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Abstract
The Linux Kernel offers several scheduling classes. From SCHED_DEADLINE down to SCHED_FIFO,
SCHED_RR and SCHED_OTHER, the scheduling classes can provide different responsiveness to very
diverse user workloads. Still, Linux does not offer any mechanism to take some action upon the
violation of temporal constraints at runtime. The lack of such a feature is also due to the difficulty of
extending the established notion of deadline to workloads which are not releasing periodic/sporadic
jobs.

Exploiting the notion of supply functions for any resource schedule, we implemented SlackCheck,
a kernel module which is capable to verify at runtime if a given task is assigned a desired amount of
resource or not. SlackCheck adds a constant-time check at every scheduling decision and leverages
the recent availability of a Runtime Verification engine in the kernel.
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1 Introduction

Linux is a multi-purpose operating system as it is used on desktop/laptop machines, in
data-centers as hypervisor, as well as in embedded devices. Given the diversity of the
target applications, its scheduler responds to the needs of different types of workloads: from
compute intense to highly interactive (low latency), from constant demands to highly variable
workloads triggered by the users. The developers’ answer to these different requirements
takes the form of different scheduling classes.

In the Linux kernel, the scheduling classes are arranged in a hierarchy: a task is eligible
to run only if no other tasks belonging to a higher scheduling class is available. In kernel
version 6.6.0 2, the scheduling classes available to the user are (from higher to lower priority
on the hierarchy):
1. SCHED_DEADLINE [22, 28] implementing the Constant Bandwidth Server (CBS) [2] and

then scheduling the servers by EDF.
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2. SCHED_FIFO and SCHED_RR implementing a Fixed-Priority Scheduler, with SCHED_RR
pushing back to the tail of the ready queue any task running longer than a given round
(whose default length is 100 milliseconds3).

3. SCHED_OTHER and SCHED_BATCH, implementing the Completely Fair Scheduler (CFS) [42].

As demonstrated by the merge into mainline of SCHED_DEADLINE, the kernel maintainers
have shown an increasing attention to the real-time constraints of workloads [48]. Still, no
run-time mechanism exists to monitor the amount of resource supplied to a given task. In
fact, when tasks are scheduled by SCHED_DEADLINE, the deadline is indeed used to schedule
tasks, but no (recovery or else) action is possible upon a deadline miss.

In this work, we have developed SlackCheck, a kernel module which monitors and
verifies if the time allocated to any tasks conforms to a given supply function (more details
on this model are reported in Section 2). Upon user’s choice, when such constraint is violated
this mechanism can either warn the user with a kernel message, try to recover from the
situation, or stop the system entirely. Other possible reactions can be implemented, such as
retuning the process within the scheduler either by changing its priority or scheduling class.
This allows for a great flexibility thanks to the underlying Runtime Verification system.

1.1 Related works
The attempt to execute real-time applications over Linux is not new. Many works have
addressed the latency added by the kernel itself. Abeni et al. [4] analyzed the timer resolution
of an x86 platform and defined a cyclictest-like metric to evaluate the latency due to
non-preemptible sections in the OS. Cerqueira and Brandenburg [15] compared the schedul-
ing latencies of PREEMPT_RT with LITMUSRT, which is a real-time, Linux-based testbed,
developed for empirically evaluating multiprocessor real-time scheduling algorithms [14].
Cinque et al. [17] proposed real-time containers, implemented over RTAI4. To respond to
the needs of applications with strict timing, the implementation of table-driven scheduling
in Linux was proposed [25]. Recently, rtla osnoise was presented, a per-CPU tracer that
enables the tracing of the sources of the noise, facilitating the analysis and debugging of the
system [11]. A formal verification approach for the Linux kernel, based on automata models,
was proposed by Bristot et al. [12].

Monitoring the progress of applications and possibly take corrective actions was proposed
by several authors. A first proposal for feedback-based scheduling of time sharing systems
was proposed by Corbató et al. [18]. Stankovic and his former students proposed guaranteed
composition of schedulers [38] as well as model and analysis for feedback scheduling [31].
A similar approach was proposed by Cervin et al. [16]. Abeni et al. [3] proposed adaptive
reservations to adjust to the varying loads. All the mentioned works, however, did need a
mechanism to explicitly signal the deviation from the correct behavior (such as the occurrence
of deadline misses). Our work, instead, does not require any explicit mechanism as it is
based on the always-available scheduling events.

Supply functions have been used, possibly under different names in different contexts
(e.g. service curves in network/real-time calculus [19, 8, 43, 27]), to model the availability of
different types of resource: processing time of a single [34, 30, 40] or multi-core platform [39,
10, 29, 46, 13], network [19, 7], memory [47, 1], and I/O [37]. In words, a supply function
represents a lower bound to the amount of resources allocated by a scheduler (in Section 2,
we recall the necessary formalism).

3 https://elixir.bootlin.com/linux/v6.6.9/source/include/linux/sched/rt.h#L57. Accessed on
January 7th, 2024.

4 https://www.rtai.org/. Accessed on February 10th, 2024.
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A simple form of a supply function is expressed by a linear lower bound and modeled by
the slope and the intercept of the line with the x-axis, often called bandwidth and delay in
real-time systems. Without aiming at an exhaustive coverage of this vast research area, the
following works have had a significant impact:

Cruz [19] introduced the “(σ, ρ) regulator” to control bandwidth and delay of a given flow
of packets,
Parekh and Gallager introduced the concept of Generalized Processor Sharing (GPS) as
a means to fairly allocate resources among competing flows [36],
In network calculus, rate-latency service curves model precisely the same type of supply [41,
27],
Mok et al. [34] introduced the notion of “least supply function” and “bounded-delay
resource partition” (α, ∆), which we will be using in this paper,
Mostly inspired by [34], several authors [30, 40, 6] derived schedulability conditions for a
set of tasks to be scheduled over a partially available CPU modeled by a supply function.

The model of resource schedules by supply functions (or other equivalent models possibly
named differently) did influence the development of the Linux kernel and other OSes. Stoica
et al. [42] developed a real-time scheduling policy over FreeBSD 2.0.5. Rialto [24] was an OS
developed at Microsoft Research offering real-time guarantees by a pre-computed schedule.
Oikawa and Rajkumar implemented a resource kernel to ensure predictable timing across
diverse hardware and operating systems [35]. Wang and Lin [45] developed some real-time
(hierarchical) scheduler on top of Linux, kernel version 2.0.35. Regehr and Stankovic [38]
implemented a hierarchical scheduler with soft real-time guarantees over Windows 2000 OS.

In the virtualization context, many advancements were made. Xtratum is an hypervisor
for embedded systems [33]. Cucinotta et al. provided real-time guarantees for both the
processing and the networking [20]. RT-Xen [46] was implementing Xen virtual CPUs by
time partitions. Maggio et al. [32] developed a tool to measure supply functions of any
given execution platform, possibly with some degree of parallelism. However, their work was
based on some off-line analysis of scheduling traces. Hermes was proposed as hypervisor for
microcontrollers without MMU [26].

In summary, the supply function model has driven the development of many scheduler
modifications over the years. Pushing these ideas upstream to the mainline kernel, however,
is not simple as the kernel scheduler needs to account for many real-world details, different
use cases and scenarios. This motivates our approach of proposing a stand alone kernel
module which monitors and detects violations of temporal constraints, independently of the
scheduler choice.

Contribution of this paper

First, we have determined a necessary and sufficient condition for the verification of a linear
lower bound to the service received by the task. Then, we have implemented a Linux module
to monitor and verify temporal constraints expressed by linear supply lower bound functions.
Our method has O(1) time complexity, as highly desirable (i.e. practically mandatory) for
kernel code invoked at scheduling decisions.

2 Model of schedule and constraints

SlackCheck can track the execution of a task and check if any temporal constraint is
violated at runtime. This section illustrates the formalism used to represent schedules and
temporal constraints.

ECRTS 2024
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SlackCheck is attached to a task, which we denote by τ . Also, let us denote by:
[ink]k∈N = [in0, in1, in2, . . .] the sequence of instants when τ starts to be scheduled, called
sched-in instants for brevity, and
[outk]k∈N the sequence of instants when τ is removed from a CPU, called sched-out
instants.

We assume that
out0 = 0, meaning that we count the time from the first sched-out
in0 ≥ out0, meaning the first sched-in follows the first sched-out. If τ is scheduled at time
0, then we have in0 = out0.
∀k ∈ N we have ink < outk+1 < ink+1, because sched-in and sched-out instants obviously
alternate over the task τ lifetime.

Also, to exclude Zeno’s sequences, in which both sched-in and sched-out instants have an
accumulation point, we require that limk ink =∞. This implies that the same property holds
for the sched-out instants as well.

Given the instants ink and outk as defined above, we define the schedule function by

∀k ∈ N, s(t) =
{

0 when outk ≤ t < ink

1 when ink ≤ t < outk+1.
(1)

Also, the cumulative amount of service received by τ over any interval [a, b] is denoted by

sched(a, b) =
∫ b

a

s(t) dt. (2)

The supply (lower) bound function sbf(t) for the schedule s(t) of the task τ is a function
such that [34, 30, 40]

∀t0, t ≥ 0, sbf(t) ≤ sched(t0, t0 + t), (3)

meaning that sbf(t) is a lower bound to the amount of resource allocated by the scheduler to
τ in any interval of length t. Many different functions sbf(t) can fulfill (3) as, for example,
the constant sbf(t) = 0. It is, however, of greater practical interest to have the sbf(t) be
the largest possible satisfying (3). For example, if s(t) represents any schedule of a periodic
server allocating a budget Q with period P , then a valid sbf(t) is

sbf(t) = max{0, t− P + Q− (k + 1)(P −Q), k Q}, with k =
⌈

t− P + Q

P

⌉
(4)

which is represented in Figure 1. We underline that the notion of supply function is analogous
to service curves of network/real-time calculus [19, 43, 27], as mentioned earlier in Section 1.1.

Another typical form of the sbf(t) to bound from below the amount of allocated resource
is the so-called bounded-delay partition [34], which requires the definition of two parameters

the bandwidth α, and
the delay ∆.

These parameters enable the definition of the supply linear bound function

slbf(t) = max{0, α(t−∆)}, (5)

and we say that a resource schedule s(t) complies with the bandwidth-delay pair (α, ∆)
whenever

∀t0, t1 ≥ t0, sched(t0, t1) ≥ slbf(t1 − t0). (6)
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Figure 1 Example of supply bound function for a periodic server.

For example, any periodic server with the supply of (4) has a supply linear lower bound
with a bandwidth α = Q

P and a delay ∆ = 2(P − Q). We choose this form of temporal
constraints because it can be applied to any schedule s(t), regardless of the type of workload
generating such a schedule. Indeed other forms of constraints exist such as the deadline or
the number of tolerable deadline misses among consecutive job releases. These constraints,
however, require the task to be periodic, whereas SlackCheck can be applied to any
workload and any scheduling policy.

Hence, from now on, whenever we say “a workload meets the temporal constraints”, we
mean that the schedule of the task τ satisfies Equation (6), which is the form of our temporal
constraint.

3 Verification of the linear supply lower bound in O(1)

The goal driving our work is the implementation of a mechanism which is capable to detect
at runtime if the schedule of a given task τ violates Equation (6). As the equation shows,
the condition needs to be enforced for any start and end times t0, t1 of the interval [t0, t1].
A straightforward implementation of the condition of (6) is clearly infeasible because:

it needs to be constantly monitored at any time t1, and
for any t1, it needs to be checked for any t0 in the past (t0 ≤ t1).

The two above reasons are difficult to implement, as constantly checking for each time t1
would add too much overhead in the kernel. For the latter reason, the number of points t0
would grow with the passing of time, therefore the straightforward check would also take
too space in memory to be implementable. Of course, these issues apply to all tasks, in case
SlackCheck is implemented for many tasks.

In this section, we describe an algorithm which is executed only at a discrete set of instants
and has constant O(1) time and space complexity. We remark that this characteristic is
essential for code which needs to be executed at the frequency of the scheduling events in
the kernel.

In short, our algorithm:
checks the condition of (6) only at sched-in instants t1, and
updates in constant time, an internal state variable of slack, which keeps track of the
most constraining t0 in the past.

ECRTS 2024
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The slack is the time remaining until the latest instant for the task τ to be scheduled in
order not to violate the condition of (6).

Section 3.1 illustrates the details of the algorithm for the slack calculation, whereas
Section 3.2 provides the proof of correctness of such an algorithm.

3.1 Algorithm

As mentioned earlier, our algorithm revolves around the notion of slack, which is formally
defined next.

▶ Definition 1. Let [ink]k∈N and [outk]k∈N be the sequences of sched-in and sched-out instants,
respectively.

We define slack of the schedule of the task τ , as follows

slack(out0) = ∆ (7)
slack(ink) = slack(outk)− (ink − outk) (8)

slack(outk) = min{∆, slack(ink−1) + 1− α

α
(outk − ink−1)}. (9)

The physical interpretation of the slack(t) is the amount of time the task τ can toler-
ate without being scheduled before violating the constraint of the linear lower bound of
Equation (6). In fact, the next theorem establishes a useful equivalence.

▶ Theorem 2. Let slack(t) be the slack as defined in Def. 1. Then, the condition of (6) is
equivalent to

∀h ∈ N, slack(inh) ≥ 0. (10)

Before proving the theorem (the proof of Theorem 2 is in Section 3.2), we illustrate its
advantages and application.

From the computational perspective, the combination of Theorem 2 and Definition 1 can
be implemented by:

Updating a state variable which tracks the value of slack(t). This should happen at both
sched-in and sched-out instants.
It is also necessary to check the condition of Eq. (10) at sched-in instants.

Both statements can be made in constant time complexity and constant space complexity, as
they required to store the only variable of the slack.

Let us show an example. In Figure 2, we show the schedule of a task (in yellow) as well
as the value of slack(t). We arbitrarily choose α = 2

3 and ∆ = 4. At the first sched-out
out0 = 0, we initialize slack(out0) = ∆ (equal to 4 in the example) as required by Eq. (7).
Then, during idle intervals, slack(t) decreases at the rate of one, as it follows from (8). When
the task τ is running, slack(t) increases at the rate of 1−α

α as indicate by Eq. (9), which is 1
2

in the example. Also, we remark that slack(t) cannot grow more than ∆ and it is always
saturated by ∆, otherwise by running for long enough time, we may allow arbitrary long
idle intervals. Such a saturation is represented by the dotted line which grows beyond ∆,
but does not affect the value of slack(out1). As the schedule progresses, a negative slack
is detected at time t = in3 = 15, meaning that the constraint on the supply lower bound
function of (6) is violated.
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t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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violation of Eq. (10)

Figure 2 An example of detection of a constraint violation. In the example, we choose a supply
linear bound slbf(t) given by α = 2

3 and ∆ = 4. The violation of Equation (10) is detected at the
sched-in instant ink = 15. In fact, the condition of Eq. (6) is also violated for t0 = 7 and t1 = 15 as
we have sched(7, 15) = 2 < slbf(15 − 7) = α(8 − ∆) = 2

3 × 4 = 2 + 2
3 .

3.2 Proof of correctness

In this section we prove Theorem 2 and discuss its implications.

Proof of Theorem 2. The goal is to demonstrate that Eq. (6) is equivalent to Eq. (10).
First, we determine that (6) is equivalent to

∀k, h ∈ N, h ≥ k, sched(outk, inh) ≥ slbf(inh − outk). (11)

The implication (6) ⇒ (11) is obvious because if (6) is true for all real numbers, it is also
true for the subset of sched-in/sched-out instants, as needed by (11).

The implication (11) ⇒ (6) requires slightly more efforts. We are given any t0 and t1,
with t1 ≥ t0 and we are building outk and inh to exploit the property of (11). From t0, we
build outk as follows

outk =
{

max{outℓ : outℓ ≤ t0} if s(t0) = 0
min{outℓ : outℓ ≥ t0} if s(t0) = 1,

with s(t), schedule function as defined in (1). In words, outk is the latest sched-out instant
preceding t0 if τ is scheduled at t0, or the earliest sched-out after t0 otherwise. Also, we
build inh from t1 as follows:

inh =
{

min{inℓ : inℓ ≥ t1} if s(t1) = 0
max{inℓ : inℓ ≤ t1} if s(t1) = 1.

The minima and maxima above always exist because they are taken over a non empty set
with no accumulation point.

ECRTS 2024
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We consider all four cases for s(t0) and s(t1). If the task τ is not running at t0 nor at t1,
that is s(t0) = s(t1) = 0, we have

sched(t0, t1) = sched(outk, inh) τ is idle in [outk, t0) ∪ [t1, inh)
sched(outk, inh) ≥ slbf(inh − outk) for the hypothesis of (11)
slbf(inh − outk) ≥ slbf(t1 − t0) [t0, t1) ⊆ [outk, inh) and slbf(t) is non-decreasing

meaning that sched(t0, t1) ≥ slbf(t1 − t0), as required by (6). If s(t0) = s(t1) = 1, then

sched(outk, inh) ≥ slbf(inh − outk) from (11)
(outk − t0) + sched(outk, inh) ≥ slbf(inh − outk) + α(outk − t0) because α ≤ 1
sched(t0, inh) ≥ slbf(inh − outk) + α(outk − t0) τ runs in [t0, outk)
sched(t0, inh) ≥ slbf(inh − t0) Def. of slbf(t) of (5)
(t1 − inh) + sched(t0, inh) ≥ slbf(inh − t0) + α(t1 − inh) because α ≤ 1
sched(t0, t1) ≥ slbf(t1 − t0) same steps as above

as required by (6). The other two cases follow the same steps as above. We have then
concluded the equivalence between the conditions of the Equations (6) and (11).

It is now time to prove the equivalence between the statement of Theorem 2, which is
Equation (10) and our condition of (11), just proved to be equivalent to (6).

We start proving that (10) implies (11), which we do by contradiction. Let k and h be
two indices such that

sched(outk, inh) < slbf(inh − outk) = max{0, α(inh − outk −∆)}

from the definition of slbf(t) of Eq. (5). Since sched(outk, inh) ≥ 0, it must necessarily be

sched(outk, inh) < α(inh − outk −∆). (12)

Let us establish a relation between the slack at outh and the slack at preceding sched-out
instants.

slack(outh) ≤ slack(inh−1) + 1− α

α
(outh − inh−1) from (9)

= slack(outh−1)− (inh−1 − outh−1) +
(

1
α
− 1

)
(outh − inh−1) from (8)

= slack(outh−1)− (outh − outh−1) + 1
α

(outh − inh−1)

≤ slack(outk)−
h∑

ℓ=k+1
(outℓ − outℓ−1) + 1

α

h∑
ℓ=k+1

(outℓ − inℓ−1) recursively

≤ ∆− (outh − outk) + 1
α

h∑
ℓ=k+1

(outℓ − inℓ−1) (13)

with the upper bound of ∆ to slack(outk) holding from its definition of Eq. (9).
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We are now ready to close this branch of the proof as we have

slack(inh) = slack(outh)− (inh − outh) from (8)

≤ ∆− (inh − outk) + 1
α

h∑
ℓ=k+1

(outℓ − inℓ−1) using (13)

≤ ∆− (inh − outk) + 1
α

sched(outk, inh)

< ∆− (inh − outk) + 1
α

α(inh − outk −∆) = 0 hypothesis of (12)

demonstrating that the slack at inh is negative.
The last part of the proof is demonstrating that (11) implies (10), which we prove again

by contradiction. Let h be an index violating (10), that is

slack(inh) < 0. (14)

We construct outk as

outk = max{outℓ : outℓ ≤ inh ∧ slack(outℓ) = ∆}. (15)

In words, outk is the latest sched-out equal to ∆ and preceding inh. Such a value always
exist because the set is not empty (it contains at least out0 which precedes any sched-in).

Let us now relate the slack for consecutive sched-out instants. From (9) and (8), for all
ℓ = k + 1, . . . , h we have

slack(outℓ) = slack(inℓ−1) +
(

1
α
− 1

)
(outℓ − inℓ−1) =

slack(outℓ−1)− (inℓ−1 − outℓ−1) +
(

1
α
− 1

)
(outℓ − inℓ−1) =

slack(outℓ−1) − (outℓ − outℓ−1) + 1
α

(outℓ − inℓ−1),

because the definition outk of (15) implies that for all these indices ℓ, slack(outℓ) is given by
the second expression in the minimum of (9). By applying the relation above recursively for
all ℓ = k + 1, . . . , h we find:

slack(outh) = slack(outk)− (outh − outk) + 1
α

sched(outk, inh),

and from the slack of a sched-in instant of (8)

slack(inh) = slack(outk)−(inh−outk)+ 1
α

sched(outk,inh)=∆−(inh−outk)+ 1
α

sched(outk,inh),

which also exploits that (15) implies that slack(outk) = ∆. Finally, from (14)

∆− (inh − outk) + 1
α

sched(outk, inh) < 0

sched(outk, inh) < α(inh − outk −∆) ≤ slbf(inh − outk)

as required in this last case of the proof. We conclude then that (10) is equivalent to (11)
which is equivalent to (6), as desired. ◀

ECRTS 2024
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4 Our kernel module SlackCheck

This section describes the developed kernel module, which implements the constant-time
runtime verification algorithm of Section 3. Before delving into the implementation details,
Section 4.1 gives a minimal background on the Linux scheduler necessary to understand the
implementation and the experiments. Section 4.2 illustrates the Runtime Verification engine
in Linux. Finally, Section 4.3 describes our implementation and discusses the limits due to,
for example, the limits of the representation of integers.

4.1 Scheduling classes in Linux
In the Linux scheduler, tasks are partitioned among scheduling classes, which are sorted in a
priority order: a task is eligible to run only if no other tasks belonging to a higher scheduling
class is available. In priority order, these classes are:
1. SCHED_DEADLINE
2. SCHED_FIFO and SCHED_RR
3. SCHED_OTHER and SCHED_BATCH
4. SCHED_IDLE
Only SCHED_OTHER, SCHED_BATCH and SCHED_IDLE are available to non privileged users.
SCHED_DEADLINE, SCHED_FIFO and SCHED_RR are reserved for the system’s and root processes.
It is worth mentioning a recent proposal of a time-triggered SCHED_TT class [25] implemented
on top of the hierarchy.

SCHED_DEADLINE [22, 28] is at the top of the hierarchy among the scheduling classes
available for processes and implements the Constant Bandwidth Server (CBS) [2], which
schedules the servers by EDF with three parameters: the period sched_period, the periodic
budget sched_runtime, and the deadline sched_deadline. The budget specifies for how
long the process can run within a period, while the deadline determines the absolute deadline
used by EDF to sort the runqueue. A basic utilization-based admission control is made upon
the invocation of sched_setattr setting the SCHED_DEADLINE scheduling class. Such a test
is implemented by making sched_setattr fail (with error EINVAL) if the total utilization
of SCHED_DEADLINE tasks would exceed 95% of the processing capacity5. Such a test does
not guarantee the budget to be allocated by the deadline [23], as it may be scheduled well
beyond the deadline [21, 44, 5]. We remark, however, that checking exact feasibility of the
SCHED_DEADLINE tasks, is not among the goals of kernel developers.

Below SCHED_DEADLINE we have two classes at the same level in the hierarchy: SCHED_FIFO
and SCHED_RR. Processes queued in these classes have a priority value from 0–99. An
higher priority process will preempt a lower priority one. SCHED_FIFO implements a Fixed-
Priority Scheduler: only the highest priority one will always run, until it terminates.
SCHED_RR instead, runs tasks with the highest scheduling priority, for a maximum of a
round (sched_rr_timeslice_ms, with a default length of 100 milliseconds6). After the
round is finished, the task is pushed back to the tail of the queue of same priority tasks. If
there is a single task per priority, SCHED_RR is the same as SCHED_FIFO.

The first scheduling classes available to regular non-privileged users are SCHED_OTHER and
SCHED_BATCH. They both implement the Completely Fair Scheduler (CFS). These two classes
are identical and follow the same priority, with the exception that SCHED_BATCH processes are

5 man 7 sched.
6 https://elixir.bootlin.com/linux/v6.6.9/source/include/linux/sched/rt.h#L57 Accessed on

January 7th, 2024.

https://elixir.bootlin.com/linux/v6.6.9/source/include/linux/sched/rt.h#L57
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assumed to be CPU-intensive, with a small scheduling penalty incurred from not updating
the process statistics as it leaves the runqueue, therefore having its priority slightly lowered,
as the algorithm thinks the process is using the entirety of its timeslice instead. As of kernel
6.6, the current CFS algorithm implemented has changed from Completely Fair Scheduler
(CFS) to Earliest Eligible Virtual Deadline First (EEVDF) [42].

At the bottom of the hierarchy, the SCHED_IDLE class runs only when when the processor
is idle and no other process needs to run.

The scheduling decisions can be traced by commands such as trace-cmd7, which tracks
kernel events. A kernel event is the recording of a function call within the kernel’s code. This
function is recorded alongside the invocation parameters, and can be both intercepted and
written to a log. When a process starts for the first time, a sched_process_exec kernel
event is generated. This event represents the process structure being loaded into the CPU
runqueue, waiting for the kernel to give it resources and processor time.

When a context switch happens, a sched_switch event is generated. This event has two
parameters, prev and next, which point to the task_struct of the leaving process and the
one entering. If no process was on the CPU or the CPU does not have any more tasks to
run, prev or next will be respectively pointing to the idle process.

When a task ends, whether voluntarily or terminated by a signal, a sched_process_exit
kernel event is generated, notifying that the task has finished. Both sched_process_exec
and sched_process_exit carry as a parameter the pointer of the task_struct of the task.

The event sched_switch is particularly relevant for our purpose because we will be using
it to determine precisely when the task under analysis is assigned a CPU and when it is
instead removed from a CPU. Linking our model of Section 2 and the scheduler terminology:

a sched-in instant ink is the timestamp of a sched_switch event with the parameter
next equal to the PID of the task τ under control, and
a sched-out instant outk is the timestamp of a sched_switch event with the parameter
prev equal to such a PID.

4.2 Runtime verification
Our kernel module SlackCheck relies on a kernel subsystem implementing Runtime
Verification. This is a lightweight technique for verifying at runtime whether a program
follows a certain specification. It is based on event traces generated by the program to be
verified, so that the order in which the process events happen satisfy certain temporal logic
formulas [9]. In the Linux kernel, this is implemented with the generation of a deterministic
automata that follows kernel events via tracing mechanisms. The state of the automata is
updated in parallel with the kernel events regarding the monitored task, by interrupting the
event with a constant operation, and resuming the normal handling of it after updating the
model and slack value.

The runtime verification subsystem uses trace probes8, in order to call a function whenever
a probed event happens. For example, we register our probe on the sched_switch event
to determine whether a sched-in or sched-out occurred. Then, we invoke the functions in
Listings 1 and 2, accordingly.

The Linux runtime verification also allows for a system of reactors. The kernel can
dynamically decide what action to take when one of the properties expressed by these

7 https://www.trace-cmd.org/
8 https://docs.kernel.org/trace/tracepoints.html
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starting
Tout ← 0start

idling
Tout ← 0

running
Tin ← 0 terminated

failed
fork

slack← ∆

sched-in
Tout ≤ slack

exit

sched-out
slack← min(∆,

slack + 1−α
α Tin)

exit

failed
Tout > slack

sched-in
slack← slack− Tout

Figure 3 Runtime Verification timed automata implementing SlackCheck. When a task is in
“idling” state, it is not running, either preempted or blocked. Tin and Tout are timers that start
as the automata reaches the running or idle state respectively. Tin is used to count the time the
task τ is being scheduled, Tout is used to count the time the task τ is not being scheduled. As an
example, when in state “idling”, the timer Tout is reset to 0 and counts as time passes. Linking to
the notation of ink and outk for sched-in and sched-out instants, respectively, when the k-th sched-in
happens (from state “starting” or “idling”) at ink an idle interval has just finished and the timer
Tout takes the value of Tout = ink − outk. Instead, when the k-th sched-out happens at outk (from
the “running” state) Tin takes the value of the length of the last running interval outk − ink−1.

automata is violated. Possible reactors vary among a simple print to the kernel buffer or
causing a kernel panic, halting the execution of the system, or allowing the possibility for
debugging.

We remark that the kernel module is fed on-line by events from the tracing subsystem.
However, traces are not generated for off-line use, hence the module is not affected by the
trace recording and storage overhead.

4.3 Implementation of SlackCheck
SlackCheck is a kernel module that implements the algorithm described in Section 3 as an
automata using the kernel runtime verification subsystem. This module monitors the kernel
scheduling events related to a specific task. The implemented automata is shown in Figure 3.
From Definition 1, when the kernel module activates, it waits for a process of certain PID to
have a sched-in, sched-out or fork event. When this event happens, the current system’s
timestamp is taken and refers to the out0 value. At every following sched-in and sched-out
event, slack is updated via the Equations (8) and (9) respectively, with the timestamps of
the kernel sched_switch events taken as ink and outk. These events are gathered by placing
a trace probe, executing SlackCheck’s code before handling the event as normal, as per
the Runtime Verification system, in Section 4.2.

At a sched-in event, the function in Listing 1 is ran. We first set in Line 6 the ink value.
If this is the first event found, then in Line 9 we assume that out0 = in0, and set both to the
same timestamp. In Line 19, we update the slack value according to Eq. (8).
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Listing 1 Slack update at a sched-in event.
1 static void rv_timed_update_in (u64 current_time )
2 {
3 struct rv_timed_struct *s = rv_timed_get_struct ();
4 u64 diff = 0;
5
6 s-> ts_sched_in = current_time ;
7
8 if (!s-> running ) {
9 s-> running = true; // out_0 = in_0 case

10 s-> ts_sched_out = current_time ; // as per Eq. (7)
11 s-> slack = s-> delta ;
12 } else {
13 if (s-> ts_sched_in > s-> ts_sched_out )
14 diff = s-> ts_sched_in - s-> ts_sched_out ;
15 else // Sanity check : Out of order events .
16 diff = 0; // Avoid negative difference , we just

assume
17 // we missed an event .
18 if (diff <= s-> slack )
19 s-> slack = s-> slack - diff; // update of Eq. (8)
20 else
21 [ handle process lower bound violation ...]
22 }
23 return ;
24 }

At a sched-out event, the function in Listing 2 is ran instead. We set in Line 7 the outk

value. If this is the first event found, it means the process was running before, and we start
out monitoring of the lower bound from this point, taking the current time as our start point.
Therefore we set ink−1 in Line 11, equal to the current time, entirely for precaution, as the
value will be updated at the next sched-in event. We set the maximum slack possible as
well in Line 13, as per Eq. (7). If instead this sched-out event was not the first, we run the
update as normal in Line 22 as per Eq. (9).

The algorithm is translated into kernel code, showing the update of slack in the sched-in
and sched-out events in Listings 1 and 2 respectively. This value is referred in the code as
s->slack, while outk and ink are mapped to s->ts_sched_out and s->ts_sched_in.

The implementation was driven by the avoidance of floating point variables at kernel level.
With this philosophy, slack is implemented as an integer, representing time in nanoseconds.
The bandwidth α, however, cannot be represented as integer. Hence, we represent it as a
rational number α = αnum

αden
, with αnum and αden being the numerator and the denominator

respectively, stored in memory by the variables s->alpha_num and s->alpha_den.
Along with the listed code, other parts handle the passing of α and ∆ parameters, along

with handlers for the fork and terminate events. When the condition slack < 0 happens in
Listing 1, Line 21, the module forces an illegal automata transition, triggering the underlying
reactor system, allowing the user to decide how to best handle the situation.

A sanity check, in Listing 1 (Line 15) and 2 (Line 17) respectively, controls whether
SlackCheck receives events in the correct order. As a precaution we put a safeguard in both
the sched-in and sched-out events. In case of an out of order event or the current_time
is wrong, we assume the difference to be zero, and let slack stay the same.

The usage of our kernel module SlackCheck, is made through the runtime verification
subsystem, using its file interface. The parameters are also set by writing to specific files,
initially implemented in the /proc filesystem. The complexity is constant as the operations
do not depend on the monitored task, and each update is also done in constant time. By
writing the PID of the task or its process filename to the files /proc/rv_timed_proc_id and
/proc/rv_timed_proc_filename respectively, the task starts to be monitored as soon as a
scheduling events related to the task is detected.

ECRTS 2024
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Listing 2 Slack update at a sched-out event.
1 static void rv_timed_update_out (u64 current_time )
2 {
3 struct rv_timed_struct *s = rv_timed_get_struct ();
4 u64 diff = 0;
5 s64 slack_diff = 0;
6
7 s-> ts_sched_out = max( current_time , s-> ts_sched_in );
8
9

10 if (!s-> running ) {
11 s-> running = true; // out_0 case , as per Eq. (7)
12 s-> ts_sched_in = current_time ;
13 s-> slack = s-> delta ;
14 } else {
15 if (s-> ts_sched_out > s-> ts_sched_in )
16 diff = s-> ts_sched_out - s-> ts_sched_in ;
17 else // Sanity check : Out of order evts
18 diff = 0; // Avoid negative diffrence , we
19 // just assume we missed an event .
20 diff = (s->alpha_den -s-> alpha_num )*diff;
21 slack_diff = s-> slack + (s64) div64_u64 (diff , s-> alpha_num );
22 s-> slack = min_t (s64 , s->delta , slack_diff );// update of Eq. (9)
23
24 }
25 }

The current implementation has an overhead due to attaching a probe for kernel scheduling
events. This breakpoint adds a certain amount of latency that is evaluated in Section 5.3,
that cannot be minimized. The number of operations is minimal in updating the slack value,
at the cost of the precision. Since slack has been defined as an integer, we delay the division
in Equation 9 as the last operation done, since integer division would discard the remainder
value.

This discarded remainder from the integer division at Line 21 of Listing 2 may possibly
build up some inaccuracy in the exact slack value. Since this value is the remainder of a
division by αnum, assuming an uniform distribution of values, the average remainder would
be αnum

2 nanoseconds from a sched-out update. Therefore the amount of inaccuracy is tied
to how many sched-out events the process triggers. In this regard, we must underline that
such accumulated error is reset as soon as it saturated by the upper limit of ∆ at sched-out
events, as indicated in Equation (9) and Line 22 of Listing 2. In the following experiments,
we have empirically observed values in the order of 30 nsec for cases where slack did not
become negative, and 180 nsec, when we allowed negative values, with 1 ≤ αnum ≤ 40. Since
higher values of αnum have a more significant remainder, we recommend to enter the fraction
representing α in its minimal terms.

Let us now evaluate possible incorrect results due to overflow. The timestamps are
defined as a u64 datatype (unsigned integers on 64 bits) for the monotonic clock used in the
implementation. These timestamps are relative to the boot time, and SlackCheck also
calculates the slack value by using relative timestamps. Therefore the value won’t ever grow
unbounded as time passes, as limited by the latency threshold ∆ on a sched-out update
due to the min_t function at Line 22 in Listing 2, except in case of negative slack on a
sched-in, at Line 19 in Listing 1 which could also be modified to have a threshold value.
A u64 timestamp overflows after 584 years (or half of this time with the signed version),
meaning that it is unlikely that it may happen. We remark that in the Linux kernel, the u64
type for clock representation is ported even to architectures with a shorter word, defining
the number of nanoseconds by a long long 9. This would make the timekeeping slightly
slower on 32 or 16 bits architecture as the datatype is emulated, but still correct.

9 https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/time_types.h#L9

https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/time_types.h#L9
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A slightly greater care must be taken at Line 20 of Listing 2, invoked at sched-out, where
the multiplication (s->alpha_den-s->alpha_num)*diff may cause an integer overflow.
Such an overflow, however, is very unlikely in reasonable circumstances. For example, if
it is desired to express α with 3 digits, with αden1000 and αnum prime with αden, then the
multiplication above would overflow if the task is continuously scheduled uninterruptedly for
213 days. Such a condition seems re-assuring that an overflow is very unlikely in realistic
scenarios.

Finally, we would like to spend a few words on the instant of detection of a violation of
the temporal constraint. In our implementation, such a violation is only detected at the next
sched-in event, while it could be instead brought up earlier. In the example of Figure 2,
the slack becomes negative already at time 14, whereas we do detect it at the next sched-in
which is at time 15.

We can think of two possible alternate implementations:
check at every scheduling event (not necessarily related to the task τ) or
set a watchdog timer at every sched-out.

The first option of checking all events adds a latency and does not scale well with the number
of tasks being monitored. The second option of the timer would require arming a timer at
every sched-out, disarming at every sched-in, and implement a handler of the timer event.

5 Experiments

To test SlackCheck, we performed many experiments with the following common charac-
teristics:

CPU: AMD Ryzen 5 3600, with 6 cores.
Fixed Clock Speed: 2.2GHz, as the minimum possible speed the CPU allowed for its
scaling frequency.
SMT/HT (Symmetric Multi-Threading/Hyper-Threading) disabled, through the nosmt
kernel command line option, at boot time.
Kernel Version: v6.710.
SlackCheck’s handling of negative slack values disabled, recording the entire process
instead.

The choice of fixing the speed and disabling HT were made to avoid the uncontrolled
interference of hardware mechanisms.

The workload was rendered by a multi-threaded application, in which each thread just
keeps the CPU busy by counting up. The main thread is the task τ being monitored by
SlackCheck. The others are used to represent the disturbances due to the external load.
All the threads, both the monitored one and the interfering ones, are confined to execute
over m cores, with m from 1 to 5.

An experiment run is controlled by a shell script which does the following steps:
1. It sets a fixed frequency of the CPU clock;
2. It creates a CPUSet, a subset of available CPUs for the experiment threads.
3. It starts dmesg in order to gather SlackCheck messages.
4. It attaches the task to SlackCheck, also setting up its parameters α and ∆.
5. It starts all threads and enables the tracing kernel scheduling events with trace-cmd (to

allow the visualization with KernelShark).
6. As the experiment is finished, it parses SlackCheck messages into a CSV file.

10 As tagged in the Linux git repository at https://git.kernel.org/.
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(a) Slack of the task when alone.
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(b) Slack of the task when another on the same core.

(c) Portion of the schedule of the two tasks of the scenario of Fig. 4b as viewed by KernelShark.

Figure 4 Slack and schedule by SCHED_DEADLINE, with m = 1 core.

After the run, the traces of the scheduling events collected by trace-cmd are visualized
by KernelShark11. This tool allows viewing kernel event traces, showing the timeline of
processes receiving CPU time. In our KernelShark views, we represent the schedule of all
threads created, with the monitored thread τ on top. Different colors represent the execution
on different CPUs.

5.1 SCHED_DEADLINE experiments
As recalled earlier in Section 4.1, the class SCHED_DEADLINE schedules tasks by Global EDF,
which is EDF allowing tasks to freely migrate among the cores in accordance to the affinity
mask. Deadlines are used by SCHED_DEADLINE only to assign a dynamic priority to tasks
and then schedule them. However, no deadline violation is reported by the kernel scheduler.
Since we are testing a set of threads fully utilizing the m available cores, we disabled the
SCHED_DEADLINE’s admission control.

In this experiment, we are using SlackCheck to experimentally validate the tardiness
bounds for Global EDF [21, 44, 5]. Specifically, we borrow an example showing the tightness
of a tardiness bound [5]. We pick a subset of m cores among the available ones. Our machine
has a total of 6 cores, so we let m run from 1 to 5 to always reserve one core for other
activities. We create m + 1 tasks, which never suspend themselves. These m + 1 tasks are
confined to execute over m cores and are scheduled by SCHED_DEADLINE with

a period P equal to 60 milliseconds, and
budget Q = m

m+1 P .
The choice of P is made to have no remainder when computing Q for m up to 5. The budget
Q is chosen to have the bandwidth equal to α = Q

P = m
m+1 and then have all m cores fully

utilized.
The delay ∆ is set according to the implicit-deadline periodic server and accounts for the

tight tardiness bound of this case [5], that is

∆ =

standard ∆ for
periodic servers︷ ︸︸ ︷

2(P −Q) +

tight tardiness
bound [5]︷ ︸︸ ︷
m− 1
m + 1P =

(
2

(
1− m

m + 1

)
+ m− 1

m + 1

)
P = P. (16)

11 https://www.kernelshark.org/

https://www.kernelshark.org/
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(a) Slack of the task when alone.
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(b) Slack with other m tasks.

(c) Portion of the schedule for the scenario of Fig. 5b as viewed by KernelShark.

Figure 5 Slack and schedule by SCHED_DEADLINE, with m = 2 core. Compared to the case with
m = 1 of Fig. 4, the task has less slack at sched-in instants.
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(b) Slack with other m tasks.

(c) View of the schedule of the scenario in Figure 6b through KernelShark. Different colors mean to be
scheduled over different cores. The first task is the one being monitored by SlackCheck.

Figure 6 Slack and schedule by SCHED_DEADLINE with m = 5 that is 6 tasks over 5 cores.

SlackCheck is then set up to check any violation of the slack from Theorem 2, with
bandwidth α and delay ∆ as set above.

Figure 4 shows the slack over time measured by SlackCheck, with m = 1 core only. In
such a case, the task has a 50% utilization. Figure 4a shows the case where the task is alone
in the system, whereas Fig. 4b shows the case with m extra tasks (only one in this case) with
the same parameters, competing for the CPU. Figure 4c shows the schedule as viewed by
KernelShark. In both cases, the slack shows a typical alternating behavior from a low value,
at a sched-in instant, to a higher value, at the following sched-out instant. We observe that
the scenario with zero slack is far from being reached. Such a scenario, in fact, appears when
two idle intervals of length P −Q are back-to-back, as shown in Figure 1. This schedule,
however, despite being possible, did not appear in any of the experiments.

In Figure 5, we report the case with m = 2 cores. In this case, the reduction in the slack
due to the presence of the other 2 tasks is more noticeable, as indicated by the lower values
of the slack at sched-in instants in Figure 5b w.r.t. the values in Fig. 5a. In this case too,
the schedule becomes very regular.
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The cases with m ∈ {3, 4} were run but did not reveal any additional insight. Hence,
for brevity, we omit them. It is instead worth reporting and commenting the case with
m = 5, shown in Figure 6. After a transient phase, the schedule becomes stable. Such a
stable schedule repeats every m× P , which is 300 milliseconds in this case. The slack of the
task gets close to zero, confirming the validity of the value of ∆ set by Eq. (16). Very few
migrations occur (observed a few changes in the color of the schedule). Finally, we observe
that the last task at the bottom of Fig. 6c is instead migrating at every job release and keeps
being scheduled with the original period P .

5.2 SCHED_OTHER experiments

We also tested SlackCheck with SCHED_OTHER. The type of workload is the same described
earlier, in which m + 1 threads always keep busy the m cores where they are confined to
run to. With SCHED_OTHER, however, it is not possible to attach a precise CBS server with
given budget and period. The SCHED_OTHER scheduling class tries to achieve fairness by
implementing EEVDF [42].

Since we have m + 1 threads on m cores, we expect that a fair scheduler would assign
a bandwidth of α = m

m+1 to each of the thread. Hence, we set such a bandwidth value as
the one to be verified by SlackCheck. The delay ∆, instead, depends on the scheduler
internal frequency for updating scheduling decisions. To ease a comparison with the previous
SCHED_DEADLINE case, we set it equal to the same value as Eq. (16), that is 60 milliseconds.

Figure 7 shows the slack of the task, when 2 same tasks are scheduled over a single core
(m = 1). The scheduling decisions are made approximately every 3 msec. The slack shows a
clear decreasing trend (highlighted by the red line in the figure). The slope of the trendline is
−5.87×10−3 meaning that the actual bandwidth received by the task was not the theoretical
value of 0.5 but about 0.494. Of course this is not surprising because SCHED_OTHER has lower
priority than SCHED_DEADLINE and hence some of the bandwidth is necessarily assigned to
other higher priority tasks.

Figures 8, 9, 10, and 11 shows again the slack of the task. From Equations (8) and (9, it
follows that the slope of the slack should always be:
−1 when the task is not scheduled
1−α

α , which is 1
m , when the task is scheduled.
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Figure 7 Slack by SCHED_OTHER with m = 1 that is 2 tasks over 1 cores. The slack oscillates
at the frequency of scheduling decisions. The red trendline indicates that the constraint will be
violated in the future.
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Figure 8 Slack by SCHED_OTHER with m = 2 (3 tasks over 2 cores).
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Figure 9 Slack by SCHED_OTHER with m = 3 (4 tasks over 3 cores).
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Figure 10 Slack by SCHED_OTHER with m = 4 (5 tasks over 4 cores).
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Figure 11 Slack by SCHED_OTHER with m = 5 (6 tasks over 5 cores).

We observe, however, some deviation from this ideal behavior, which we explain. In all
figures, the segments of decreasing slack are due to a sequence of scheduling decisions in
which the task receives alternately CPU time and idle time in intervals of equal length.
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Table 1 Latency of SlackCheck measured by cyclictest.

w/o stress w/ stress
cyclictest cyclictest + SlackCheck cyclictest cyclictest + SlackCheck

min [nsec] 48789 49270 54496 54314
max [nsec] 54681 53845 60151 72540
avg [nsec] 53252 53234 58410 58895

This results in an average decreasing slope of

−1 (when not scheduled) + 1
m (when scheduled)

2 = −1
2

(
1− 1

m

)
.

For the segments where the slack increases, that is when the task is scheduled, the slack
displayed could show a slope at a different rate. This is observed for the case in Figures 10
and 11. This different rate is due to update of the slack at some sched-out with the value
of ∆, as required by Eq. (9). Therefore, a more correct representation, would have shown
the same upwards rate throughout, hitting the threshold ∆ before, and staying flat. Since
SlackCheckonly updates the value at the sched-in the resulting line has a different slope.

The observed behavior is interesting. We recall, however, that our goal is not to delve
into the Linux scheduler internals, but rather to present SlackCheck to verify temporal
constraints expressed by a linear lower bound to the supply function.

5.3 Latency introduced by SlackCheck
In this section we describe the experiments to measure the latency of SlackCheck. For
this purpose, we use the cyclictest program. This test measures the latency of a task that
constantly requires CPU, but also leaves the resource as quickly, measuring therefore the
latency of the system in giving back the resource to the program. For simulating a busy
environment, and SlackCheck’s worst case, we use stress-ng 12, with the –switch flag,
introducing N stress threads, specifically overusing the system calls of sched_yield, in order
to overwhelm the system with scheduling events, by constantly needing and releasing the
CPU.

We run the cyclictest program for 50 runs, for 5 seconds each, as it performs around
5000 cycles of latency recording. For each run, we computed the average latency. Then, we
computed maximum, minimum and average among all runs and we report them in Table 1.

The presence of cases with the latency with SlackCheck being smaller than the case
without it, indicates that the latency is below the sensitivity of cyclictest and is dominated
by other factors such as interrupts from devices, USB polling, or transferring of data. It is
then confirmed that the impact of SlackCheck is minimal, as its constant time complexity
indicates.

6 Conclusions and future works

In this paper, we have presented SlackCheck, a runtime verification engine which can
detect the violation of temporal constraints expressed by a linear lower bound to the supply
function. SlackCheck is implemented as a kernel module and has minimal overhead. Also,
SlackCheck demonstrated its usefulness even in understanding the scheduler internals.

12 http://colinianking.github.io/stress-ng/

http://colinianking.github.io/stress-ng/
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The main future direction of investigation is related to the extension to the case of some
internal parallelism of the “task” τ being monitored, possibly considering the parallel version
of supply functions [39, 10, 29]. Other extensions related to the implementation of the module
are about overcoming a single task limitation, as well as an eBPF version. This will allow a
much greater freedom of usage, without the need for a kernel recompilation, and an easier
interface for interacting with the system.
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