB networks for worst-case
timing analysis. IFAC Proceedings Volumes, 45(2):848–853, 2012.

11 Jonas Diemer, Daniel Thiele, and Rolf Ernst. Formal worst-case timing analysis of ethernet
topologies with strict-priority and AVB switching. In 7th IEEE International Symposium on
Industrial Embedded Systems (SIES), pages 1–10. IEEE, 2012.

12 Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the synthesis of multipro-
cessor tasksets. In WATERS, pages 6–11, 2010.

13 Voica Gavriluţ and Paul Pop. Scheduling in time sensitive networks (TSN) for mixed-criticality
industrial applications. In 2018 14th IEEE International Workshop on Factory Communication
Systems (WFCS), pages 1–4. IEEE, 2018.

14 Voica Gavriluţ and Paul Pop. Traffic-type assignment for TSN-based mixed-criticality cyber-
physical systems. ACM Transactions on Cyber-physical Systems, 4(2):1–27, 2020.

15 Pourya Gohari, Jeroen Voeten, and Mitra Nasri. Reachability-based Response-Time Analysis
of Preemptive Tasks under Global Scheduling. In 36th Euromicro Conference on Real-Time
Systems (ECRTS 2024), pages 3:1–3:23, 2024.

16 Xiaoting Li and Laurent George. Deterministic delay analysis of AVB switched ethernet
networks using an extended trajectory approach. Real-Time Systems, 53(1):121–186, 2017.

17 Rouhollah Mahfouzi, Amir Aminifar, Soheil Samii, Ahmed Rezine, Petru Eles, and Zebo
Peng. Stability-aware integrated routing and scheduling for control applications in ethernet
networks. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 682–687. IEEE, 2018.

18 Mitra Nasri and Björn B. Brandenburg. An Exact and Sustainable Analysis of Non-preemptive
Scheduling. In RTSS, pages 12–23, 2017.

19 Mitra Nasri and Björn B. Brandenburg. Offline equivalence: A non-preemptive scheduling
technique for resource-constrained embedded real-time systems (outstanding paper). In 2017
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 75–86,
2017. doi:10.1109/RTAS.2017.34.

20 Mitra Nasri and Gerhard Fohler. Non-work-conserving non-preemptive scheduling: motivations,
challenges, and potential solutions. In ECRTS, pages 165–175, 2016.

21 Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg. A Response-Time Analysis for
Non-Preemptive Job Sets under Global Scheduling. In ECRTS, pages 9:1–9:23, 2018.

22 Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg. Response-time analysis of limited-
preemptive parallel DAG tasks under global scheduling. In ECRTS, pages 21:1–21:23, 2019.

23 Geoffrey Nelissen, Joan Marce-i Igual, and Mitra Nasri. Response-Time Analysis for Non-
Preemptive Periodic Moldable Gang Tasks. In ECRTS, pages 12:1–12:22, 2022.

24 Suhail Nogd, Geoffrey Nelissen, Mitra Nasri, and Björn B. Brandenburg. Response-Time
Analysis for Non-Preemptive Global Scheduling with FIFO Spin Locks. In RTSS, pages
115–127, 2020.

25 Maryam Pahlevan and Roman Obermaisser. Genetic algorithm for scheduling time-triggered
traffic in time-sensitive networks. In 2018 IEEE 23rd international conference on emerging
technologies and factory automation (ETFA), volume 1, pages 337–344. IEEE, 2018.

26 Rene Queck. Analysis of ethernet AVB for automotive networks using network calculus. In
2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES 2012), pages
61–67. IEEE, 2012.

27 Michael Lander Raagaard and Paul Pop. Optimization algorithms for the scheduling of
IEEE 802.1 time-sensitive networking (TSN). tech. univ. denmark, lyngby. Technical report,
Denmark, Tech. Rep, 2017.

ECRTS 2024

https://doi.org/10.1109/RTAS.2017.34


16:24 Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs

28 Sayra Ranjha, Geoffrey Nelissen, and Mitra Nasri. Partial-Order Reduction for Schedule-
Abstraction-based Response-Time Analyses of Non-Preemptive Tasks. In RTAS, pages 121–132,
2022.

29 Daniel Thiele, Rolf Ernst, and Jonas Diemer. Formal worst-case timing analysis of ethernet
TSN’s time-aware and peristaltic shapers. In 2015 IEEE Vehicular Networking Conference
(VNC), pages 251–258. IEEE, 2015.

30 Luxi Zhao, Paul Pop, and Silviu S Craciunas. Worst-case latency analysis for IEEE 802.1 qbv
time sensitive networks using network calculus. IEEE Access, 6:41803–41815, 2018.

31 Luxi Zhao, Paul Pop, Zhong Zheng, Hugo Daigmorte, and Marc Boyer. Latency analysis of
multiple classes of AVB traffic in TSN with standard credit behavior using network calculus.
IEEE Transactions on Industrial Electronics, 68(10):10291–10302, 2020.

32 Yimi Zhao, Srinidhi Srinivasan, Geoffrey Nelissen, and Mitra Nasri. Work-in-progress: Gen-
erating counter-examples to schedulability using the schedule abstraction. In 2023 IEEE
Real-Time Systems Symposium (RTSS), pages 459–462. IEEE, 2023.


	1 Introduction
	2 System Model
	2.1 Flow model
	2.2 Switch model

	3 Schedulability Analysis
	3.1 Challenges
	3.2 SAG generation algorithm

	4 Possibly Eligible Packets and Eligible Transmission Intervals
	4.1 Accounting for FIFO Queues
	4.2 Potentially eligible packets
	4.2.1 Lower-bound on P_i's start time
	4.2.2 Upper-bound on P_i's start time
	4.2.3 Packet's potential eligibility

	4.3 Eligible transmission intervals of potential eligible packets

	5 Evolving System States
	6 Merge of System States
	7 Proof of Correctness
	8 Evaluation
	9 Conclusion

