
Reachability-Based Response-Time Analysis of
Preemptive Tasks Under Global Scheduling
Pourya Gohari #

Eindhoven University of Technology (TU/e), The Netherlands

Jeroen Voeten #

Eindhoven University of Technology (TU/e), The Netherlands

Mitra Nasri #

Eindhoven University of Technology (TU/e), The Netherlands

Abstract
Global scheduling reduces the average response times as it can use the available computing cores
more efficiently for scheduling ready tasks. However, this flexibility poses challenges in accurately
quantifying interference scenarios, often resulting in either conservative response-time analyses or
scalability issues. In this paper, we present a new response-time analysis for preemptive periodic
tasks (or job sets) subject to release jitter under global job-level fixed-priority (JLFP) scheduling. Our
analysis relies on the notion of schedule-abstraction graph (SAG), a reachability-based response-time
analysis known for its potential accuracy and efficiency. Up to this point, SAG was limited to
non-preemptive tasks due to the complexity of handling preemption when the number of preemptions
and the moments they occur are not known beforehand. In this paper, we introduce the concept
of time partitions and demonstrate how it facilitates the extension of SAG for preemptive tasks.
Moreover, our paper provides the first response-time analysis for the global EDF(k) policy – a JLFP
scheduling policy introduced in 2003 to address the Dhall’s effect.

Our experiments show that our analysis is significantly more accurate compared to the state-of-
the-art analyses. For example, we identify 12 times more schedulable task sets than existing tests
for the global EDF policy (e.g., for systems with 6 to 16 tasks, 70% utilization, and 4 cores) with
an average runtime of 30 minutes. We show that EDF(k) outperforms global RM and EDF by
scheduling on average 24.9% more task sets (e.g., for systems with 2 to 10 cores and 70% utilization).
Moreover, for the first time, we show that global JLFP scheduling policies (particularly, global
EDF(k)) are able to schedule task sets that are not schedulable using well-known partitioning
heuristics.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Scheduling

Keywords and phrases Response-time analysis, global scheduling, preemptive, job-level fixed-priority
scheduling policy, multicore, schedule-abstraction graph

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2024.3

Supplementary Material Software (Source Code): https://github.com/SAG-org

Funding This work used the Dutch national e-infrastructure with the support of the SURF Cooper-
ative using grant no. EINF-8595 and the EU ECSEL Joint Undertaking under grant agreement no.
101007260 (project TRANSACT).

1 Introduction

Response-time analysis is crucial for the design and certification of real-time systems, providing
insights into task scheduling and execution. With 80% of industrial real-time systems using
multicore platforms [1,2], there is a rising need for accurate response-time analyses for global
scheduling policies (e.g., global FP, EDF). Supported by prominent operating systems (Linux,
RTEMS, VxWorks, ...), global scheduling better utilizes the computing cores, reduces average
response times, and improves load balancing.

© Pourya Gohari, Jeroen Voeten, and Mitra Nasri;
licensed under Creative Commons License CC-BY 4.0

36th Euromicro Conference on Real-Time Systems (ECRTS 2024).
Editor: Rodolfo Pellizzoni; Article No. 3; pp. 3:1–3:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:p.gohari.nazari@tue.nl
https://orcid.org/0000-0002-8587-5812
mailto:j.p.m.voeten@tue.nl
https://orcid.org/0000-0002-9981-8392
mailto:m.nasri@tue.nl
https://orcid.org/0000-0002-1052-8437
https://doi.org/10.4230/LIPIcs.ECRTS.2024.3
https://github.com/SAG-org
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Response-Time Analysis of Preemptive Tasks Under Global Scheduling

However, due to the difficulty of quantifying task interference under global preemptive
scheduling, the existing response-time analyses are either very pessimistic (provide loose
response-time bounds) [11,26,39] or do not scale well (due to exhausting usage of CPU or
memory resources) [7,14,15,25]. This results in missed opportunities to improve system
utilization, and may considerably increase the cost and duration of the system design
and development phases by discarding task sets (or configurations) that meet the timing
requirements. These costs can be mitigated through the use of more accurate analyses that
have reasonable runtime (e.g., take a couple of hours but not a day or week to complete).

The above roadblock has also significantly obstructed the development of response-time
analyses for other global job-level fixed-priority (JLFP) scheduling policies such as EDF(k)
and EDF-US[m/(2m − 1)]. These were introduced decades ago [24,37] to address the Dhall’s
effect and are known to have a better utilization bound than global EDF. Currently, there
exists no response-time analysis for these policies, preventing a comprehensive understanding
of their capabilities. This question remains true even for global EDF and FP given the recent
discovery of Biondi et al. [13] that shows most of the current schedulability tests for these
policies cannot identify any task set that is schedulable under global scheduling but not
under partitioned scheduling. Our work fills all these gaps by introducing a highly accurate
response-time analysis for JLFP policies.

Related work. Sufficient schedulability tests for global scheduling have been around since
two decades ago [3,24]. Most of these analyses are based on the concept of busy-window
and the quantification of carry-in workload [5,6,8,10,26,29,41,43,45,46]. However, as we
will show in Sec. 5, these analyses tend to be pessimistic, particularly for larger systems
(with more tasks or cores). The literature also includes exact schedulability tests using time
automata [25], linear hybrid time automata [40,42], simulation-based tests [18], reachability
analysis using timed-labeled transition systems [23], or reachability-based tests [7,14–16].
However, despite their steady progress, these analyses still struggle to scale beyond small
system sizes and task parameters (as we will show in Sec. 5).

The schedule-abstraction graph (SAG) technique is a recent reachability-based response-
time analysis introduced by Nasri et al. [30–32,35]. It systematically explores the decision
space of a job-level fixed-priority (JLFP) scheduling policy when scheduling a set of non-
preemptive jobs (or periodic tasks) on cores of a multicore platform. This exploration involves
constructing a directed acyclic graph (DAG) with vertices denoting reachable system states
after job execution and edges representing scheduling decisions that evolve system states.
By automatically and accurately identifying interference scenarios, SAG provides very tight
bounds on the response-time of each job (task) for problems such as global non-preemptive
scheduling of sequential tasks [31], parallel DAG tasks [32], tasks that use shared resources
protected by FIFO and priority-based spin locks [34], scheduling of moldable gang tasks [33],
multi-rate task graphs [21], fault-tolerant tasks [22], and an analysis of FIFO and time-aware
shapers in time-sensitive networking (TSN) [38]. For instance, SAG identifies 4.3 times more
schedulable tasks than other busy-window-based analyses [36] for systems with 16 cores and
10 parallel DAG tasks. In comparison to exact schedulability tests such as [44] in UPPAAL,
SAG has been more than three-orders of magnitude faster (e.g., for systems with 4 cores and
15 tasks, which were the largest that [44] could analyze in a 4-hour time budget) [32].

However, until now, all extensions of SAG have been confined to non-preemptive jobs (or
periodic tasks) due to the intricacy of (i) handling preemptions when higher-priority jobs
have uncertain release times, (ii) abstracting schedules when the number of preemptions and
the moments they happen are not known a priori, and (iii) merging or pruning states that
include an inconsistent number of completed jobs.

P. Gohari, J. Voeten, and M. Nasri 3:3

This paper. We introduce a novel response-time analysis for global preemptive job-level
fixed-priority scheduling policies by extending SAG to support preemption, addressing the
challenges outlined above. Our key contributions are:

constructively extending the schedule-abstraction technique to analyze preemptive periodic
tasks (or arbitrary job sets) that are subject to release jitter (which, to our knowledge,
has not been addressed before in the literature);
providing the first response-time analysis for EDF(k) policy [24] showing that it indeed
outperforms global RM and EDF.

Our empirical evaluations show that our analysis identifies considerably more globally
schedulable task sets than the state-of-the-art sufficient tests [11,24,26,41,43] for both G-
EDF and G-RM scheduling policies and scales much better than the state of the art exact
schedulability tests such as [9,15,17,18,23,25]. Our analysis outperforms the best sufficient
test for G-EDF by identifying 12 times more schedulable task sets, with an average runtime
of 40 minutes (e.g., for systems with 6 to 16 tasks, 70% utilization, and 4 cores).

Furthermore, we show that our analysis for G-EDF(k), G-EDF, and G-RM is able to
find globally schedulable task sets that are not schedulable by the well-known partitioning
heuristics. For example, for a system with 4 cores, 6 tasks, and 90% utilization, our analysis
identifies 37 task sets (out of 200) that are only schedulable by global EDF(k) but not any
partitioning strategy.

2 Models and assumptions

We consider the problem of obtaining response time bounds for a finite set of independent
preemptive jobs J with arbitrary release times on a homogeneous multicore platform with
m cores. Jobs in the job set can have an arbitrary arrival model. For example, they can
represent jobs of periodic tasks within one hyperperiod (see Sec. 2.1 for a detailed discussion).

A job j ∈ J is characterized by its earliest-release time rmin(j) (a.k.a. arrival time in
Audsely’s terminology [4]), latest-release time rmax(j), absolute deadline d(j), best-case
execution time (BCET) Cmin(j)1, worst-case execution time (WCET) Cmax(j), and priority
P (j) which is assigned by the underlying scheduling policy. Also, without loss of generality,
we assume that the job timing parameters are integer multiples of the system clock.

We consider a global work-conserving job-level fixed-priority (JLFP) scheduling policy,
which includes policies such as the earliest-deadline first (EDF) and fixed-priority (FP). For
example, under EDF policy, the priority of a job P (j) is equal to its absolute deadline. We
consider that a lower numerical value for P (j) indicates a higher priority and that priority
ties are broken in an arbitrary yet consistent manner. We assume the “<” operator implicitly
uses this tie-breaking rule.

We use ⟨ ⟩ to refer to an ordered set (or a sequence) and { } to refer to a non-ordered
set. Neither contains repeated items. Moreover, we use min∞{X} and max0{X} with a
set of positive integers X to indicate that if X ̸= ∅ then max0{X} = max{X}, otherwise,
max0{X} = 0 and similarly, if X ̸= ∅ then min∞{X} = min{X}, otherwise, min∞{X} = ∞.

1 As shown by Ha and Liu [27], preemptive scheduling is sustainable w.r.t. shortening the execution time.
Therefore, if a job executes with an execution time shorter than its WCET, it cannot create a scenario
resulting in the worst-case response time. In our analysis, BCET is used to calculate the best-case
response time for a job. If deriving the best-case response time is not in the interest of the user, then
the BCET can be assumed to be equal to the WCET.

ECRTS 2024

3:4 Response-Time Analysis of Preemptive Tasks Under Global Scheduling

Figure 1 The impact of release jitter on the response time, (a) the job set to be scheduled by
global EDF on two cores, (b) a schedule assuming all jobs are released as early as possible, (c) a
schedule assuming all jobs are released as late as possible, (d) a schedule assuming j3 is released at
time 16 and j4 is released as late as possible, (e) a scenario formed by a combination of the earliest
and latest release time of jobs that can derive the worst-case response-time for job j4.

2.1 From periodic tasks to a job set
As mentioned earlier, the input of our analysis is a set of jobs, which can be formed from
various arrival models. Recent surveys [1,2] show that periodic activation is the most prevalent
arrival model in the industry and is present in more than 80% of industrial systems. Here, we
elaborate on the process of constructing a job set from a set of synchronous periodic tasks.

The arrival pattern of synchronous periodic tasks repeats after a hyperperiod, the least-
common multiple of the periods (denoted by H). For a safe analysis, the job set must include
all task instances (jobs) released by each periodic task within the hyperperiod.

Let T (τ) represent the period, Cmin(τ) and Cmax(τ) denote the BCET and WCET, D(τ)
stands for the deadline (assuming D(τ) ≤ T (τ)), P (τ) denote the priority, and σ(τ) denote
the release jitter of a task τ . For a given task τ , we generate n(τ) = H/T (τ) jobs within the
interval [0, H). Let j be the kth job (1 ≤ k ≤ n(τ)) of task τ . Then rmin(j) = (k − 1) · T (τ)
rmax(j) = (k − 1) · T (τ) + σ(τ), d(j) = (k − 1) · T (τ) + D(τ), Cmin(j) = Cmin(τ), and
Cmax(j) = Cmax(τ). If the scheduling policy is fixed-priority, then job P (j) = P (τ). If the
policy is EDF, then P (j) = d(j). It is worth noting that according to Audsley’s definitions,
the job’s absolute deadline is calculated based on its arrival time, i.e., rmin(j) + D(τ).
Therefore, a job that is released late due to release jitter does not get a longer deadline.

Assuming constrained-deadline tasks, if the job set is schedulable, there’s no carry-out
workload to the next hyperperiod. Our SAG-based analysis automatically explores schedules
generated from any permissible release time of the jobs in a hyperperiod, therefore, it does
not need to analyze more than one hyperperiod to conclude the schedulability of the job set.

3 Motivation and key ideas

Due to the release jitter of the jobs, the exact times at which a higher-priority job preempts
a lower-priority job is not known a priori. Moreover, as shown by Gohari et al. [23], simply
considering the minimum or maximum release times for all jobs in a job set does not provide
a safe bound on the worst-case response-time of the jobs.

We elaborate on the findings of [23] to explain the key idea behind our response-time
analysis. In the example shown in Fig. 1, jobs j3 and j4 have release jitter. Figs. 1b and
c show the corresponding global EDF schedule of the job set when all jobs are released as
early and as late as possible, respectively. Neither of these scenarios results in the worst-case

P. Gohari, J. Voeten, and M. Nasri 3:5

Figure 2 Possible states of the ready queue in the presence of release jitter.

response time (WCRT) of j4 as such case happens when j3 is released somewhere in the
middle of its release-time interval, e.g., at time 16 (see Fig. 1d). This observation gives rise to
a question: How can WCRT be quantified without considering all possible job release times?

Our key observation. There is no need to consider all release instants of each job but
only those that can potentially change the priority ordering of jobs in the ready queue.
This is elaborated in Fig. 2, where we have shown the release intervals of three jobs in the
bottom-half and the possible states of the ready queue in the top-half. For example, during
the interval [2, 10), the ready queue may have two states: is empty (if j3 releases after time
10) or is ⟨j3⟩ (otherwise). Similarly, during the interval [10, 18), the ready queue can be ⟨⟩,
⟨j2⟩, ⟨j3⟩, and ⟨j2, j3⟩. As we see, such a set of possible ready queues may change only at the
boundary of intervals separated by the rmin and rmax of the jobs, namely: [2, 10), [10, 18),
[18, 26), [26, 30), [30, 34), and [34, ∞). Such a partitioning of the analysis window allows us
to ignore individual release instants and only focus on the set of possible ready queues at the
beginning of each interval (we call it a time partition). Applying this notion to the example
in Fig. 1, we will have the following time partitions [0, 5), [5, 10), [10, 15), [15, 20), [20, 22),
and [22, ∞). The set of potential ready queues in the partition [15, 20) is ⟨j4⟩ and ⟨j3, j4⟩.
Among these, the latter ready queue can result in an execution scenario where j3 interferes
with j4 for the longest time and results in the scenario shown in Fig. 1e.

▶ Definition 1 (Time partition). A time partition, denoted as [a, b), is defined as an interval
of time where a ∈ {0, rmin(j), rmax(j)|j ∈ J } and b = min∞{{rmin(j)|j ∈ J ∧ a <

rmin(j)} ∪ {rmax(j)|j ∈ J ∧ a < rmax(j)}}.

Later in Sec. 4, we expand upon this concept by introducing priority-aware time partitions
that consider both the current system state and the priority of not-yet-dispatched jobs.

Scalability challenge. Even though the above time partitioning can considerably reduce the
search space, is not yet enough to design an efficient analysis because despite the fact that
the number of time partitions is linear to the number of jobs (i.e., it is 2 · |J |), the number
of possible ready queues in each partition can be exponentially large because it depends on
the number of all possible subsets of a set with X elements, where X is a function of the
number of overlapping release and execution intervals of jobs in the system.

Efficient exploration of schedules in a schedule-abstraction graph (SAG). SAG efficiently
captures all schedules of a non-preemptive job set (with release jitter) by constructing a
reachability graph representing possible dispatch orderings under a JLFP policy [32]. Each

ECRTS 2024

3:6 Response-Time Analysis of Preemptive Tasks Under Global Scheduling

Figure 3 An example of conservative execution of the jobs. (a) The release interval for j3 and
j4, (b) dispatching the first segment of job j5 before the possible release time of higher priority
jobs, (c) a scenario in which job j5 is preempted by job j4, (d) a scenario where job j5 continue its
execution without preemption at time 5.

system state maintains the availability of the cores in the form of m uncertainty intervals,
each representing the earliest and latest time by which x cores become simultaneously free
(where x is one, two, ..., or m).

SAG is built following a breadth-first strategy by iteratively expanding and then merging
states. During expansion, it chooses a state with the least number of dispatched jobs and
identifies all jobs that may have a chance to be a direct successor of the state, namely,
to be the head of a ready queue that can be created from that state. To do so, for each
not-yet-dispatched job j, it evaluates whether j has a chance to become the highest-priority
job before any other job. This is done by assessing an eligibility condition, namely, the earliest
time at which j can start its execution in state v should be smaller than the time at which a
JLFP policy will no longer allow j to be dispatched on a core before another job.

When a non-preemptive job is dispatched, it won’t reappear in the ready queue of
subsequent states, while a preemptive job can return to the ready queue when it gets
preempted and therefore potentially interfere with not-yet-dispatched jobs in future states.

Challenges in extending SAG to preemptive job sets. Supporting preemptive execution in
SAG faces a fundamental challenge: determining the remaining execution time of a preempted
job without knowing the exact release time of a potentially preempting higher-priority job.
Efficiently accounting for remaining execution times is crucial for accurately quantifying
potential future interference generated by preempted jobs when they resume their execution
in future states. It directly influences analysis accuracy.

The second challenge arises in the merging phase. In the original SAG, states with identical
sets of dispatched jobs could be merged. However, under preemptive scheduling, states will
also carry preempted jobs (with different remaining execution times in different states). This
challenges the design of safe merging rules that maintain soundness without compromising
analysis accuracy. Without state merging (or other forms of state-space reduction), our
solution faces scalability issues similar to other exact analyses in the literature.

How to accurately keep track of the remaining execution times? Scalability of our
solution stems from the observation we made about the impact of time partitions on the
potential preemption scenarios in Fig. 2. To accurately capture scenarios where a job could
be preempted by a higher-priority job, we pause the exploration during the expansion phase
of a state at the boundaries of priority-aware time partitions as they may lead to preemption
by a higher-priority job. Such scenarios will be explored in separate (future) states.

To illustrate this concept, let’s revisit the example in Fig. 1a. Jobs j1 and j5 are released
at time zero. Given that j1 has the highest priority and is released at time zero, it is the
first to be dispatched by the JLFP policy. Next, the scheduler will dispatch j5 as the second

P. Gohari, J. Voeten, and M. Nasri 3:7

core is available at time zero. However, job j5 may later be preempted by two potential
higher-priority jobs, j3 and j4 (shown in Fig. 3a). To accurately track the remaining execution
time of j5 under these potential preemptions, we virtually break job j5 into two segments:
one that executes from time 0 to 5 without preemption (denoted by js

5,1), and one that
represents the remaining execution time of j5 after time 5 (when job j4 might be released).
In our new SAG, the expansion phase will only look up to time 5 for job j5 and leave the
remaining scenarios to the subsequent states as shown in Fig. 3b. Consequently, there are two
possible scenarios in state v3: (i) job j5 continues, which in that case, it will be segmented
again because of reaching the boundary of the next time partition (i.e., [5, 10)) at time 10 as
shown in Fig. 3d, or (ii) job j4 starts its execution and executes its first segment (before it
could potentially be preempted by j3) as shown in Fig. 3c. Our SAG automatically obtains
the earliest and latest start time of j4 in state v3, taking into account scenarios where j4
might be released later than its earliest release time and before time 10.

4 Response-time analysis

Our response-time analysis builds a schedule-abstraction graph (SAG) for preemptive job
sets, as motivated in Sec. 3. SAG systematically explores the space of JLFP schedules for
the given job set, considering uncertainties in the release times of the jobs. These schedules
are represented in a graph G = (V, E), where V denotes the set of reachable system states
and E represents the set of scheduling decisions (when a JLFP policy dispatches a job on a
core or resumes its execution). Following convention [32], we assume that the system starts
with an initial state v1, where all cores are idle and no job has started executing yet.

4.1 System state representation
Definition of a system state plays a key role in the accuracy and scalability of a reachability
analysis like SAG. To accurately monitor the remaining execution times of preempted jobs,
our state definition incorporates crucial elements beyond [32]. We not only store the core
availability intervals, but also a set of completed jobs, a set of preempted jobs, the earliest and
the latest finish time of the latest segment of preempted jobs, and the remaining execution
times of preempted jobs:

Core availability intervals. Following [32], we utilize the symmetry properties of
identical cores to represent their availability through m uncertainty intervals denoting
the times at which one, two, three, ..., and m cores simultaneously become available.
For instance, an interval Ax(v) = [Amin

x (v), Amax
x (v)] (1 ≤ x ≤ m) indicates the earliest

(Amin
x (v)) and latest (Amax

x (v)) times at which x cores are simultaneously available.
Set of completed jobs. We store the set of jobs completed before reaching state v in
J Co(v). At any state v, J \ J Co(v) indicates jobs that have not yet been dispatched, or
have been preempted, and therefore, may appear in a ready queue in that state.
Set of preempted jobs. We keep track of jobs that have started but not yet completed
(preempted) in the set J P r(v). In any state v, J P r(v) ⊆ J \ J Co(v).
Finish times of preempted jobs. As discussed in Sec. 3, we assume that a potential
preemption may split a job into virtual segments (one for before a preemption and one for
after). Namely, for each preempted job j ∈ J P r(v), we record the possible finish time of
the latest executed segment of the job using FT (j, v) = [FT min(j, v), FT max(j, v)] under
the assumption that the job will be preempted, where FT min(j, v) and FT max(j, v) are
the earliest and latest finish times of that segment

ECRTS 2024

3:8 Response-Time Analysis of Preemptive Tasks Under Global Scheduling

Remaining execution times of preempted jobs. We record the remaining execution
time of each preempted job j ∈ J P r(v) as RM(j, v) = [RMmin(j, v), RMmax(j, v)],
where RMmin(j, v) and RMmax(j, v) indicate the remaining execution time of job j in
state v in the best and worst case, respectively.

4.2 Edges of the graph
In our preemption-aware SAG, state transitions are depicted in the graph through directed
edges labeled with either a job or a job segment. As it will be discussed in Sec. 4.4, when
a job j crosses the boundary of a time partition in which a higher-priority job may release
(Definition 2), we divide it into two segments: one segment before the partition boundary, and
another segment after the partition boundary. The second segment represents the remaining
execution time of the job after a potential preemption at the partition boundary. An edge
e ∈ E from state v to v′ with label j or js indicates that executing the whole job j or a
segment js of job j in state v evolves it to a new state v′.

4.3 Schedule-abstraction graph generation
We build our SAG graph in an iterative manner following a breadth-first strategy as shown
in Algorithm 1. Each iteration of the algorithm (lines 3-19) has two phases: the expansion
phase (lines 5-19) and the merge phase (lines 16-19). In the expansion phase, a leaf state
v with the fewest completed jobs is selected for expansion (line 4). For every such job j that
could potentially be scheduled directly after state v (line 6), a new state v′ is added to the
graph (line 7) and is connected to v via a directed edge labeled with j (line 13) or a segment
of job js in case it could be preempted (line 15). In the merge phase, we check if the newly
created state v′ can be merged with previously generated states, thereby reducing the overall
graph states when their future can be explored together. Sec. 4.5 provides details of the
merge phase. Moreover, Algorithm 1 keeps track of the best- and worst-case response time
of each completed job in arrays BR and WR, respectively (lines 9 and 11).

4.4 Expansion phase
Next, we explain how to identify an eligible job/segment2 – a job or segment with the potential
to be scheduled by the JLFP scheduler in state v, and therefore, be a direct successor of state
v. First, we determine when a job will be ready (Sec. 4.4.1). Then we explain how to check
if it can be the highest-priority job in any of the possible ready queues of state v without
constructing those ready queues (Sec. 4.4.2 and 4.4.3). If the job is eligible to be a direct
successor of state v (Sec. 4.4.4), we determine its earliest and latest finish times (Sec. 4.4.5).
Before proceeding to the expansion phase, we establish several key definitions to enhance
clarity and facilitate understanding in this section. We denote the set of not-yet-scheduled
jobs with a higher priority than a job j in a state v by

J hp(j, v) ≜ {j′ | j′ ∈ J \ (J Co(v) ∪ J P r(v)) ∧ P (j′) < P (j)}. (1)

▶ Definition 2 (Priority-aware time partition). A priority-aware time partition, denoted as
[a, b) for a given job j and state v, is an interval of time where a ∈ {0, rmin(j′), rmax(j′)|
j′ ∈ J hp(j, v)} and b = min∞{{rmin(j′)|j′ ∈ J hp(j, v) ∧ a < rmin(j′)} ∪ {rmax(j′)|j′ ∈
J hp(j, v) ∧ a < rmax(j′)}}.

2 In the remainder of the paper, for convenience, we use the notation “job/segment” to refer to a job j

when j /∈ J P r, or to a segment of it (js) if it has been already preempted.

P. Gohari, J. Voeten, and M. Nasri 3:9

Algorithm 1 Construction of the SAG for job set J .
Input: Job set J
Output: Bounds on the BCRT and WCRT of every job in J

1 ∀j ∈ J , BR(j)←∞, WR(j)← 0;
2 Initialize G by adding v1 = ({[0, 0], . . . , [0, 0]}, {}, {}, {});
3 while ∃ a leaf state such that J Co ̸= J do
4 v ← select the leaf state with minimum |J Co|;
5 foreach job j ∈ J \ J Co do
6 if j can be dispatched after v according to Eq. (11) then
7 Build v′ using Algorithm 2;
8 if RMmin(j, v′) = 0 then // job is possibly completed
9 BR(j)← min{EFT(j, v)− rmin(j), BR(j)};

10 if RMmax(j, v′) = 0 then // job is certainly completed
11 WR(j)← max{LFT(j, v)− rmin(j), WR(j)} ;
12 if j /∈ J P r(v) and j /∈ J P r(v′) then
13 Connect v to v′ with an edge labeled j;
14 else
15 Connect v to v′ with an edge labeled js;
16 while ∃ a leaf state v′′ such that Rule 1 is satisfied for v′ and v′′ do
17 Merge v′ and v′′ in vm using Eqs. (18)-(20);
18 Redirect all incoming edges of v′ and v′′ to vm;
19 Remove v′ and v′′ from G;
20 return BR(j), WR(j) for all j ∈ J ;

4.4.1 Ready interval
A job j is ready only if it has been released, and if it is previously preempted, then its
preceding segment has been completed. Since jobs may have release jitter, the exact time at
which they become ready is unknown. Therefore, in a system state v, we determine a lower
bound on the time when job j is possibly ready, denoted by Rmin(j, v), and an upper bound
on the time when job j is certainly ready, denoted by Rmax(j, v). These can be obtained
using rmim and rmax if the job has not been dispatched/preempted before or using the finish
time of the last segment of the job in the current state v (FT min(j, v) and FT max(j, v) which
we will define later in Sec. 4.4.5 and Algorithm 2) if it has a dispatched/preempted segment:

Rmin(j, v) ≜
{

rmin if j /∈ J P r(v)
FT min(j, v) otherwise,

(2)

Rmax(j, v) ≜
{

rmax if j /∈ J P r(v)
FT max(j, v) otherwise (3)

Following the above discussions, it is trivial to prove that in state v, job j (or the next
segment of it) will not be ready prior to Rmin(j, v) and will certainly be ready at Rmax(j, v).

4.4.2 Earliest start time
By definition, the scheduling policy considers dispatching a job j in state v only if (i) it
is ready and (ii) a core is available. The earliest time at which job j can be ready is at
Rmin(j, v), and the earliest time at which one core becomes available is at Amin

1 (v) (from
our state definition). Therefore, the earliest time when both of the above conditions hold is

EST (j, v) = max{Rmin(j, v), Amin
1 (v)}. (4)

ECRTS 2024

3:10 Response-Time Analysis of Preemptive Tasks Under Global Scheduling

▶ Lemma 3. A JLFP policy will not consider dispatching a job j (or a segment of it) in
state v before time EST (j, v).

Proof. The proof trivially follows the above discussion. ◀

4.4.3 Latest start time
As mentioned in Sec. 3, we want to impose exploration at the boundary of a priority-aware
timing partition of job j in state v, where it may be preempted in that partition. We
implement this idea by defining a concept called partial latest start time (P-LST), denoted
by LST (j, v), for each job j (or its remaining segment) in a state v.

▶ Definition 4 (Partial latest start time – P-LST). Time t represents the P-LST of a
job/segment j in state v if and only if it indicates the latest time at which j can start
execution under a work-conserving JLFP scheduling policy in state v without passing the
boundary of a priority-aware time partition of job j in state v.

The first upper bound on the LST (j, v) is obtained from the work-conserving property of
the scheduler, namely, such scheduler dispatches ‘a’ job/segment as soon as a job/segment is
ready and a core is available. The latest time at which both of these conditions hold is the
maximum between Amax

1 (v) (the latest time at which at least one core becomes available)
and Rmax(j′, v) (for all incomplete jobs j′ in state v). We denote this time by twc(v):

twc(v) ≜ max
{

Amax
1 (v), min

∞
{Rmax(j′, v) | j′ ∈ J \ J Co(v)}

}
. (5)

▶ Lemma 5. A work-conserving scheduler will not dispatch a job j ∈ J \ J Co(v) directly
after state v at any time later than twc(v).

Proof. Assume that twc(v) ̸= ∞ because otherwise, the claim is trivial. At time twc(v), a core
is certainly available (since twc(v) ≥ Amax

1 (v)) and a not-yet-completed job j′ ∈ J \ J Co(v)
becomes certainly ready, namely, (twc(v) ≥ min∞{Rmax(j′, v) | j′ ∈ J \J Co(v)}). Therefore,
a work-conserving scheduler will dispatch job j′ at twc(v). Thus, to be a direct successor of
v, job j must be scheduled no later than twc(v). ◀

We derive the second upper bound on the LST (j, v) from the JLFP property of the scheduling
policy, namely, a JLFP policy always dispatches the highest-priority ready job/segment.
Therefore, the earliest time at which it is certain that job j can no longer become the
highest-priority ready job in state v, provides an upper bound on LST (j, v). This notion is
called thigh(j, v) and was originally introduced by Nasri et al. [31,32].

thigh(j, v) ≜ min
∞

{
Rmax(j′, v) | j′ ∈ J \ J Co(v) ∧ P (j′) < P (j)

}
. (6)

▶ Lemma 6. Job/segment j will not be the highest-priority job in state v at any time later
than thigh(j, v) − 1.

Proof. Suppose that thigh(j, v) ̸= ∞; otherwise j is not constrained by any higher-priority
job and the claim trivially holds. At the time thigh(j, v), a job/segment j′ with a higher
priority than j is certainly ready (released and its previous segment is certainly finished).
Therefore, job j cannot be a direct successor of state v from time thigh(j, v) onward as it
will no longer be the highest-priority job in the ready queue. ◀

P. Gohari, J. Voeten, and M. Nasri 3:11

Figure 4 (a) an example of computing the earliest and latest start time for a job, (b) an example
of computing partial earliest and latest finish times for a job.

The final upper bound on LST (j, v) comes from the earliest priority-aware time-partition of
j in state v. From Definition 2, we know that such time-partition starts with the earliest
or latest release time of a not-yet-scheduled higher-priority job than j and finishes with
the earliest or latest release time of another higher-priority job. Using J hp(v, j), we obtain
tpr(j, v) which is the starting point of such time partition:

tpr(j, v) ≜ min
{

tmin
pr (j, v), tmax

pr (j, v)
}

, (7)
tmin
pr (j, v) ≜ min

∞

{
rmin(j′) | j′ ∈ J hp(j, v) ∧ EST (j, v) < rmin(j′)

}
, (8)

tmax
pr (j, v) ≜ min

∞

{
rmax(j′) | j′ ∈ J hp(j, v) ∧ EST (j, v) < rmax(j′)

}
. (9)

▶ Lemma 7. The start time of job j passes the boundary of a priority-aware time partition
(in which a higher-priority job than j can be released) at any time later than tpr(j, v) − 1.

Proof. Suppose that tpr(j, v) ̸= ∞; otherwise J hp(v, j) = ∅, and thus, the claim trivially
holds. Following Definition 2, a priority-aware time partition of j in state v contains higher-
priority jobs that may release and preempt j, starts at the earliest (rmin) or latest release
time (rmax) of not-yet-scheduled higher-priority jobs than j, namely, J hp(v, j). Thus, the
beginning of the next time partition after EST (j, v) is the earliest time that a job in J hp(v, j)
can possibly or certainly be released, i.e., it is min{tmin

pr (j, v), tmax
pr (j, v)} (Eq. (7)). ◀

Following Definition 4, we derive the partial latest start time LST(j, v) using three up-
per bounds: LST(j, v) ≤ twc(v) (Lemma 5), LST(j, v) ≤ thigh(j, v) − 1 (Lemma 6), and
LST (j, v) ≤ tpr(j, v) − 1 (Lemma 7). Hence, the partial latest start time for job j is given by

LST (j, v) = min
{

twc(v), thigh(j, v) − 1, tpr(j, v) − 1
}

. (10)

▶ Lemma 8. Under a JLFP policy, job j will not start executing as a successor of state v

after LST (j, v) without starting its execution in the priority-aware time partition of j in v.

Proof. The proof trivially follows Definition 4, Lemma 5, Lemma 6, and Lemma 7. ◀

Fig. 4a shows a state v in SAG that is being expanded by job j4. Here, EST (j4, v) is 13
(the maximum between Amin

1 = 8 and rmin(j4) = 13). twc(v) is 30 as it is the earliest time at
which a core is certainly available (Amax

1 = 16) and a job is certainly released (rmax(j4) = 30).
thigh(j4, v) is 40 as it is the earliest time at which a higher-priority job than job j4 is certainly
released (rmax(j3) = 40). Finally, tpr(j4, v) is 22 which is the time from which job j3 may
preempt j4. Putting all together, the LST (j4, v) is 21.

ECRTS 2024

3:12 Response-Time Analysis of Preemptive Tasks Under Global Scheduling

4.4.4 Eligibility condition
▶ Lemma 9. Job/segment j can be dispatched by the JLFP scheduler in state v only if

EST (j, v) ≤ LST (j, v). (11)

Proof. Proof by contradiction. Let’s assume that EST (j, v) > LST (j, v) and the scheduler
dispatches job j in state v (before any other job). From Lemma 3, we know that EST (j, v)
is the earliest time that job j can start its execution in state v. Now, we analyze the three
cases that EST (j, v) can be larger than LST (j, v):
Case 1 (EST(j, v) > twc(v)): From Lemma 5 we know that at time twc(v) a not-yet-

completed job j′ becomes certainly ready and a core becomes certainly available. As a
result, job j′ will be dispatched by a work-conserving scheduler instead of job j.

Case 2 (EST(j, v) ≥ thigh(j, v)): From Lemma 6 we know that a higher-priority job is
certainly ready at time thigh(j, v). If EST (j, v) ≥ thigh(j, v), the JLFP scheduler will not
consider dispatching j before that higher-priority job in state v.

Case 3 (EST(j, v) ≥ tpr(j, v)): From Eqs. (8) and (9) we know that tpr(j, v) is strictly
larger than EST (j, v), therefore, this case is not possible.

The above discussion concludes that EST(j, v) > LST(j, v) leads to a contradiction,
namely, job j cannot be dispatched in state v and thus cannot be a direct successor of it. ◀

4.4.5 Earliest and latest finish times
After checking the eligibility of a job/segment that requires obtaining its potential EST and
P-LST, we derive the corresponding earliest and latest finish times of the job taking into
account the boundaries of the time partitions that could potentially lead to a preemption (if
tpr(j, v) < ∞). To make this section easier to follow, we use a running example illustrated in
Fig. 4b. We also assume the EST and P-LST of job j2 are equal to 13, and it has not been
split into segments before.

As mentioned in Sec. 3 (in Fig. 3), we split a job j in state v into segments at the boundary
of a time partition that contains a higher-priority job, i.e., at time tpr(j, v), because there
might be a scenario in which j is preempted in that time partition. To check whether such
a scenario can happen, we first obtain a preemption-free version of the finish time of the
job and then check if the job may finish later than tpr(j, v). We denote the preemption-free
earliest and latest finish times by ̂EFT (j, v) and ̂LFT (j, v), respectively. We consider two
cases to obtain each of them. If the job has not been divided into segments before, we use its
BCET and WCET, otherwise, we use its remaining execution time (maintained in the state):

̂EFT (j, v) =
{

EST (j, v) + Cmin(j) j /∈ J P r(v),
EST (j, v) + RMmin(j, v) otherwise (12)

̂LFT (j, v) =
{

LST (j, v) + Cmax(j) j /∈ J P r(v),
LST (j, v) + RMmax(j, v) otherwise (13)

where RMmin(j, v) and RMmax(j, v) are the best- and worst-case remaining execution times
of job j that are stored in state v (later, we will discuss them in Eqs. (16) and (17)).

In the example of Fig. 4b, the preemption-free earliest finish time of j2 (̂EFT (j2, v)) is 12
units of time after its earliest start time at time 25 and similarly, its preemption-free latest
finish time (̂LFT (j2, v)) will be 22 units of time after its latest start time at time 35.

P. Gohari, J. Voeten, and M. Nasri 3:13

Now, we use the preemption-free latest finish time of the job ̂LFT (j, v) to assess whether
there is a chance that the job is preempted by a higher-priority job arriving at or after
tpr(v, j). If tpr(j, v) < ̂LFT (j, v), the higher-priority job might be released before job j

finishes and therefore we impose exploration in tpr(j, v) (namely, we construct the state
resulted from the dispatching of job j in such a way that the higher-priority job be an eligible
job in that state, and therefore, its interference is accounted for the response time of j in the
states that follow). Otherwise, either there is no higher-priority job (tpr(j, v) = ∞) or it will
be released after the latest finish time of job j. In such cases, the preemption-free earliest
and latest finish times are the same as partial earliest and latest finish times, which denote
the earliest and latest finish times of the job/segment without passing tpr(j, v).

In Fig. 4b, the earliest time that job j2 crosses time partition [30, 40) is at time tpr(j2, v) =
30. Since the preemption-free earliest finish time of job j2 at time 25 is smaller than tpr(j2, v),
there are scenarios in which j2 can finish without preemption, therefore, EFT(j2, v) = 25.
On the other hand, ̂LFT (j2, v) = 35 which is larger than tpr(j2, v) = 30. Here, we impose
an exploration by considering that job j2 will be divided into two segments, and the partial
latest finish time for the first segment is 30. Later, we explain how to obtain the remaining
execution time of j2 (to be dispatched in the future, possibly after being preempted by j1).

In summary, the partial earliest and latest finish time for a job j are derived when the
preemption-free finish times are contrasted against tpr(j, v) as follows:

EFT (j, v) =
{

̂EFT (j, v) ̂EFT (j, v) ≤ tpr(j, v),
tpr(j, v) otherwise

(14)

LFT (j, v) =
{

̂LFT (j, v) ̂LFT (j, v) ≤ tpr(j, v),
tpr(j, v) otherwise

(15)

Next, we obtain the execution time of the remaining segment of job j (if it may
not finish before tpr(j, v)) for the new state v′. To do so, we calculate the difference
between the preemption-free finish time [̂EFT (j, v), ̂LFT (j, v)] and the partial finish time
[EFT (j, v), LFT (j, v)]:

RMmin(j, v′) = ̂EFT (j, v) − EFT (j, v), (16)

RMmax(j, v′) = ̂LFT (j, v) − LFT (j, v). (17)

In Fig. 4b, ̂EFT (j2, v) = 25 which is smaller than tpr(j2, v) = 30. As a result,
RMmin(j2, v′) = 0. Conversely, ̂LFT (j2, v) = 35 > tpr(j2, v), therefore RMmax(j2, v′) = 5.

4.4.6 Creating a new state
When a job/segment j ∈ J \ J Co satisfies inequality (11), it can be dispatched as a direct
successor of state v. For each such job/segment, a new node v′ is created in SAG which
represents the new state of the system after dispatching j as outlined in Algorithm 2 and
depicted in the flowchart presented in Fig. 5. First, Line 1 obtains the remaining execution
time for the dispatched job/segment using Eqs. (16) and (17). If any execution time remains
for the dispatched job/segment, it indicates that this job/segment can cross the boundary of
the time partition. Therefore, the job is added to the preempted job set and its finish time
is updated in the new state (Lines 5-8). Otherwise, the job has finished and we add it to the
completed jobs and remove it from the preempted job set in the new state (Lines 9-11). To
update the finish time of the segment, we have to consider that the job can only be preempted

ECRTS 2024

3:14 Response-Time Analysis of Preemptive Tasks Under Global Scheduling

Algorithm 2 Create a new state v′ by dispatching job j

after state v.
1 Update [RMmin(j, v′), RMmax(j, v′)] using Eqs. (16), (17);
2 if [RMmin(j, v′), RMmax(j, v′)] ̸= [0, 0] then

// Job j is not completed yet.
3 J Co(v′)← J Co(v);
4 J P r(v′)← J P r(v) ∪ {j};
5 if EFT(j, v) < tpr(j, v) then
6 F T (j, v′)← [tpr(j, v), LFT(j, v)];
7 else
8 F T (j, v′)← [EFT(j, v), LFT(j, v)];
9 else

10 J Co(v′)← J Co(v) ∪ {j};
11 J P r(v′)← J P r(v) \ {j};

// Update availability intervals after dispatch of j

12 PA1 ← EFT(j, v), CA1 ← LFT(j, v);
13 ∀x, 2 ≤x ≤m, PAx←max{EST(j, v), Amin

x (v)},
CAx←max{EST(j, v), Amax

x (v)};
14 Sort PA and CA in non-decreasing order;
15 ∀x, 1 ≤ x ≤ m, Ax(v′)← [PAx, CAx]; Figure 5 The flowchart of Alg. 2.

if it reaches tpr(j, v). If so, we consider the earliest finish time for a case that it can certainly
be preempted and finishes at tpr(j, v) (lines 5-6). Finally, we update the availability intervals
for the new state in lines 12-15 following [32] (as we use the same technique to represent the
availability of cores in each state).

▶ Corollary 10. After dispatching a lower-priority job j right after state v that makes a new
state v′, there is certainly a core available at time tpr(j, v) in the new state v′.

Proof. From Lemma 8, we know that job j certainly starts before tpr(j, v). Moreover, from
Eqs. (15) and (14), we know that job j is enforced to finish its execution before tpr(j, v).
Finally, since the availability intervals are updated based on the finish time of the dispatched
job (line 12 in Algorithm 2), we conclude that a core is certainly available at or before time
tpr(v, j) in the new state v′. ◀

4.5 State space reduction
To reduce the number of states in the graph, we introduce a merge rule to combine states
whose future can be explored together.

▶ Rule 1 (Merge rule). Two states v and v′ can be merged if J Co(v) = J Co(v′), and J P r(v) =
J P r(v′), and ∀j ∈ J P r, FT (j, v) ∩ FT (j, v′) ̸= ∅, and ∀x, 1 ≤ x ≤ m, Ax(v) ∩ Ax(v′) ̸= ∅.

When two states v and v′ are merged to v′′, each availability interval A(v′′), is constructed
such that it includes any core-availability scenario which was possible in state v or v′. Hence

Ax(v′′) =
[
min{Amin

x (v), Amin
x (v′)}, max{Amax

x (v), Amax
x (v′)}] . (18)

Eq. (18) ensures that x cores become possibly available in the merged state v′′ only when
x cores become potentially available in either of the original states v or v′, and x cores are
certainly available in v′′ only when x cores are certainly available in both v and v′.

P. Gohari, J. Voeten, and M. Nasri 3:15

Moreover, the finish time interval of each segment of each job j in v′′ is obtained in such
a way that it includes the finish time intervals of the jobs derived previously for all execution
scenarios that lead to either v or v′, and thus to the merged state v′′. Namely, any potential
finish time (or potential remaining execution time) of the job j in state v or state v′ is a
potential finish time (or potential remaining execution time) for the job in state v′′:

FT (j, v′′) =
[
min{FT min(j, v), FT min(j, v′)}, max{FT max(j, v), FT max(j, v′)}] , (19)

RM(j, v′′) = [min{RMmin(j, v), RMmin(j, v′)}, max{RMmax(j, v), RMmax(j, v′)}]. (20)

▶ Lemma 11. Merging two states v and v′ according to Rule 1 and Eqs. (18), (19), and (20)
does not remove any potential reachable state from the graph.

Proof. First, Rule 1 ensures that the set of completed jobs (J Co) and preempted jobs (J P r)
that have been dispatched on the path to v and v′ are identical. Therefore, the set of jobs and
segments that still need to execute in the merged state v′′ is the same as v and v′. Second,
according to Eq. (18), for any time t ∈ Ax(v) or t′ ∈ Ax(v′) (1 ≤ x ≤ m), it is possible to
find a t′′ ∈ Ax(v′′) at which x cores become simultaneously available because Amin

x (v′′) is the
minimum among Amin

x (v) and Amin
x (v′) and Amax

x (v′′) is the maximum among Amax
x (v) and

Amax
x (v′). Third, according to Eqs. (19) and (20), for any job j ∈ J P r(v) (which is the same

as J P r(v′) and J P r(v′′) due to Rule 1), and for any time t ∈ FT (j, v) (or t′ ∈ FT (j, v′))
that represent potential finish time of the job in states v (or v′), it is possible for job j to
finish its execution at time t (or t′) in state v′′ (similar to the Second fact). Similarly, for any
time t ∈ RM(j, v) (or t′ ∈ RM(j, v′)) that represents the potential remaining execution time
of the job in states v (or v′), it is possible for job j to have a potential remaining execution
time equal to t (or t′) in state v′′. ◀

4.6 Correctness
To prove the soundness of our analysis, we first show that for each job j that can be preempted
by a higher-priority job j′ in any execution scenario that leads to the best- or worst-case
response time of j, there exists a path in the graph generated by Algorithm 1 that accounts
for the interference of j′ on the execution of j (Lemma 12). Then we put all the pieces
together in Theorem 13 and establish soundness.

▶ Lemma 12. If a job j can be preempted by a higher-priority job j′, there is a path
⟨v1, . . . , v, v′, v′′⟩ in the SAG such that js (a segment of job j) is the label of the edge
connecting v to v′ and j′ is the label of the edge connecting v′ to v′′ that captures this
execution scenario.

Proof. Under JLFP scheduling, a higher-priority job j′ can only preempt a lower-priority job
j at time t if (i) j is executing at time t, (ii) j′ is the highest-priority ready job at time t, and
(iii) all the cores are busy at time t. Now, we demonstrate that our SAG comprehensively
explores all scenarios wherein a higher-priority job j′ releases during the execution of j. From
Eqs. (14) and (15) we know that the exploration and execution of a lower-priority job always
will be interrupted at time tpr(j, v) which is the earliest time that a higher-priority job j′

releases during the execution of j (as shown by Corollary 10).
Next, we establish that j′ is eligible to be dispatched in state v′ (by showing that

EST (j′, v′) ≤ tpr(j, v) ≤ LST (j′, v′)) using the following facts.
Fact 1: From Corollary 10, we know a core is available at tpr(j, v). According to Eq. (7) and

the fact that j′ was the job with the smallest rmin or rmax in J hp(j, v), it must be true
that rmin(j′) ≤ tpr(j, v). Therefore, EST (j′, v′) ≤ tpr(j, v) as the EST is the maximum
between the time at which a core is available and rmin(j′).

ECRTS 2024

3:16 Response-Time Analysis of Preemptive Tasks Under Global Scheduling

Fact 2: Eq. (6) indicates that thigh is the earliest time at which a higher-priority job is
released or a higher-priority segment finishes its execution. In the former case, it follows
that tpr(j, v) ≤ tmax

pr (j, v) ≤ thigh(j, v). In the latter case, as indicated by Eqs. (14) and
(15), a segment that has not completed (/∈ J Co(v)) finishes execution when a higher-
priority job is released, implying another higher-priority job is released at thigh. This
leads to a contradiction because we assumed that the earliest time that a higher-priority
job than j can release is at time tpr(j, v). Therefore, the first scenario always holds,
concluding tpr(j, v) ≤ thigh(j, v).

Fact 3: Since job j′ has a higher priority than j, thigh(j, v) ≤ thigh(j′, v′) because the set of
jobs that have higher priority than j′ also have higher priority than j. Combining this
with Fact 1, we conclude that tpr(j, v) ≤ thigh(j, v) ≤ thigh(j′, v′).

Fact 4: twc(j′) is at least as large as tpr(j, v) because when creating the new state v′, we
enforce a core to be certainly available at tpr(j, v) (Corollary 10). From Fact 1 we know
that the upper bound on EST (j′, v′) is tpr(j, v) and from Facts 2, 3, 4 we conclude that the
lower bound on LST(j′, v′) is tpr(j, v). Therefore, EST(j′, v′) ≤ tpr(j, v) ≤ LST(j′, v′).
Namely, j′ can be dispatched in v′ and preempt j. ◀

▶ Theorem 13. For any execution scenario such that job j finishes at time t, there is a path
⟨v1, . . . , v, v′⟩ in the SAG such that j (or js) is the label of the edge connecting v to v′ while
RMmin(j, v′) = 0, and t ∈ [EFT (j, v), LFT (j, v)].

Proof. Initially, assume that the path ⟨v1, . . . , v⟩ respects the claim for all jobs/segments
dispatched before j in the execution scenario that led j to finish at time t. Moreover, assume
that (i) the availability intervals safely model the actual availability times, (ii) for each
j′ ∈ J P r(v), the interval [FT min(j′, v), FT max(j′, v)] safely lower- and upper-bounds (i.e.,
contains) the completion time of the latest segment of j′. (iii) for each j′ ∈ J P r(v), the
interval [RMmin(j′, v), RMmax(j′, v)] safely lower- and upper-bounds (i.e., contains) the
remaining execution time of job j′. (iv) J Co(v) correctly includes a subset of the jobs that
are completed before j is dispatched, (v) J P r(v) correctly includes a subset of the jobs that
are preempted before j is dispatched.

Now, we prove that there exists a vertex v′ that is directly connected to v with an edge
labeled j (or js) that all five requirements (i)-(v) hold for state v, and that the interval
[EFT(j, v), LFT(j, v)] contains the completion time of j. Under the inductive assumption
stated above, Lemma 3 and Lemma 8 prove that EST (j, v) and LST (j, v) are safe lower- and
upper-bounds on the preemption-free start time of j, respectively. Moreover, as we assume a
job/segment executes non-preemptively until tpr(j, v), Eq. (14), and Eq. (15) provide a safe
lower and an upper bound on the completion time of job/segment j, respectively. Further,
by the inductive assumption, the condition of Lemma 9 must hold for job/segment j, and
Algorithm 1 expands the graph with a new node v′. Moreover, as shown by Lemma 8
in [32], the availability intervals of v′′ correctly bound the simultaneous availability of x

cores for all 1 ≤ x ≤ m. The remaining execution times are safely derived from Eqs. (16),
(17) taking into account possible preemption at the possible preemption point (tpr(j, v))
where a higher-priority not-yet-released job jh can preempt job/segment j. Moreover,
according to Lemma 12 job jh can possibly preempt job j and become a direct successor
of v′. The set of completed jobs and the set of preempted jobs in state v′ are updated in
lines 3 -4, and lines 10-11 of Algorithm 2 according to the remaining execution time of job
j. Therefore, requirements (iv) and (v) are trivially respected. Because a job with possible
zero remaining execution time (RMmin(j, v′) = 0) can be completed at any time within

P. Gohari, J. Voeten, and M. Nasri 3:17

[EFT (j, v), LFT (j, v)], thus EFT (j, v) and LFT (j, v) are safe lower- and upper-bounds on
t (i.e., proving that t ∈ [EFT(j, v), LFT(j, v)]). Also, according to Lemma 11, potentially
merging v′ with another state in Algorithm 1 maintains the validity of claims (i) to (v) for
the newly generated state even if it is merged with another state.

Finally, given that in the initial state v1, no job has been dispatched yet and all cores
are available (satisfying (i)) and that the set of completed jobs and preempted jobs are
empty (satisfying (ii)-(v)), the inductive assumptions holds for v1, and thus, by induction,
are respected in all the states created by Algorithm 1. ◀

5 Empirical evaluation

We compare our response-time analysis against the state of the art in terms of schedulability
and runtime, considering global rate monotonic (RM), EDF, and EDF(k) policies.

Baselines. Exact schedulability tests: (i) simulating the G-EDF schedule of periodic tasks
(without jitter) using SimSo [17] (SimSo-EDF-Pr), (ii) UPPAAL-based test for periodic tasks
scheduled by G-RM [25] (UPPAAL-RM-Pr), (iii) the exact test of Burmyakov et al. [15] for
sporadic tasks under G-RM (Burmyakov-RM-Sp), (iv) the exact test of Baruah et al. [9] for
sporadic tasks under partitioned EDF (P-EDF-Sp), where, tasks were sorted by their deadlines
in a non-decreasing order and then partitioned using the best strategy among best-fit (BF),
first-fit (FF), and worst-fit (WF) placement heuristics.

Sufficient schedulability tests: (i) Guan et al. [26] test for sporadic tasks under G-RM
(Guan-RM-Sp), (ii) Sun et al. [43] test for sporadic tasks under G-RM (Sun-RM-Sp), (iii)
Bertogna et al. [11] test for sporadic tasks under G-EDF (Bertogna-EDF-Sp), (iv) Sun and
Lipari [41] test for sporadic tasks under G-EDF (Sun-EDF-Sp), (v) the utilization bound test
of Goossens et al. [24] for periodic tasks under G-EDF(k) (Goossens-EDF(k)-Pr).

Remarks. The sporadic task model is not compatible with periodic tasks with release jitter
(because jitter reduces the inter-arrival time of the tasks). Therefore, to have a meaningful
comparison between these models, we adjusted the minimum inter-arrival time of sporadic
tasks to be equal to the period minus jitter. Moreover, given that the schedulability tests of
Gohari et al. [23] and Cucu-Grosjean et al. [18] (designed for periodic tasks without jitter)
give the same output as SimSo-EDF-Pr, we omitted them from the diagrams. Moreover,
we could not compare against Zhou et al. [46] due to not having access to the code of the
analysis, the complexity of the algorithms, and some ambiguities. We couldn’t be sure if our
implementation was faithful to [46]. It is worth mentioning that Zhou’s analysis provides
a 5% improvement in the schedulability ratio compared to Sun-EDF-Sp across a range of
experiments reported in [46].

Execution platform. All methods were executed as a single-threaded C++ program on a
computing cluster powered by AMD Rome 7H12 processors clocked at 2.6GHz with 1TB of
memory. The runtime of each analysis was reported by measuring its CPU time.

5.1 Comparison against exact tests
We conduct two experiments to assess the impact of release jitter and utilization on the
efficiency and accuracy of the schedulability tests. Due to scalability constraints in exact
tests and UPPAAL’s limit of values under 32,767, our first set of experiments were restricted
to n = 10 tasks and m = 4 cores (Sect. 5.2 provides experiments on broader ranges of

ECRTS 2024

3:18 Response-Time Analysis of Preemptive Tasks Under Global Scheduling

parameters). For each task set, periods were chosen from the set {x × 103 | 1 ≤ x ≤ 32} with
the log-uniform distribution (following Emberson’s method [20]). We then used UUnifast-
Discard [12,19] to generate a series of random utilizations that collectively sum up to the
target system utilization for each task set. Each experiment consists of generating 200 task
sets per data point, with the total utilization U ranging from 50% to 90%. Also, each test is
allocated a time budget of 10 hours and a memory budget of 256GB.

Exp1 (jitter = 0%). In this experiment, we considered periodic tasks without release
jitter. Fig. 6a shows the impact of system utilization on the schedulability of each analysis.
As expected, as utilization increases, schedulability decreases, yet, our analysis for G-EDF
(SAG-EDF-Pr) yields identical results as the exact analysis (here, SimSo-EDF-Pr) while it
outperforms all other sufficient tests for G-EDF. Namely, our analysis identified 63% of task
sets as schedulable, whereas Bertogna’s and Sun’s tests for G-EDF could only detect 20.9%
and 31.1% of schedulable task sets, respectively.

Moreover, overall for G-RM, our analysis (SAG-RM-Pr) identified 61.1% schedulable task
sets whereas Guan’s and Sun’s tests for G-RM could only detect 37.1% of schedulable task
sets. Also, the exact test UPPAAL-RM-Pr could only identify 40.3% of schedulable task sets
(as it was inconclusive for many task sets due to timeouts or memory overflows shown in
Fig. 6c). Furthermore, the Burmyakov-RM-Sp exact test failed to complete any task set within
the allocated 10 hours time budget and was unable to detect any schedulable task set across
all system utilization levels.

We additionally used our JLFP-compatible analysis to evaluate the schedulability of the
global EDF(k) policy (SAG-EDF(k)-Pr). As illustrated in Fig. 6a, thanks to our analysis, it
is now evident that global EDF(k) significantly outperforms other global policies such as
G-RM and G-EDF. Moreover, our analysis identifies, 8 times more schedulable task sets
than the existing test for EDF(k) Goossens-EDF(k)-Pr.

In this experiment, partitioned scheduling P-EDF-Sp identifies on average, 77% of task
sets as schedulable. The gap between the best global policy (i.e., EDF(k)) and partitioned
scheduling appears only when utilization is 80%. This gap is not large, i.e., in 90% utilization,
partitioned scheduling can schedule 11.5% more task sets than EDF(k). We believe this
difference is due to the lack of an optimal priority assignment policy for global scheduling.

Fig. 6b shows the average runtime of each test. As expected, the sufficient tests (Bertogna-
EDF-Sp, Sun-EDF-Sp, Guan-RM-Sp, Goossens-EDF(k)-Pr, and Sun-RM-Sp) are notably faster
than others. Our analysis average runtime for G-EDF and G-RM is 5.12 seconds and 2.90
seconds, respectively, which is comparable to the simulation-based test in SimSo, averaging
7.55 seconds to complete. Our analysis does not have any timeouts while UPPAAL-RM-Pr runs
out of memory for many schedulable task sets (e.g., for the utilization of 50%, 60%, or 70%).

Exp2 (jitter = 2.5%×period). In this experiment, we consider that each task has a
release jitter as large as 2.5% times its period. Given that the exact tests SimSo-EDF-Pr and
UPPAAL-RM-Pr do not support release jitter, we exclude them from the experiments.

As illustrated in Fig. 6d, our analysis consistently outperforms all the other tests for
both G-RM and G-EDF policies. It identifies 55.5% of task sets as schedulable with G-EDF,
which is 2.9 times more than Bertogna’s and 2 times more than Sun’s tests for G-EDF
(marking 19.2% and 27.1% of task sets as schedulable). Our analysis for G-RM identified
53.4% of task sets as schedulable which is 1.5 times more than Guan-RM-Sp and Sun-RM-
Sp (marking 34.5% of task sets as schedulable). Moreover, as shown in Fig. 6f, the exact
test Burmyakov-RM-Sp did not finish within 10 hours time budget for any of the task sets.

P. Gohari, J. Voeten, and M. Nasri 3:19

(a) Task sets deemed to be schedulable
(m=4, n=10, j=0×T)

(b) Average runtime

S
A
G

-
R
M

S
A
G

-
E
D

F

U
P
P
A
A
L
-
R
M

B
u
r
m

y
a
k
o
v
-
R
M

S
A
G

-
R
M

S
A
G

-
E
D

F

U
P
P
A
A
L
-
R
M

B
u
r
m

y
a
k
o
v
-
R
M

S
A
G

-
R
M

S
A
G

-
E
D

F

U
P
P
A
A
L
-
R
M

B
u
r
m

y
a
k
o
v
-
R
M

S
A
G

-
R
M

S
A
G

-
E
D

F

U
P
P
A
A
L
-
R
M

B
u
r
m

y
a
k
o
v
-
R
M

S
A
G

-
R
M

S
A
G

-
E
D

F

U
P
P
A
A
L
-
R
M

B
u
r
m

y
a
k
o
v
-
R
M

50 60 70 80 90

0

20

40

60

80

100

120

140

160

180

200

Unschedulable Out of Memory Timeout

Schedulable

Total utilization (%)

A
n
a
ly

s
is

 d
e
c
is

io
n
s

Loading [MathJax]/extensions/MathMenu.js

(c) Analysis decision

An
al

ys
is

 d
ec

is
io

n

�������

�������������

���������
��

	������
��

(d) Task sets deemed to be schedulable
(m=4, n=10, j=2.5%×T)

(e) Average runtime

S
A
G

-
R
M

S
A
G

-
E
D

F

B
u
r
m

y
a
k
o
v
-
R
M

S
A
G

-
R
M

S
A
G

-
E
D

F

B
u
r
m

y
a
k
o
v
-
R
M

S
A
G

-
R
M

S
A
G

-
E
D

F

B
u
r
m

y
a
k
o
v
-
R
M

S
A
G

-
R
M

S
A
G

-
E
D

F

B
u
r
m

y
a
k
o
v
-
R
M

S
A
G

-
R
M

S
A
G

-
E
D

F

B
u
r
m

y
a
k
o
v
-
R
M

50 60 70 80 90

0

20

40

60

80

100

120

140

160

180

200

Unschedulable Out of Memory Timeout

Schedulable

Total utilization (%)

A
n
a
ly

s
is

 d
e
c
is

io
n
s

Loading [MathJax]/extensions/MathMenu.js

(f) Analysis decision

An
al

ys
is

 d
ec

is
io

n

Burm
yakov-RM

-SP
U

PPAAL-RM
-PR

SAG-EDF-PR
SAG-RM

-PR

Burm
yakov-RM

-SP
U

PPAAL-RM
-PR

SAG-EDF-PR
SAG-RM

-PR

Burm
yakov-RM

-SP
U

PPAAL-RM
-PR

SAG-EDF-PR
SAG-RM

-PR

Burm
yakov-RM

-SP
U

PPAAL-RM
-PR

SAG-EDF-PR
SAG-RM

-PR

Burm
yakov-RM

-SP
U

PPAAL-RM
-PR

SAG-EDF-PR
SAG-RM

-PR

Burm
yakov-RM

-SP

SAG-EDF-PR

SAG-RM
-PR

Burm
yakov-RM

-SP

SAG-EDF-PR

SAG-RM
-PR

Burm
yakov-RM

-SP

SAG-EDF-PR

SAG-RM
-PR

Burm
yakov-RM

-SP

SAG-EDF-PR

SAG-RM
-PR

Burm
yakov-RM

-SP

SAG-EDF-PR

SAG-RM
-PR

Figure 6 Experiments of Sec. 5.1: (a-c) Exp1 (no jitter), (d-f) Exp2 (with release jitter).

Fig. 6e shows the average runtime of each test. On average, our analysis for G-EDF and
G-RM finished in 316.75 seconds and 245.74 seconds (about 5 minutes), respectively.

5.2 Comparison against sufficient tests
In this section, we excluded the exact tests to remove the limitation on task periods and the
system size. We design three experiments to study the impact of system utilization (U), the
number of cores (m), and the number of tasks (n) on the schedulability ratio and runtime of
our analysis. In each experiment, we generated 200 periodic task sets for each data point.

Task set generation. We generated task sets as explained in Sec. 5.1 but we chose periods
from 10, 000 to 100, 000µs to show that our analysis’s runtime is not affected by the time
granularity. For each task, we assumed a release jitter of 200µs and an implicit deadline.
We also discarded any task set with more than 100, 000 jobs per hyperperiod (note that
industrial task sets usually have only a few thousand jobs [28]).

Exp3 (impact of utilization). We considered systems with n = 6 tasks and m = 4 cores
and varied the utilization from 50% to 90%. As shown in Fig. 7a, our analysis for G-EDF
identifies 1.8 times more schedulable task sets (overall 68%) than the best test for G-EDF
(Sun-EDF-Sp, which overall, found only 37.4% schedulable task sets across all utilization
values). Similarly, for G-RM, our analysis identifies 1.3 times more schedulable task sets
(overall 68.4%) than the best test for G-RM (Guan-RM-Sp, Sun-RM-Sp, which overall, they
found 52.3% schedulable task sets across all utilization values).

The average runtime of our analysis across all utilization values (Fig. 7b) for G-EDF,
G-RM, and G-EDF(k) are 8.6, 7.2, and 3.3 seconds, respectively.

Global v.s. partitioned scheduling. Fig. 7a shows that overall P-EDF-Sp identifies 85.6%
schedulable task sets across all utilizations while according to our analysis, G-EDF, G-RM,
and G-EDF(k) identify 68%, 68.4%, and 88.9% schedulable task sets, respectively. Fig. 7j, k,

ECRTS 2024

3:20 Response-Time Analysis of Preemptive Tasks Under Global Scheduling

(a) Task sets deemed to be schedulable
Exp3. (m=4, n=6, j=200μs)

(d) Task sets deemed to be schedulable

(b) Average runtime

Exp4. (m=4, U=70%, j=200μs)

(e) Average runtime

Exp5. (n=1.5×m, U=70%, j=200μs)

(c) Runtime per job set (f) Runtime per job set (i) Runtime per job set

(g) Task sets deemed to be schedulable

(h) Average runtime

(j) Comparing G-EDF with P-EDF (k) Comparing G-RM with P-EDF (l) Comparing G-EDF(k) with P-EDF

��

����������������
������������
	��

����������������
������������

�� ��

����������������
������������

Figure 7 Experiments of Sec. 5.2: (a–c) Exp3, (d–f) Exp4, (g–i) Exp5, (j–l) dominance results
for Exp3.

and l provide insight into the gap between global and partitioned scheduling. The top half of
these figures illustrates the number of task sets that were deemed schedulable exclusively by
global EDF, RM, or EDF(k), but not by any (or each) of the partitioning strategies. For
example, at U = 90%, G-RM and G-EDF(k) identify, respectively, 6 and 37 task sets (out
of 200) that were not schedulable by any of the partitioning heuristics. The bottom half
of Fig. 7j, k, and l shows task sets that were schedulable by a partitioning heuristic but
not with G-EDF, G-RM, or G-EDF(k), respectively. We believe the performance of global
scheduling can still improve with better (job-level) priority strategies.

P. Gohari, J. Voeten, and M. Nasri 3:21

Exp4 (impact of the number of tasks). In this experiment, we varied the number of tasks
from 6 to 16 (for systems with 70% utilization and 4 cores). As shown in Fig. 7d, increasing
the number of tasks generally significantly increases the pessimism of all state-of-the-art
tests for global policies likely due to over-approximating the carry-in workload. For example,
even the best test for G-EDF (Sun-EDF-Sp) cannot identify more than 7% schedulable task
sets (across all data points in Fig. 7d), while our method identified 86.4% which is 12 times
more schedulable task sets. Thanks to the accurate tracking of interference scenarios, we can
now confirm that increasing the number of tasks does not really worsen the performance of
global policies (it even improves the schedulability of G-EDF from 82% to 90.5%). This is
likely due to the fact that increasing the number of tasks, reduces per-task utilization which
allows global policies to better balance the load among the cores. The average runtime of
our analysis across all data points in this experiment, for G-EDF, G-RM, and G-EDF(k) is
2084.35, 1092.08, and 744.65 seconds, respectively, as depicted in Fig. 7e.

Exp5 (impact of the number of cores). We varied the number of cores (m) for systems
with U = 70% and n = 1.5 × m tasks. Fig. 7g shows that the schedulability of global policies
decreases when the number of cores increases, however, the existing sufficient tests suffer much
more from the increase in the number of cores than our analysis. For instance, our analysis
for G-EDF identifies 2.9 times more schedulable task sets (overall 68.2%) than Sun-EDF-
Sp (overall 22.9%). Similarly, our analysis for G-RM identifies 1.7 times more schedulable task
sets (overall 67.7%) than Guan-RM-Sp and Sun-RM-Sp (overall 39.7%). Despite the continued
decrease in schedulability of G-EDF and G-RM when the number of cores increases, we
noticed that G-EDF(k) (SAG-EDF(k)-Pr) and partitioned scheduling (P-EDF-Sp) maintain a
high schedulability ratio. This is partly due to the inefficiency of EDF and RM priority
assignment methods for global policies. Overall, on average SAG-EDF(k)-Pr and P-EDF-
Sp detect 93.1% and 93.5% schedulable task sets, respectively. As shown in Fig. 7h, the
average runtime of our analysis for G-EDF, G-RM, and G-EDF(k) is 6796.45, 2988.49, and
3095.24 seconds, respectively.

For a better understanding of the runtime of our analysis, we plotted the runtime of
the analysis for each task set in Exp 3, Exp 4, and Exp 5 in Fig. 7c, f, and i, respectively.
It can be seen, that the runtime increases as the number of jobs in a hyperperiod grows.
Nevertheless, our analysis runtime typically ranges from a few seconds to a few minutes
on average (e.g., for a system with 4 cores and 6 to 14 tasks). The only instances where
the runtime exceeded an hour were when we scaled up the number of cores to 10 or the
number of tasks to 16. Even then, overall, 95% of the generated task sets in all experiments
completed analysis within 2 hours.

6 Conclusion and future work

In this paper, we introduced a novel response-time analysis for preemptive periodic tasks
(or job sets) with release jitter under global JLFP scheduling. We extended the schedule-
abstraction graph (SAG) concept, originally designed for non-preemptive tasks. We addressed
the challenges of extending SAG to preemptive tasks by introducing concepts such as time
partitions to accurately track interference from potential preemptions. Our analysis is
considerably more accurate than the state of the art. For instance, we identify 12 times more
schedulable task sets than existing tests for G-EDF (and 2.7 times more schedulable task sets
for G-RM), e.g., for systems with 6 to 16 tasks, 70% utilization, and 4 cores. Similarly, we
identify 2.9 times (1.6 times) more schedulable task sets than existing tests for G-EDF (for

ECRTS 2024

3:22 Response-Time Analysis of Preemptive Tasks Under Global Scheduling

G-RM), for example, for systems with m = 2 to 10 cores, 70% utilization, and 1.5×m tasks
per core. We also provided the first response-time analysis for global EDF(k) – a global
JLFP policy designed to address the Dhall’s effect– showing that it can schedule 1.3 times
more task sets (overall 93.1%) than G-EDF (overall 68.2%) for systems with m = 2 to 10
cores, 70% utilization, and 1.5×m tasks per core.

With these results, we believe that our work makes a breakthrough in gaining insights
into the true performance of global scheduling policies. In the future, we will extend our
analysis to support precedence constraints and to use partial-order reduction to further
reduce its runtime and memory consumption.

References
1 Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I Davis.

An empirical survey-based study into industry practice in real-time systems. In Real-Time
Systems Symposium (RTSS), pages 3–11, 2020.

2 Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I Davis. A
comprehensive survey of industry practice in real-time systems. Real-Time Systems, 58(3):358–
398, 2022.

3 Björn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority scheduling on multipro-
cessors. In Real-Time Systems Symposium (RTSS), pages 193–202, 2001.

4 Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J Wellings. Applying
new scheduling theory to static priority pre-emptive scheduling. Software engineering journal,
8(5):284–292, 1993.

5 Theodore P Baker. Multiprocessor edf and deadline monotonic schedulability analysis. In
Real-Time Systems Symposium (RTSS), pages 120–129, 2003.

6 Theodore P Baker. An analysis of EDF schedulability on a multiprocessor. IEEE Transactions
on Parallel and Distributed Systems, 16(8):760–768, 2005.

7 Theodore P Baker and Michele Cirinei. Brute-force determination of multiprocessor schedulab-
ility for sets of sporadic hard-deadline tasks. In International Conference On Principles Of
Distributed Systems, pages 62–75, 2007.

8 Sanjoy Baruah. Techniques for multiprocessor global schedulability analysis. In Real-Time
Systems Symposium (RTSS), pages 119–128, 2007.

9 Sanjoy K Baruah, Aloysius K Mok, and Louis E Rosier. Preemptively scheduling hard-real-time
sporadic tasks on one processor. In Real-Time Systems Symposium (RTSS), pages 182–190,
1990.

10 Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Improved schedulability analysis of
EDF on multiprocessor platforms. In Euromicro Conference on Real-Time Systems (ECRTS),
pages 209–218, 2005.

11 Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Schedulability analysis of global
scheduling algorithms on multiprocessor platforms. IEEE Transactions on parallel and
distributed systems, 20(4):553–566, 2008.

12 Enrico Bini and Giorgio C Buttazzo. Measuring the performance of schedulability tests.
Real-time systems, 30(1-2):129–154, 2005.

13 Alessandro Biondi and Youcheng Sun. On the ineffectiveness of 1/m-based interference bounds
in the analysis of global edf and fifo scheduling. Real-Time Systems, 54:515–536, 2018.

14 Vincenzo Bonifaci and Alberto Marchetti-Spaccamela. Feasibility analysis of sporadic real-time
multiprocessor task systems. Algorithmica, 63:763–780, 2012.

15 Artem Burmyakov, Enrico Bini, and Chang-Gun Lee. Towards a tractable exact test for global
multiprocessor fixed priority scheduling. IEEE Transactions on Computers, 71(11):2955–2967,
2022.

P. Gohari, J. Voeten, and M. Nasri 3:23

16 Artem Burmyakov, Enrico Bini, and Eduardo Tovar. An exact schedulability test for global FP
using state space pruning. In International Conference on Real Time and Networks Systems
(RTNS), pages 225–234, 2015.

17 Maxime Chéramy, Pierre-Emmanuel Hladik, and Anne-Marie Déplanche. SimSo: A simulation
tool to evaluate real-time multiprocessor scheduling algorithms. In International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS), pages
37–42, 2014.

18 Liliana Cucu-Grosjean and Joël Goossens. Exact schedulability tests for real-time scheduling
of periodic tasks on unrelated multiprocessor platforms. Journal of systems architecture,
57(5):561–569, 2011.

19 Robert I Davis and Alan Burns. Priority assignment for global fixed priority pre-emptive
scheduling in multiprocessor real-time systems. In Real-Time Systems Symposium (RTSS),
pages 398–409, 2009.

20 Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the synthesis of multipro-
cessor tasksets. In Workshop on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS), pages 6–11, 2010.

21 Pourya Gohari, Mitra Nasri, and Jeroen Voeten. Data-age analysis for multi-rate task chains
under timing uncertainty. In International Conference on Real-Time Networks and Systems
(RTNS), pages 24–35, 2022.

22 Pourya Gohari, Jeroen Voeten, and Mitra Nasri. Response-time analysis of fault-tolerant hard
real-time systems under global scheduling. In International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), pages 263–264, 2023.

23 Pourya Gohari, Jeroen Voeten, and Mitra Nasri. Work-in-progress: Tight response-time ana-
lysis for periodic preemptive tasks under global scheduling. In Real-Time Systems Symposium
(RTSS), pages 451–454, 2023.

24 Joël Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of periodic task
systems on multiprocessors. Real-time systems, 25:187–205, 2003.

25 Nan Guan, Zonghua Gu, Qingxu Deng, Shuaihong Gao, and Ge Yu. Exact schedulability
analysis for static-priority global multiprocessor scheduling using model-checking. In IFIP
International Workshop on Software Technologies for Embedded and Ubiquitous Systems, pages
263–272, 2007.

26 Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. New response time bounds for fixed priority
multiprocessor scheduling. In Real-Time Systems Symposium (RTSS), pages 387–397, 2009.

27 Rhan Ha and Jane WS Liu. Validating timing constraints in multiprocessor and distributed
real-time systems. In International conference on distributed computing systems, pages 162–171,
1994.

28 Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks for
free. In Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS), 2015.

29 Jinkyu Lee and Insik Shin. Limited carry-in technique for real-time multi-core scheduling.
Journal of Systems Architecture, 59(7):372–375, 2013.

30 Mitra Nasri and Björn B Brandenburg. An exact and sustainable analysis of non-preemptive
scheduling. In Real-Time Systems Symposium (RTSS), pages 12–23, 2017.

31 Mitra Nasri, Geoffrey Nelissen, and Björn B Brandenburg. A response-time analysis for
non-preemptive job sets under global scheduling. In Euromicro Conference on Real-Time
Systems (ECRTS), pages 9–1, 2018.

32 Mitra Nasri, Geoffrey Nelissen, and Björn B Brandenburg. Response-time analysis of limited-
preemptive parallel DAG tasks under global scheduling. In Euromicro Conference on Real-Time
Systems (ECRTS), pages 21–1, 2019.

33 Geoffrey Nelissen, Joan Marcè i Igual, and Mitra Nasri. Response-time analysis for non-
preemptive periodic moldable gang tasks. In Euromicro Conference on Real-Time Systems
(ECRTS), 2022.

ECRTS 2024

3:24 Response-Time Analysis of Preemptive Tasks Under Global Scheduling

34 Suhail Nogd, Geoffrey Nelissen, Mitra Nasri, and Björn B Brandenburg. Response-time
analysis for non-preemptive global scheduling with FIFO spin locks. In Real-Time Systems
Symposium (RTSS), pages 115–127, 2020.

35 Sayra Ranjha, Pourya Gohari, Geoffrey Nelissen, and Mitra Nasri. Partial-order reduction
in reachability-based response-time analyses of limited-preemptive DAG tasks. Real-Time
Systems, pages 1–55, 2023.

36 Maria A Serrano, Alessandra Melani, Sebastian Kehr, Marko Bertogna, and Eduardo Quiñones.
An analysis of lazy and eager limited preemption approaches under dag-based global fixed
priority scheduling. In International Symposium on Real-Time Distributed Computing (ISORC),
pages 193–202, 2017.

37 Anand Srinivasan and Sanjoy Baruah. Deadline-based scheduling of periodic task systems on
multiprocessors. Information processing letters, 84(2):93–98, 2002.

38 Srinidhi Srinivasan, Geoffrey Nelissen, Reinder J. Bril, and Nirvana Meratnia. Analysis of tsn
time-aware shapers using schedule abstraction graphs. In Euromicro Conference on Real-Time
Systems (ECRTS), 2024.

39 Youcheng Sun and Marco Di Natale. Assessing the pessimism of current multicore global
fixed-priority schedulability analysis. In ACM Symposium on Applied Computing, pages
575–583, 2018.

40 Youcheng Sun and Giuseppe Lipari. A weak simulation relation for real-time schedulability
analysis of global fixed priority scheduling using linear hybrid automata. In International
Conference on Real-Time Networks and Systems (RTNS), pages 35–44, 2014.

41 Youcheng Sun and Giuseppe Lipari. Response time analysis with limited carry-in for global
earliest deadline first scheduling. In IEEE Real-Time Systems Symposium, pages 130–140,
2015.

42 Youcheng Sun and Giuseppe Lipari. A pre-order relation for exact schedulability test of sporadic
tasks on multiprocessor global fixed-priority scheduling. Real-Time Systems, 52:323–355, 2016.

43 Youcheng Sun, Giuseppe Lipari, Nan Guan, and Wang Yi. Improving the response time
analysis of global fixed-priority multiprocessor scheduling. In International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 1–9, 2014.

44 Beyazit Yalcinkaya, Mitra Nasri, and Björn B Brandenburg. An exact schedulability test
for non-preemptive self-suspending real-time tasks. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1228–1233, 2019.

45 Quan Zhou, Guohui Li, and Jianjun Li. Improved carry-in workload estimation for global
multiprocessor scheduling. IEEE Transactions on Parallel and Distributed Systems, 28(9):2527–
2538, 2017.

46 Quan Zhou, Guohui Li, Chunyang Zhou, and Jianjun Li. Limited busy periods in response
time analysis for tasks under global edf scheduling. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 40(2):232–245, 2020.

	1 Introduction
	2 Models and assumptions
	2.1 From periodic tasks to a job set

	3 Motivation and key ideas
	4 Response-time analysis
	4.1 System state representation
	4.2 Edges of the graph
	4.3 Schedule-abstraction graph generation
	4.4 Expansion phase
	4.4.1 Ready interval
	4.4.2 Earliest start time
	4.4.3 Latest start time
	4.4.4 Eligibility condition
	4.4.5 Earliest and latest finish times
	4.4.6 Creating a new state

	4.5 State space reduction
	4.6 Correctness

	5 Empirical evaluation
	5.1 Comparison against exact tests
	5.2 Comparison against sufficient tests

	6 Conclusion and future work

